
1

PERIYAR INSTITUTE OF DISTANCE EDUCATION

(PRIDE)

PERIYAR UNIVERSITY

SALEM - 636 011.

B.Sc. COMPUTER SCIENCE

THIRD YEAR

PAPER - VIII : INTERNET AND PROGRAMMING JAVA

2

Prepared By

M.KALADEVI

9, Royal Gardens,

Meyyanur Bye-pass Road,

Salem-4

3

B.Sc. COMPUTER SCIENCE

THIRD YEAR

PAPER – VIII : INTERNET AND PROGRAMMING JAVA

Unit – I:

Internet Connection Concepts: Internet Communication Protocols –

Types Of Internet Connections - Internet Service Providers - Security Issues On

The Internet.

E-Mail Concepts: How Do You Get Your E-Mail? - E-Mail

Addressing - Message Headers – Downloading E-Mail – Formatted E-Mail –

Attaching Files To Messages – Web Based E-Mail – Mail Away From Home-

Avoiding Viruses. E-Mail Security: Reasons To Secure Messages, Public Key

Cryptography, Using Cryptography With E-Mail.

Online Chatting And Conferencing Concepts: Forms Of Chat,

Messaging And Conference – How The Chat Work. WWW Concepts:

Elements Of The Web, Web Browsers, Security And Privacy Issues.

Unit - II:

Fundamentals Of Object Oriented Programming: Introduction -

Object Oriented Paradigm- Basic Concepts Of Object Oriented Programming –

Benefits Of OOP – Applications Of OOP. JAVA Evolution: JAVA History –

JAVA Features – How JAVA Differs From C And C++ - JAVA And Internet –

JAVA And World Wide Web – Web Browsers – Hardware And Software

Requirements – JAVA Support Systems – JAVA Environment. Overview Of

JAVA Language: Introduction Simple JAVA Program – More Of JAVA - An

Application With Two Classes – JAVA Program Structure – JAVA Tokens –

JAVA Statements – Implementing A JAVA Program – JAVA Virtual Machine

– Command Line Arguments – Programming Style.

Constants, Variables And Data Types: Constants - Variables - Data

Types – Declaration Of Variables – Giving Values To Variables – Scope Of

Variables – Symbolic Constants – Type Casting – Getting Values Of Variables.

Operators And Expressions: Introduction – Arithmetic Operators-

Relational Operators – Logical Operators – Assignment Operators – Increment

And Decrement Operators – Conditional Operators – Bit Wise Operators –

Special Operators – Arithmetic Expressions - Evaluation Of Expressions -

Precedence Of Arithmetic Operators – Type Conversions In Expressions –

Operator Precedence And Associativity – Mathematical Functions.

Decision Making And Branching: Introduction – Decision Making

With If Statement – Simple If Statement – The If…Else Statement – Nesting

Of If…Else Statement –The If…Else Ladder – The Switch Statement. Decision

Making And Looping: Introduction – The While Statement – The Do

Statement – The For Statement – Jump In Loops – Labeled Loops.

Unit – III:

Classes, Objects And Methods: Introduction – Defining A Class –

Adding Variables – Adding Methods – Creating Objects – Accessing Class

4

Members – Constructors – Methods Overloading – Static Members – Nesting

Of Methods. Inheritance: Extending A Class – Overriding Methods – Final

Variables And Methods – Final Classes – Finalizer Methods – Abstract

Methods And Classes – Visibility Control. Arrays String And Vectors:

Arrays – One Dimensional Arrays – Creating An Array – Two Dimensional

Arrays – Strings – Vectors – Wrapper Classes. Interface:Multiple

Inheritance: Introduction – Defining Interfaces – Extending Interfaces –

Implementing Interfaces – Accessing Interface Variables.

Unit - IV:

Packages: Putting Classes Together: Introduction – JAVA API

Packages – Using System Packages – Naming Conventions – Creating

Packages – Accessing A Packages – Using A Packages – Adding Class To A

Package – Hiding Classes.

Multithreaded Programming: Introduction – Creating Threads –

Extending The Thread Class – Stopping And Blocking A Thread - Life Cycle

Of A Thread – Using Thread Methods - Thread Exceptions - Thread Priority –

Synchronization – Implementing The Runnable Interface.

Managing Errors And Exceptions: Introduction – Types Of Errors –

Exceptions – Syntax Of Exception Handling Code – Multiple Catch Statements

– Using Finally Statement – Throwing Our Own Exceptions For Debugging.

Unit - V:

Applet Programming: Introduction – How Applets Differ From

Applications – Preparing To Write Applets – Building Applet Code – Applet

Life Cycle – Creating An Executable Applet – Designing A Web Page – Applet

Tag – Adding Applet To HTML File – Running The Applet – More About

Applet To Passing Parameters To Applets – Aligning The Display –More

About HTML Tags – Displaying Numerical Values – Getting Input From The

User.

Graphics Programming: Introduction – The Graphics Class – Lines

And Rectangles – Circles And Ellipses – Drawing Arcs – Drawing Polygons –

Line Graphs – Using Control Loops In Applet – Drawing Bar Charts.

Managing Input / Output Files: Introduction – Concepts Of Streams –

Stream Classes – Byte Stream Classes – Character Stream Classes – Using

Stream – Other Useful I/O Classes – Using The File Classes – Input / Output

Exceptions – Creation Of Files – Reading / Writing Characters – Reading /

Writing Bytes – Handling Primitive Data Types- Concatenation And Buffering

Files – Random Access Files – Interactive Input And Output – Other Stream

Classes.

TEXT BOOKS:

“The Complete reference – Internet Millennium Edition”, Margaret Levine

Young T.M.H, New Delhi. (Unit – I)

“Programming with JAVA”, E.Balagurusamy. T.M.H, New Delhi. 2nd Edition.

(Unit – II to Unit – V)

5

INTRODUCTION

Dear Students,

This package consists of five units dealing with concepts of Internet

and Programming Language JAVA. In first unit, we introduce the need for

studying Internet; this unit mainly highlights the concepts of Internet, e-mail,

Online Chatting & Conferencing and World Wide Web.

The second unit deals with the fundamentals of object oriented

programming and the evolution of Java programming. This unit also consists of

elaborate discussion on object oriented programming and basic concept of Java

programming and its application.

The third unit explores the process of classes & objects and discuss

about the different inheritance concept and its usage. You can also learn about

arrays & vectors and its applications.

The fourth unit deals with the common usage of the packages,

multithreaded programming and how can manage the errors & exceptions.

In the fifth unit, we introduce the applet & graphics programming and

its usages. An applet programming concepts mainly used to create web pages in

the Internet. We can also explore the concepts of managing input & output

files.

All the above said five units of lesson in SIM pattern of this package

have been prepared by Mrs. M.Kaladevi, M.C.A.,M.Phil., to make your task

much easier while going through it.

 PRIDE would be happy if you make use of this learning material to

enrich your knowledge and skills.

6

UNIT – I

UNIT STRUCTURE

1.1.Introduction

1.2.Objectives

1.3.Internet Connection Concepts

1.3.1. Internet Communication Protocols

1.3.2. Types Of Internet Connections

1.3.3. Internet Service Providers

1.3.4. Security Issues On The Internet

1.3.5. Self Assessment Questions

1.4.E-Mail Concepts

1.4.1. How Do You Get Your E-Mail?

1.4.2. E-Mail Addressing

1.4.3. Message Headers

1.4.4. Downloading E-Mail

1.4.5. Formatted E-Mail

1.4.6. Attaching Files To Messages

1.4.7. Web Based E-Mail

1.4.8. Mail Away From Home

1.4.9. Avoiding Viruses

1.4.10. Self Assessment Questions

1.5.E-Mail Security

1.5.1. Reasons To Secure Messages

1.5.2. Public Key Cryptography

1.5.3. Using Cryptography With E-Mail

1.5.4. Self Assessment Questions

1.6.Online Chatting And Conferencing Concepts

1.6.1. Forms Of Chat

1.6.2. Messaging And Conference

1.6.3. How The Chat Work

1.6.4. Self Assessment Questions

1.7.WWW Concepts

1.7.1. Elements Of The Web

1.7.2. Web Browsers

1.7.3. Security And Privacy Issues

1.7.4. Self Assessment Questions

7

1.8.Summary

1.9.Unit Questions

1.10.Answers for Self Assessment Questions

UNIT - II

UNIT STRUCTURE

2.1.Introduction

2.2.Objectives

2.3.Fundamentals Of Object Oriented Programming

2.3.1. Introduction

2.3.2. Object Oriented Paradigm

2.3.3. Basic Concepts

2.3.4. Benefits Of OOP

2.3.5. Applications Of OOP

2.3.6. Self Assessment Questions

2.4.Java Evolution

2.4.1. Java History

2.4.2. Java Features

2.4.3. How Java Differs From C And C++

2.4.4. Java And Internet

2.4.5. Java And World Wide Web

2.4.6. Web Browsers

2.4.7. Hardware And Software Requirements

2.4.8. Java Support Systems

2.4.9. Java Environment

2.4.10. Self Assessment Questions

2.5.Overview Of Java Language

2.5.1. Introduction

2.5.2. Simple and More Of Java Program

2.5.3. An Application With Two Classes

2.5.4. Java Program Structure

2.5.5. Java Tokens

2.5.6. Java Statements

2.5.7. Implementing A Java Program

2.5.8. Java Virtual Machine

2.5.9. Command Line Arguments

2.5.10. Programming Style

2.5.11. Self Assessment Questions

2.6.Constants, Variables And Data Types

8

2.6.1. Data Types

2.6.2. Constants and Symbolic Constants

2.6.3. Variables

2.6.4. Declaration Of Variables

2.6.5. Giving Values To Variables

2.6.6. Scope Of Variables

2.6.7. Getting Values Of Variables

2.6.8. Type Casting

2.6.9. Self Assessment Questions

2.7.Operators And Expressions

2.7.1. Introduction

2.7.2. Arithmetic Operators

2.7.3. Relational Operators

2.7.4. Logical Operators

2.7.5. Assignment Operators

2.7.6. Increment And Decrement Operators

2.7.7. Conditional Operators

2.7.8. Bit Wise Operators

2.7.9. Special Operators

2.7.10. Arithmetic Expressions

2.7.11. Evaluation Of Expressions

2.7.12. Precedence of Arithmetic Operators

2.7.13. Type Conversions In Expressions

2.7.14. Operator Precedence And Associativity

2.7.15. Mathematical Functions

2.7.16. Self Assessment Questions

2.8.Decision Making with Branching and Looping

2.8.1. Branching

2.8.1.1 Introduction

2.8.1.2 Decision Making With Simple

 If Statement

2.8.1.3 Simple If Statement

2.8.1.4 The If…Else Statement

2.8.1.5 Nesting Of If…Else Statement

2.8.1.6 The If…Else Ladder

2.8.1.7 The Switch Statement

2.8.2. Looping

9

2.8.2.1 Introduction

2.8.2.2 The While Statement

2.8.2.3 The Do Statement

2.8.2.4 The For Statement

2.8.2.5 Jump In Loops

2.8.2.6 Labeled Loops

2.8.3 Self Assessment Questions

2.9.Summary

2.10. Unit Questions

2.11. Answers for Self Assessment Questions

UNIT - III

UNIT STRUCTURE

3.1.Introduction

 128

3.2.Objectives

3.3.Classes, Objects And Methods

3.3.1. Introduction

3.3.2. Defining A Class

3.3.3. Field Declaration

3.3.4. Methods Declaration

3.3.5. Creating Objects

3.3.6. Accessing Class Members

3.3.7. Constructors

3.3.8. Methods Overloading

3.3.9. Static Members

3.3.10. Nesting Of Methods

3.3.11. Inheritance: Extending A Class

3.3.12. Overriding Methods

3.3.13. Final Variables And Methods

3.3.14. Final Classes

3.3.15. Finalizer Methods

3.3.16. Abstract Methods And Classes

3.3.17. Visibility Control

3.3.18. Self Assessment Questions

3.4.Arrays, String And Vectors

3.4.1. Creating An Array

3.4.2. One Dimensional Arrays

3.4.3. Two Dimensional Arrays

10

3.4.4. Strings

3.4.5. Vectors

3.4.6. Wrapper Classes

3.4.7. Self Assessment Questions

3.5.Interface Multiple Inheritance

3.5.1. Introduction

3.5.2. Defining Interfaces

3.5.3. Extending Interfaces

3.5.4. Implementing Interfaces

3.5.5. Accessing Interface Variables

3.5.6. Self Assessment Questions

3.6.Summary

3.7.Unit Questions

3.8.Answers for Self Assessment Questions

UNIT-IV

UNIT STRUCTURE

4.1.Introduction

4.2.Objectives

4.3.Packages: Putting Classes Together

4.3.1. Introduction

4.3.2. Java API Packages

4.3.3. Using System Packages

4.3.4. Naming Conventions

4.3.5. Creating Packages

4.3.6. Accessing A Packages

4.3.7. Using A Packages

4.3.8. Adding Class To A Package

4.3.9. Hiding Classes

4.3.10. Self Assessment Questions

4.4.Multithreaded Programming

4.4.1. Introduction

4.4.2. Creating Threads

4.4.3. Extending The Thread Class

4.4.4. Stopping And Blocking A Thread

4.4.5. Life Cycle Of A Thread

4.4.6. Using Thread Methods

4.4.7. Thread Exceptions

4.4.8. Thread Priority

11

4.4.9. Synchronization

4.4.10. Implementing The Runnable Interface

4.4.11. Self Assessment Questions

4.5.Managing Errors And Exceptions

4.5.1. Introduction

4.5.2. Types Of Errors

4.5.3. Exceptions

4.5.4. Syntax Of Exception Handling Code

4.5.5. Multiple Catch Statements

4.5.6. Using Finally Statement

4.5.7. Throwing Our Own Exceptions For Debugging

4.5.8. Self Assessment Questions

4.6. Summary

4.7.Unit Questions

4.8.Answers for Self Assessment Questions

UNIT-V

UNIT STRUCTURE

5.1.Introduction

5.2.Objectives

5.3.Applet Programming

5.3.1. Introduction

5.3.2. How Applets Differ From Applications

5.3.3. Preparing To Write Applets

5.3.4. Building Applet Code

5.3.5. Applet Life Cycle

5.3.6. Creating An Executable Applet

5.3.7. Designing A Web Page

5.3.8. Applet Tag

5.3.9. Adding Applet To Html File

5.3.10. Running The Applet

5.3.11. More About Applet

5.3.12. Passing Parameters To Applets

5.3.13. Aligning The Display

5.3.14. More About HTML Tags

5.3.15. Displaying Numerical Values

5.3.16. Getting Input From The User

5.3.17. Self Assessment Questions

5.4.Graphics Programming

12

5.4.1. Introduction

5.4.2. The Graphics Class

5.4.3. Lines And Rectangles

5.4.4. Circles And Ellipses

5.4.5. Drawing Arcs

5.4.6. Drawing Polygons

5.4.7. Line Graphs

5.4.8. Using Control Loops In Applet

5.4.9. Drawing Bar Charts

5.4.10. Self Assessment Questions

5.5.Managing Input / Output Files

5.5.1. Introduction

5.5.2. Concepts Of Streams

5.5.3. Stream Classes

5.5.4. Byte Stream Classes

5.5.5. Character Stream Classes

5.5.6. Using Stream

5.5.7. Other Useful I/O Classes

5.5.8. Using The File Classes

5.5.9. Input / Output Exceptions

5.5.10. Creation Of Files

5.5.11. Reading / Writing Characters

5.5.12. Reading / Writing Bytes

5.5.13. Handling Primitive Data Types

5.5.14. Concatenation And Buffering Files

5.5.15. Random Access Files

5.5.16. Interactive Input And Output

5.5.17. Other Stream Classes

5.5.18. Self Assessment Questions

5.6. Summary

5.7.Unit Questions

5.8. Answers for Self Assessment Questions

13

UNIT – I

1.1 Introduction

Internet is the world largest computer network, the network of

networks that connects computers all over the world. Internet is a worldwide

collection of computer networks connecting academic, governmental,

commercial, and organizational and individual’s sites. It was created nearly a

quarter centaury ago as a project for the department of defense, U.S.A. It’s aim

was to create a method for widely separated computers to transfer the data

efficiently even in the event of nuclear attack. It provides access to

communication services and information resources to millions of users around

the globe.

Internet service include direct communication (e-mail, chat, etc.,),

online conferencing (Usenet news group, email discussions lists), distributed

information resources (world wide web, gopher), remote login and file transfer

(Telnet, FTP) and many other valuable tools and resources. From a limited

number of computers and users, the Internet today has grown to thousands of

regional networks that connect millions of users. Any single individual,

company or country does not own this global network.

1.2 Objectives

In this unit, we shall explore the process of Internet connection

concepts. It is fully covered as basic concepts of the Internet, E-mail and E-

mail Security concepts. After studying this lesson, you should be able to:

 Describe the Internet connection concepts.

 Describe the Internet and email concepts.

 Major elements of public key cryptography and using cryptography

with email.

 Describe various chatting and conferencing concepts.

 Describe various WWW concepts.

1.3 Internet Connection Concepts

1.3.1 Internet Communication Protocols

Computers connected to the Internet communicate by using the

Internet Protocol (IP), which slices information into packets (Chunks of data

to be transmitted separately) and routes them to their destination. Along with

IP, most computers on the Internet communicate with Transmission Control

Protocol (TCP), and the combination is called TCP/IP.

Before Windows 95, Windows users had to get a separate TCP/IP

communications program, and several free and commercial programs were

available. All versions of Windows starting with Windows 95 come with

TCP/IP connection software called Dial-up Networking. A similar standard

exists for the Macintosh: MacTCP. MacOS 7.6.1 or later come with

MacTCP- compatible Internet connection software. In 7.1.1 through 9.2, it’s

called Open Transport/PPP or Apple Remote Access. In Mac OS X, Internet

connection software is built right into the underlying UNIX operating system.

14

Internet Hosts

 Each computer on the Internet is called a host computer or host. The

computers on the Internet and there are now millions of Internet hosts-are

connected by cables, phone lines, and satellite connections. They include

large mainframe computers, smaller minicomputers, and personal computers.

When your PC or Mac dials into an Internet account, your computer is an

Internet hosts, too.

Internet Protocol (IP) Addresses

 Each host computer on the Internet has a unique number, called its IP

address. IP addresses are in the format xxx.xxx.xxx.xxx, where each xxx is a

number from 0 to 255. IP addresses identify the host computers, so that packets

of information reach the correct computer. You may have to type IP addresses

when you configure your computer for connection to the Internet.

 If you connect to the Internet by using a dial-up account, your Internet

service provider (ISP) assigns your computer an IP address each time that you

connect. This system enables your ISP to get along with fewer IP addresses,

because it needs only enough IP addresses for the number of users who are

connected simultaneously (as opposed to assigning a permanent IP address to

each customer of the ISP). If you use a high-speed DSL or cable Internet

account, you may have static (unchanging) IP address, or your ISP may assign

you an address each time you connect. Static IP addresses get rare every year

and usually cost extra.

 On windows XP systems, you can find out your computer’s IP address

by choosing Start | Control Panel | Network Connections to see your Internet

and LAN connections. Right-click your Internet or LAN connections; choose

Status from the menu that appears, and click the support tab.

Domain and Host Names

 The name of each host computer consists of a series of words separated

by dots. The last part of the domain name is called the top-level domain

(TLD). The TLDs of three or more letters are used mainly in the United States

and indicate the type of organization that owns the domain. The original sever

three-letter TLDs are the following.

Com Originally for commercial organizations, but now used

by individuals, government agencies, and nonprofits as

well

 Net Internet service providers and other network-related

 companies

Org Noncommercial (often nonprofit) organizations

Gov U.S. Government agencies

Mil U.S. military

Edu Educational domains

Int International organizations like NATO and the

International Red Cross

15

Aero Airlines

Arpa Internet infrastructure

Biz Businesses

Coop Cooperatives

Info Anyone

Museum Museum

Name Individuals

 Two-letter TLDs indicate the country in which the organization that

owns the computer is located. U.S. organizations can register domains that end

with us.

The last two parts of a host computer name constitute the domain. The

second-to-last part of the name is chosen by the organization that owns the

computer and is usually some variant of the organization’s name. For example,

computers at the U.S. president’s offices at the White House have the domain

whitehouse.gov. Computers at the McGraw-Hill publishing company are

named with the domain mcgraw-hill.com.

Because most organizations own more than one computer on the

Internet, most host computer names have at least one more part, preceding the

domain name and called a third-level domain. This additional part is assigned

by the organization itself. For example, the gurus.com domain has several

host names, including www.gurus.com (the main web site), net.gurus.com (the

Internet Gurus web site), and wine.gurus.com (the web site of the society of

Wine Educators). By far, the most widely used addition to domain names is

www, because it is frequently used for an organization’s web serve (the

computer that stores web pages).

Servers and Clients

Many of the host computers on the Internet offer services to other

computers on the Internet. For example, your ISP probably has a host

computer that handles your incoming and outgoing mail. Computers that

provide services for other computers to use are called servers. The software

run by server computers to provide services is called server software.

Many of the computers on the Internet use servers to get information.

For example, when your computer dials into an Internet account, your e-mail

program downloads your incoming messages from your ISP’s mail server.

Programs that ask servers for services are called clients. Your e-mail program

is more properly called an e-mail client.

Types of servers and clients that you may encounter:

 Mail servers handle incoming and outgoing e-mail. Specifically, post

office protocol (POP or POP3) and IMAP (Internet Message Access

Protocol) servers store incoming e-mail, whereas Simple Mail

Transfer Protocol (SMTP) servers relay outgoing e-mail. Mail clients

get incoming messages from, and send outgoing messages to, a mail

server, and enable you to read, write, save, and print messages.

http://www.gurus.com/

16

 Web servers store web pages and transmit them in response to requests

from web clients, which are usually called browsers.

 FTP servers store files that you can transfer to or from your computer

if you have an FTP client.

 News servers store Usenet newsgroup articles that you can read and

send if you have a news client or newsreader.

 IRC servers act as a switchboard for the Internet Relay Chat (IRC)

channels. To participate, you use an IRC client.

Ports and Port Numbers

 One host computer can run more than one server program. For

example, a small ISP might have one computer running a POP sever, SMTP

server, web server, and news server. TO keep requests for information straight,

each type of server responds to packets sent to specific ports (input for a

specific Internet service). Ports are numbered and standard port numbers used

throughout the Internet. You almost never need to type post numbers, but here

are some widely used port numbers in case you do:

Port Number Internet Service

21 FTP (file transfer)

22 Telnet (remote login)

25 SMTP (mail relaying)

80 World Wide Web

110 POP3 (Storage of incoming mail)

194 IRC (online chat)

532 Usenet newsgroups

The Domain Name System and DNS Servers

 A Domain Name System (DNS) server translates between the numeric

IP addresses that identify each host computer on the Internet and the

corresponding domain names. People prefer to use host names because they are

easier to type and remember, but actual Internet communications use the

numeric addresses. For example, if your browse requests a web page from the

Yahoo! Web site, which has the host name www.yahoo.com, a DNS server

translates that name to 204.71.200.69, one of Yahoo’s web servers, and then

sends the request to that IP address.

1.3.2 Types Of Internet Connections

To connect to the Internet, you connect your computer to a computer

that is on the Internet, usually one run by an ISP. You can connect your

computer by using a dial-up phone line, which is how most home users

connected to the Internet during the 1990s. If you need to connect at higher

speeds than a regular phone line allows, you can get a high-speed phone line,

assuming that your phone company offers them. You may have three options,

depending on what your phone company offers: DSL, ISDN, or a leased line.

http://www.yahoo.com/

17

If your cable TV company offers an Internet service, you can connect

your computer to the Internet by using a cable TV connection. Rural users may

consider installing a satellite dish for Internet connections, whereas urban users

may have access to a wireless connection.

High-speed Internet connections, including DSL, ISDN, leased lines,

cable Internet, and satellite, are all called broadband connections.

Dial-Up Connections

 A dial-up connection to the Internet works over an ordinary phone

line. Dial-up connections use the Point-to-point Protocol (PPP) and are also

called PPP accounts.

 To use a dial-up account, you need a modem. Most computers come

with an internal modem. You connect only when you want to use Internet

services and disconnect when you are done.

DSL Connections

 Digital Subscriber Line (DSL) is a family of all-digital, high-speed

lines that use your normal phone wires with special modems on wither end.

Most DSL lines are actually ADSL (Asymmetric Digital Subscriber Line).

ADSL is optimized for the way many people use the Internet: more downloads

than uploads. The line is asymmetric, because it has more capacity for data

received by your computer than for data that you send (such as e-mail and

browser commands). The downstream bandwidth (data transfer speed from the

Internet to your computer) can range from 384 Kbps to 8 megabits per second

(Mbps). The upstream bandwidth (Speed from your computer to the Internet)

can range from 90 Kbps to 768 Kbps.

 With a DSL line, you can connect your computer to the Internet and

talk on the phone at the same time on the same phone line. The speed of your

Internet connection may drop while you are talking on the phone.

 Costs for DSL lines ate higher than for regular phone lines. The phone

company or ISP usually provides the DSL modem, which match the DSL

modem installed at their end. Because there are several competing DSL modem

standards, not all DSL modems work with all DSL lines. DSL modems usually

connect to your computer through an Ethernet or other network card in your

computer. When you sign up for a DSL line, the phone company comes to your

location, installs the DSL modem, and configures your computer to use it.

ISDN Connections

 Integrated Services Digital Network (ISDN) lines are also available

from many local telephone companies. ISDN is and upgraded phone line that

can be used for faster Internet access and for regular voice calls.

 To connect your computer to an ISDN line, you need an ISDN adapter.

Your Phone Company or ISP usually provides the ISDN adapter as part of the

sign-up fee.

ISDN adapters may be

18

 Internal ISDN adapters :Internal adapters bypass any serial

port bottleneck, so you can get full 128 Kbps out of your ISDN

line.

 External ISDN adapters: External adapters usually connect to

your computer’s serial port.

You plug in your existing equipment to the adapter. Also, check to see

whether the adapter has full ringing support. That is, when a phone call comes

in, does the phone actually ring, or do you just get some flashing lights on the

front of the adapter? Flashing lights are easy to miss when you’re busy poring

over your computer screen.

Leased Lines

 If you need to transfer very large amounts of data or run Internet server

software, contact your telephone company for a leased line, the same type of

phone line that organizations use to connect corporate offices.

Cable TV Internet connections

 Cable modem service is the competitive threat that’s caused phone

companies to accelerate their ADSL efforts. The same network that brings you

dozens of TV channels can now bring you millions of web sites. Downstream

speeds are impressive-the line can theoretically bring you data as fast as 30

Mbps, much faster than your computer can handle it-bu upstream speed

depends on line quality. Large cable companies are spending money to upgrade

their networks to hybrid fiber-coaxial (HFC) to better handle two-way

traffic.

Satellite Internet Connections

 Digital Satellite Systems (DSS), or direct broadcast satellite, lets you

get Internet information by satellite. To connect, you can use a 24-inch antenna,

a coaxial cable, a PC adapter card, and Windows-based software. With early

satellite systems, you received data from the Internet at a high speed via the

satellite, but so send data to the Internet, you needed a dial-up connection and

an ISP.

Wireless Internet Connections

 In a few urban areas, you can use wireless Internet access. TO set it up,

you attach a radio modem, about the size of a deck of cards, to your laptop.

Another way to connect to the Internet via wireless is by using a digital

cell phone that includes Internet connectivity. Because these devices have tiny

screens, limited keyboards, no mouse, and slow connection rates, Internet

content mist be tailored to them and is usually limited to text. Check with your

cell phone company to find out whether they offer cellular Internet access.

 Some ISPs offer wireless connections to personal data assistants

(PDAs) such as the BlackBerry, Palm, CompaqiPaq, or HandSpring Visor.

These small devices have small screens, but you can use them to read your e-

mail and browse the Web. Like cell phones, PDAs require web content to be

19

tailored to their small screens and their slow connections rates. Check with

your local ISPs to find out what they offer.

Connecting Local Area Networks to the Internet

 Homes or organizations that have many PCs can

connect the computers in network and then connect that network to the Internet.

This method is more efficient than connecting each PC to the Internet. This

method is more efficient than connecting each PC to the Internet by using its

own modem and phone line. Colleges, universities, and large corporations have

used the Internet this way for a decade, and smaller offices and even homes

increasingly do, too.

1.3.3 Internet Service Providers

An Internet service provider (ISP) is an organization that provides

Internet accounts, whether dial-in, DSL, ISDN, cable, satellite, or wireless.

Thousands of ISPs exist in the United States, including dozens of ISPs with

dial-up access phone numbers throughout the country, and many with phone

numbers in limited regions. For example, EarthLink (www.earthlink.com) has

access phone numbers in all major U.S. cities.

In addition to connecting you to the Internet, here are some other

features that your Internet account may provide:

 E-mail mailboxes: Your account almost certainly with at least one e-

mail mailbox on a POP or IMAP server.

 Web server space: Most Internet accounts include a modest amount of

disk space on web server, so that you can make your own web pages

accessible to the Internet.

 Domain hosting: If you want your own domain name, most ISPs can

host your domain, so that e-mail to the domain lands in your mailbox,

and web addresses in your domain refer to pages that you store on your

ISP’s web server.

1.3.4 Security Issues On The Internet

Internet has become widely used by the public; many security issues

have arisen, including viruses, cookies, and firewalls.

Protecting Your Computer from Viruses

 A virus is self-replicating program, frequently with destructive side

effects. Viruses that spread via e-mail attachments are called worms. When the

Internet was young (ten years ago), viruses were spread only in programs that

were downloaded from FTP servers or passed around on floppy disks. Now

your computer can catch a virus from an infected e-mail message.

 Viruses can’t travel in plain text, like e-mail messages. You receive a

virus as an e-mail attachment or in a file you download. Always run a virus-

checking program on all computers that connect to the Internet. Don’t just

install the program; you also need to sign up to receive updates as new viruses

appear.

http://www.earthlink.com/

20

 If a virus arrives attached to e-mail messages, your virus-checker

should pop up a message asking what you want to do. You usually have the

option of deleting the entire attachment, deleting the virus from the attachment

but saving the rest of the file.

 Background checking also provides the best protection against the

subtle (and rare) viruses that arrive, not as files, but as infections of your

computer’s memory that can travel through your web browser. In some

instances, however, background checking can slow down your system, cause

conflict with other background programs.

Protecting Your Computer from Intruders with Firewalls

 A firewall is a program that controls what information passes from one

network to another. You can use a firewall between your PC and the Internet to

stop outsiders from getting access to your PC via the Internet.

How Firewall Work

 Each packet on the Internet is addressed to a specific port number, and

you can control access by port. You do not want outsiders to be able to use this

port, so you may want to block anyone on the Internet from accessing this port.

 A firewall controls which ports are open, refusing to respond to packets

addressed to other ports. Some firewalls control only incoming information.

 A good firewall program monitors both incoming and outgoing packets

and makes sure that outgoing packets come from a program that you know

about. If it doesn’t recognize program, it alerts you and asks what to do.

Microsoft’s Internet Connection Firewall

 Windows XP comes with the Internet Connection Firewall, a firewall

program that protects your incoming, but no outgoing, Internet traffic. Your

only configuration option is to turn the firewall on or off there are no other

settings.

Virtual Private Networks

 Many large organizations have LANs that enable people within the

organization to share files. Although the LAN is connected to the Internet, most

organizations install a firewall to block Internet users from accessing

information on the LAN. You can connect to the Internet through an Internet

provider, but how can you access your organization’s LAN?

 Virtual Private Networking (VPN) provides a way for an authorized

computer on the Internet to tunnel through a firewall and connects to a

computer on a LAN. When you are on the road and you need to connect to

computer at your office, VPN is the way to make the connection.

 To connect to a LAN through a firewall, the firewall must support

point-point Tunneling Protocol (PPTP), which lets VPN connect you through

the firewall. Your organization’s LAN administrator sets up a VPN server, the

program on the LAN that provides PPPTP. Both the VPN client and the VPN

server must have Internet connections.

21

Choosing Passwords

 On the Internet, you need a password for your account, a password for

your e-mail mailbox and passwords for the many web sites with which you do

business.

 If you’re protecting anything important, don’t use any English word or

common name.

 Use your brain sludge

 Use acronym

 Stick a number in, spell it wrong or glue a few words together.

 Don’t write down passwords. Write down hints.

1.3.5 Self Assessment Questions

 Fill in the blank

1. Each computer on the Internet is called as ________________.

2.A _____________ is self-replicating program, frequently with destructive

side effects

True / False

1. ISDN is used for faster Internet access.

2. Each host computer on the Internet has a unique IP address.

Multiple Choices

1. ISP stands for

a) Intranet service provider b) Internet service provider

c) Internet service policy d) Information service provider

2. Expansion for DSS is

a) Digital Satellite Systems b) direct broadcast satellite

c) both a) & b) d) none of the above

Short Answer

1. What is an Internet?

__

__

2. Define server & client

__

__

3. What is the purpose of firewall?

__

__

22

1.4.E-Mail Concepts

1.4.1. How Do You Get Your E-Mail?

You receive Internet e-mail when it’s sent to your unique e-mail

address. E-mail messages are passed through the Internet by using a protocol

called Simple Mail Transfer Protocol (SMTP).

Receiving Incoming Messages

E-mail can arrive at any time, you need an e-mail mailbox that resides

on mail server, a computer that is permanently connected to the Internet and

that is set up to handle your incoming e-mail. Like your postal service mailbox,

the mail server is able to accept e-mail at any time and store it until you delete

it. Depending on the type of connection that you have, you may download e-

mail from the mail server to your computer, or you may read your e-mail while

it sits on the mail server.

Mail servers receive and store e-mail messages in mailboxes by using a

protocol called Post Office Protocol (POP) or POP3 or IMAP (Internet

Message Access Protocol).

To read your e-mail, you need a mail client or e-mail application such

as outlook Express, Netscape Mail, Netscape Messenger, or Eudora. A client

application works in concert with a server – in the case of e-mail, a mail server

collects your e-mail, and your mail client enables you to read it.

If you have POP mail, you need a POP mail client that copies your mail

from the mail server to your local computer. If you have an IMAP server, the

mail stays on the remote server. You use your mail client to read it and do all

your mail manipulations.

Sending Outgoing Messages

 You write e-mail on your own computer by using your e-mail

application. Then, you transfer the messages to an SMTP server-a mail server

that accepts outgoing e-mail. Your Internet service provider (ISP) probably

runs both an SMTP server and a POP or IMAP server for its customers; the

SMTP server that takes care of sending your e-mail messages.

Ways of Accessing E-mail

 You may use mail client that downloads your incoming messages from

the POP server to your computer and uploads your incoming messages

from the POP server to your computer and uploads your outgoing

messages to the SMTP server. This may occur through a local area

network (LAN) or through a dial-up, DSL, ISDN, or cable connection.

 You may use a web-based e-mail service

 You may use an online service, such as America Online, which has its

own e-mail program

 You may get your e-mail through a LAN, a common system at large

organizations. If your organization has some sort of Internet connection,

e-mail arrives in the company’s POP or IMAP server. You then read

your e-mail either on the server, using an e-mail application, or on your

23

own computer, by downloading your e-mail from the server through the

LAN by using an e-mail application.

1.4.2. E-Mail Addressing

Internet e-mail address consists of two parts joined by @

 User name: User names can contain characters (Letters,

Numbers, Underscores, periods, and Special Characters). They

cannot contain commas, spaces, or parentheses.

 Host or domain name: The host name provides the

Internet location of the mailbox, usually the name of a company

or Internet service. The host name may include a period and a

sub domain name. For example : sneezy@gromm.com

Rules for forming the e-mail address.

 Capitalization usually is not important in e-mail addresses.

 E-mail address do not have punctuation marks around them

 E-mail addresses do not have spaces in them

 Most e-mail programs allow you to type angle brackets (< >) around

e-mail addresses.

 You can also precede an e-mail address with the person’s name in

quotes.

For example:

“Inventory details” <price@inventory.com>

1.4.3. Message Headers

Every e-mail message sent starts with headers-lines of text that tell you

about the message. The headers are like the envelope for the message and

include the addresses of the recipient and the sender.

Each header consists of the type of header, a colon, and the content of

the header. For example, the header that shows who the message is addressed

to consists of “To:” followed by one or more e-mail addresses. Headers that

start with X are always optional headers, and many e-mail applications ignore

them.

1.4.4. Downloading E-Mail

Your e-mail accumulates on a POP or IMAP server and your e-main

application downloads the messages to your computer, so that you can read

them. You have the following options:

 You can usually work either offline or online. If you have a dial-up

connection to the Internet, you compose your messages before you dial

in, queuing them

 You can choose either to leave downloaded messages on the server or to

delete them from the server.

mailto:sneezy@gromm.com
mailto:price@inventory.com

24

Working Offline

 Most POP e-mail clients allow you to work offline. Working offline

means that you read your e-mail by doing the following.

1. Connect to the Internet

2. Download your e-mail

3. Disconnect from the Internet

4. Read your e-mail, delete messages you don’t want to keep, compose

 replies, and write new messages

5. When you are ready, connect to the Internet

6. Send your new messages and download any new messages that may

 have arrived

7. Disconnect from the Internet

IMAP mail generally stays on the server and you use your e-mail client

to read it there, so the process for working on IMAP e-mail offline is different.

Check the instructions for your e-mail to download folders from IMAP

server to your local computer.

Deleting Messages from the Server

 If a POP server stores your messages until you download them, your e-

mail program usually deletes them from the POP server after downloading.

Your e-mail application may have setting that enables you to choose whether to

delete the e-mail from the server and, if so, when to delete it. Some ISPs limit

the size of your mailbox.

1.4.5. Formatted E-Mail

Formatted document was to send it as attachment. If both your and

recipient’s e-mail support it, you can sent formatted e-mail. Formatted e-mails

are

 HTML: This is formatted with HTML tags. The HTML formatting can

include text formatting, numbering, bullets, alignments, horizontal lines,

backgrounds, hyperlinks, and HTML styles. HTML formatted e-mail is

actually sent using MIME protocol.

 Rich Text format: This format can be read by most word processing

applications. Rich text formatting can include text formatting, bullets,

and alignments.

 MIME (Multi purpose Internet Mail Extensions): This is formatting

created just for e-mail. MIME is also used for attachments. Formatting

can include text formatting, pictures, video, and sound.

1.4.6. Attaching Files To Messages

By attaching files to e-mail, you can exchange documents for revision,

pass on spreadsheets for data entry, or send a presentation for review. You can

also attach electronic pictures, sounds, or movies-anything that can be put in

file form.

25

1.4.7. Web Based E-Mail

Web-based e-mail provides both advantages and disadvantages. The

main advantage is that if you can access the Web, you can read your e-mail.

You don’t have to be at your own computer to access your e-mail application.

In addition, most web-based e-mail is free.

 You can read two kinds of messages on the Web:

 Messages sent to web-only account: For example, the Yahoo Mail

web site at mail.yahoo.com lets you sign up for a free e-mail mailbox,

with a user name that you pick. Your address is username@yahoo.com.

You can read messages sent to your Yahoo Mail address at the Yahoo

Mail web site or with an e-mail application.

 Messages stored in your POP mailbox: Some web sites allow you to

enter the name of your POP server, your user name, and your password.

The site then retrieves the messages from your mailbox and displays

them on web page, enabling you to read and respond to them.

1.4.8. Mail Away From Home

When you’re away from your computer, you may still be able to read

your e-mail, even if you don’t regularly use a web-based e-mail service. You

may be able to dial into your e-mail provider or use a web-based service.

If you use e-mail as part of your job and you travel on business, your e-

mail administrator may have created a way for you to get your e-mail when

you’re out of the office.

Dialing or Telnetting In

 Even if you usually download e-mail to your computer, you may also be

able to telnet into the mail server to read your e-mail when you’re not at your

computer, but do have access to someone else’s computer. When you telnet in,

you connect to the Internet and then use a telnet program to connect to your

company’s computer over the Internet. If your company’s computer allows you

to telnet in, you may be able to use a UNIX mail program like Pine or Elm.

1.4.9. Avoiding Viruses

Viruses spread via e-mail are a real danger in today’s Internet world.

Although it’s true that many e-mail virus warnings are hoaxes, viruses certainly

exist, and some viruses can do significant damage. It is worth some cost and

effort to avoid them.

The Simplest way to avoid viruses is to avoid using the e-mail programs

that most viruses target: Microsoft Outlook and Outlook Express.

Viruses cannot be contained in a purely text-based message. A virus

must be an executable file (usually with the extension .exe or .com) attached to

a message- however, file extensions can be hidden. The biggest danger is

opening an infected attachment; it’s good policy to always use your virus

checker before opening an attachment. Simply saving an infected file will not

infect your computer, but it’s safer still to permanently delete the message and

the attachment.

mailto:username@yahoo.com

26

Some antivirus software, such as Norton AntiVirus, McAfee VirusScan,

and MailDefence, scans downloading e-mail for viruses. If e-mail is not

automatically scanned, you may wish to manually scan attached files: save the

file to your hard drive, right-click it, and choose to scan it with your virus

checker. Some viruses infect files and can be cleaned by antivirus software,

whereas other files need to be deleted.

Your computer can also be infected with a virus if your e-mail software

allows scripts to run in w-mail messages. Viruses can also spread via macros in

Microsoft Word or Microsoft Excel files.

1.4.10. Self Assessment Questions

Fill in the blank

1. The _______________ provides the Internet location of the mailbox.

2. Viruses infect files and can be cleaned by _____________software.

True / False

1. Outlook express is a one of the mail client.

2. Accessing web-based mails, we need not Internet connection.

Multiple Choices

1. MIME stands for

a) Multi instruction mail extensions b)Multi instruction and multi extensions

c) Multi purpose Internet Mail Extensions d) All of the above

Short Answer

1. What is the purpose of SMTP?

__

__

2. How mail servers receive and store e-mail messages in mailboxes?

__

__

E-Mail Security

1.4.11. Reasons To Secure Messages

All information sent out over the Internet is distributed in packets, or

small blocks that are directed by your ISP’s server, sent across the Internet, and

reassembled by your recipient’s server. These packages pass through many

servers as they travel to their destination, and along the way, they may be

detected by a packet sniffer, a program designed to identify certain groups of

numbers or letters, such as credit card numbers or passwords.

Your e-mail can also be intercepted if you send or receive e-mail

through a Web-based setup, because someone can attempt to guess your

password and tamper with your account. And if you send e-mail by using your

employer’s e-mail programs and mail servers, all of your e-mail –sent and

received – may be backed up and stored in the company’s achieves, without

your knowledge or approval.

27

1.4.12. Public Key Cryptography

To send e-mail that unauthorized people can’t read, you use encryption,

which protects your information by encoding it-substituting letters and numbers

with different characters, based on a code. With the right password, the

recipient of your e-mail can decode the message and read it.

One number-your private key is stored on the head drive of your

computer and is imprinted on every encrypted e-mail that you send. The public

number-your public key-can be freely distributed, because only the two halves

working together can decrypt your e-mail. In fact, many people who use secure

e-mail routinely include the public part of their key pair in their signature files.

This system of paired keys is called public key cryptography.

You can also use public key cryptography to digitally sign your

messages, to prove that no one else could have sent them. By encrypting the

message with your private key anyone can decrypt it by using your public key.

If the recipient’s e-mail program can handle public key cryptography, it can

inform the recipient that the sender definitely is you; otherwise, the digital

signature just appears as an attachment.

Two standard systems of public key cryptography have emerged for

use on the Internet: digital certificates and PGP. Both can be used to send and

receive secure e-mail.

Digital Certificates

One system of public key cryptography uses a digital certificate to

protect the information that you send, by attaching a secure signature. A digital

certificate acts like a passport or a driver’s license; it authenticates your identity

uniquely so that people who receive your e-mail know for sure that you’re the

sender. You keep the private part of your digital certificate on your hard disk,

and the public part is available in several ways: if someone sends you a signed

message, you can save the public part of that person’s digital certificate, or you

can sear h for a person’s digital ID on one of several Web sites. You keep the

public parts of your correspondents’ digital certificates in your e-mail

program’s address book, so that you can decrypt encrypted messages from

those people.

Like passwords or driver’s licenses, digital certificates are issued by a

trusted agency – a certificate authority. VeriSign is the most popular and

recognizable vendor of digital certificates.

VerSign offers several types of digital certificates:

 Server IDs for secure Web servers

 Developer IDs for software developers

 Personal Digital IDs for secure Web servers

 Developer IDs for software developers and

 Personal Digital IDs for individuals and organizations who want

to use secure e-mail.

28

PGP

PGP (Pretty Good Privacy) is another type of public key cryptography.

PGP programs are available on the Internet that enables you to create your own

key pairs. Many e-mail programs work with PGP, including Eudora and

Outlook 97.

1.4.13. Using Cryptography With E-Mail

Both digital certificates and PGP can be used with Internet e-mail.

When you send a message, you can choose to encrypt it or sign it. Before you

send an encrypted message, you need to have the public key for the recipient.

E-mail programs that can handle security usually also let you store the public

keys of your correspondents in an address book. If the person to whom you

want to send an encrypted file has a digital ID, you can assume that he or she

also has an e-mail program that can handle the same type of security that your

program uses.

Before you can send a signed message, you need to have your own

private key installed in your e-mail program. You can send a signed message to

anyone, because the signature doesn’t affect the text of the message. If the

recipient’s e-mail program can’t handle the type of security that you used, the

signature just appears as an attachment at the end of the message.

1.4.14. Self Assessment Questions

Fill in the blank

1. Two standard systems of public key cryptography have emerged for use on

the Internet are __________________ and ________________.

True / False

1.All information sent out over the Internet is distributed in packets

Short Answer

1.Define cryptography.

__

__

1.5.Online Chatting And Conferencing Concepts

1.5.1. Forms Of Chat

In some types of chatting and conferencing, messages are sent

immediately after they are complete. This type of communication is called real-

time communication. Other ways of chatting deliver messages more slowly; for

example, via e-mail. These other types of communication are also called

asynchronous, because participants do not all read and respond to messages at

the same time (synchronously).

 Real-time chat

Allows dialog to happen quickly, since each participant sees each

message within seconds of when it is sent.

29

 Asynchronous chat

Allow participants to consider their responses, gather information

and formulate a response carefully. It also allows people from

different time zones or with different schedules to participate. For

example, there may not be a time when all the members of

committee are available for a real-time meeting.

1.5.2. Messaging And Conference

E-mail messages are usually addressed and delivered to only one or two

people. An e-mail mailing list allows messages to be distributed to a large list

of people. Depending on how the m ailing list is set up, wither one, or all

subscribers can post messages, so that mailing lists can be used to distribute

newsletters or press releases or to allow large group discussions.

Usenet Newsgroups

 Usenet is a system that allows messages to be distributed throughout the

Internet. Because of the volume of messages, the messages are divided into

newsgroups, or topics. You use a newsreader program to subscribe to a

newsgroup, read the messages posted to that newsgroup, and post your own

messages.

Internet Relay Chat (IRC)

 Internet Relay Chat (IRC) allows thousands of Internet users to

participant in real-time text-based chat. When you use an IRC program to

connect to a central IRC server and join a conversation, you see all the

messages that are typed in that channel within seconds of when the messages

are sent. The IRC program enables you to type and send your own messages,

too.

Web-Based Chat

 Many Web sites now provide a Web-based way to send and receive IRC

messages. Other Web sites provide their own real-time or asynchronous chat

pages.

AOL Chat Rooms and other Proprietary Services

 America Online users spend most of their online hours in char rooms,

AOL services that allow real-time chat on a wide variety of subjects. To

participate in AOL chat rooms, you must have an AOL account and use AOL’s

proprietary software to connect to your account. Other Internet users cannot

participate in AOL chat rooms.

 Similarly, CompuServe (a business-oriented online service now owned

by AOL) offers forums and conferences on many different topics. You need a

CompuServe account and CompuServe software to participate.

Direct Chat Systems

 ICQ (Pronounced “I seek you”), AOL Instant Messenger, and other

systems enable you to send messages to other people when both you and they

are connected to the Internet. You create a list of the people who you want to

chat with. When one of the people on your list connects to the Internet, your

30

direct chat program informs you that your friends are online, and you can then

exchange messages.

Online Conferencing

 If text isn’t enough, you can use one of several Internet-based online

conferencing programs that enable you to confer via text, voice, and video with

one or more other people. To use one of these programs, your computer

requires a microphone, speakers, and a video camera. Some conferencing

programs also allow all the participants to see or edit a document on their

screens and to see or write on digital whiteboard.

MUDs and MOOs

 In addition to unstructured chats and discussions, many multi-user

games are in progress on the Internet at any hour of the day or night. Multi-user

dimensions (MUDs) are text-based chats in which the participants play a game

by following a set of rules enforced by the central server computer. The game

is usually a fantasy game, but may be an online university or other group event.

MUDs object oriented (MOOs) are user-programmable games that are similar

to MUDs: by programming, participants can create objects in the shared world

of the MOO.

1.5.3. How The Chat Work

Identifying yourself

 In mailing lists and newsgroups, you are identified by your name and e-

mail address. When you join an IRC channel, Web-based chat, or AOL chat

room, you choose a name to go by-variously referred to as your nickname,

handle, or screen name. If someone is already using the name that you planned

to use, you must choose another one. On systems that allow you to choose a

nickname each time that you join, remember that the person who has a

particular nickname today may no be the same person who had it yesterday.

Topics, Newsgroups, Channels, and Rooms

 Tens of thousands of people can simultaneously participate in e-mail

mailing lists, Usenet newsgroups, Internet Relay Chat, Web-based chat, and

AOL chat rooms. The discussions are categorized by topic, enabling people

who are interested in a particular topic to communicate with each other. Topics

may include hobbies, personal problems, sports, research areas, religious

beliefs, or other areas of interest, or chat participants may simply be grouped

together by geographical area or age. Some discussions consist entirely of

people looking for partners for romance, sex, or simple banter.

 Depending on the system, topic groups may be called newsgroups (in

Usenet), channels (in IRC), or rooms (in AOL). E-mail mailing lists are already

divided by topic (one list per topic), although some mailing lists ask you to

include topic keywords in the subject lines of your messages, too.

Following the Discussion

 In IRC channels and AOL chat rooms, the discussion consists of short

messages from many participants, with each message preceded by the name of

31

the person who sent it. The messages are displayed on your screen in the order

in which your computer received them, and several conversations may be

happening at the same time.

 Following a chat discussion can be tricky. When you join a channel or

chat room, stay quiet for a few minutes until your screen fills up with messages.

Start by reading one interesting-looking message and then read down through

the messages for responses to that message and for other messages from the

same person who sent the original message. When you have something to say,

jump in.

1.5.4. Self Assessment Questions

Fill in the blank

1. _________ is a system that allows messages to be distributed throughout the

Internet.

2. _____________________ programs that enable you to confer via text, voice,

and video with one or more other people.

True / False

1. Asynchronous communication allows the participants to read and respond to

messages at the same time .

2. The users of other Internet cannot participate in AOL chat rooms

Multiple Choices

1. What is the expansion for IRC?

 a) Intranet Relay Chat b) Internet Receive Chat

 c) Internet Relay Chat d) none of the above

Short Answer

1. What are the types of chatting?

__

__

2. How can you identify yourself in internet?

__

__

1.6.WWW Concepts

1.6.1. Elements Of The Web

Clients and Servers

 A Web server is a computer connected to the Internet that runs a program

that takes responsibility for storing, retrieving, and distributing some of the

Web’s files. A Web or Web browser is a computer that requests files from the

Web. When a client computer wants access to one of the files on the Web, the

network directs the requests to the Web server that is responsible for that file.

The server then retrieves the file from its storage media and sends it to the

client computer that requested it.

32

The Web’s Languages and Protocols

 When a client computer requests a file from the Web, it can assume very

little about the server that stores the file, or the various other computers that

might handle the file as it is transmitted from the server to the client. For such a

system to work, it must have a well-defined set of languages and protocols that

are independent of the hardware or operating systems on which they run.

URLs and Transfer Protocols

 Each file on the Internet has an address, called a Uniform Resource

Locator (URL). For example, the URL of the ESPN Sportzone Web site is

http://espnet.sportzone.com

 The first part of a URL specifies the transfer protocol, the method that a

computer uses to access this file. Most Web pages are accessed with the

Hypertext Transfer Protocol (the language of Web communication), which is

why Web addresses typically begin with http (or its sucure version, https or

shttp). The http:// at the beginning of a Web page’s URL is so common that it

often goes without saying; if you simply type espnet.sportzone.com into the

address window of Internet Explorer or Navigator, the browser fills in the

http:// for itself. In common usage, the http:// at the beginning of a URL often is

left out.

 The next part of the address denotes the host name of the Web server.

The URL doesn’t tell you where the Web server is actually located. The

domain name system routes your Web page request to the Web server

regardless of its physical location. As users, you don’t need to deal with this

level of detail, and that’s a good thing.

 Some URLs contain information following the host name of the Web

server. This information specifies exactly which file you want to see, and what

directory it is stored in. If the directory name and filename aren’t specified, you

get the default Web page for that Web server.

HTML

 The Hyper Text Markup Language (HTML) is the universal language

of the Web. It is a language that you use to lay out pages that are capable of

displaying all the diverse kinds of information that the Web contains.

 While various software companies own and sell HTML reading and

HTML-writing programs, no one owns the language HTML itself. The World

Wide Web Consortium (W3C), at http://www.w3c.org, manages the HTML

standard.

Java and JavaScript

 Java is a language for sending small applications (called applets) over

the Web, so that they can be executed by your computer.

 JavaScript is a language for extending HTML to embed small programs

called scripts in Web pages. The main purpose of applets and scripts is to speed

up the interactivity of Web pages; you interact with an applet or script that the

Web server runs on your computer, instead of interacting with a distant Web

http://espnet.sportzone.com/
http://www.w3c.org/

33

server. Java and JavaScript are also used for animation; the Web server sends

an animation constructing applet or script that runs on your computer, instead

of transmitting the frames of an animation over the Internet. Typically, this

process is invisible to the user-the interaction or the animation just happens,

without calling your attention to how it happens.

VBScript and ActiveX Controls

 VBScript and ActiveX Controls are Microsoft systems (not Web

standards) that work with Internet Explorer.

 ActiveX controls (AXCs), like Java, are used to embed executable

programs into a Web Page. When Internet Explorer encounters a Web page that

uses ActiveX controls, it checks whether that particular control is already

installed on your computer, and if it isn’t, IE installs it.

XML and other Advanced Web Languages

 The Extensible Markup Language (XML) is a very powerful language

that may replace HTML as the language of the Web. Currently, XML is little

more than a specification at the W3C, but it is expected to be implement in the

fifth-generation browsers.

 XML is a language for writing languages (such as HTML), which is what

makes it so powerful. XML gives document designers a greatly increased

capability to attach explanatory tags to data.

 The W3C is working on two style sheet language specifications: the

Extensible Style Language (XSL) and Cascading Style Sheets (CSS). Another

extension of HTML is Dynamic HTML (DHTML), which consists of three

components: HTML, JavaScript, and cascading style sheets (CSS).

Image Formats

 Pictures, drawings, charts, and diagrams are available on the Web in a

variety of formats. The most popular formats for displaying graphical

information are JPEG and GIF.

Audio and Video Formats

 Some files on the Web represent audio or video, and they can be played

by browser plug-ins. Web audio and video come in two flavors:

 Your browser can download whether the entire file and play it (which

can take a long time, because audio files are large and video files are

huge) or

 Only the part of the file that it needs to play next, discarding the parts

that it has played already. The second technique is called streaming

audio or streaming video.

VRML

 The Virtual Reality Modeling Language (VRML) is the Web’s way of

describing three-dimensional scenes and objects. Given a VRML file, a

browser can display a scene or object as it would appear from any particular

viewing location. You can rotate an object or move through a scene, using the

controls that a browser provides.

34

 Like Java, VRML moves some computational burden from the network

to your computer. Rather than having Web servers store and transmit all the

possible 2-D views of a scene, the scene is described in VRML and

downloaded to your machine. Your computer then figures out what you would

see if you stand in a particular place and look in a particular direction. Given

the speed of most Internet connections, computing a view on your machine is

much faster than downloading one from a Web server.

 Like HTML pages, VRML scenes can contain many kinds of

information. A scene of a city square, for example, might contain a kiosk, and

each face of the kiosk might display a different picture or text document. The

objects in a scent might also be links to URLs, which are accessed when you

click the object. The University of Essex, for example, has posted a 3-D

campus model on the Web at the following site:

 http://esewww.essex.ac.uk/campus-model.wrl

Web Pages and Web Sites

 A Web page is an HTML document that is stored on a Web server and

that has a URL so that it can be accessed via the Web.

 A Web site is a collection of Web pages belonging to a particular person

or organization. Typically, the URLs of these pages share a common prefix,

which is the address of the home page of the site.

Special Kinds of Web Sites and Pages

Portals

 A portal is a Web site that wants to be your start page, the page that your

browser displays first.

Web Guide

 A Web guide is Web site with a system of categories and subcategories

that organizes links to Web pages.

Search Engines

 You give a search engines search only the titles of Web pages, while

others search every word. Some allow more complicated queries than others.

Keywords can be combined with Boolean (logical) operations, such as AND,

OR, and NOT, to produce rather complicated queries.

Home Pages

 A home page is the front door of a Web site.

Personal Home Pages

 A personal home page is the front door of a Web site that an individual

puts on the Web to introduce himself or herself, to share interests with others,

and to keep distant friends and acquaintances up-to-date on the course of life.

Business and Organization Home pages

 A business home page is the front door to a business’s Web site.

http://esewww.essex.ac.uk/campus-model.wrl

35

1.6.2. Web Browsers

 A Web browser is a program that your computer runs to communicate

with Web servers on the Internet, which enables it to download and display the

Web pages that you request. Because a Web browser has the ability to interpret

or display so many types of files, you often may use a Web browser even when

you aren’t connected to the Internet. The most popular browsers are

 Netscape Navigator and

 Microsoft Internet Explorer.

 Both Navigator and IE are available over the Internet at no charge.

Microsoft designed IE for the Windows operating system, but it is now

available for Macintosh and some UNIX systems, as well. Navigator is

available for Windows, Macintosh, UNIX, and Linux operating systems.

Browser Concepts

The Default Browser

 Graphical user interfaces (GUIs) such as Windows, MacOS, and

various UNIX desktop applications enable you to open a file by clicking or

double-clicking an icon that represents the file. When the icon represents a

Web page, a local HTML file, or even an image file in a format such as JPEG

that Web browsers display well, the operating system runs a Web browser to

display the file.

Browser Home Pages and Start Pages

 Your browser’s start page is the Web page that the browser loads when

you open the browser without requesting a specific page. Internet Explorer

automatically starts with the browser home page, but Navigator allows the start

page to be different from the browser home page.

Plug-Ins

 Plug-ins are programs that are independent of your Web browser, but

that “plug in” to it in a seamless way, so that you may not even be aware that

you are using a different piece of software.

 Various plug-ins (such as RealAudio for receiving streaming audio, or

QuickTime for downloading video) have become standard accessories for IE or

Navigator, and are installed automatically when you install the Web browser.

To install other plug0ins, download them from the Internet and then follow the

directions that come with the plug-in.

Elements of a Browser Window

 Most browser windows have the same basic layout. From top to bottom,

you find these basic elements:

 Menu bar

 Toolbars

 Address or Location window

 Viewing window

 Status bar

36

 Some Web pages are divided into independent panes, called frames.

When such a Web page is viewed, the viewing window is similarly divided into

independent panes. You can scroll up or down in a frame or even move from

link to link, without disturbing the contents of the other frames.

Viewing Pages with a Browser

 The purpose of a Web browser is to display Web pages, which may

either arrive over the Internet or already be on your computer system.

Viewing Pages on Your Local Drives

 You can use your Web browser to view files of any common Web format

(HTML, SRML, JPEG, and so on) that are stored on your hard drive or

elsewhere on your system. In Windows, Macintosh, and some UNIX desktops,

simply clicking or double-clicking the file icon opens the file in the default

Web browser.

Viewing Pages on the Web

 Enter its URL into the Address or Location box of a Web browser

You can type in the URL or cut-and-paste it. Both IE and

Navigator have an auto-complete feature-the browser tries to guess

what URL you are typing and finishes it for you, by guessing

similar URLs that you’ve visited before.

 Select it from the list that drops down from the Address or Location box

Both IE and Navigator remember the last 25 URLs that you have

typed into the Address or Location box.

 Link to it from another Web page

The reason it’s called a “Web” is that pages are linked to each

other in a tangled, unpredictable way. Click a link (usually an icon

or underlined, blue text) to see the Web page it refers to.

 Link to it from mail message or newsgroup article

Many e-mail and news reading programs are able to notice when a

URL appears in a mail message or newsgroup article.

 Select it from the Bookmarks list, the Favorites menu (in IE), the History

folder, or open an Internet shortcut.

1.6.3. Security And Privacy Issues

 Interacting with the Web is a little like passing note across a classroom.

You can’t know ahead of time what computers are going to handle your

messages as they pass between you and a Web server, and you can’t be sure

that none of those intermediate computers will copy the message, or let

someone else read it.

 Each new generation Web browsers introduces new features to the Web.

Some of these features, such as firewalls or the Secure Socket Layer (SSL)

protocol, make your Web interactions safer. Others, such as cookies or

scripting languages, open new opportunities for mischief in addition to their

beneficial uses.

37

Cookies

 A cookie is a small (at most 4K) file that a Web server can store on your

machine. Its purpose is to allow a Web server to personalize a Web page,

depending on whether you have been to that Web site before, and what you

may have told it during previous sessions.

 For example, when you establish an account with an online retailer or

subscribe to an online magazine, you may be asked to fill out a form that

includes some information about yourself and your preferences.

 The Web server may store that information in a cookie on your machine.

When you return to that Web site in the future, the retailer’s Web server can

read its cookie, recall this information, and structure its Web pages accordingly.

Firewalls

 A firewall is a piece of hardware or software that sits between two

networks for security purposes.

 Typically, an organization might have its own computers linked in an

Internet-like network called an intranet. A firewall is places between this

intranet and the Internet to prevent unauthorized users from gaining access to

all the resources of the intranet. If you communicate with the Internet through a

firewall, you must configure your Web browse to request Web pages from the

firewall’s proxy server, the program that filters packets of information between

the intranet and the Internet.

Secure Communications and Transactions

 Transactions and communications on the Internet involve more than just

your computer and the server of the Web site that you are dealing with. Each

message back and forth goes through several other computers along the way,

and you can’t even predict which computers will be involved. The following

are the three major risks involved in any Internet transaction:

 Eavesdropping:

Any information that you transmit may be overheard by other

computers- your credit card number.

 Manipulation:

The information that you send or receive may be altered by third

parties. For example, the delivery address for your shipment might be

altered.

 Impersonation:

You might not be dealing with the entity that you think you are

dealing with. Or, conversely, whoever you are dealing with might gather

enough information to impersonate you in another transaction.

 Servers and Web browsers use complex encryption techniques to guard

against these threats. When a server and your browser are acting in a secure

mode, the messages transmitted appear to be gibberish to anyone but the

designated receiver, tests are done to detect altered messages, and identities are

verified.

38

How Secure Transactions Work

 Secure Web transactions use a protocol called the Secure Sockets Layer

(SSL). This protocol depends on public key cryptography to establish proofs of

identity, called digital certificates.

Public Key Cryptography

 Web transactions are encrypted using public key cryptography, a system

in which pairs of very large numbers are used to encode and decode messages.

One number of the pair, called the public key, is published; and the second

number, the private key, is kept secret. When one of the two numbers has been

used to encode a message, the other one is needed to decode it.

Digital Certificates

 A digital certificate (or certificate or digital ID) is a file that identifies a

person or organization.

Secure Sockets Layer

 The Secure Sockets Layer (SSL) protocol is a method for secure

communications and transactions to take place over the Internet. SSL uses

digital certificates, to verify that server is what it claims to be. The server and

your browser then send encrypted messages back and forth until your

transaction is complete.

Executing a Secure Transaction

 You need only keep three things in mind

 Don’t enter any sensitive information into a form until a secure

connection has been established.

 Pay attention to any warning messages that your browser gives you.

 Remember your common sense.

Executable Applets and Scripts

 Java, JavaScript, VBScript, and ActiveX controls are all languages for

Web servers to run applications on your computer. These programming

systems have security safeguards, but occasionally, bugs are found either in a

programming language or in the way that is implemented by a particular

browser or on a particular machine. These bugs involve some security risk.

 Netscape and Microsoft have a strong interest in reacting quickly to fix

the security holes that people discover in their browsers.

 With the authorship of the control verified, you are left with the decision:

Do I trust the author or not? If you say yes, the control can run on your

computer, and you may not be able to tell what it’s doing. Worse, you are then

asked whether to trust code from this author automatically in the future. If you

say yes to this, ActiveX controls from that author will install and run without

you being made aware that anything has happened.

Viruses

 The most risky thing that you can do on the Web is to download an

executable file from someone who you don’t know and then run it on your

39

computer. This is no different from letting a stranger put a diskette into your

disk drive.

 Check regularly for patches, warnings, and new versions at the Web site

of the company that wrote your Web browser. Viruses come in through security

holes, and many people are working to find and patch those holes before they

can be exploited.

 Recognize, though, that a small risk of a virus infecting your computer

exists, no matter how careful you are. Everyone should have a virus-checking

program, keep it up-to-date, and run it regularly.

Privacy Implications of Browser Catches and History

 As you browse the Web, your browser may be storing in a cache

(temporary storage area) the Web pages that you visit, and may be making a list

of the Web sites that you have visited. Browsers do so with the best of

intentions: cached Web pages can be reloaded quickly when you hit the Back

button, and History files enable you easily to find a Web site that you

remember looking at last week.

Adjusting Your Security Settings

 Navigator and Internet Explorer give you broad latitude about how strict

a security policy you want to set. If your policy is too strict, you miss out on

some of the cool features of the Web. If it is too loose, you can be defrauded or

introduce viruses into your computer system. If you choose too many “ask me

at the time” options, your browsing session is constantly interrupted with

questions whose implications you may not fully grasp.

Anonymous Web Browsing Through Proxies

 When you use a proxy, you send your Web page requests to the proxy,

and it makes the request in its own name. To the server whose pages you are

requesting, you appear to be at the proxy’s IP address, not at your own.

 Two Web sites where you can arrange to work with a proxy are these:

 http://www.anonymizer.com

 http://www.iproxy.com

 Each site offers a no-frills free anonymous browsing service.

http://www.anonymizer.com/
http://www.iproxy.com/

40

1.6.4. Self Assessment Questions

Fill in the blank

1. The popular image formats for displaying graphical information are

_____________ and ________.

2. The _____________ protocol is a method for secure communications and

transactions to take place over the Internet.

True / False

1. The combination of applets and scripts is to speed up the interactivity of

Web pages.

Short Answer

1. List out any two element of web.

--

2. What is the use of digital certificates?

--

1. 8. Summary

Basically in this unit covered by the Internet connection concepts. We

have discussed about how to implement internet connection concepts , how to

secure the messages in e-mail, how to use major elements of public key

cryptography , reasons to usage of chatting and on line conferencing and what

is world wide web.

 Unit Questions

2. Explain about the internet communication protocol.

3. What are all the types of internet connection? Explain.

4. How Do You Get Your E-Mail? Explain.

5. List out the different formatted e-mail. Explain.

6. How public key cryptography is useful in Internet? Explain.

7. Describe about Internet Service Providers.

8. What is the use of web browsers? Explain with examples.

9. List out the element of web. Explain.

10. How The Chat Work?

11. Explain security and privacy issues in internet.

41

 Answer for Self Assessment Questions

Answer 1.3.5

Fill in the blank

1. host computer or host 2. virus

True / False

1. True 2. True

Multiple Choices

1. b 2. c

Short Answer

1. Internet is the world largest computer network, the network of networks that

connects computers all over the world.

2. Computers that provide services for other computers to use are called

servers. Programs that ask servers for services are called clients.

3. A firewall is a program that controls what information passes from one

network to another.

Answer 1.4.10

Fill in the blank

1. host name 2. Antivirus

True / False

1. True 2. False

Multiple Choice

1. c

Short Answer

1. Mail servers receive and store e-mail messages in mailboxes by using a

protocol called Post Office Protocol or Internet Message Access Protocol

2. SMTP is a protocol; it is used to pass the E-mail messages through the

Internet

Answer 1.5.4

Fill in the blank

1. digital certificates and PGP

True / False

1. True

Short Answer

1.Cryptography protects your information by encoding it-substituting letters

and numbers with different characters, based on a code.

Answer 1.6.4

42

Fill in the blank

1. Usenet 2. online conferencing

True / False

1. False 2. True

Multiple Choice

1. c

Short Answer

1. Real time chat and asynchronous chat

2. In mailing lists and newsgroups, you are identified by your name and e-mail

address.

Answer 1.7.4

Fill in the blank

1. JPEG and GIF 2. Secure Sockets Layer (SSL)

True / False

1. True

Short Answer

1. Clients & servers and Web’s Languages & protocol

2. A digital certificate is a file that identifies a person or organization.

43

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

44

UNIT – II

2.1 Introduction

This section provides you with fundamental concepts of object-oriented

programming and the elements of the Java programming language that will be

used throughout this chapter. It also deals with process of the various types of

constants, variables and its data types; basic structure of the operators,

expressions, decision making with branching and looping in java

programming. It assures you to understand general programming concepts.

2.2 Objectives

After studying this lesson, you should be able to:

 Understand about concepts of object-oriented programming.

 Describe the various features of Java programming language.

 Describe the various types of constants, variables and data types.

 Understand about operators and expression concepts and its

classifications.

 Understand about, how to making the decision with branching and

looping statement

2.3 Fundamentals Of Object Oriented Programming

2.3.1 Introduction

The invention of the computer, many programming techniques have

been tried such as modular programming, top-down programming, bottom-up

programming and structured programming. The objectives of these techniques

to handle the increasing complexity of programs are reliable and maintainable.

Structured programming, like C became very popular and was the

paradigm of the 1980s. The structured approach failed to show the desired

results in terms of bug-free, easy-to-maintain and reusable programs.

Object-Oriented programming is an approach to program organization

and development, which attempts to eliminate some of the pitfalls of

conventional programming methods by incorporating the best of structured

programming features with several new concepts.

 C++ is a procedural language with object-oriented extension, but Java,

a pure object oriented language.

2.3.2 Object Oriented Paradigm

The objective of object-oriented approach is to eliminate some of the

flaw encountered in the procedural approach. OOP allows us to decompose a

problem into a number of entities called objects and then build data and

functions around these entities. The organization of data and methods in object

as shown in the fig. 2.3.1.

45

 Fig.2.3.1 Object = Data + Methods

The data of an object can be accessed by methods associated with object

and method of one object can be access the methods of other object. Features

of object-oriented paradigm are:

 Emphasis is on data rather than procedure.

 Programs are divided into objects.

 Data structures are designed.

 Methods that operate on the data of an object are tied together in the

data structure.

 Data hidden and cannot be accessed by external functions.

 Object may communicate with each other through methods

 New data and method can

 Employs bottom-up approach in program design.

Object-oriented programming is an approach that provides a way of

modularizing programs by creating partitioned memory area for both data and

function that can be used as templates for creating copies of such modules on

demand.

2.3.3 Basic Concepts

The basic concepts of OOPS, which form the heart of Java language as

follow as:

1.Objects

 Objects are basic runtime entities in an object-oriented system. They

may represent person, a place, a table of data or any data item that the program

must handle.

They may also represent user-defined data types such as vectors and

lists. Objects take up space in the memory and have an associated address like a

structure in C.

When a program is executed, the object interacts by sending messages

to one another. For example ‘customer’ and ’account’ are two objects in a

banking system, then the customer object send a message to the account object

requesting for balance. Each object has data and code to manipulate the data.

Fig. 2.3.2 shows a notation to represent an object.

Method Method

Method Method

 Data

46

OBJECT: Student

DATA: Name

 Reg.No.

 Marks

METHODS: Total

 Average

 Fig.2.3.2 Representation of an object

2. Classes

 The entire set of data and code of an object can be made a user defined

data type with the help of a class. In fact, objects are variables of type class.

Once a class has been defined, we can create any number of objects based on

that class. A class has collection of objects of similar type. For example circle,

square, rectangle and ellipse are members of the class shape.

3. Data Abstraction and Encapsulation

The wrapping up of data and methods into single unit is called

encapsulation. The data is not accessible to the outside world and only those

methods are wrapped in the class can access it. These methods provide the

interface between object’s data and the program. This insulation of the data

from direct access by the program is called data hiding.

Abstraction refers to representing features without the background

details. Classes use the concept of abstraction and are defined as a list of

abstract attribute such as size, weight and cost, and methods that operate on

these attributes.

4. Inheritance

 Inheritance is the process by which objects of one class acquire the

properties of objects of another class. For example, the B.Sc., (Computer

Science) is a part of the class Department Computer science, which is again a

part of the class College. Inheritance properties are as shown in Fig.2.3.3. In

OOP, the concept of inheritance provides the idea of reusability. We can add

additional features to an exiting class without modifying it.

47

Fig.2.3.3 Property Inheritance

5.Polymorphism

Polymorphism is the ability to take more than one form. An operation

may exhibit different behavior in different instances. The behavior depends

upon the data types of data used in the operation. For example, consider the

operation of addition with two numbers will generate summation and with two

strings would produce a third string by concatenation. Fig. 2.3.4 that shows the

single method name can be used to handle different number and different types

of arguments.

Fig.2.3.4 Polymorphism

6.Dynamic Binding

 Binding refers to linking of a procedure call to the code executed in

response to the call. Dynamic binding means that the code associated with a

given procedure call is not known until the time of the call at runtime.

7. Message communication

An Object-oriented program consists of set objects that communicate

with each other. The process of programming in an object-oriented language,

involves the following basic steps:

 Creating classes that define objects and behavior.

 Creating objects from class definitions.

College

Attributes:

Computer

Science Dept.

Attributes:

 Computer

Applications

Dept.

Attributes:

B.Sc(CS)

Attributes:

M.Sc(CS)

Attributes:

B.C.A

Attributes:

M.C.A

Attributes:

Addition

Add()

Summation

Add(Integer)

Concatenation

Add(String)

48

 Establishing communication among object.

Objects communicate with one another by sending and receiving information as

 shown in Fig.2.3.5. A message for an object is a request for execution of a

procedure, and will invoke a method in the receiving object that generates

desired result, as shown in Fig.2.3.6

 Fig.2.3.5 Network of objects communicating between them

 Sending Object Message Receiving object

Fig.2.3.6 Message triggers a method

Message passing involves specifying name of the object, the name of

the method (message) and information to be sent.

Example:

 Student.averageMarks(Reg.No)

2.3.4 Benefits Of OOP

OOP offers several benefits to both the program designer and the user.

 Through inheritance, we can eliminate redundant code and extend the

use exiting classes.

 We can build programs from the standard working modules that

communicate with one another, rather than having to start writing the

code from scratch. This leads to saving of development time and higher

productivity.

 It is possible to have multiple objects to coexist without any

interference.

 It is possible to map objects in the problem domain to those objects in

the program

 It is easy to partition the work in a project based on objects.

 The data-centered design approach enables us to capture more details of

a model in an implementable form

 Method()

Object Object

Object Object

Object

49

 Object-oriented systems can be easily upgraded from small to large

systems.

 Message passing techniques for communication between objects make

the interface description with external systems much simpler.

 Software complexity can be easily managed.

2.3.5 Applications Of OOP

The promising areas for application of OOP includes:

 Real-time systems

 Simulation and modeling

 Object-oriented databases

 Hypertext, hypermedia and expertext

 AI and expert systems

 Neural networks and parallel programming

 Decision support and office automation systems

 CIM/CAD/CAM System

2.3.6. Self Assessment Questions

Fill in the Blank

1. The wrapping up of data and methods into a single unit is known as

______________.

2. Programs are divided into what are known as_______________.

True / False

1. Objects are not the basic runtime entities in an object-oriented system.

2. Data is hidden and cannot be accessed by external functions.

Multiple Choices

1. Dynamic binding is happened at

 a) Compile time b) Run time

 c) Both time d) none of the above

Short Answer

1. Define inheritance.

__

__

2. List some applications of OOP.

__

__

2.4 Java Evolution

2.4.1 Java History

Java is a general-purpose, object-oriented programming language

developed by Sun Microsystems of USA in 1991. Originally called Oak by

50

James Gosling. Java was designed for the development of software for

consumer electronic devices like TVs, VCR and Other electronic machines.

The goal had a strong impact on the development team to make the

language simple, portable and reliable. Table 2.4.1 shows important milestones

in the development of Java.

 Table 2.4.1 Milestones in the development of Java

JAVA MILE STONES

Year Development

1990 Sun Microsystems decided to develop special software that could

be used to manipulate consumer electronic devices. A term of Sun

Microsystems programmers headed by James Gostling was formed

to undertake this task.

1991 After exploring the possibility of using the most popular object-

oriented language C++, the team announced a new language named

“Oak”.

1992 The team, known as Green Project team by Sun, demonstrated the

application of their new language to control a list of home

appliances using a hand-held device with a tiny touch-sensitive

screen.

1993 The World Wide Web (WWW) appeared on the Internet and

transformed the text-based Internet into a graphical-rich

environment. The Green Project team came up with the idea of

developing Web applets (tiny programs) using the new language

that could run on all types of computers connected to Internet.

1994 The team developed a Web browser called “HotJave” to locate and

run applet programs on Internet. HotJava demonstrated the power

of the new language, thus making it instantly popular among the

Internet users.

1995 Oak was renamed “Java”, due to some legal snags. Java is just a

name and is not an acronym. Many popular companies including

Netscape and Microsoft announced their support to Java.

1996 Java established itself not only as leader for Internet programming

but also as a general-purpose object-oriented programming

language. Sun releases Java Development Kit 1.0

1997 Sun releases Java Development Kit 1.1 (JDK 1.1)

1998 Sun releases Java 2 with version 1.2 of the Software Development

Kit (SDK 1.2)

1999 Sun releases Java 2 Platform, Standard Edition (J2SE) and

Enterprise Edition (J2EE)

51

2000 J2SE with SDK 1.3 was released

2002 J2SE with SDK 1.4 was released

2004 J2SE with JDK 5.0 (Instead of JDK 1.5) was released. This is

known as J2SE 5.0

2.4.2 Java Features

Sun Microsystems describes Java with the following attributes:

 Complied and Interpreted

 Platform-Independent and Portable

 Object-Oriented

 Robust and Secure

 Distributed

 Familiar, Simple and Small

 Multithreaded and Interactive

 High Performance

 Dynamic and Extensible

These features have made Java the first application language of the World

Wide Web.

Complied and Interpreted

A computer language is either compiled or interpreted. Java combines

both these approaches thus making Java a two-stage system. First, Java

compiler translates source code into byte code instruction. Byte codes are not

machine instruction and in the next stage Java interpreter generates machine

code that can be directly executed by the machine that is running the Java

program.

Platform-Independent and Portable

Java programs can be easily moved from one computer to another,

anywhere and anytime. Changes and upgrades in operating system,

processors and system resources will not force any changes in Java programs.

 Java ensures portability in two ways.

 Java compiler generates byte code that can be implemented on any

machine.

 The sizes of the primitive data types are machine-independent.

Object-Oriented

 Java is a pure object-oriented language. All program code and data

reside within objects and classes and they are arranged in packages, that we use

in our programs by inheritance. The object model in Java is simple and easy to

extend.

52

Robust and Secure

Java provides many safeguards to ensure reliable code. It has strict

compile and run time checking for data types. Java also has the concepts of

exception handling, which captures errors and eliminates any risk of crashing

the system.

Security is an important issue for a language that is used for

programming on Internet. The absence of pointer in Java ensures that programs

cannot access to memory locations without proper authorization.

Distributed

Java is designed as a distributed language for creating applications on

networks. Java applications can open and access objects on Internet as easily as

they can do in a local system. So multiple programmers at multiple remote

locations to collaborate and work together on single project.

Familiar, Simple and Small

Java does not use pointers, preprocessor header files etc. Java eliminates

operator overloading, multiple inheritance. So it is considered as a simple and

small language. To make language look familiar to the exiting programmers, it

modeled on C and C++ language.

Multithreaded and Interactive

 Java handling multiple tasks simultaneously is called multithreaded.

We need not wait for the application to finish one task before beginning the

other. For example we can listen music while scrolling a page and at the same

time download an applet from a distinct computer.

High Performance

Java performance is impressive for an interpreted language, mainly due

to the use of intermediate byte code. Java architecture designed to reduce

overheads during runtime and incorporating multithreading enhances the

overall execution speed of Java programs.

Dynamic and Extensible

Java programs carry with them substantial amounts of run-time type

information that is used to verify and resolve accesses to objects at run time.

This makes it possible to dynamically link code in a safe and extensible

manner.

2.4.3 How Java Differs From C And C++

Java is a lot like C and C++ but the major difference between Java with

C and C++. Java is a pure object-oriented language. Java also adds some new

features. C and C++ features that were omitted from Java are:

Java and C

 Java does not include the C unique statement keywords sizeof, and

typeof

 Java does not contain the data types struct and union

53

 Java does not define the type modifiers keywords auto, extern,

register, signed, and unsigned

 Java does not support and explicit pointer type

 Java does not have a preprocessor and therefore we cannot use #define,

#include, and # ifdef statements

 Java requires that the functions with no arguments must be declared

with empty parenthesis and not with the void keyword as done in C

 Java adds new operators such as instanceof and >>>

 Java adds labeled break and continue statements

 Java adds many features required for object-oriented programming

Java and C++

 Java does not support operator overloading

 Java does not have template classes as in C++

 Java does not support multiple inheritances of classes. This is

accomplished using a new features called “interface”

 Java does not support global variables. Every variables and method is

declared within a class and forms part of that class

 Java does not use pointers

 Java has replaced the destructor function with a finalize () function

 There are no header files in Java

2.4.4 Java And Internet

Java is associated with the Internet because of the fact that the first

application program written in Java was HotJava, a Web browser to run applets

on Internet. Internet users can use Java to create applet programs and run them

locally using a “Java-enabled browser”. Download an applet located on

Internet and run it on local computer using Java-enabled browser as shown in

Fig.2.4.1.

 Internet

 Local computer Remote computer

 Remote applet

 Fig. 2.4.1 Downloading of applets via Internet

2.4.5 Java And World Wide Web

World Wide Web (WWW) is an open-ended information retrieval

system designed to be used in the Internet’ environment. The system contains

Web pages that provide both information and controls. The Web system is

open-ended and we can navigate to a new document in any direction as shown

in Fig.2.4.2. Web pages contain HTML tags that enable us to find, retrieve,

manipulate and display documents worldwide.

54

 Fig.2.4.2 Web structure of information search

Java communicates with Web pages through a tag called <APPLET>.

Fig.2.4.3 shows this process with the following steps:

1. The user sends request for HTML document to remote computer’ Web

Server. The Web Server is a program that accepts request, processes the

request, and sends the required document.

2. The HTML document is returned to the user’s browser. The document

contains the APPLET tag, which identifies the applet.

3. The applet byte code is transferred to the user’s computer.

4. The Java-enabled browser on the user’s computer interprets the byte codes

and provides output.

5. The user may have further interaction with the applet but with no further

downloading from the provider’s Web server.

 User’s Computer Remote Computer

 Fig.2.4.3 Java’s interaction with the web

Byte code

Java Web

Browser

User

Applet Source

Code

Byte code

Web Server Output

HTML

Document

Applet Tag

55

2.4.6 Web Browsers

Web browsers are used to navigate through the information found on

the net. They allow us to retrieve the information spread across the Internet and

display it using the HTML. Web browsers are

 HotJava

 Netscape Navigator

 Internet Explorer

2.4.7 Hardware And Software Requirements

Java is currently supported on Windows 95, Windows NT, Windows

XP, Sun Solaris, Macintosh and UNIX machines.

The minimum hardware and software requirements for Windows 95 version of

Java are

 IBM-compatible 486 system

 Minimum of 8 MB memory

 Windows 95 software

 A Windows-compatible sound card, if necessary

 A hard drive

 A CD-ROM drive

 A Microsoft-compatible mouse

2.4.8 Java Support Systems

Systems to support Java for delivering information on the Internet as

shown below.

 Support systems Description

 Internet connection - Local computer should be connected to the

Internet.

 Web Server - A program that accepts requests and sends the

required document.

 Web Browser - A program that provide access to WWW and

runs Java applets

 HTML - A language for creating hypertext for the Web.

 APPLET Tag - For placing Java applets in HTML document.

 Java Code - Java code is used for defining Java applets.

 Byte Code - Compiled code and transferred to the user

computer

2.4.9 Java Environment

Java Environment includes a large number of development tools is

known as Java Development Kit (JDK) and classes and methods is known as

Java Standard Library (JSL) or Application Programming Interface

(API).

56

Java Development Kit (JDK)

The Java Development Kit with a collection of tools that are used for

developing and running Java programs. Java development tools are:

 Appletviewer – Enable us to run Java applets

 javac – Java compiler, which translates Java source code to

byte code files.

 java – ava interpreter, which runs applets and applications by

reading and interpreting byte code files.

 Javap – Java disassembler, which enables us to convert byte

code files into a program description.

 javah – Produce header files for us with native methods.

 javadoc – Create HTML document from Java source code files.

 jdb – Java debugger, which helps us to find errors in our

programs.

To create a Java program, we need to create a source code file using a

text editor. The source code compiled using the Java compiler javac and

executed using the Java interpreter java. The tools are applied to build and run

application programs are shown in Fig. 2.4.4.

Fig.2.4.4 Process of building and running Java application programs

Application Programming Interface (API)

The Java standard Library includes hundreds of classes and methods

grouped into several functional packages. Most common packages are

 Language Support Package: A collection of classes and methods

for implementing basic features of Java.

Text Editor

javac

HTML Files javadoc Java Source Code

Header Files javah Java Class File

jdb java

Java Program

Output

57

 Utilities Package: A collection of classes to provide utility

functions such as date and time manipulation.

 Input/Output Package: A collection of classes to provide Input/

Output manipulation.

 Networking Package: A collection of classes for communicating

with other computers via Internet.

 AWT Package: The Abstract Window Tool Kit package contains

classes that implement platform independent GUI.

 Applet Package: A collection of classes that allow us to create Java

applet.

2.4.10 Self Assessment Questions

Fill in the blank

1. Java handling multiple tasks simultaneously is called

____________________.

2. Java ___________translates source code into byte code and

Java____________ translates byte code into machine code that can be

directly executed by the machine.

True / False

1. Java does support operator overloading.

2. AWT package is available in Java.

Multiple Choices

1.Java is a

 a) Object-oriented language b) Pure Object-oriented language

 c) Procedure language d) Object modeling language

2. JDK stands for

 a) Java document kit b) Java definition Kit

 c) Java development Kit d) none of the above

Short Answer

1. List any four features of Java.

__

__

2. What is mean by WWW?

__

__

2.5 Overview Of Java Language

2.5.1 Introduction

Java is a general-purpose object-oriented programming language. We

can write two types of Java programs:

 Stand-alone applications

 Web applets

58

Stand-alone applications

Executing a stand-alone Java program need two-steps as shown in Fig.2.5.1.

1. Compiling source code into byte code using javac compiler.

2. Executing the byte code program using java interpreter.

 Fig.2.5.1 Ways of using Java

Web applets

Applets are small Java programs developed for Internet applications.

Applet located on a distant computer can be downloaded via Internet and

executed on a local computer using a java capable browser.

 Simple and More Java Program

We begin with a very simple Java program that prints a line of text as

output.

Program 2.5.1 A simple Java program

/*

*Simple and More Of Java Program

* This code compute summation of two numbers

*/

class SimpleProgram

{

public static void main(String args[])

{

int x = 15, y = 25; // Declaration and initialization

int z; // Simple declaration

Java Source

Code

Java

enabled

Web

browser

Java

Interpreter

Java Compiler

Output Output

59

z = x + y;

System.out.println(“Summation of two numbers” + z);

}

}

Program 2.5.1 is the simplest of all Java programs. Let us discuss the

program line by line and understand unique features that constitute a Java

program.

The first line

 class SimpleProgram

declares a class, Java is pure object-oriented language and everything must be

placed inside a class. class is a keyword and SimpleProgram is a Java

identifier that specifies the name of the class to be defined.

Every class definition in Java begins with opening brace “{“ and ends with a

matching closing brace “}”.

The third line

public static void main(String args[])

defines a method name main. This is the starting point for the interpreter to

begin the execution of the program. A Java application can have any number of

classes but only one on them must include a main method to initiate the

execution. This line contains a public keyword is an access modifier, static

keyword, which declares this method belongs to entire class and not part of

any object and void states that the main method does not return any value.

String args[] declares a parameter named args, which contains any array of

objects of the class type String.

The statement

 int x =15 , y = 25;

declares variable x and y and initializes it to the value 5 and the statement

int z;

merely declares a variable z. All of them have been declared as int type

variables.

The executable statement in the program is

System.out.println(“Summation of two numbers: ” + z);

 The println method is a member of the out object, which is a static data

member of System class. This line prints the result on the screen as

Summation of two numbers: 40

Here , the + acts as the concatenation operator of two strings. The value

of z is converted into string before concatenation. The method println always

appends a new line character to the end of the string. Every Java Program must

end with a semicolon (;).

In Java, the single-line comments begin with // and end at the end of the

line as shown on the lines of the declaration x, y and z .The multi-line

60

comments by starting with /* and end with a */ as shown at the beginning of

the program.

 An Application With Two Classes

A real time application will generally require multiple classes. Program

2.5.2 shows a Java application with two classes.

Program 2.5.2 A program with multiple classes

class Sum

{

 int a, b;

void getdata(int x, int y)

(

 a = x;

 b = y;

 }

}

class Summation

{

 public static void main(String args[])

{

int c; // Simple declaration

Sum sum1 = new Sum(); // Creates an object sum1

sum1.getdata(10, 20);

c = sum1.a + sum1.b ;

System.out.println(“Summation of two numbers” + c);

}

}

Program 2.5.2 defines two classes Sum and Summation. The Sum

class defines two variables and one method to assign values to these variables.

The class Summation contains the main method that initiates the execution.

The main method declares a local variable ‘c’ and Sum type object

sum1 and then assigns values to the data members of Sum class by using the

getdata Method. Finally, it calculates the summation and prints the results.

61

2.5.4 Java Program Structure

 Java Program Structure as shown in Fig.2.5.2

 Suggested

Optional

 Essential

 Fig. 2.5.2 General Structure of a Java program

Documentation Section

The documentation section comprises a set of comment lines giving the

name of the program, the author and other details. Comments must explain why

and what of classes and how of algorithms. In addition to the two styles, Java

also uses third style of comment /**…*/ known as documentation comment.

Package Statement

The first statement allowed in a Java file is a package statement. This

statement declares a package name and informs the compiler that classes

defined here belong to this package. Example:

 package student;

Package statement is optional.

Import statements

Import statement is similar to the #include in C.

Example:

import student.Test;

This statement instructs the interpreter to load the Test class in the package

student.

Interface statement

An interface is like a class but group of method declaration. This is also

optional section and is used only when we wish to implement the multiple

inheritance features in the program.

Documentation Section

Package Statement

Import Statements

Interface Statements

Class Definitions

Main Method Class

{

Main Method Definition

}

62

Class definition

A java program may contain multiple class definitions. Classes are the

primary and essential elements of a Java program.

Main Method class

Java stand-alone program requires a main method as its starting point;

this class is the essential part of a Java program. The main method creates

objects of various classes and establishes communications between them. On

reaching the end of main, the program terminates and control passes back to the

operating system.

2.5.5 Java Tokens

Smallest individual units in a program are known as tokens. The

smallest units of program are the characters used to write Java tokens. Java

language includes five types of tokens. They are:

 Reserved Keywords

 Identifiers

 Literals

 Operators

 Separators

Reserved Keywords

Java language has reserved 50 words as keywords. Table 2.5.1 list these

keywords. Keywords, combined with operators and separators according to

syntax, form definition of the Java language. All keywords are to be written in

lower-case letters. Since keywords have specific meaning in Java, we cannot

use them as names for variable, classes, methods and so on.

Identifiers

Identifiers are programmer-designed tokens. They are used for naming

classes, methods, variables, objects, labels, packages and interfaces in a

program.

Rules for forming Java identifier as

1.They can have alphabets, digits, and the underscore and dollar sign

characters.

2.They must not begin with a digit.

3.Uppercase and lowercase letters are distinct.

4.They can be of any length.

Table 2.5.1 Java Keywords

abstract assert boolean break

byte case catch char

class const continue default

do double else enum

extends final finally float

for goto if interface

63

implements import instanceof int

long native new package

private protected public return

short static stricfp supe

switch synchronized this throw

throws transient try void

volatile while

Literals

Literals in Java are a sequence of characters (digit, letters, and other

characters) that represent constant value to be stored in variables. Java language

specifies five types of literals. They are:

 Integer literals

 Floating-point literals

 Character literals

 String literals

 Boolean literals

Operators

An operator is symbol that takes one or more arguments and operates

on them to produce a result.

Separators

Separators are symbols used to indicate where groups of code are

divided and arranged. Table 2.5.2 lists separators and their functions.

 Table 2.5.2 Java Separators

Name Purpose

Parentheses () Used to enclose parameters in method definition and

invocation, also used for defining precedence in

expression, containing expressions for flow control, and

surrounding cast types.

Braces { } Used to contain the values of automatically initialized

arrays and to define a block of code for classes, methods

and local scopes

Brackets [] Used to declare array types and for de-referencing array

values.

Semicolon ; Used to separate statements

Comma , Used to separate consecutive identifiers in a variable

declaration, also used to chain statement inside ’for’

statement

Period . Used to separate package names from sub-packages and

classes; also used to separate a variable or method from a

reference variable.

64

2.5.6. Java Statements

The statements in Java are like sentences in natural language. Java

implements several types of statements in Fig 2.5.3.

 Fig 2.5.3 Classification of Java Statements

2.5.7 Implementing A Java Program

Implementing of a Java application program involves a series of steps. They

include:

 Creating the program

 Compiling the program

 Running the program

Selection Statement

Java Statements

Iteration Statement Jump Statement

Control

Statement

Guarding

Statemen

t

Labelled

Statement

Expression
Statemen

t

Synchronization

statement

if if -

else

Switch break continue return

do
for while

65

Creating the program

We can create a program using any text editor. Assume that we have

entered the following program:

Program 2.5.3 Simple program for testing

class SimpleProgramTest

 {

 public static void main(String args[])

 {

 System.out.println(“Welcome to Java”);

 }

 }

We must save this program in a file called SimpleProgramTest.java

ensuring that the filename contains the class name properly. This file is called

source file, all source files will have the extension .java. If a program contains

multiple classes, the file name must be the class name of the class containing

the main method.

Compiling the program

To compile the program, we must run the Java Compiler javac, with the

name of the source file on the command line as shown below:

>javac SimpleProgramTest.java

If everything OK, the javac compiler creates a file called

SimpleProgramTest.class containing the byte codes of the program.

Running the program

We need to use the java interpreter to run a stand-alone program. At

command prompt, type

 >java SimpleProgramTest

Now, the interpreter looks for the main method in the program and

begins execution from there. When executed, our program displays the results

as:

 Welcome to Java

2.5.8 Java Virtual Machine

Java compiler produces an intermediate code known as byte code for

machine that does not exist. This machine is called the Java Virtual Machine

and it exists only inside the computer memory. Fig. 2.5.4 shows the process of

compiling a Java program into byte code, which is also referred to as virtual

machine code.

 Source Code Byte Code

 Fig.2.5.4 Process of compilation

Java Program Java Compiler Virtual Machine

66

The virtual machine code is not machine specific. The machine specific

code is generated by the Java interpreter by acting as an intermediary between

the virtual machine and real machine as shown in Fig. 2.5.5.

 Virtual Machine Real Machine

 Fig.2.5.5 Process of converting byte code into machine code

2.5.9 Command line Arguments

Command line arguments are parameters that are supplied to the

application program at time of invoking it for execution. We can write java

programs that can receive and use the arguments provided in the command line.

Program 2.5.4 Simple program for Command line argument

/*

* Program for Command line arguments as input

*/

class ComLineTest

{

 public static void main(String args[])

{

int count , i = 0;

String string;

count = args.length;

System.out.println(“ No. of arguments = ” +

count);

while (i < count)

{

string = args[i];

i = i +1;

System.out.println(i +“ : ” + string);

}

}

}

Program 2.5.4 shows the use of command line arguments. Compile and

run the program with the command line as follows.

 >java ComLineTest BASIC FORTRAN C++ JAVA

Upon execution, the command line arguments BASIC FORTRAN

C++ JAVA are passed to the program through the array args . that is the

Byte Code Java Interpreter Machine Code

67

element args[0] contains BASIC, args[1] contains FORTRAN, and so on.

These elements are accessed using the loop variables i as an index like

 name = args[i]

The index i is incremented using a while loop until all the arguments are

accessed. The number arguments is obtained by statement

count = args.length;

The output of the program as:

No. of arguments = 4

1 : BASIC

2 : FORTRAN

3 : C++

4 : JAVA

2.5.10 Programming Style

Java is a freeform language. Java system does not care where on the line

we begin typing. For example, the statement

 System.out.println(“ Java is Best”);

can be written as

System.out.println

(“ Java is Best”);

or, even as

System

.out

.println

(

 “ Java is Best”

);

2.5.11 Self Assessment Question

Fill in the blank

1. Java has two types of program such as____________________ and

______________.

2. Java program is converted into byte code, which is also referred to as

_____________.

True / False

1. We can create a program using any text editor.

2. main() method is the starting point of the interpreter to begin the execution

of the program

68

Multiple Choices

1.Java applet program runs under

a) Hot java b) Netscape Navigator

 c) Internet Explorer d) All of the above

2.Java program is compiled by

 a) java b) javac

 c) javadoc d) javap

Short Answer

1. Define an applet.

__

__

2.What is called Command line arguments?

__

__

2.6. Data types, Constants And Variables

2.6.1 Data Types

The size and type of values that can be stored in variable is called as

Data type. Data types in Java under various categories are shown in Fig.2.6.1.

 Data types in Java

 Primitive (Intrinsic) Non-Primitive

(Derived)

Numeric Non-Numeric Classes Arrays

 Integer Floating-Point Character Boolean Interface

 Fig.2.6.1 Data types in Java

Integer Types

Integer types can hold whole numbers such as 456, -26, and 6873. Java

supports four types of integers are byte, short, int and long as in Fig.2.6.2.

Java does not support the concept of unsigned types and therefore all Java

values are signed meaning they can be positive or negative. Table 2.6.1 shows

the memory size of all the four integer data types.

 Integer

 byte long

 short int

Fig.2.6.2 Integer Data types

69

We must use a byte variable to handle smaller number. This improves

the speed of execution of the program. We can make integers long by

appending the letter L or l at the end of the number.

Example: 123L or 123l.

 Table 2.6.1 Type and size Of Integer Types

 Type Size

 byte One byte

 short Two bytes

 int Four bytes

 long Eight bytes

Floating Point Types

 Integer types can hold only whole numbers and therefore we use

another type known as floating point type to hold numbers containing

fractional parts such as 27.59 and -1.375. There are two kinds of floating point

storage in Java as shown in Fig.2.6.3

 Floating Point

 float double

 Fig.2.6.3 Floating-point data types

 The float type values are single-precision numbers while the double

types represent double-precision numbers. Table 2.6.2 gives the size of these

two types.

 Table 2.6.2 Type And Size Of Floating Point

 Type Size

 float 4 bytes

 double 8 bytes

 Floating point numbers are treated as double-precision quantities. To

force them to be in single-precision mode, we must append f or F to the

numbers.

Example:

 1.23f 7.56923e5F

 Double-precision types are used when we need greater precision in

storage of floating point numbers. All mathematical functions such as sin, cos

and sqrt return double type values.

Character Type

 In order to store character constants in memory, Java provided a

character data type called char. The char type assumes a size of 2 bytes but it

can hold only a single character.

70

Boolean Type

 Boolean type is used when we want to test a particular condition during

the execution of the program. There are only two values that a Boolean type

can type: true or false. Boolean type denoted by the keyword boolean and uses

only one bit of storage. The words true and false cannot be used as the

identifier.

2.6.2 Constants and Symbolic constants

Constants:

Constants in Java refer to fixed values that do not change during the

execution of a program. Types of constant are as shown in Fig.2.6.4.

 Java Constants

 Numeric constants Non-Numeric constants

 Integer Constants Real constants Character constants String constants

 Fig.2.6.4 Java Constants

Numeric Constants

Integer Constants

A whole number is called integer constants. An integer constant refers

to a sequence of digits. There are three types of integers, namely, decimal, octal

and hexadecimal integer.

Decimal integers consist of a set of digits, 0 through 9, preceded by

optional minus sign. Valid examples are:

123 -231 0 253444

Embedded spaces, commas, and non-digit characters are not permitted

between digits. For example

36 5689 20.000 $777456 are invalid numbers

An octal integer constant consists of any combination of digit from the

set 0 through 7, with leading 0. Valid examples are:

046 123 0 0675

A hexadecimal integer constant consists of any combination of digit

from the set 0 through 9 and A through F and preceded by 0x or 0X

Valid examples are:

 0x3Bf7 0X27 0x

71

Real Constants

Number containing with decimal point is called real constants. There

are two types of notation, namely,

 Decimal notation

 Exponential (or scientific) notation.

In decimal notation a whole number followed by a decimal point and

the fractional part, which is an integer. Valid examples are:

0.376 .57 -.46 23.68

The general form of an Exponential notation is:

mantissa e exponent

The mantissa is either a real number expressed in decimal notation or

an integer. The exponent is an integer with an optional plus or minus sign. The

letter e separating the mantissa and the exponent can be written in either

lowercase or uppercase.

Valid examples are:

0.47E2 12e-7 1.8e+3 7.3E2 -6.0e-2

Non-Numeric Constants:

Character constants

A single character constant contains a single character enclosed within

a pair of single quote marks. Valid examples are:

 ‘6’ ‘s’ ‘W’ ‘;’ ‘ ’

String constants

A string constant is a sequence of characters enclosed between double

quotes. The characters may be alphabets, digits special characters and blank

spaces.

Valid examples are:

“Hello” “3566” “%---$” “22-7”

Backslash character constants

Java supports some special backslash character constants that are used

in output methods. The characters combinations are known as escape

sequences.

 Table 2.6.3 Backslash character constants

Constants Meaning

 ‘ \ b’ back space

 ‘ \ f ’ form feed

 ‘ \ n’ new line

 ‘ \r’ carriage return

 ‘ \ t’ horizontal tab

 ‘ \ ‘’ single quote

 ‘ \ “’ double quote

72

 ‘ \ \’ back slash

Symbolic constants

We often use certain unique constants in a program. These constants

may appear repeatedly in a number of places in the program. For example of

such a constant is 3.142 representing the value of the mathematical constant

“pi”. We face two problems in the subsequent use of program. They are:

1. Problem in modification of the program.

2. Problem in understanding the program.

Modifiability

 We may like to change the value of “pi” from 3.142 to 3.14159 to

improve the accuracy of calculation. In this case, we will have to search

throughout the program and explicitly change the value of the constant

wherever it has been used. If any value is left unchanged, the program may

produce incorrect outputs.

Understandability

 Assignment of a symbolic name to numeric constants frees us problems

like same value means different things in different places. For example, the

number 40 may mean the number of students at one place and the “pass marks”

at another place of the same program. We may use the name STRENGTH to

denote the number of students and PASS_MARK to denote the pass marks

required in subject. Constant values are assigned to these names at the

beginning of the program.

A constant is declared as follows:

 final type symbolic-name = value;

Valid examples are:

final int STRENGTH = 40;

final PASS_MARK = 40;

final float PI = 3.1459;

Rules for forming the symbolic constants are:

 Symbolic names take the same form as variable names. But, they are

written in CAPITALS.

 After declaration of symbolic constants, they should not be assigned

any other value within a program.

 Symbolic constants are declared for types.

 They cannot be declared inside a method. They should be used only a

class data members in the beginning of the class.

2.6.3 Variables

 A variable is an identifier that denotes a storage location used to

store a data value. A variable may take different values at different times during

73

the execution of the program. Variable names may consist of alphabets, digits,

the underscore (_) and dollar characters, with following conditions.

1. They must not begin with a digit

2. Uppercase and lowercase are distinct. This means that the

variable Total is not the same as total or TOTAL.

3. It should not be a keyword

4. White space is not allowed

5. Variable names can be of any length.

2.6.4 Declaration Of Variables

In Java, variables are the names of the storage locations. A variable

must be declared before it is used in the program. A variable can be used to

store a value of any data type. After designing the variable names, we must

declare them to the complier. Declaration does three things:

1. It tells the compiler what the variable name is

2. It specifies what type of data the variable will hold.

3. The place of declaration decides the scope of the variables.

The general form of declaration of a variable is:

type variable1, variable2,……, variableN;

Variables are separated by commas. A declaration statement must end

with a semicolon. Some valid declarations are:

 int rollno;

 float average;

 double pi;

 byte b;

 char c1, c2;

2.6.5 Giving Values To Variables

 A variable must be given a value after it has been declared that before it

is used in an expression. This can be achieved in two ways:

 1. By using an assignment statement

 2. By using a read statement

Assignment Statement

A simple method of giving value to a variable is through the assignment

statement as

 variableName = value;

For Example:

 rollno = 1;

74

 c1 = ‘ x ‘;

Another method to assign a value to a variable at the time of its declaration as

 type variableName = value;

For Example:

 int rollno = 1;

 float average = 68.66;

The process of giving initial values to variables is known as the

initialization. The following are valid Java statements:

 float x, y, z; // declares three float variables

 int m = 3, n = 6; // declares and initializes two int variables

Read Statement

 We may also give values to variables through the keyboard using the

readLine() method as shown in Program 2.6.1.

Program 2.6.1 Reading data from keyboard

import java.io.DataInputStream;

class Reading

{

public static void main(String args[])

DataInputStream in = new DataInputStream(System.in);

//declare in object

int IntNumber = 0;

float floatNumber = 0.0f;

try

{

System.out.println(“Enter an integer number: ”);

intNumber = Integer.parseInt(in.readLine()); // read integer value

 through keyboard

System.out.println(“Enter a float number: ”);

floatNumber = Float.valueOf(in.readLine()).floatValue(); // read float

value

}

catch (Exception e) { }

System.out.println(“Integer Number = ” + intNumber);

System.out.println(“Float Number = ” + floatNumber);

}

}

75

Output:

 Enter an integer number:

56

Enter a float number:

45.90

 Integer Number = 56

 Float Number = 45.90

The readLine() method (which is invoked using an object of the class

DataInputStream) the input from keyboard as a string is then converted to the

corresponding data type using data type wrapper classes. We have used the

keywords try and catch to handle any errors that might occur during reading

process.

2.6.6 Scope Of Variables

Java variables are classified into three kinds:

 Instance variables

 Class variables

 Local variables

Instance and class variables are declared inside a class. Instance

variables are created when the objects are instantiated and therefore they are

associated with the objects. They take different values for each object. Class

variables are global to a class and belong to the entire set of objects that class

creates. Only one memory location is created for each class variable.

 Variables declared and used inside methods are called local

variables. They are not available for use outside the method definition. Local

variables can also be declared inside program blocks that are defined between

an opening brace { and a closing brace }. These variables are visible to the

program only from the beginning of its program block to the end of the

program block. When the program control leaves a block, all the variables in

the block will cease to exist. The area of the program where the variable is

accessible (ie. Usable) is called its scope.

2.6.7 Getting Values Of Variables

A program is written to manipulate a given set of data and to display or

print the results. Java supports two output methods that can be used to send the

results to the screen.

 print() method

 println() method

The print() method sends information into a buffer. This buffer is not

flushed until a new line (or end-of-line) character is sent. As a result, the print(

) method prints output on one line until a new line character is encountered.

For example, the statements,

 System.out.print(“Hai ”);

76

 System.out.print(“Java ! “);

will display the words Hai Java ! on one line and waits for displaying further

information on the same line. We may display on next line by printing a new

line character as follows:

 System.out.print(“ \n “);

For Example:

 System.out.print(“Hai ”);

System.out.print(“ \n “);

 System.out.print(“Java ! “);

will display the output in two lines as

 Hai

Java !

The println() method takes the information provided and displays it

on a line followed by a line feed . For Example, the statements

 System.out.println(“Hai ”);

 System.out.println(“Java ! “);

will produce the following output:

 Hai

Java !

2.6.8 Type Casting

 We need to store a value of one type into a variable of another type. In

such situation, we must cast the value to be stored by proceeding it with the

type name in parentheses. The general form is:

 type variable1 = (type) variable2;

The process of converting one data type to another is called casting.

Examples:

 int m = 50;

 byte n = (byte) m;

 long c = (long) m;

 Four integer types can be cast to any other type except Boolean.

Similarly, the float and double can be cast to any other type except Boolean.

Casting to smaller type can result in a loss of data. Casting a floating-point

value to an integer will result in a loss of the fractional part. Table 2.6.3. lists

those casts, which are guaranteed to result in no loss of information

 Table 2.6.3 Casts that results in No Loss Information

From To

byte short, char, int, long, float, double

short int, long, float, double

77

char int, long, float, double

int long, float, double

long float, double

float double

Automatic Conversion

 For some types, it is possible to assign a value of one type to a variable

of a different type without a cast. Java does the conversion of the assigned

value automatically. This is known as automatic type conversion. For

example, int is large enough to hold a byte value. Therefore,

 byte b = 75;

 int a = b;

are valid statements.

 The process of assigning a smaller type to a larger one is known as

widening or promotion and that of assigning a larger type to a smaller one is

known as narrowing.

2.6.9 Self Assessment Question

Fill in the blank

1. Whole number is called __________________.

2. The process of assigning a smaller type to a larger one is known as

______________.

True / False

1.Java does support the concept of unsigned types.

2.A variable must be declared before it is used in the program.

Multiple Choices

1. Which of the following is not a valid identifier

 a) averave b) sum_S

 c) Total d) 2ABC

2. Which of the following is correct Java statement

 a) System.Out.println(“hello”); b) System.out.println(‘hello’);

 c) System.out.println(“hello”); d) system.out.println(“hello”);

Short Answer

1. Define variables.

--

--

2. Define local variable.

--

--

78

2.7 Operators and Expressions

2.7.1 Introduction

 Java supports a rich set of operators. An operator is a symbol that tells

the computer to perform certain mathematical or logical manipulations.

Operators are used in programs to manipulate data and variables.

 Java operators can be classified into a number of types are:

 Arithmetic operators

 Relational operators

 Logical operators

 Assignment operators

 Increment and decrement operators

 Conditional operators

 Bitwise operators

 Special operators

 Special operators

2.7.2 Arithmetic Operators

 Java provides all the basic arithmetic operators are listed in Table 2.7.1.

The operators +, -, * and / all work the same way as they do in other languages.

These can operate on any built-in numeric data type of Java. We cannot use

these operators on Boolean type. The unary minus operator, in effect, multiplies

its single operand by -1. Therefore, a number preceded by a minus sign changes

its sign.

 Table 2.7.1. Arithmetic Operators

 Operator Meaning

 + Addition or unary plus

 - Subtraction or unary minus

 * Multiplication

 / Division

 % Modulo division(Remainder)

Arithmetic operators are used as

 a - b a + b

 a * b a / b

 a % b - a + b

Integer Arithmetic

 When both the operands in single arithmetic expression such as a + b

are integers, the expressions is called an integer expression, and the operation

is called integer arithmetic. Integer arithmetic yields an integer value. In

above examples if a and b are integers the a =2 and b = 2 we have the

following results:

79

 a – b = 0

 a + b = 4

 a * b = 4

 a / b = 1 (decimal part truncated)

 a % b = 0 (remainder of integer division)

For modulo division (%), the sign of the result is always the sign of the first

operand.

Real arithmetic

 An arithmetic operation involving only real operands is called real

arithmetic. A real operand may assume values either in decimal or exponential

notation. The floating-point modulus operator returns the floating-point

equivalent of an integer division. What this means is that the division is carried

out with both floating-point operands, but the resulting divisor is treated as an

integer, resulting in a floating-point remainder.

Example Program: Program for Arithmetic operator works on Floating

values

class RealArithmetic

{

public static void main(String args[])

{

float a = 10.3f, b= 3.2f;

System.out.println(" a + b = " + (a + b));

System.out.println(" a - b = " + (a - b));

System.out.println(" a * b = " + (a * b));

System.out.println(" a / b = " + (a / b));

System.out.println(" a % b = " + (a % b));

}

}

Output Of Program

 a + b = 13.5

a - b = 7.1000004

a * b = 32.960003

a / b = 3.21875

a % b = 0.70000005

Mixed-mode Arithmetic

 When one of the operand is real and the other is integer, the expression

is called a mixed-mode arithmetic expression. If either operand is of the real

type, then the other operand is converted to real and the real arithmetic is

performed. The result will be a real. Thus

80

 16 / 5 produce the result 3.1

Whereas

 16 / 5 produce the result 1

2.7.3 Relational Operators

 We often compare two quantities, and depending on their relation, take

certain decisions. For example, we may compare the age of two persons, or the

price of two items, and so on. These comparisons can be done with the help of

relational operators. Java supports six relational operators as shown in Table

2.7.2.

Table 2.7.2. Arithmetic Operators

 Operator Meaning

 < is less than

 <= is less than equal

 > is greater than

 >= is greater than equal

 = = is equal to

 ! = is not equal to

A simple relational expression contains only one relational operator and

is of the following form:

 ae -1 relational operator ae – 2

When arithmetic expressions are used on either side of a relational

operator, the arithmetic expressions will be evaluated first and then the results

compared. That is, arithmetic operators have a higher priority over relational

operators.

Example Program: Program for implementation of Relational Operator

class RelationalOp

{

public static void main(String args[])

{

float a = 10.6f, b= 3.2f;

System.out.println(" a = " + a);

System.out.println(" b = " + b);

System.out.println(" a < b is " + (a < b));

System.out.println(" a > b is " + (a > b));

System.out.println(" a = = b is " + (a ==b));

System.out.println(" a <= b is " + (a <= b));

System.out.println(" a >= b is " + (a >= b));

81

System.out.println(" a = = b is " + (a !=b));

}

}

Output Of Program

 a = 10.6

b = 3.2

a < b is false

a > b is true

 a = = b is false

 a <= b is false

a >= b is true

a = = b is true

2.7.4 Logical Operators

 Java has three logical operators as shown in Table 2.7.3. The logical

operators && and || are used when we want to form compound conditions by

combining two or more relations. Example:

 a > b && x = = 10

Table 2.7.3. Logical Operators

 Operator Meaning

 && is logical AND

 || is logical OR

 ! is logical NOT

An expression combines two or more relational expression is called as

logical expression or compound relational expression. Logical expression also

yields a value of true or false.

2.7.5 Assignment Operators

 Assignment operators are used to assign the value of an expression to

a variable. The form

 v op= exp;

Where v is a variable, exp is an expression and op is a java binary

operator. The operator op= is known as the shorthand assignment operator.

 The shorthand assignment operators are illustrated in Table 2.7.4.

 Table 2.7.4 Shorthand Assignment Operators

 Statement with simple Statement with

Assignment operator Shorthand operator

a = a + 1 a + = 1

82

a = a - 1 a - = 1

a = a * (n + 1) a * = n + 1

a = a % b a % = b

a = a / (n + 1) a / = n + 1

 The use of shorthand assignment operators has three advantages:

1. What appears on the left-hand side need not be repeated and therefore it

becomes easier to write.

2. The statement is more concise and easier to read

3. Use of shorthand operator results in a more efficient code.

2.7.6 Increment And Decrement Operators

 The increment and decrement operators:

 ++ and - -

The operator ++ adds 1 to the operand while -- subtracts 1. Both are unary

operators and are used in the following form:

 ++m; or m++;

 --m; or m--;

We use the increment and decrement operators extensively in for and while

loops.

Example:

 m = 5;

 y = ++m;

In this case, the value of y and m would be 6. Suppose, if we rewrite the

above statements

 m = 5;

 y = m++;

Then, the value of y would be 5 and m would be 6. Prefix operator adds

1 to the operand and then the result is assigned to the variable on left. Postfix

operator first assigns the value to the variable on left and then increments the

operand.

Similar is the case, when we use ++(or --) in subscripted variables.

That is the statement a[i++] = 10 is equivalent to

 a[i] = 10

 i = i + 1

2.7.7 Conditional Operators

 The conditional pair ? : is a ternary operator available in Java. This

operator is used to construct conditional expressions of the form

 p1 ? exp2 : exp3

83

Where exp1,exp2, exp3 are expressions.

 The operator ? : works as follows : exp1 is evaluated first. If it is

nonzero (true), then the expression exp2 is evaluated and becomes the value of

the conditional expressions. If exp1 is false, exp3 is evaluated and is value

becomes the value of the conditional expression.

For Example:

 a = 10;

b = 15;

 x = (a > b) ? a : b

In this example, the value of x is the value of b.

2.7.8 Bit Wise Operators

Java has a special operators is known as bitwise operators or

manipulation of data at values of bit level. These operators are used for testing

the bits, or shifting them to the right or left as shown in Table 2.7.5.

 Table 2.7.5. Bitwise Operators

 Operator Meaning

 & bitwise AND

 ! bitwise OR

 ^ bitwise Exclusive OR

 ~ one’s Complement

 << shift left

 >> shift right

 >>> shift right with zero fill

2.7.9 Special Operators

Java supports some special operators of interest such as instanceof

operator and member selection operator (.).

Instanceof Operator

 The instanceof is an object reference operator and returns true if the

object on the left-hand side is an instance of the class given on the right-hand

side. This operator allows us to determine whether the object belong to a

particular class or not.

Example:

 person instanceof student

is true if object person belong to the class student; otherwise it is false.

Dot operator

The dot operator (.) is used to access the instance variables and

methods of class objects.

Example:

 person1.age; // Reference to the variable age

 person1.salary(); // Reference to the method salary()

84

It is also used to access classes and sub-packages from a package.

2.7.10 Arithmetic Expressions

An arithmetic expression is a combination of variables, constants, and

operators. Example of Java expression is shown in Table 2.7.6.

 Table 2.7.6. Expressions

 Algebraic Expression Java Expression

 a b - c a * b - c

 ab a * b / c

 c

2.7.11 Evaluation Of Expressions

Expressions are evaluated using assignment statement of the form

 variable = expression;

variable is any valid Java variable name. When the statement is encountered,

the expression is evaluated first and the result then replaces the previous value

of the variable on the left-hand side.

Examples of evaluation statements are

 l = x*y-z ;

 m = y/z*x ;

The blank space around an operator is optional.

 2.7.12 Precedence Of Arithmetic Operators

An arithmetic expression without any parentheses will be evaluated

from left to right using the rules of precedence of operators. There are two

distinct priority levels in Java:

 High priority * / %

 Low priority + -

The basic evaluation procedure includes two left-to-right passes through

the expression. During the first pass, the high priority operators are applied and

second pass, the low priority operators are applied.

Consider the following evaluation statement:

 x = a - b / 3

When a = 9 and b = 6, the statement becomes

 x = 9 – 6 / 3

and evaluated as

First pass

 x = 9 – 2 (6 / 3 evaluated)

Second pass

85

 x = 7 (9 - 2 evaluated)

Introducing parentheses into expression can change the order of

evaluation. Parentheses may be nested, and in such cases, the expression will

proceed out from innermost set of parentheses. Every opening parenthesis has a

matching closing one. Parentheses allow us to change the order of priority.

2.7.13 Type Conversions In Expressions

Automatic Type Conversion

Java permits mixing of constants and variables of different types in an

expression, but during evaluation it adheres to very strict rules of type

conversion. If the operands are of different types, the ‘lower’ type is

automatically converted to the higher type before the operation proceeds. The

result is of the higher type. Table 2.7.7 provides a reference chart for type

conversion.

The final result of an expression is converted to the type of the variable

on the left of the assignment sigh before assigning the value to it. The

following changes are occurs in final assignment.

1. float to int causes truncation of the fractional part.

2. double to float causes rounding of digits.

3. long to int causes dropping of the excess higher order bits.

 Table 2.7.7 Automatic Type Conversion Chart

 char byte short int long float double

 char int int int int long float double

 byte int int int int long float double

 short int int int int long float double

 int int int int int long float double

 long long long long long long float double

 float float float float float float float double

 double double double double double double double double

Casting a Value

We need to store a value of one type into a variable of another type. In

such situation, we must cast the value to be stored by proceed it with the type

name in parentheses. The general form of a cast is:

 (type_name) expression

Where type_name is one of the standard data types. The expression may

be constant, variable or an expression.

Examples of casts and their actions are

X = (int) 7.5 7.5 is converted to integer by truncation

A = (int) 21.3 / (int)4.5 Evaluated as 21/4 and the result would be 5

86

2.7.14 Operator Precedence And Associativity

Each operator in Java has precedence associated with it. The operators

at the higher level of precedence are evaluated first. The operators of the same

level of precedence are evaluated from left to right or from right to left,

depending on level. This is known as the associativity property of an

operator. Table 2.7.8 provides a complete lists of operators, their precedence

levels, and their rules of association.

 Table 2.7.8 Java Operators precedence and associativity

 Operator Meaning Associativity

 Rank

 . Member selection Left to Right 1

 () Function call

 [] Array element reference

 - Unary minus Right to left 2

 ++ Increment

 -- Decrement

 ! Logical Negation

 ~ One’s complement

 (type) Casting

 * Multiplication Left to Right 3

 / Division

 % Modulus

 + Addition Left to Right 4

 - Subtraction

 << Left shift Left to Right 5

 >> Right shift

 >>> Right shift with zero fill

 < Less than Left to Right 6

 < = Less than or equal to

 > Greater than

 >= Greater than or equal to

 Instanceof Type comparison

 = = Equality Left to Right 7

 ! = Inequality

 & Bitwise AND Left to Right 8

 ^ Bitwise XOR Left to Right 9

 | Bitwise Or Left to Right 10

 && Logical AND Left to Right 11

 || Logical OR Left to Right 12

 ?: Conditional operator Right to Left 13

 = Assignment operator Right to Left 14

87

 Op= Shorthand assignment

2.7.15 Mathematical Functions

Java support basic math function through Math class defined in the

java.lang package. Table 2.7.9 lists the math functions defined in the Math

class. These functions should be used as

 Math.function_name();

Example:

 int a = Math.max(10,15);

 Table 2.7.9 Math Function

 Function Action

 sin(x) Returns the sine value the angle x in radians

 cos(x) Returns the cosine value the angle x in radians

 tan(x) Returns the tangent value the angle x in radians

 asin(y) Returns the angle whose sine is y

 acos(y) Returns the angle whose cosine is y

 atan(y) Returns the angle whose tangent is y

 atan2(x,y) Returns the angle whose tangent is x/y

 pow(x,y) Returns x raised to y(xy)

 exp(x) Returns e raised to x(ex)

 log(x) Returns the natural logarithm of x

 sqrt(x) Returns the square root of x

ceil(x) Returns the smallest whole number greater than

or equal to x (rounding up)

floor(x) Returns the largest whole number less than or

equal to x (Rounded down)

rint(x) Returns the truncated value of x.

round(x) Returns the integer closest to the argument

abs(a) Returns the absolute value of a.

max(a, b) Returns the maximum of a and b

min(a, b) Returns the minimum of a and b

Note: x and y are double type parameters. a and b may int, long, float and

double.

2.7.16 Self Assessment Questions

Fill in the blank

1. _____________ are used in programs to manipulate data and variables.

2. Java support basic math function through _______ class defined in the

_____________package.

88

True / False

1. The logical operators does not return true and false value

2. The dot operator (.) is used to access the instance variables and methods of

class objects.

Multiple Choices

1. Suppose m=5,y=m++, what is value of m and y?

a) 5 & 6 b) 6 & 5

c) 5 & 5 d) 6 & 6

2. What is value of 5%2?

a) 2 b) 3

 c) 0 d) 1

Short Answer

1. Define integer arithmetic.

__

__

2. What is called arithmetic expression?

__

__

2.8.Decision Making with Branching and Looping

2.8.1 Branching

2.8.1.1 Introduction

 We have a number of situations, where we may have to change the

order of execution of statements based on certain conditions, or repeat a group

of statements until certain specified conditions are met. This involves a kind of

decision making to see whether a particular condition has occurred or not and

then direct the computer to execute certain statements accordingly.

 Control or decision making statements are

 1. if statements

 2. switch statement

 3. Conditional operator statement

2.8.1.2 Decision Making With If Statement

The if statement is a decision making statement and is used to control

the flow of execution of statements. The general form is

 if (test expression)

 It allows the computer to evaluate the expression first and then, based

on the value of expression is ‘true’ or ‘false’, it transfers the control to a

particular statement (See Fig 2.8.1.1)

89

Entry

 False

 True

Fig. 2.8.1.1 Two-way branching

The if statement may be implemented in different forms based on the

condition to be tested.

1. Simple if statement

2. if …else statement

3. Nested if…else statement

4. else if ladder.

2.8.1.3 Simple If Statement

The general form is

if (test expression)

 {

 statement-block;

}

statement-x;

The ‘statement-block’ may be single or group of statements. If the test

expression is true, the statement-block will be executed; otherwise the

execution will to the statement-x. (See Fig 2.8.1.2)

 Entry

 True

 False

 Fig.2.8.1.2 Flowchart of simple if control

Test

expression

 ?

Test

expression

 ?

Statement- Block

Statement- X

90

Example Program: To find a smallest value among two numbers

/*

Smallest Among Two numbers Using if statement

 */

import java.io.*;

import java.lang.*;

class Smallest

{

 public static void main(String args[])

 {

 int a = 0,b=0;

 int small = 0;

 DataInputStream in = new DataInputStream(System.in);

 System.out.println("\nEnter the two values");

 try

 {

 a = Integer.parseInt(in.readLine());

 b = Integer.parseInt(in.readLine());

 }

 catch(Exception e) { }

 small = a;

 if (small > b)

 small = b;

 System.out.println("\nSmallest Among Two No.is : " +

small);

}

}

Output Of Program

Enter the two values

23

17

Smallest Among Two No.is : 17

91

2.8.1.4 The If…Else Statement

The general form is

 if (test expression)

 {

 statement-block1;

}

else

{

statement-block2;

}

statement-x;

If the test expression is true, the statement-block1 will be executed;

otherwise, the statement-block2 will be executed, not both. In both the cases,

the control is transferred to the statement-x. (See Fig.2.8.1.3)

 Entry

 True False

 Fig.2.8.1.3 Flowchart of if….else control

Example Program: To Find a smallest value among three numbers.

/*

 Smallest Among Three numbers Using if – else statement

*/

import java.io.*;

Test
expression

 ?

True-block

Statements

False-block

Statements

Statement -x

92

import java.lang.*;

class Smallest

{

 public static void main(String args[])

 {

 int a = 0,b=0,c=0;

 int small = 0;

 DataInputStream in = new DataInputStream(System.in);

 System.out.println("\nEnter the three values");

 try

 {

 a = Integer.parseInt(in.readLine());

 b = Integer.parseInt(in.readLine());

 c = Integer.parseInt(in.readLine());

 }

 catch(Exception e)

{ }

 small = a;

 if (small > b)

 small = b;

 else

 small = c;

 System.out.println("\nSmallest Among Three No.is : " + small);

}

}

Output Of Program

Enter the three values

23

17

56

Smallest Among Three No.is : 17

93

2.8.1.5 Nesting Of If…Else Statement

The general form is

 if (test expression1)

 {

 if (test expression2)

 {

 statement-block1;

}

else

{

statement-block2;

}

 }

else

{

statement-block3;

}

statement-x;

If the test expression1 is false, the statement-block3 will be executed;

otherwise it continues to perform the second test. If test expression2 is true, the

statement-block1 will be executed; other wise the statement-block2 will be

executed and then control is transferred to the statement-x. (See Fig.2.8.1.4)

 False True

 False True

Fig.2.8.1.4 Flowchart of Nesting Of If…Else Statement

Test

condition

1

?

Test

condition

2

?

Statement 2 Statement 1 Statement 3

Statement
x

94

Example Program: To Find a largest value among three numbers

/*

 Largest Among Three numbers Using nested if-else statement

*/

import java.io.*;

import java.lang.*;

class Largest

{

 public static void main(String args[])

 {

 int a = 0,b=0,c=0;

 int large = 0;

 DataInputStream in = new DataInputStream(System.in);

 System.out.println("\nEnter the three values");

 try

 {

 a = Integer.parseInt(in.readLine());

 b = Integer.parseInt(in.readLine());

 c = Integer.parseInt(in.readLine());

 }

 catch(Exception e) { }

 if (a > b)

{

 if (a > c)

{

 large = a;

 }

 else

 {

 large = c;

 }

 }

 else

{

if (c > b)

{

 large = c;

95

 }

 else

 {

 large = b;

 }

}

 System.out.println("\nLargest Among Three Number is : " +

large);

}

}

Output Of Program

Enter the three values

23

17

56

Largest Among Three Number is : 56

 The If…Else Ladder

The general form is

if (test expression1)

 statement-block1;

 else if (test expression2)

 statement-block2;

else if (test expression n)

statement-block-n;

else

default -statement;

statement-x;

The below construct is known as the else if ladder. The test conditions

are evaluated from the top, downwards. As soon as true test-condition is found,

the statement associated with it is executed and control is transferred to the

statement-x. When all test n conditions become false, then the else containing

default-statement will be executed. (See Fig.2.8.1.5)

96

 True False

 True False

 True False

 Next Statement

Fig.2.8.1.5 Flowchart of Else – if Ladder Statement

Example Program: To Find a largest value among three numbers

/*

 Largest Among Three numbers Using else - - if ladder statement

*/

import java.io.*;

import java.lang.*;

class Largest

{

 public static void main(String args[])

 {

 int a = 0,b=0,c=0;

 int large = 0;

 DataInputStream in = new DataInputStream(System.in);

 System.out.println("\nEnter the three values");

 try

Test

condition 1

?

Test

condition 2

?

Statement 2

Statement 3
Test

condition n

?

Statement n Default

Statement

Statement x

97

 {

 a = Integer.parseInt(in.readLine());

 b = Integer.parseInt(in.readLine());

 c = Integer.parseInt(in.readLine());

 }

 catch(Exception e) { }

 large = a;

 if (large < b)

 large = b;

 else if (large < c)

 large = c;

 System.out.println("\nLargest Among Three No.is : " + large);

 }

}

Output Of Program

Enter the three values

23

17

56

Largest Among Three No.is : 56

2.8.1.7 The Switch Statement

The general form of the switch statement is

switch (expression)

 {

case value-1: block-1

 break;

case value-2: block-1

 break;

 default:

 default-block

 break;

}

statement-x;

The expression is an integer expression or characters. value-1, value-2--

-- are constants or constant expressions and are known as case labels.

98

 Expression = value1

 Expression = value2

 (No match) Default

 Fig.2.8.1.6 Flowchart of Switch statement

Each of these values should be unique within a switch statement. block-

1, block-2, ------ are statement lists and may contain zero or more statement.

There is no need to put braces around these blocks, case labels end with a colon

(:).

When the switch is executed, the value of expression is compared with the

values value-1, value-2,………if a case is found then the block of statements

that follows the case are executed.

 The break statement at the end of each block signals the end of the

particular block and control is transferred to the statement-x.

The default is an optional case. When the value of expression not match with

any of the case, the default case will be executed. If default statement not

present, no action takes place when all matches fail and the control goes to the

statement-x. (See Fig.2.8.1.6)

Example Program1: To demonstrate switch-case statement

/*

 Demonstration of switch-case statement

*/

import java.io.*;

import java.lang.*;

class Switchcase

{

 public static void main(String args[])

Switch

Expression

Block1

Block2

Default

block

Statement -x

99

 {

 int choice = 0;

 DataInputStream in = new DataInputStream(System.in);

 System.out.println("\nEnter the choice value");

 try

 {

 choice = Integer.parseInt(in.readLine());

 }

 catch(Exception e) { }

 switch(choice)

 {

 case 1:

 System.out.println("I am in case 1");

 break;

 case 2:

 System.out.println("I am in case 2");

 break;

 case 3:

 System.out.println("I am in case 3");

 break;

default:

 System.out.println("I am in default case");

 }

 }

}

Output Of Program

Enter the choice value

2

I am in case 2

Enter the choice value

5

I am in default case

Example Program 2: To find whether the given number is even or odd using

switch- case statement

/*

100

 Program for Even or Odd number using switch-case statement

*/

import java.io.*;

import java.lang.*;

class EvenOdd

{

 public static void main(String args[])

 {

 int n = 0;

 DataInputStream in = new DataInputStream(System.in);

 System.out.println("\nEnter the number n");

 try

 {

 n = Integer.parseInt(in.readLine());

 }

 catch(Exception e) { }

 switch(n % 2)

 {

 case 0:

 System.out.println("The given number "+n+" is even");

 break;

case 1:

 System.out.println("The given number "+n+" is odd");

 break;

 }

 }

}

Output Of Program

Enter the number n

35

The given number 35 is odd

2.8.2 Looping

2.8.2.1 Introduction

The process of repeatedly executing a block of statements is known as

looping. The statements in block may be executed any number of times, from

zero to infinite number is called an infinite loop. The program loop consists of

two segments are

101

 Body of the loop

 Control statement (tests certain conditions and then directs the repeated

execution of the statements in the body of the loop)

A Control structure may be classified either into two types are

 Entry-controlled loop: The control conditions are tested before the start

of the loop execution. If conditions are not satisfied, the body of the

loop will not be executed. (See Fig.2.8.2.1)

 Exit-controlled loop: The test is performed at the end of the body of the

loop and therefore body is executed unconditionally for the first time.

(See Fig.2.8.2.2)

A looping process will follow four steps:

1. Setting and initialization of a counter.

2. Execution of the statements in the loop.

3. Test for a specified condition for execution of the loop.

4. Incrementing the counter.

They are three types looping construct are:

1. while construct

2. do construct

3. for construct

 Entry Entry

 False

 True

 False

 True

 Fig.2.8.2.1 Entry control Fig.2.8.2.2 Exit control

Text

Expression

?

Body of the

loop

Text

Expression

?

Body of the

loop

102

2.8.2.2 The While Statement

The general form is

Initialization;

while (test condition)

{

 Body of the loop

}

The while is an entry-controlled loop statement. The test condition is

evaluated and if the condition is true, then the body of the loop is executed.

After execution of the body, the test condition is once again evaluated and if it

is true, the body is executed once again. These processes of repeated execution

of the body continue until the test condition finally becomes false and the

control is transferred out of the loop. On exit, the program continues with the

statement immediately after the body of the loop.

Example Program: To reverse the given number using while loop

 /*

 Reverse of the given number using while loop statement

*/

import java.io.*;

import java.lang.*;

class Reverse

{

 public static void main(String args[])

 {

 int number= 0, digit = 0 , rev =0;

 DataInputStream in = new DataInputStream(System.in);

 System.out.println("\nEnter the number");

 try

 {

 number = Integer.parseInt(in.readLine());

 }

 catch(Exception e) { }

 while (number != 0)

 {

 digit = number %10;

 rev = rev*10+digit;

 number = number /10;

 }

 System.out.println("\nReverse of the given number is: " + rev);

103

 }

}

Output of Program

Enter the number

12345

Reverse of the given number: 54321

2.8.2.3 The Do Statement

The general form is

Initialization;

do

{

 Body of the loop

}

while (test condition)

The do-while is an exit-controlled loop statement. On do statement; the

body of the loop will be executed first. At the end of the loop, the test condition

in the while statement is evaluated. If condition it true, the program proceed to

continues to evaluate the body of the loop once again. This process continues as

long as condition is true. When the condition becomes false, the loop will be

terminated and control goes to statement after the while statement.

Example Program: To find the summation of ‘n’ numbers using do-while

statement

/*

 Summation of n numbers using do-while statement

*/

import java.io.*;

import java.lang.*;

class Summation

{

 public static void main(String args[])

 {

 int n = 0, i = 1, sum = 0;;

 DataInputStream in = new DataInputStream(System.in);

 System.out.println("\nEnter the value of n");

 try

 {

 n = Integer.parseInt(in.readLine());

104

 }

 catch(Exception e) { }

 do

 {

 sum = sum + i;

 i = i + 1;

 }

 while (i <= n);

 System.out.println("\nSummation of n numbers is : " +sum);

 }

}

Output Of Program

Enter the value of n

11

Summation of n numbers is: 66

 The For Statement

The execution of the for statement is as

1. Initialization of the control variables is done using assignment

statements.

2. The value of the control variable is tested using the test condition.

3. When the body of the loop is executed, the control is transferred

back to the for statement after evaluating the last statement in

the loop. Now, the control variable is incremented using an

assignment statement.

The for loop is an entry-controlled loop. The general form is

 for (initialization ; test condition ; increment)

 {

 Body of the loop

 }

Example Program: To find the summation of ‘n’ numbers using for

statement

/*

 Summation of n numbers using for statement

*/

import java.io.*;

import java.lang.*;

class Summation

{

105

 public static void main(String args[])

 {

 int n = 0, i = 1, sum = 0;;

 DataInputStream in = new DataInputStream(System.in);

 System.out.println("\nEnter the value of n");

 try

 {

 n = Integer.parseInt(in.readLine());

 }

 catch(Exception e) { }

 for(i = 1 ; i <= n ; i++)

 {

 sum = sum + i;

 }

 System.out.println("\nSummation of n numbers is : "

+sum);

}

}

Output Of Program

Enter the value of n

10

Summation of n numbers is: 55

Additional features of for loop

The for loop has several capabilities that are not found in other loop

constructs. For example more than one variable can be initialized at a time in

the for statement.

 p = 1;

 for (n = 0 ; n<17; ++n)

can be rewritten as

 for (p =1, n = 0 ; n<17; ++n)

Increment section may also have more than one part. For example

for (n = 0, m = 50 ; n<17; ++n, --m)

The test condition may have any compound relation and testing need

not be limited only to the control variable.

Nesting of for loops

Nesting of loops, that is one for statement within another for statement,

is allowed in java. For example

106

 for (n = 1 ; n<17; ++n)

 {

 for (m = 1 ; m< 10; ++m)

 {

 } Inner Loop

 } Outer Loop

2.8.2.5 Jump In Loops

Java permits a jump from one statement to the end or beginning of a

loop as well as jump out of a loop.

Jumping Out of a Loop

An early exit from a loop can be accomplished by using break statement. The

general form is

 break [label] ;

 The break statement can be used within while, do, for loops. When the

break statement is encountered inside a loop, the loop is immediately exited.

When the loops are nested, the break would exit from containing it.

Example Program: To find the sum of positive numbers using break

statement

/* Program for sum of positive number using break statement

*/

import java.io.*;

import java.lang.*;

class SumPositiveNumber

{

 public static void main(String args[])

 {

 int n = 0,sum =0, i;

 DataInputStream in = new DataInputStream(System.in);

107

 System.out.println("\nEnter the 5 numbers ");

 for(i=1;i<=5;i++)

 {

 try

 {

 n = Integer.parseInt(in.readLine());

 }

 catch(Exception e) { }

 if (n<0)

 break;

 else

 sum = sum + n;

 }

System.out.println("\nSum of positive numbers is

:"+sum);

 }

}

Output Of Program

Enter the 5 numbers

12

34

56

-78

Sum of positive numbers is :102

Skipping a Part of a Loop

During the loop operations, it may be necessary to skip a part of the

body of the loop under certain conditions by using continue statement. The

general form is

 continue [label];

 In while and do loops, continue causes the control go to directly test

condition and then to continue the iteration process. In the case of for loop, the

increment section of the loop is executed before the test condition is evaluated.

Example Program: To find the sum of positive numbers using continue

statement

/*

 Program for sum of positive number using continue statement

108

*/

import java.io.*;

import java.lang.*;

class SumPositiveNumber

{

 public static void main(String args[])

 {

 int n = 0,sum =0, i;

 DataInputStream in = new DataInputStream(System.in);

 System.out.println("\nEnter the 5 numbers ");

 for(i=1;i<=5;i++)

 {

 try

 {

 n = Integer.parseInt(in.readLine());

 }

 catch(Exception e) { }

 if (n<0)

 continue;

 else

 sum = sum + n;

 }

 System.out.println("\nSum of positive numbers is

:"+sum);

 }

}

Output Of Program

Enter the 5 numbers

12

34

56

-78

10

Sum of positive numbers is :112

2.8.2.6 Labeled Loops

In Java, we can give a label to a block of statement. A label is any valid

Java variable name. To give label to a loop, place it before the loop with colon

at the end.

109

Example:

 Loop1: for (………….)

 {

 }

A block of statement can be labeled as

 Block1: {

 Block2: {

 }

 }

We want to jump outside a nested loops or to continue a loop that is

outside the current loop by using labeled break and labeled continue statement.

 Self Assessment Questions

Fill in the blank

1. if statements returns either_________ or _________.

2.One loop within a loop is called ________________.

True / False

1. When the break statement is encountered inside a loop, the loop is

immediately exited

2. for loop is an exit controlled loop statement.

Multiple Choices

1. Which is one of exit controlled loop?

a) do-while b) while loop

c) for loop d) none of the above

2. The segment of a program is

x=1; sum=0;

while (x<=5)

{

 sum=sum+x;

 x++;

}

110

 what is the value of sum?

a) 13 b) 14 c) 10 d) 15

Short Answer

1. List out branching control statement.

__

__

2. Define infinite loop

__

__

 Summary

In this unit we have learned about the basic concepts of object oriented

programming and fundamental concepts of Java programming. We have also

discussed about how to use variable, expression , operators and various

decision making branching and looping statements.

 Unit Questions

1. Explain basic concepts of Object oriented programming.

2. What are the benefits of OOP? List a few areas of applications of OOP

technology.

3. What is the difference between C++ and Java.

4. Describe the structure of a typical Java program.

5. What is a Token? List the various types of Tokens supported by Java.

6. What is Separators? Describe the various separators used in Java.

7. Explain Java virtual machine?

8. What are command line arguments? How are they useful?

9. Explain features of Java.

10. What is a constant? List the various types of Constants

11. List the eight basic data types used in Java. Explain with examples.

12. Define operators. Explain operators with examples?

13. Explain different types of expressions with example?

14. Explain decision-making and branching statements with example?

15. Write a Java program to find the largest number among three numbers

2.11 Answer for Self Assessment Questions

Answer 2.3.6

Fill in the blank

1.encapsulation 2. objects

True / False

1. False 2. True

Multiple Choice

1. b

111

Short Answer

1. Inheritance is the process by which objects of one class acquire the

properties of objects of another class.

2. Real-time systems, Simulation and modeling, Object-oriented databases,

Hypertext, hypermedia and expertext , AI and expert systems etc.,

Answer 2.4.10

Fill in the blank

1. Multithreaded. 2. Java compiler and Java interpreter

True / False

1. False 2. True

Multiple Choice

1. b 2. c

Short Answer

1. Complied and Interpreted, Platform-Independent and Portable, Object-

Oriented, Distributed, Robust and Secure, Familiar, Simple and Small etc.,

2. World Wide Web (WWW) is an open-ended information retrieval system

designed to be used in the Internet’ environment.

Answer 2.5.11

Fill in the blank

1. Stand alone applications & Web applets 2. Virtual machine code

True / False

1. True 2. True

Multiple Choice

1. d 2. b

Short Answer

1. Applets are small Java programs developed for Internet applications.

2. Command line arguments are parameters that are supplied to the application

program at time of invoking it for execution.

Answer 2.6.9

Fill in the blank

1. Integer constant 2. Widening or promotion

True / False

1. False 2. True

Multiple Choice

1. d 2. c

Short Answer

1. A variable is an identifier that denotes a storage location used to store a data

value. A variable may take different values at different times during the

execution of the program.

112

2.Variables declared and used inside methods are called local variables.

Answer 2.7.16

Fill in the blank

1. Operators. 2. Math class and java.lang package

True / False

1. False 2. True

Multiple Choice

1. a 2. d

Short Answer

1. When both the operands in single arithmetic expression such as a + b are

integers, the expressions is called an integer expression, and the operation is

called integer arithmetic.

2. An arithmetic expression is a combination of variables, constants, and

operators

Answer 2.8.3

Fill in the blank

1. true or false 2. Nested loop

True / False

1. True 2. False

Multiple Choice

1. a 2. d

Short Answer

1. if statements, switch statement, Conditional operator statement

2. The statements in block may be executed any number of times, from zero to

infinite number is called an infinite loop.

113

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

114

UNIT – III

3.1 Introduction

Java is a true object-oriented language and therefore the underlying

structure of all Java programs is classes. Any thing you to represent in a Java

program must be encapsulated in a class that defines the state and behaviour of

the basic program known as object.

 In Java, classes provide a method for packing together a group of

related data items and functions that work on them. Calling a specific method

by using object. It provides a template for an object and behaves like a basic

data type such as int.

 It is important to understand how the fields and methods are defined in

a class and how they are used to build the basic concepts such as encapsulation,

inheritance and polymorphism.

An array is a group of contiguous or related data items that share a

common name. A particular value in array can be identified by using index

number or subscript in brackets after the array name.

Example:

 salary[10]

represents the salary of the 10th employee. While the complete set of values is

referred to as an array.

 In this unit we shall discuss in detail how arrays are created and used.

We shall also discuss two related concepts, namely strings and vectors.

3.2 Objectives

After studying this lesson, you should be able to:

 Describe the major elements of a classes and objects.

 Describe the various features of a classes and objects.

 Describe about various kind of methods used in classes and its usage.

 Understand about various types arrays and array related concepts strings

and vector.

 Understand about, how to making the inheritance and interface concept

and its usage.

3.3 Classes, Objects And Methods

3.3.1 Introduction

Java is a true object-oriented language and therefore the underlying

structure of all java programs is classes. Any thing you to represent in a Java

program must be encapsulated in a class that defines the state and behaviour of

the basic program known as object.

 In Java, classes provide a method for packing together a group of

related data items and functions that work on them. Calling a specific method

by using object. It provides a template for an object and behaves like a basic

115

data type such as int. It is important to understand how the fields and methods

are defined in a class and how they are used to build the basic concepts such as

encapsulation, inheritance and polymorphism

3.3.2 Defining A Class

The general form of a class definition is:

 class classname [extends superclassname]

{

 [fields declaration;]

 [methods declaration;]

}

Inside the square brackets is optional. For example

 class empty

 { }

Because the body is empty, this class does not contain any properties

and cannot do anything. classname and superclassname are any valid

identifier. The keyword extends indicates that the properties of the

superclassname class are executed to the classname class (is known as

inheritance).

3.3.3 Field declaration

By placing data fields inside the body of the class definition are called

instance variables because they are created whenever an object of the class is

instantiated.

Example: class Sample

 {

 int a, b;

 }

The class Sample contains two integer type instance variables (are also

called as member variables)

3.3.4 Methods Declaration

A class with only data fields has no life. Methods are declared inside the

body of the class but immediately after the declaration of instance variables.

The general form of a method declaration is

 type methodname (parameter-list)

 {

 method-body;

 }

Method declarations have four basic parts:

 The name of the method (methodname) is a valid identifier.

116

 The type of the value the method returns (type). This could be

simple data type such as int as well as any type. It could even be

void type, if the method does not return any value.

 A list of parameters (parameter-list) is always enclosed in

parentheses. This list contains variable names and types of all values

we want to give to the method as input.

Example:

 (int m, float a, float b) // Three parameters

 () //Empty list

 The body of the method actually describes the operations to be

performed on the data.

Example:

 class Summation

 {

 int a , b; // combined declaration

 void getdata(int x, int y)

 {

 a = x;

b = y;

 }

 int sum() // declaration of another method

 {

 int c = a + b;

 }

}

3.3.5 Creating Objects

Creating an object is also referred to as instantiating an object. Object

in Java created using new operators. The new operator creates an object of the

specified class and returns a reference to that object.

Example

 Summation sum1; // declare the object

 sum1 = new Summation(); // instantiate the object

The first statement declares a variable to hold the object reference and the

second statement actually assigns the object reference to the variable. The

variable sum1 is now an object of the Summation class (See Fig.3.5)

Both lines can be combined into one line as

Summation sum1= new Summation();

The Summation() is the default constructor of the class. We can create any

number of object of Summation class.

117

 Action Statement Result

 Summation sum1; sum1

 sum1 = new Summation(); sum1

 sum1 is a reference to

 Summation object

Fig.3.5 Creating object reference

For Example

 Summation sum1 = new Summation ();

 Summation sum2 = new Summation ();

and so on.

In this case each object has its own copy of the instance variables of its

class. this means that any changes to the variables of one object have no effect

on the variables of another.

 It can also possible to create two or more references to the same object.

Example:

 Summation s1 = new Summation();

 Summation s2 = s1;

Both s1 and s2 refer to the same object.

3.3.6 Accessing Class Members

In an outside the class, we cannot access the instance variables and the

methods directly. For this, we must use the concerned object and dot operator

as

 objectname.variablename = value;

 objectname.methodname(parameter-list);

where objectname - is the name of the object

variablename - is the name of the instance variable inside object

that we wish to access

 methodname - is the method that we wish to call

parameter-list - is a comma separated list of ‘actual values” that

 must match in type and number with the

 parameter list of the methodname declared

in the class.

For example

First Method:

The instance variables of the Summation class may be accessed and

assigned values as

 sum1.a = 10;

Declare

 Instantiate

Null

Summation

Object

118

 sum1.b = 20;

sum2.a = 30;

 sum2.b = 40;

Two objects sum1 and sum2 store different values as

 sum1.a sum2.a

sum1.b sum2.b

Second Method:

In this case the method getdata can be used to assign the value to

variable a and b.

 Summation sum1 = new Summation();

 sum1.getdata(10, 20);//calling the method using the object

Now we can find summation of two values using the following ways.

Example

int s = sum1.a + sum1.b;

 or

 int s = sum1.sum();

Example Program: To illustrate classes and objects

class Summation

{

 int a , b; // combined declaration

 void getdata(int x, int y) // definition of method

 {

 a = x;

 b = y;

 }

 int sum() // definition of another method

 {

 int c = a + b;

 return c;

 }

 }

class SumTwoValues //class with main method

{

 public static void main(String args[])

 {

 int s1 , s2;

10

20

30

40

119

 Summation sum1 = new Summation (); //creating

objects

 Summation sum2 = new Summation ();

 sum1.a = 10; // accessing variables

 sum1.b = 20;

 s1 = sum1.a + sum1.b;

 sum2.getdata(30, 40); // accessing methods

 s2 = sum2.sum();

 System.out.println(“ Sum1 = “ + s1);

 System.out.println(“ Sum2 = “ + s2);

}

}

Output of Program

 Sum1 = 30

 Sum2 = 70

3.3.7 Constructors

Java supports a special type of method is called a constructor that enables an

object to initialize itself when it is created.

Rules for forming the constructors are

 Constructors have the same name as the class.

 They do not specify a return type, not even void. This is because they

return the instance of the class itself.

Let us consider our Summation class again. We can now replace the

getdata method by a constructor method as

class Summation

{

 int a , b; // combined declaration

 Summation(int x, int y) // definition constructor

 {

 a = x;

 b = y;

 }

 int sum()

 {

 return (a + b);

 }

 }

120

Example Program: To illustrate classes and objects

class Summation

{

 int a , b; // combined declaration

 Summation(int x, int y) // defining constructor

 {

 a = x;

 b = y;

 }

 int sum()

 {

 return (a + b);

 }

 }

class SumTwoValues //class with main method

{

 public static void main(String args[])

 {

 Summation sum1 = new Summation (10, 20); //calling

constructor

 int s1 = sum1.sum();

 System.out.println(“ Sum1 = “ + s1);

 }

}

Output of Program

 Sum1 = 30

3.3.8 Methods Overloading

In Java, it is possible to create methods that have same name, but

different parameter lists and different definitions is called method

overloading.

When we call a method in an object, java matches up the method name

first and then the number and type of parameters to decide which one of the

definitions to execute is known as polymorphism.

Example

class Summation

{

 int a , b; // combined declaration

 Summation(int x, int y) // constructor1 with two parameter

 {

121

 a = x;

 b = y;

 }

 Summation(int x) // constructor2 with one parameter

{

 a = b = x;

}

 int sum()

 {

 return (a + b);

 }

 }

Here, we are overloading the constructor method Summation(). An object

representing a sum two different values will be created as

 Summation sum1 = new Summation(10 ,20); // using

constructor1

On the other hand if equal value we want to sum , then we may create the

object as

 Summation sum2 = new Summation(10); // using

constructor2

3.3.9 Static Members

We want to define a member that is common to all the objects accessed

without using a particular object. That is, the member belongs to the class as a

whole rather than the objects created from the class. Such members can be

defined as

 Static int count;

 Static int mix(int x, int y);

The members are declared as static are called as static members. The

static variables and static methods are often referred to as class variable and

class methods.

Static methods have several restrictions:

 They can only call other static methods

 They can only access static data.

 They cannot refer to this or super in any way

Example Program:

/* Program for defining and using static members */

class mathop

{

 static float add(float x, float y)

122

 {

 return(x + y);

 }

 static float sub(float x, float y)

 {

 return(x - y);

 }

}

class mathmain

{

 public static void main(String args[])

 {

 float a = mathop.add(4.0f,5.0f);

 float b = mathop.sub(4.5f,2.2f);

 System.out.println("a = "+a);

 System.out.println("b = "+b);

 }

}

Output of Program

a = 9.0

b = 2.3

3.3.10 Nesting Of Methods

A method can be called by using only its name in another method of the

same class is known as nesting of methods.

Example Program: To find smallest among two numbers using nesting

method

class nesting

{

 int a, b;

nesting()

{

a = 10; b = 20;

}

int small()

{

 if(a < b)

 {

 return(a);

123

}

else

{

 return(b);

}

}

void display()

{

 int s = small(); // calling a method

System.out.println(“The smallest number is ”+ s);

}

 }

 class NestingMethod

 {

 public static void main(String args[])

 {

 nesting n = new nesting();

 n.display();

 }

}

Output Of Program

The smallest number is 10

The class nesting defines one constructor and two methods, namely

small() and display(). The method display() calls the method small() to

determine the smallest of the two numbers and then displays the result.

3.3.11 Inheritance :Extending A Class

The mechanism of deriving a new class (subclass or derived class or

child class) from an old class (base or super or parent class) is called

inheritance.

The inheritance allows subclasses to inherit all the variables and

methods of their parent classes. Inheritance may take different forms:

 Single inheritance (only one super class)

 Multiple inheritance (several super classes)

 Hierarchical inheritance (one super class, many subclasses)

 Multilevel inheritance (derived from derived class)

These form inheritance are shown in Fig.3.3.1. Java does not directly

implement multiple inheritance. However, this concept is implemented using a

secondary inheritance path in the form of interfaces.

124

 a)Single b) Hierarchical c) Multilevel d) Multiple

 Inheritance Inheritance Inheritance Inheritance

Fig.3.3.1 Forms of Inheritance

Defining a Subclass

A subclass is defined as

 class subclassname extends superclassname

{

 variables declaration;

 method declaration;

 }

The keyword extends specifies that the properties of the

superclassname are extended to the subclassname. The subclass will now

contain its own variables and methods as well as the variables and methods of

the superclass.

Subclass Constructor

A subclass constructor is used to construct both the subclass and the

superclass. The subclass constructor uses the keyword super to invoke the

constructor method of the superclass.

The keyword super is used with the following conditions.

 super may only be used with in a subclass constructor method.

 The call to superclass constructor must appear as first statement

within the subclass constructor

 The parameters in the super call must match the order and type

of the instance variable declared in the superclass

Multilevel Inheritance

The class A serves as base class for derived class B which in turn serves

as a base class for the derived class C. The chain ABC is known as inheritance

path as shown in Fig.3.3.1(c).

A

B

A

B C D

A

B

C

C

A B

125

Example:

class A

 {

 }

 class B extends A //first level

{

}

class C extends B //second level

{

}

Hierarchical Inheritance

Many Programming problems can be cast into a hierarchy where many

others below the level share certain features of one level as shown in Fig.3.3.1

(b)

3.3.12 Overriding Methods

We want an object to respond to the same method but have different

behavior when that method is called. That means, we should override the

method defined in the superclass. This is possible by defining a method in the

subclass that has the same name, same arguments and same return type as a

method in the superclass. Then, when that method called, the method defined in

the subclass is invoked and executed instead of the one in the superclass. This

is known as overriding.

3.3.13 Final Variables And Methods

We wish to prevent the subclasses from overriding the members of the

superclass, we can declare them as final using the keyword final as a modifier.

Examples:

 Final int SIZE =100;

Final void showstatus () {--------}

Making a method final ensures that the functionality defined in this

method will never be altered in any way. The value of final variable can never

be changed. Final variables, behave like class variables and they do not take

any space on individual objects of the class.

126

3.3.14 Final Classes

A class that cannot be sub-classed is called a final class. Declaring a

class final prevents any unwanted extensions to the class.

Examples:

 Final class Aclass {----------}

Final class Bclass extends Someclass {-----------}

Any attempt to inherit these classes will cause an error.

3.3.15 Finalizer Methods

In Java run-time is an automatic garbage collecting system. It

automatically free ups the memory resources used by the objects. But object

may hold other non-object resources such a file descriptors or window system

fonts. The garbage collector cannot free these resources. In order to free these

resources we must use a finalize() method and it can be added to any class.

3.3.16 Abstract Methods And Classes

Abstract method is a method that must always be redefined in a

subclass, thus making overriding compulsory. This is done by using the

modifier keyword abstract in the method definition.

Example: abstract class shape

{

 abstract void draw();

}

When a class contains one or more abstract methods, it should also

declared abstract as in the example.

While using abstract classes, we must satisfy the following conditions:

 We cannot use abstract classes to instantiate objects directly.

 The abstract methods of an abstract class must be defined in

its subclass.

 We cannot declare abstract constructors or abstract static

methods.

3.3.17 Visibility Control

In inheritance inherit all the members of a class by a subclass using the

keyword extends. The variables and methods of class are visible everywhere in

the program we want to restrict the access to certain variables and methods

from outside the class. We can achieve this in Java by visibility modifiers or

access modifiers to the instance variables and methods. Java provides three

types modifiers: public, private and protected. Table 3.3.1 shows the visibility

provided by various modifiers.

127

 Table 3.3.1 Visibility of Field in a Class

Access

Modifier

Access

location

Public Protected

Friendly

(default)

Private

protected

Private

Same class Yes Yes Yes Yes Yes

Subclass in

same package
Yes Yes Yes Yes No

Other classes

in same

package

Yes Yes Yes No No

Subclass in

other package
Yes Yes No Yes No

Non-Subclass

in other

package

Yes No No No No

3.3.18 Self Assessment Questions

Fill in the blank

1. A class is a ______________ data type.

2. Methods in class can have the same name but different parameter is called

_____________________.

3. The static variables and static methods are otherwise called as

________________ and ____________________.

True / False

1. In java, the data items are called fields and the functions are called

methods.

2. Constructor name must be class name

3. The value of the final variable can be changed during the execution

4. Abstract classes can create the objects

Multiple Choices

1. In java, instance of class is called as

a) Object b) fields c) method d) None of the above

2. Static method, which can only access

a) private data b) pubic data c) protected data d) static data

128

3. Private variables in a class, which are accessed by

a) Same class b) Subclass in same package

c) Other classes in same package d) Non-subclasses in other

packages

Short Answer

1.How can you inherit all the members of a class by a subclass?

__

__

2. What is mean by final class?

__

__

3. What is the purpose of super key word?

__

__

3.4 Arrays, String And Vectors

3.4.1 Creating An Array

An array is a group of related data items that share a common name.

An array of value can be accessed by index or subscript in brackets after array

name. For example, a[5] represents the 5th element in an array.

Creation of array has three steps are

1. Declaring the array

2. Creating memory locations

3. Putting values into the memory locations.

Declaration of arrays

Arrays in Java may be declared in two forms:

1. type arrayname[];

2. type [] arrayname;

Examples:

 int a[];

 float b[];

 int [] c;

 float [] d;

129

 Statement Result

 a

 int a[]; points nowhere

 a

a = new int[4];

 points to int object

 a[0]

 a[1]

 a[2]

 a[3]

Fig.3.4.1 Creation of an array in memory

Creating memory locations

Java allows us to create arrays using new operator as

 array = new type[size];

Examples:

 a = new int[4]; //create 4 memory location for

integer array a

 b = new float[10]; //create 10 memory location for

float array b

It is also possible to combine the two steps - declaration and creation – into

one as

 int a [] = new int[4];

float b [] =new float[10];

Fig.3.4.1 above illustrates creation of an array in memory.

Initialization of arrays

To put values into array created is known as initialization. This is done

using array subscripts as

 arrayname[subscript] = value;

Example:

 a[0] = 28;

a[3] = 57;

130

Java create arrays starting with subscript of 0 and ends with a value one

less than the size specified.

We can also initialize arrays automatically when they are declared, as

 type arrayname[] = { list of values };

The array initializer is a list of values separated by commas and

surrounded by curly braces .

Example:

 int a[] = { 10, 20,30,40};

Loops may be used to initialize large size arrays Example:

 for(int i = 0; i<10; i++)

 {

 a[i] = i;

 }

Array length

In java, all array store the allocated size in a variable named length. We

can obtain the length of the array a using a.length.

Example:

int aSize = a.length;

The subscript of an array can be integer constants, integer variables like

I, or expression that yield integers.

3.4.2 One Dimensional Arrays

A list of items can be given one variable name using only one subscript

and such a variable is called a single-subscripted variable or one-dimensional

array. For example, if we want to represent a set of four numbers, by array

variable a then we create the variable a as

 int a [] = new int[4];

The different way of initialization of value to array variable a as shown

in section 3.4.1.

Example Program

/* Sorting the n given number in Descending order */

class descending

{

 public static void main(String args[])

 {

 int a[] = {10 , 45 , 100, 37, 25};

131

 int i, j, t;

 for (i=0; i<a.length; i++)

 {

 for (j=i+1; j<a.length; j++)

 {

 if (a[i] <= a[j])

 {

 t = a[i];

 a[i] = a[j];

 a[j] = t;

 }

 }

 }

System.out.println(“ Descending Order”);

for (i=0;i<a.length;i++)

{

 System.out.println(a[i]);

}

}

}

Output Of Program

Descending Order

100

45

37

25

10

3.4.3 Two Dimensional Arrays

We may create a two-dimensional array as

 int table[] [];

 table = new int[2][3];

 or

 int table[] [] = new int[2][3];

This creates a table that can store 6 integer values, three across and two

down. A two-dimensional array may be initialized by following their

declaration with a list of initial values enclosed in braces.

132

For example

 int table[2] [3] = {0,0,0,1,1,1}; //initialize the elements row by

row

 or

 int table[2] [3] = {{0,0,0},{1,1,1}}; //separate the element of each row

by //braces

 or

 int table[2] [3] = {

{0,0,0},

{1,1,1}

 };

Example Program: Program for Addition of Two Matrixes using Two-

 Dimensional Array

 /* Matrix Addition Using Two Dimensional Array */

 import java.io.*;

 import java.lang.*;

 class MatrixAdd

 {

 public static void main(String args[])

 {

 int a[][] = new int[30][30];

 int b[][] = new int[30][30];

 int c[][] = new int[30][30];

 int n = 0, ch = 0, i = 0, j = 0;

 DataInputStream m = new DataInputStream(System.in);

 try

 {

 System.out.println("Enter the order of matrix");

 n = Integer.parseInt(m.readLine());

 System.out.println("\nEnter the A matrix");

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 a[i][j] = Integer.parseInt(m.readLine());

 }

 }

 System.out.println("\nEnter the B matrix");

133

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 b[i][j] = Integer.parseInt(m.readLine());

 }

 }

 }

 catch (Exception e)

 { }

 System.out.println("\nThe A matrix");

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 System.out.print(a[i][j]+ " ");

 }

 System.out.println();

 }

 System.out.println("\nThe B matrix");

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 System.out.print(b[i][j] + " ");

 }

 System.out.println();

 }

 for(i=0;i<n;i++)

 {

 for(j=0;j<n;j++)

 {

 c[i][j] = a[i][j] + b[i][j];

 }

 }

 System.out.println("\nThe Resultant Matrix is");

 for(i=0;i<n;i++)

 {

134

 for(j=0;j<n;j++)

 {

 System.out.print(c[i][j]+ " ");

 }

 System.out.println();

 }

 }

 }

Output Of Program

Enter the order of matrix

2

Enter the A matrix

2

2

2

2

Enter the B matrix

2

2

2

2

The A matrix

2 2

2 2

The B matrix

2 2

2 2

The Resultant Matrix is

4 4

4 4

Variable size arrays

Java treats multidimensional array as “arrays of arrays”. It is possible

to declare a two-dimensional array as

int x[][] = new int [3] [];

 x[0] = new int[2];

 x[1] = new int[4];

 x[2] = new int[3];

135

These create a two-dimensional array as having different lengths for

each row as shown in Fig.3.4.2.

 x[0][1]

 x[0]

 x[1]

 x[2] x[1][3]

 x[2][2]

Fig.3.4.2.Variable size arrays

3.4.4 Strings

The string represents a sequence of characters in Java by using a

character array. Example:

 char chararray[] = new char[3];

chararray[] = ‘H’;

chararray[] = ‘a’;

chararray[] = ‘i’;

In Java strings are class objects and implanted using two classes,

namely String and StringBuffer. A Java string is an instantiated object of the

String class. Strings may be declared and created as

String stringName;

stringName = new String(“string”);

Example:

String firstName;

firstName = new String (“Harshinni”);

Like arrays, it is possible to get the length of string using the length

method of the string class.

 int m = firstName.length();

Java string can be concatenated using + operator.

Example:

 String fullName = name1 + name2; // name1 and name2 containing

string constants

 String city = “New” + “Delhi”;

 System.out.println(firstName+”Sundar”);

String Arrays

We can also create and use arrays that contain strings. The statement

 String itemarray[] = new String[2]; // create string array with 3 string

constants

We can assign the strings to the itemarray element by element using 3

different statements or using for loop.

136

String Methods

The String class defines a number of methods that allow us to

accomplish a variety of string manipulation tasks as shown in Table 3.4.1.

String class creates strings of fixed length.

 Table 3.4.1 Commonly Used String Methods

Method Call Task performed

s2 =s1.toLowerCase; Converts the string s1 to all lowercase

s2 =s1.toUpperCase; Converts the string s1 to all uppercase

s2 =s1.replace(‘x’ , ‘y’); Replace all occurrences of x with y

s2 =s1.trim(); Remove white spaces at the beginning and end of the

 string s1

s1.equals(s2) Return ‘true’ if s1 is equal to s2

s1.equalsIgnoreCase(s2) Return ‘true’ if s1 = s2, ignoring the case of

 characters

s1.legth() Gives the length of s1

s1.CharAt() Gives nth character of s1

s1.compareTo(s2) Return negative if s1<s2, positive if s1>s2 or zero if

 s1=s2

s1.concat(s2) Concatenates s1 and s2

s1.subtring(n) Gives substring starting from nth character

s1.subtring(n, m) Gives substring starting from nth character up to mth

String.ValueOf(p) Creates a string object of the parameter p

p.toString() Creates a string representation object p

s1.indexOf(‘x’) Gives the position of the first occurrence of ‘x’ in the

string s1

s1.indexOf(‘x’) Gives the position of ‘x’ that occurs after nth position

in string s1

String.ValueOf(Variable) Convert the parameter value to string representation

Example Program 1: Program to sort given strings in Alphabetical order

 /* Sorting the Strings in Alphabetical Order Using Arrays*/

 import java.io.*;

 import java.lang.*;

 class StringOrdering

 {

 String name[] = new String[100];

 int n;

 String temp = null;

 DataInputStream in = new DataInputStream(System.in);

 void getString()

 {

 try

137

 {

 System.out.println(" Enter the value of n");

 n = Integer.parseInt(in.readLine());

 System.out.println(" Enter the "+ n + " Strings");

 for(int i = 0; i<n; i++)

 {

 name[i] = in.readLine();

 }

 }

 catch(Exception e) { }

 }

 void sort()

 {

 for(int i =0; i <n; i++)

 {

 for(int j= i+1; j<n; j++)

 if(name[j].compareTo(name[i]) < 0)

 {

 // swap the strings

 temp = name[i];

 name[i]= name[j];

 name[j]= temp;

 }

 }

 }

 void putString()

 {

 System.out.println("\n Sorted Order is ");

 for(int i = 0; i<n; i++)

 {

 System.out.println(" "+name[i]);

 }

 }

 }

 class Sorting

 {

 public static void main(String args[])

 {

138

 StringOrdering so = new StringOrdering();

 so.getString();

 so.sort();

 so.putString();

 }

 }

Output Of Program

Enter the value of n

5

 Enter the 5 Strings

Java

C++

C

Cobol

Basic

Sorted Order is

 Basic

 C

 C++

 Cobol

 Java

Example Program 2: Program for demonstration of string function

class strin

{

public static void main(String args[])

{

 String s1, s2, s3;

 s1 = "computer";

 s2 = s1.toUpperCase();

 System.out.println("Convert lowercase to uppercase

letters"+s2);

 s1 = "COMPUTER";

 s2 = s1.toLowerCase();

 System.out.println("Convert uppercase to lowercase

letters"+s2);

 s1= "computer";

 int length = s1.length();

139

 System.out.println("Length of string constant in s1 object is" +

 length);

 s1 = "computer";

 s2 = " science";

 s3 = s1.concat(s2);

 System.out.println("Concatenation of two strings is"+s3);

 char c = s2.charAt(2);

 System.out.println("Extract character from s2 object is " +c);

 if (s1.equals(s2))

 {

 System.out.println("Two strings are equals");

 }

 else

 {

 System.out.println("Two strings are not equals");

 }

}

}

Output Of Program

Convert lowercase to uppercase letters COMPUTER

Convert uppercase to lowercase letters computer

Length of string constant in s1 object is 8

concatenation of two strings iscomputer science

Extract character from s2 object is c

Two strings are not equals

StringBuffer Class

StringBuffer creates strings of flexible length that can be modified both

length and content. We can insert characters and substring in the middle of a

string, or append another string to the end. Table 3.4.2 lists some of the

methods that are used in string manipulations.

Table 3.4.2 Commonly Used StringBuffer Methods

Method Call Task performed

s1.setCharAt(n, ’x’) Modifies the nth character to x

s1.append(s2) Appends the string s2 to s1 at the end

s1.insert(n, s2) Inserts the string s2 at the position n of the string s1

s1.setLength(n) Sets the length of the string s1 to n. If n < s1.length ()

s1 is truncated.If n>s1.length () zeros are added to s1.

140

Example Program: Program for Manipulation of Strings

class strbuf

{

 public static void main(String args[])

 {

 StringBuffer s1=new StringBuffer("Computer ");

 StringBuffer s2=new StringBuffer(" Department");

 s1.append(s2);

 System.out.println(s1);

 s2.setCharAt(3,'u');

 System.out.println(s2);

 s1.insert(9,"Science ");

 System.out.println(s1);

 }

}

Output Of Program

Computer Department

Deuartment

Computer Science Department

3.4.5 Vectors

For achieving the concepts of variable arguments to methods in Java

through the use of the Vector class contained in the java.util package. This

class can be used to create a generic dynamic array known as vector that can

hold objects of any type and any number. Vector are created like arrays as

 Vector intVect = new Vector(); // declaring without size

 Vector list = new Vector(); // declaring with size

Vectors possess a number of advantages over arrays.

1. It is convenient to use vectors to store objects.

2. A vector can be used to store a list of objects that may vary in

size.

3. We can add and delete objects from the list as and when

required.

A major condition in using vectors is that we cannot directly store

simple data type in a vector; we can only store objects. Therefore, we need to

convert simple type to objects by using wrapper classes. The vector class

supports a number of methods that can be used to manipulate the vectors

created as listed in Table 3.4.3.

141

Table 3.4.3 Commonly Used Vector Methods

Method Call Task performed

list.addElement(item) Adds the item specified to the list at the end

list.elementAt(10) Gives the name of the 10th object

list.size() Gives the number of the object present

list.removeElement(item) Removes the specified item from list

list.removeElementAt(n) Removes the item from in the nth position

of the list

list.removeAllElements() Removes all the elements in the list

list.copyInto(array) Copies all items from list to array

list.insertElementAt(item, n) Inserts the item at nth position

Example Program: Program for working with vectors and arrays

import java.io.*;

import java.util.*;

class vect

{

public static void main(String args[]) throws IOException

{

 Vector vec=new Vector();

 vec.addElement("Rose");

vec.addElement("Lotus");

 vec.addElement("Lily");

vec.addElement("Jasmine");

int len=vec.size();

 String str[]=new String[len];

 vec.copyInto(str);

 System.out.println("Result is:");

for(int i=0;i<len;i++)

{

 System.out.println(str[i]);

 }

}

}

Output Of Program

Result is:

 Rose

 Lotus

 Lily

142

 Jasmine

3.4.6 Wrapper Classes

Vectors cannot handle primitive data type like int, float, long, char,

and double. Primitive data types may be converted into object by using the

wrapper classes contained in the java.lang package are listed in the following

tables.

 Table 3.4.4 Wrapper Classes for Converting Simple Types

Simple type Wrapper Class

boolean Boolean

char Character

double Double

float Float

int Integer

long Long

Table 3.4.5 Converting Primitive Numbers to Object

 Numbers Using Constructor Methods

Constructor Calling Conversion Action

Integer IntVal = new Integer (i); Primitive integer to Integer object

Float FloatVal = new Float(f); Primitive float to Float object

Double DoubleVal = new Double(d); Primitive double to Double object

Long LongVal = new Long(l); Primitive long to Long object

Note: I, f, d and l are primitive data values denoting int, float, double and long

data types. They may constant or variables.

Table 3.4.5 Converting Object Numbers to Primitive Numbers

 Using typeValue() Methods

Method Calling Conversion Action

int i = IntVal.intValue() Object to primitive integer

float f = floatVal.floatValue() Object to primitive float

double d = doubleVal.doubleValue() Object to primitive double

long i = longVal.longValue() Object to primitive long

Table 3.4.6 Converting Numbers to String Using String()

Methods

Method Calling Conversion Action

Str = Integer.toString(i) Primitive integer to string

Str = Float.toString(f) Primitive float to string

Str = Double.toString(d) Primitive double to string

Str = Long.toString(l) Primitive long to string

143

Table 3.4.6 Converting String Object to Numeric objects

 Using the Static Method ValueOf()

Method Calling Conversion Action

IntValue = Integer.ValueOf(str) Converts string to integer object

FloatVal= Float..ValueOf(str) Converts string to float object

DoubleVal = Double.ValueOf(str) Converts string to double object

LongVal = Long.ValueOf(str) Converts string to long object

Table 3.4.6 Converting Numeric Strings to Primitive Numbers

 Using Parsing Methods

Method Calling Conversion Action

int i = Integer.parseInt(str) Converts string to primitive integer

long l = Long.parseLong(str) Converts string to primitive long

Note: parseInt() and parseLong() methods throws a NumberFormatException if

the value of the str does not represent an integer.

3.4.7 Self Assessment Questions

Fill in the blank

1. String class which supports __________ length in their object.

2. Primitive data types may be converted into object by using the

____________ classes

True / False

1. Index value of arrays can begin with the number 1.

2. Arrays in Java may be declared in data type arrayname[], (or) datatype[]

arrayname;

3. trim() function in string class can not remove the spaces of both sides in a

string constant.

Multiple Choice

1.Vector class is in package

a) java.long.*; b) java.awt.*;

c) java.io.*; d) java.util.*;

2. StringBuffer class creates strings of

a) fixed length b) flexible length

c) constant length d) none of the above

Short Answer

1. Define arrays.

__

__

144

2.fine strings.

__

__

3.5 Interface: Multiple Inheritance

3.5.1 Introduction

Classes in Java cannot have more than one superclass. For instance a

definition like

 Class A extends B extends C

 {

 }

is not permitted in Java. Java provides alternate approaches known as

interfaces to support the concept of multiple inheritance. Although a Java class

cannot be a subclass of more than one superclass, it can implement more than

one interface.

3.5.2 Defining Interfaces

The general form of an interface definition is:

 interface interfaceName

{

 variable declaration;

methods declaration;

}

Where interface – is the keyword

interfaceName – is any valid Java variable

Variables are declared as

 Static final type VariableName = Value;

Methods declaration will contain only a list of methods without any body

statements.

Example:

 return-type methodName1(parameter_list);

3.5.3 Extending Interfaces

Like classes, interface can also extend. The new interface will inherit all

the members of the superinterface. The general form of an interface is

145

 interface name2 extends name1

 {

 body of name2

}

3.5.4 Implementing Interfaces

Interfaces are used as “superclasses whose properties are inherited by

classes. It is therefore necessary to create a class that inherits the given

interface. The general form is

 class classname implements interfacename

 {

 body of classname

}

Here the class classname “implements” the interface interfacename.

The more general form is

class classname extends superclass

implements interfacename1,interfacename1, ………

 {

 body of classname

 }

Here the class can extend another class while implementing interfaces.

When more than one interface, they are separated by a comma. The

implementation of interfaces can take various forms as shown in Fig. 3.5.1.

146

 Interface Class Interface

 Implementation Extension Extension
 Class Class Interface

 Implementation

 Extension Extension

 Class Class

 Interface Interface Interface

 Extension

 Implementation Interface

 Class Class Implementation

 Class

Fig. 3.5.1 Various forms of interface implementation

3.5.5 Accessing Interface Variables

Interfaces can be used to declare a set of constants that can be used in

different classes. Interfaces do not contains methods; there is no need to worry

about implementing any methods. The constant values will be available to any

class that implements the interface.

Example Program:Program for Student Information Using Multiple

Inheritance

 /* Student Information Using Multiple Inheritance */

 import java.io.*;

 import java.lang.*;

 class Student

 {

 String name = new String(); String rno = new String();

 String course = new String();

 int m1 =0,m2=0;

 DataInputStream in = new DataInputStream(System.in);

 void getdata()

 {

A

B

C

A B A

B C

A

B

C

D

E

C

D

147

 try

 {

 System.out.println("Enter a Register No.");

 rno = in.readLine();

 System.out.println("Enter a Name ");

 name = in.readLine();

 System.out.println("Enter a Course");

 course = in.readLine();

 System.out.println("Enter a Mark1");

 m1 = Integer.parseInt(in.readLine());

 System.out.println("Enter a Mark2");

 m2 = Integer.parseInt(in.readLine());

 }

 catch(Exception e) { }

 }

 void disdata()

 {

 System.out.println("Students Information");

 System.out.println("~~~~~~~~~~~~~~~~~~~~");

 System.out.println("Register Number :"+ rno);

 System.out.println(" Name :"+ name);

 System.out.println(" Class :"+ course);

 System.out.println(" Mark1 :"+ m1);

 System.out.println(" Mark2 :"+ m2);

 }

 }

 interface Sports

 {

 void getsportwt();

 void dissportwt();

 }

 class Result1 extends Student implements Sports

 {

 DataInputStream m = new DataInputStream(System.in);

 int sportwt = 0;

 float percentage = 0.0f;

 int total =0;

 String result = new String();

148

 String grade = new String();

 public void getsportwt()

 {

 try

 {

 System.out.println("Enter the Sports mark");

 sportwt = Integer.parseInt(m.readLine());

 }

 catch(Exception e) { }

 }

 public void dissportwt()

 {

 System.out.println(" Sports Mark :"+sportwt);

 }

 void calculate()

 {

 total =m1+m2+sportwt;

 percentage = (float) total/3;

 if(m1>=50 && m2>=50 && sportwt>=50)

 {

 result ="Pass";

 if(percentage >=80)

 grade ="Distinction";

 else if (percentage>=60 && percentage<80)

 grade ="First Class";

 else if (percentage>=50 && percentage<60)

 grade = "Second Class";

 }

 else

 {

 result ="Fail";

 grade ="Nil";

 }

 }

 void display()

 {

 calculate();

 disdata();

149

 dissportwt();

 System.out.println(" Total :"+total);

 System.out.println(" Average :"+percentage);

 System.out.println(" Result :"+result);

 System.out.println(" Grade :"+grade);

 }

 }

 class StuDetails

 {

 public static void main(String args[])

 {

 Result1 r = new Result1();

 System.out.println(" Student Information Using Multiple Inheritance");

 r.getdata();

 r.getsportwt();

 r.display();

 }

 }

 Output Of Program

 Student Information Using Multiple Inheritance

 Enter a Register No.

 102

 Enter a Name

 Harshinni

 Enter a Course

 MCA

 Enter a Mark1

 70

 Enter a Mark2

 80

 Enter a Mark3

 78

 Enter the Sports mark

 80

 Students Information

   ~~~~~~~~~~~~~~~~ 

   Register Number :102 

             Name :Harshinni 



150 

            Class :MCA 

            Mark1 :70 

            Mark2 :80 

    Sports Mark :80 

            Total :230 

          Average :76.6 

           Result :Pass 

            Grade :First Class 

3.5.6 Self Assessment Questions 

Fill in the Blank 

1. The mechanism of deriving a new class from an old class is called as 

____________. 

2. _____________ is used to implement multiple inheritance. 

3. _________________ keyword is used to inherits properties from interface. 

True / False 

1. Interface concept is not used in developing multiple inheritances. 

2. Interface cannot extends the other interface. 

Multiple Choices 

1. One derived class which access properties from one base class is called as 

a) Multiple inheritance  b) Multilevel inheritance 

c) Hierarchical inheritance  d) Single inheritance 

2.  Interfaces are used as  

 a) super classes of other classes b) sub classes of other classes 

 c) super and sub classes  c) none of the above 

Short Answer 

1. Define multiple inheritance. 

________________________________________________________________

________________________________________________________________ 

3.6 Summary 

Classes, object and methods are basic elements used in Java 

programming. In this we have discussed about how to define a class , how to 

create objects, how to add methods to classes, how to extend class and related 

application programs. 

   Three important data structures namely arrays strings and vectors. In 

this we have discussed about what is an array, how  they are used, how to 

handle strings, how to use String and StringBuffer classes, what is vector and 

its usage and how are wrapper classes useful. 

Java does not support multiple inheritance. Java provide alternate way 

of implementing this concepts using interface. In interface we have discussed 



151 

about how to design an interface, to extend one interface by other, to inherit an 

interface and implement the multiple inheritance using interface. 

3.7 Unit Questions 

1. What is class? How are objects created from a class? 

2. What is a constructor? What are its special properties? 

3. Compare method overloading and method overloading 

4. Discuss the different levels of access protection available in Java 

5. What is an array? How is it different from vector? 

6. What are the methods of string & string buffer classes? 

7. Write a program, which will read a string and write it in the alphabetical 

order. For example the word STRING should be written as GNIRTS 

8. Write a program to implement multiple inheritance using interface 

3.8  Answer for Self Assessment Questions 

Answer 3.3.18 

Fill in the blank 

1. User-defined data type  2. method overloading 

3. class variables and class methods 

True / False 

1. True 2. True 3. False 4. False 

Multiple Choice 

1. a 2. d    3. a 

Short Answer 

1.In inheritance inherit all the members of a class by a subclass using extends 

keyword 

2. A class that cannot be sub-classed is called a final class. 

3. The subclass constructor uses the keyword super to invoke the constructor 

method of the superclass. 

Answer 3.4.7 

Fill in the blank 

1. fixed  2. wrapper classes 

True / False 

1. False 2. True 3. False 

Multiple Choice 

1. a 2. b 

Short Answer 

1.An array is a group of related data items that share a common name. An 

array of value can be accessed by index or subscript in brackets after array 

name. 

2. The string represents a sequence of characters  



152 

Answer 3.5.6 

Fill in the blank 

1. Inheritance  2. Interface  3. implements 

True / False 

1. False  2. False  3.True 

Multiple Choice 

1. d   2. a 

Short Answer 

1.One derived class which access properties from more than one base class is 

called as  Multiple inheritance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



153 

NOTES 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 



154 

UNIT - IV 

 

4.1 Introduction  

To use the classes and or interfaces from other program without 

physically copying them into the program is done by Java package. Actually 

packages are the group of classes and interfaces. The grouping is done 

according to functionality. Packages are containers for the classes. 

Java package can be classified into two types are  

 System packages or API (Application Program Interface) 

packages. 

 User-Defined packages 

We shall consider both the types packages in this unit and illustrate how to use 

them in your program. 

A thread is small unit of program that is used to perform a particular 

task. Thus a process can contain   multiple threads. Each thread is used to 

perform a specific task, which is executed simultaneously with other threads.  

In this unit we shall see how threading concept works in the Java program. 

 In this unit also describe about how to handling the various types error 

occurs in a Java program. 

4.2 Objectives 

After studying this lesson, you should be able to: 

 Describe the major elements of a package. 

 Describe the various features of packages. 

 Describe about various kind of thread and thread methods used in Java 

programs. 

 Understand about various types errors and related error handling 

concepts. 

4.3 Packages: Putting Classes Together 

4.3.1 Introduction  

To use the classes and or interfaces from other program without 

physically copying them into the program is done by Java package. Actually 

packages are the group of classes and interfaces. The grouping is done 

according to functionality. Packages are containers for the classes. 

Java package can be classified into two types are  

 System packages or API (Application Program Interface) 

packages. 

 User-Defined packages. 

Benefits of packages: 

 Packages are used to organize to classes into smaller units and 

make it easy to locate and use the appropriate file. 



155 

  The classes contained in the packages of other programs can be 

easily reused. 

 It is possible to create classes with the same name in different 

packages. Thus it avoids naming conflicts. 

 Packages hide their classes from other programs and other 

packages. 

 Packages are used to protect the classes, data and methods in a 

larger way than on a class to class basis 

 

4.3.2 Java API Packages  

Java API contains a large number of classes grouped into different 

packages according to their functionality. The various API packages and their 

description are shown in the Table 4.3.1. 

   Table 4.3.1 Java System Packages 

Package name  Description 

java.lang It contains the classes that support language. This package is the 

  default package and they are automatically imported. It includes 

  classes of primitive data types, strings, threads and exceptions, 

  main functions. 

java.io This package consists of classes that are used for input and 

output operations. 

java.util This package consists of utility classes such as vectors, random 

numbers, date etc., 

java.awt This package is useful to create GUI (Graphical User Interface) 

applications. 

java.applet This package consists of classes for creating, implementing and 

executing applets. 

java.net This package contains classes for networking. 

 

4.3.3 Using System Packages  

The System packages are organized in a hierarchical manner as shown 

in Fig.4.3.1. The main package in the Java is “java”. This “java “ packages 

contains several packages. Again it in turn contains packages and classes. 

 

 

 

 

 

 

 



156 

Example: 

 java.lang.*; 

  Fig.4.3.1. Hierarchical Structure of java.lang.*.  

   java 

   awt    Package containing lang package 

 

         

 

 Package containing classes  

 

 

      

   

   Classes containing methods 

          

     

 

Classes are stored in the package can be accessed in two ways. 

 By specifying the full path of the required class. 

 This is done by using the package name containing the class 

and then appending the class name to it using dot (.) operator. 

Examples: 

 java.lang.Math 

 java.applet.Applet 

  

 By using import keyword. 

This statement must appear at the top of the program, before any 

class declaration. This is used to use a same class in number of places in 

the program or to use number of classes contained in the package. The 

general form is: 

import packagename.classname; 

import packagename.*; 

 Examples: 

import java.lang.Math; 

import java.awt.*; 

 

4.3.4 Naming Conventions 

Packages can be named using the standard java naming rules. The rules 

may be followed (not a compulsory) while naming the packages are 

     lang 

 

 

 

 

 

           . 

           . 

Math 

Strings 

Exception 



157 

 The first letter of the packages name should be a lowercase letters. It is 

used to distinguish a class name from the package name. Usually, class 

name begins with uppercase letter. 

  Example: 

    java.lang.Math.max(a,b); 

   

          package name                method name  

     class name  

 Every package name should be unique. In some case, giving the same 

name to different packages is unavoidable. In this, case domain name 

is added with the package name. 

 Example: 

  slm.periyar.exampackage 

  cbe.bharati.exampackage 

4.3.5 Creating Packages 

The general form for creating user-defined package is  

  package packagename; // package declaration 

public class Classname // class definition 

{ 

-----------------   // body of the class 

----------------- 

} 

where  

package , public & class     -  are the keywords 

packagename & classname -  are the any valid user-defined package 

name &class name  

The steps are used in the creation of a package are: 

 Declare the package at the beginning of a program by using the form  

package packagename;  

 

 Define the class that is to be put in the package and declare it public. 

 Create a subdirectory under the main directory by using the DOS 

command as 

               maindirectory > md subdirectory 

   Where 

 md – is a make directory (DOS command) used to create 

directory subdirectory – is the name of the directory, which is 

same as packagename. 

 Save the program as the classname.java file in the subdirectory created. 



158 

 Compile the program by using javac. This creates classname.class file 

in the subdirectory. 

4.3.6 Accessing A Packages  

The import statement is used to access a particular class in a package or 

all classes in a package. The general forms is  

 

import  package1 [.package2][.package3].Classname ; 

  or  

            import  packagename.*;  

 

Where  

import – is the keyword  is used to import classes from package. 

package1, package2, package3 & Classname  - are the any valid user-

defined            package 

name & class name. 

“ * “ - All the classes contained in a particular package can be accessed 

by using   * “ in  the import statement . 

4.3.7 Using A Packages 

Let us now consider some simple programs that will use classes from 

other packages. The below program shows a package name package1 

containing a single class add. 

package package1; 

public class add 

{ 

     public void sum( ) 

     { 

            int a = 10; int b = 20; 

            int c = a  + b; 

    System.out.println("Sum of two number. is" + c); 

      } 

} 

This source file should be named add.java and stored in the 

subdirectory package1. Now compile this java file. The resultant add.class will 

be stored in the same subdirectory. 

import package1.add; 

class PackageTest1 

{ 

public static void main(String args[ ]) 

{ 



159 

  add  a = new add( ); 

 a.sum( ); 

} 

} 

The above program shows that imports the class add from package1. 

The source file should be saved as PackageTest1.java and then compiled. The 

source file and the compiled file would be saved in the directory of which 

package1 was a subdirectory. Now we can run the program and obtain the 

results. 

4.3.8 Adding Class To A Package  

It is very simple and easy to add a new class to an existing package. The 

following steps are used for adding a new class to an existing package. 

 Place the package statement before the class definition like  

   package  existingpackagename; 

 Define the new class  and make it as public. 

 Save the above program as the classname.java file in the 

subdirectory created.  

 Compile the program by using javac. This creates classname.class 

file in the subdirectory. 

Now, the package will contain new class also. The statement import 

packagename.*  will import all the classes. 

For example  

The package p1 contains one public class ClassA. 

package p1; 

public ClassA 

{ 

// body of ClassA 

} 

Suppose we want to add another class ClassB to this package. This can 

be done as 

1. Define the class and make it public. 

2. Place the package statement 

package p1; 

before the class definition as 

package p1; 

public ClassB 

{ 

 // body of ClassB 

} 



160 

3. Store this as ClassB.java file under the directory p1. 

4. Compile ClassB.java file. This will create a ClassB.class file and 

place it in the directory p1. 

Now, the package p1 will contain the both the classes ClassA and 

ClassB. A statement like 

 import p1.*; 

will import both of them. 

4.3.9 Hiding Classes 

It is possible to hide some of classes from outside of the packages by 

declaring the classes as “not public“. The classes declaring as “not public“ can 

be used only in the same package, not possible to access the outside of the 

packages is called as Hiding classes. 

For Example 

package p1; 

 public class ClassA   // public class, available outside 

 { 

  //body of ClassA 

 } 

 class ClassB  // not public class, hidden 

 { 

  // body of ClassB 

 } 

Here the class ClassB, which is not declared public is hidden from outside of 

the package p1.  This class can be seen and used only by other classes in the 

same package. 

4.3.10 Self Assessment Questions 

Fill in the Blank 

1. Java package has two packages such as ______________ and 

_____________. 

2. The ____________statement is used to access a particular class in a 

package or all classes in a package. 

True / False 

1. Package contains classes and interfaces. 

2. In Java, we cannot add a new class to an existing package 



161 

Multiple Choices 

1. Private variables in a class which are accessed by 

a) Same class     b) Subclass in same package 

c) Other classes in same package   c) Non-subclasses in other packages 

2. The following character is used to import all the classes & interfaces from 

the package 

a) +  b) *  c) /  d) ** 

Short Answer 

1. What is the use of Java packages? 

________________________________________________________________

________________________________________________________________ 

2. What is meant by hiding classes? 

________________________________________________________________

________________________________________________________________ 

Multithreaded Programming  

4.3.11 Introduction  

 

      Beginning 

 

       

 

Single–threaded body of execution

  

 

       

 

End  

 

 

 

Fig. 4.4.1 Single-threaded program 

A thread is small unit of program that is used to perform a particular 

task. Thus a process can contain   multiple threads. Each thread is used to 

perform a specific task, which is executed simultaneously with other threads.  

Every program has at least one thread. If a program contains only one 

thread, it is called single threaded program as shown in Fig. 4.4.1.  If a 

program has more than one thread, it is called multithreaded program as 

shown in Fig. 4.4.2.     

 

 

 

 

 

Class ABC 

{ 

-------------- 

-------------- 

-------------- 

-------------- 

-------------- 

-------------- 

-------------- 

} 



162 

Main Thread 

   Main method module 

      

   

         start   tart       start 

 

         Switching                Switching  

 

 

 

 

 
 

Thread A     Thread B      Thread C  

Fig. 4.4.2 A Multithreaded program 

Advantages of Multithreading: 

 Multithreading is used to write very efficient programs. 

 Maximum use of CPU time ie., the idle time CPU is reduced. 

 The time required to perform a context switch from one thread to 

another is  less. 

 Multithreading require less overheads. 

 Multithreading reduces the complexity of large program. 

 The resources required for a threads are less than the resources 

required by a  process. 

Some Java platform supports the concept of “time slicing”. In time 

slicing, every thread receives a small portion of CPU time, which is called a 

“quantum”. After the time period is over, even if the thread has not finished its 

execution, the thread is given no more time to continue and next thread of equal 

priority takes the charge of the CPU time. This is the work of Java scheduler. 

4.3.12 Creating Threads  

Creating threads in Java is simple. Threads are implemented in the form 

of objects that contain a method called run ( ).   The general form of run ( ) 

method is  

public void run ( ) 

{ 

-------------------- 

--------------------(statements for implementing thread) 

-------------------- 

} 

 



163 

The run ( ) method contains the entire body of the thread an it will be 

invoked by an object of the concerned thread. 

 A new thread can be created in two ways. 

 By creating a thread class. 

Create a class that extends Thread class and override its run ( ) 

method with the code required by  the thread. 

 By converting a class to a thread. 

Define a class that implements Runnable interface, that has only 

a run ( ) method . 

4.3.13 Extending The Thread Class  

Extending the Thread class, it needs the following steps. 

 Declare the class as extending the Thread class. 

 Implement the run ( ) method that is responsible for executing the 

sequence of code  that the thread will execute. 

 Create a thread object and call the start ( ) method to initiate the 

thread execution. 

Declaring  the class  

The thread class can be declared as  

class ThreadName extends Thread 

{ 

 ------------------- 

 ------------------- 

} 

Where 

  class, extends and Thread  - are keywords. 

  ThreadName - is the name of the thread. 

Implement the run ( ) method  

The run ( ) method has been inherited by the new class. The run ( ) 

method should be overridden to implement the code to be executed  by the 

thread. The implementation of run ( ) method is  

public void run ( ) 

{ 

-----------------    // Thread code here 

----------------- 

} 

 

Starting New Thread 

The newly created thread can be started by using start ( ) method. The 

general form is  



164 

 

ThreadName   ThreadObjectName = new ThreadName( ); 

ThreadObjectName.start ( );  // invokes run ( ) method 

 

The first statement just creates the object. The thread that will run this 

object is not yet running. The thread is in a newborn state.  The second 

statement calls start ( ) method  and  thread will move  into the ruunable state. 

Then the Java runtime will schedule the thread to run by invoking its run ( ) 

method and thread is to be in the running state. 

4.3.14 Stopping And Blocking A Thread   

Stopping a Thread  

  The method stop ( )  is used to stop a thread in running state. The 

general form is  

  ThreadObjectName.stop(); 

 

Where ThreadObjectName - is the name of the thread object to be stopped. 

     stop ( )  - is the method causes the thread to move to the dead 

state. 

The stop ( ) method  may be used when the premature death of a thread 

is desired.  A thread will also move to the dead state automatically when it 

reaches the end of its method. 

Blocking a Thread   

A thread can also be temporarily suspended or blocked from entering 

into the runnable and running state by using either of the following thread 

methods. 

 sleep ( ):  

The thread will return to the runnable state when the specified 

time is elapsed. For   example, the statement sleep(1000), is 

block a thread for 1000 milliseconds. 

 suspend ( ): 

The thread will be blocked until further order. The blocked 

thread can be resumed by resume( )  method. 

 wait ( ): 

The thread will be blocked until certain condition occurs. The 

notify ( )  method is called in the case of wait ( ). 

4.3.15 Life Cycle Of A Thread  

The following states can be occurs during the life cycle of a thread. It 

can move from one state to another state through a variety of methods as shown 

in Fig. 4.4.3. 

 Newborn state 

 Runnable state 



165 

 Running state 

 Blocked state 

 Dead state 

 

new thread 

 

                 start   stop 

 

 

active thread        stop           

killed                

thread 

              

    suspend      resume 

                    sleep      notify         stop 

                    wait 

   

      idle thread 

 

 

 Fig. 4.4.3  State transition of a thread 

Newborn state 

A thread is in newborn state immediately after we create a thread 

object. At this state, we can do only one of the following things with it. 

Scheduling of newborn state as shown in Fig.4.4.4. 

 To move the thread into running state using start ( ) method. 

 To kill the thread using the stop( ) method. 

 

      start   stop 

 

 

 

 

  Fig. 4.4.4 Scheduling a newborn thread 

Runnable state 

The runnable state means that a thread is ready to run and is a waiting 

for the control of the processor. That is, the thread has joined the queue of 

threads that are waiting for execution. If one of the thread wants to relinquish 

Newborn 

Dead 

 

    

    
   yield 

Running 

 

 

  

Runnable 

Blocked 

Newborn 

Runnable Dead state 



166 

control to another thread of equal priority, then yield ( ) method is used.( see 

Fig 4.4.5) 

    Yield  

 

 

 running thread   runnable thread 

  Fig. 4.4.5 Relinquishing control using yield ( ) method 

Running state 

Running means the processor has given its time to the thread for its 

execution. A running thread may relinquish its control on its own or other 

higher priority thread in the one of the following ways. 

    suspended 

 

 

          running        runnable     suspended 

         resume 

Fig. 4.4.6 Relinquishing control using suspend ( ) method 

The thread will be blocked until further order by using suspend( ) 

method. The blocked thread can be resumed by resume( )  method. This is 

useful when we want to suspend a thread for some time due to certain reason, 

but do not want to kill it. (See Fig 4.4.6) 

 It has been made to sleep. We can put a thread to sleep for a specified 

time period using the method sleep (time) where time is in milliseconds. The 

thread will return to the runnable state when the specified time is elapsed. For 

example, the statement sleep (1000), is block a thread for 1000 milliseconds. 

(See Fig 4.4.7)    sleep(time) 

 

         

            running  runnable    suspended 

     after( time ) 

Fig. 4.4.7 Relinquishing control using sleep ( ) method 

The thread will be blocked until certain condition occurs by suing wait ( 

) method. The notify ( ) method  is used to schedule thread to run again. (See 

Fig.4.4.8) 

    wait 

 

 

           running             runnable     waiting 

         notify 

Fig. 4.4.8 Relinquishing control using wait ( ) method 



167 

Blocked state 

A thread is in blocked state, if it is being prevented from the runnable 

and running state. This happened when thread is suspended, sleeping, or 

waiting in order to satisfy certain requirements. While a thread is in the 

blocked state, the scheduler will simply skip over it and no CPU time is 

allotted, until a thread re-enters the runnable and running state it will not 

perform any operation. A blocked thread is considered as “not runnable” but 

not dead. 

Dead state 

A thread is dead when it finishes its execution (natural death) or is 

stopped (killed) by another thread (premature death). A thread can be killed as 

soon as it born, or while it is running, or even when it is blocked state. 

4.3.16 Using Thread Methods 

In this section illustrate about how Thread class methods can be used 

to control the behaviour of a thread. 

Example Program:Program for Multiplication Tables Using Threads and 

Multithreads 

class five extends Thread 

{ 

   public void run() 

    { 

  int mul =0; 

  int n =5; 

  for(int i=1 ;i<=4;i++) 

  { 

     mul = i*n; 

       System.out.println(i + " * " + n + " = " + mul); 

  } 

     } 

} 

class six extends Thread 

{ 

    public void run() 

        { 

  int mul =0; 

  int n =6; 

  for(int i=1;i<=4;i++) 

  { 

     mul = i*n; 

     System.out.println(i + " * " + n + " = " + mul); 



168 

       if (i==3) 

         yield(); 

  } 

           } 

} 

class seven extends Thread 

{ 

      public void run() 

      { 

  int mul =0; 

  int n =7; 

  for(int i=1;i<=4;i++) 

  { 

     mul = i*n; 

     System.out.println(i + " * " + n + " = " + mul); 

     if (i==2) 

     { 

   try 

   { 

     sleep(1000); 

   } 

   catch(Exception e) { } 

        } 

  } 

                } 

} 

class eight extends Thread 

{ 

   public void run() 

   { 

 int mul =0; 

 int n =8; 

 for(int i=1;i<=4;i++) 

 { 

    mul = i*n; 

    System.out.println(i + " * " + n + " = " + mul); 

    if (i==3) 

    stop(); 



169 

  } 

         } 

} 

class nine extends Thread 

{ 

        public void run() 

       { 

  int mul =0; 

  int n =9; 

  for(int i=1;i<=4;i++) 

  { 

           mul = i*n; 

          System.out.println(i + " * " + n + " = " + mul); 

  } 

        } 

}  

class MulTable 

{ 

       public static void main(String args[]) 

       { 

   five f = new five(); 

   six  s = new six(); 

   seven sn = new seven(); 

   eight e = new eight(); 

   nine ni = new nine(); 

   ni.setPriority(Thread.MAX_PRIORITY); 

   e.setPriority(ni.getPriority() - 1); 

   f.setPriority(Thread.MIN_PRIORITY); 

   s.setPriority(f.getPriority() + 1); 

 f.start(); 

   s.start(); 

   sn.start(); 

   e.start(); 

   ni.start(); 

      } 

} 



170 

Output Of Program 

1 * 7 = 7 

2 * 7 = 14 

1 * 8 = 8 

2 * 8 = 16 

3 * 8 = 24 

1 * 9 = 9 

2 * 9 = 18 

3 * 9 = 27 

4 * 9 = 36 

1 * 6 = 6 

1 * 5 = 5 

2 * 6 = 12 

2 * 5 = 10 

3 * 6 = 18 

3 * 5 = 15 

4 * 6 = 24 

4 * 5 = 20 

3 * 7 = 21 

4 * 7 = 28 

4.3.17 Thread Exceptions  

The call to sleep ( ) method is enclosed in a try block and followed by 

the a catch block. This is necessary because the sleep ( ) method throws an 

exception, which should be caught. If we fail to catch the exception, program 

will not compile. 

  Thread exception are caused if the active thread calls method, which is 

not related to its state.  

For example, 

 A sleeping thread cannot deal with the resume ( ) method because a 

sleeping thread can not receive any instruction. 

 If a dead state thread calls suspend ( ) or sleep ( ) method, then thread 

exception can occur. 

 If a blocked thread calls suspend ( ) method, than thread exception can 

occur. 

The different forms of the catch statements are 

 

 

 

 



171 

 

 

catch( ThreadDeath e) 

{ 

--------------- 

--------------- 

} 

catch (InterruptedException e) 

{ 

--------------- 

--------------- 

} 

catch (IllegalArgumentException e) 

{ 

--------------- 

--------------- 

} 

catch (Exception e) 

{ 

--------------- 

--------------- 

} 

The exception handler must be specified in catch statement whenever 

calling a thread method that throws an exception. Some of the exceptions 

caused by threads are  

 ThreadDeath    - killed thread 

 InterruptedException   - cannot handle it in the current 

state 

 IllegalArgumentException  - by Illegal method argument 

passing  

 Exception    - any kind of exception 

 

4.3.18 Thread Priority  

Each thread created has a priority attached to it. The scheduler allocates 

time according to these priorities. The thread scheduler to decide when each 

thread should be allowed to run uses thread priorities. A higher priority can 

preempt the lower priority thread, thus taking the processor’s time. The priority 

of the thread can be set by the method setPriority ( ). The general form is 

  ThreadObjectName.setPriority(intNumber); 



172 

Where 

         ThreadObjectName  - is the name of the thread object. 

        IntNumber          - is an integer value (from 1 to 10) to which the 

     thread’s priority is set. 

 The Thread class defines several priority constants are 

  MIN_PRIORITY = 1 

  NORM_PRIORITY = 5 

  MAX_PRIORITY = 10 

The default setting of a thread priority value is NORM_PRIORITY. Refer the 

section 4.4.6 for Thread priority example program . 

4.3.19 Synchronization  

All the threads in a program share the same memory space. So it is 

possible for two threads to access the same variable and methods in an object. 

Problems may occur when two or more threads accessing the same data 

concurrently. The Java enables us to overcome this problem using a technique 

is called as synchronization. 

The keyword synchronized is used in the code to enable 

synchronization. The word ‘synchronized’ can be used along with a method or 

within a block. 

synchronized void update ( ) 

{ 

-------------- // code here is synchronized  

-------------- 

} 

 

When declaring a method as synchronized, Java creates a “monitor” and 

hands it over to the thread that calls the method first time. As long as the thread 

contains the monitor, no other thread can enter the synchronized section of 

code. 

 After the work is over, the thread will hand over the monitor to the next 

thread that is ready to use the same resource.  

To mark block of code as synchronized as shown below:  

synchronized  (lock object) 

{ 

-------------- // code here is synchronized  

-------------- 

} 

 



173 

When two or more threads are waiting to gain control of a resources, 

due to some reasons, the condition on which waiting threads to gain control not 

happened. This situation is known as deadlock.   

For example, assume that the thread X must access MethodA before it 

can release MethodB, but the thread Y cannot release MethodA until it gets 

hold of MethodB. This is the problem to arises the dead lock. 

Thread X 

 synchronized   MethodB ( ) 

{ 

synchronized   MethodA ( ) 

{ 

-------------- // code here is synchronized  

-------------- 

} 

} 

Thread Y 

synchronized  MethodA 

{ 

synchronized   MethodB ( ) 

 { 

-------------- // code here is synchronized  

-------------- 

} 

} 

4.3.20 Implementing The Runnable Interface 

The Runable interface declares the run ( ) method that is required for 

implementing threads in our program. To do this, we must perform the 

following steps: 

 Declare the class as implementing Runnable interface. 

 Implement the run ( ) method. 

 Create a thread by defining an object. 

 Call the thread’s start ( ) method to run thread. 

Example Program: Program for implementing Runnable Interface 

class xrun implements Runnable 

{ 

   public void run() 

   { 

    for(int i=1;i<=6; i++) 

     { 



174 

         System.out.println("ThreadX:"+i); 

      } 

      System.out.println("End of Threadx"); 

   } 

} 

class runnabletest 

{ 

   public static void main(String args[]) 

 { 

      xrun runobject=new xrun(); 

     Thread threadx=new Thread(runobject); 

      threadx.start(); 

System.out.println("End of main Thread"); 

 } 

} 

Output Of Program 

End of main Thread 

ThreadX:1 

ThreadX:2 

ThreadX:3 

ThreadX:4 

ThreadX:5 

ThreadX:6 

End of Threadx 

 

4.3.21 Self Assessment Questions 

Fill in the blank 

1.Thread class and __________ interface are used to implement multithread 

program. 

2. The default setting of a thread priority value is _________________. 

True / False 

1. Multithread programming supports parallel processing. 

2. sleep() method in Thread class requires milliseconds as arguments. 

Multiple choices 

1. Which of the following method is supported for dead state in thread 

a) sleep()   b) wait()  

c) stop()   d) star() 



175 

3. Setpriority() method of Thread class has MAX-PRIORITY constant  taken 

as   

a) 2    b) 3  

c) 4    d) 10 

3. A suspended thread can be received by using the 

a) stop() method  b) yield() method 

c) wait() method  d) resume() method 

4. The following interface is used to implement multithread program 

a) Runnable   b) DataInput  

c) DataOuput   d) None of the above 

Short Answer 

1. When the process or thread goes to deadlock state? 

________________________________________________________________

________________________________________________________________ 

2. List out any two kind of thread exception. 

________________________________________________________________

________________________________________________________________ 

4.4 Managing Errors And Exceptions 

4.4.1 Introduction 

A mistake may lead to causing an error to program to produce 

unexpected results. Errors are the wrong that can make program go wrong. An 

error may produce an incorrect output or may stop the program execution. 

4.4.2 Types Of Errors 

Errors may be classified into two types. 

 Compile-time errors 

 Run-time errors 

Compile-Time Errors: 

All syntax errors will be detected and displayed by Java compiler is 

called as compile-time errors. Most of the compile-time errors are due to typing 

mistakes. Sometimes, a single error may be the source of multiple errors. For 

example, use of an undeclared variable in a number of places will cause a series 

of errors of type “ undefined variable”. The some common compile-time errors 

are 

 Missing semicolons. 

 Missing (or mismatch) of the brackets in classes and methods. 

 Misspelling of identifiers and keywords. 

 Missing double quotes in strings. 

 Use of undeclared variables 

 Incompatible types in assignment / initialization 

 Bad references to objects 



176 

 Use of = in place of = =operator and etc., 

Whenever the compiler displays, this kinds of error, it will not create 

the .class file. It is therefore compulsory to correct all the errors before we can 

successfully compile and run the program. 

Run-Time Errors: 

A program may compile successfully creating the .class file but may not 

run properly. Such programs may produce wrong results due to wrong logic or 

stop the program execution due to errors like  

 Dividing an integer by zero. 

 Accessing an element that is out of the bounds of an array. 

 Trying to store a value into array of an incompatible class or 

type. 

 Trying to cast an instance of a class to one of its subclasses. 

 Passing a parameter that is not valid range or value for a 

method. 

 Trying to illegally change the state of a thread. 

 Converting invalid string to a number. 

 Accessing a character that is out of bounds of a string And etc., 

4.4.3 Exceptions  

An exception is a condition that is caused by a run-time error in the 

program. When the java interpreter encounters an error such as dividing an 

integer by zero, it creates an exception object and throws it. If the exception 

object is not caught and handled properly, the interpreter will display an error 

message and will stop the program execution. If you want to the program to 

continue with execution of the remaining code then we try to catch the 

exception object thrown by the error condition and then display an appropriate 

message for taking corrective actions. This task is known as exception 

handling. Some common exceptions listed out in the Table 4.5.1. The 

following tasks are used to handling the errors. 

1. Find the problem (Hit the exception) 

2. Inform that an error has occurred (Throw the exception) 

3. Receive the error information (Catch the exception) 

4. Take corrective action (Handle the exception) 

The error handling code basically consists of two segments. 

 To detect errors and to throw exceptions  

 To catch exception and to take appropriate actions. 

Table 4.5.1 Some common exceptions  

Exception Type   Cause of Exception 

ArithmeticException  Caused by math errors such as division by zero 

ArrayIndexOutOfBoundsException Caused by bad array indexes 



177 

ArrayStoreException Caused when a program tries to store the 

wrong type of data in as array 

FileNotFoundException Caused by an attempt to access a 

nonexistent file 

IOException Caused by general IO failures 

NullPointerException Caused by referencing a null object 

NumberFormatException Caused when a conversion between 

strings and number fails. 

OutOfMemoryException Caused when there’s not enough memory 

to allocate a new object 

SecurityException Caused when an applet tries to perform an 

action not allowed by the browser’s 

security setting 

StackOverFlowException Caused when the system runs out of stack 

space 

StringIndexOutOfBoundsException Caused when a program attempts to access 

a nonexistent character position in a string 

 

4.4.4 Syntax Of Exception Handling Code  

The basic concepts of exception handling are throwing an exception and 

catching it as shown in Fig.4.5.1.  Java uses a keyword try to preface a block of 

code that is likely to cause an error condition and “ throw “an exception. A 

catch block defined by the keyword catch  “catches” the exception “thrown” 

by the try block and handles it appropriately. The catch block is added 

immediately after the try block. The general form is   

----------------  

---------------- 

try 

{ 

 statement; // generates an exception 

} 

catch ( Exception-type e) 

{ 

statement; // processes the exception 

} 

--------------- 

 

The try block can have one or more statements that could generate an 

exception. If any one statement generates an exception, the remaining 

statements in the block are skipped and execution jumps to the catch block that 



178 

is placed next to the try block. The catch block can have one or more 

statements that are necessary to process the exception. 

4.4.5 Multiple Catch Statements  

A single try block can have many catch blocks. This is necessary when 

the try block has statements that may raise different types of exceptions. The 

general form is  

 

----------------  

---------------- 

try 

{ 

 statement; // generates an exception 

} 

catch ( Exception-type1 e) 

{ 

statement; // processes the exception type 1 

} 

catch ( Exception-type2 e) 

{ 

statement; // processes the exception type 2 

} 

. 

. 

catch ( Exception-type-N e) 

{ 

statement; // processes the exception type N 

} 

--------------- 

--------------- 

 

Example Program: Program for Handling of Various Exception 

import java.lang.Exception; 

import java.io.DataInputStream; 

class except 

{ 

      public static void main(String args[]) 

      { 

   DataInputStream in =new DataInputStream(System.in); 



179 

   int i=0, b=0,c=0,n=0,sum=0; 

   try 

   { 

          System.out.print("Enter the value for n :"); 

         n=Integer.parseInt(in.readLine()); 

         int a[] = new int[n]; 

         System.out.println("Enter the value for a:"); 

         for(i=0;i<=n-1;i++) 

         { 

         a[i]=Integer.parseInt(in.readLine()); 

         sum = sum+a[i]; 

          } 

       System.out.println("Enter the value for b:"); 

      b=Integer.parseInt(in.readLine()); 

          c=sum/b; 

          System.out.println("The value for c is :" + c); 

       a[n+2] = c; 

   } 

   catch(ArithmeticException e) 

   { 

        System.out.println("Divisible by zero\n"+ e); 

   } 

   catch(ArrayIndexOutOfBoundsException e1) 

   { 

         System.out.println("Bad Array Index\n"+ e1); 

   } 

   catch(NumberFormatException e2) 

   { 

         System.out.println("Input must be an Integer\n"+ e2); 

   } 

   catch(Exception e) 

   {   } 

       } 

} 

Output Of Program 

Enter the value for n :4 

Enter the value for a: 

3 



180 

3 

3 

3 

Enter the value for b: 

3 

The value for c is :4 

Bad Array Index 

java.lang.ArrayIndexOutOfBoundsException 

 

Java does not require any processing of the exception at all. We can 

simply have a catch statement with empty block to avoid program abortion. 

Example: 

  catch (Exception e); // Does nothing  

This statement catches the exception and then ignores it. 

4.4.6 Using Finally Statement 

Finally statement that can be used to handle any exception generated 

within a try block. It may be added immediately after the try block or after the 

catch block. The general form is  

try     try    

  

{     { 

}      } 

finally     catch 

{     { 

 

}     } 

     finally 

{ 

 

} 

When a finally block is defined, this is guaranteed to execute, regardless 

of whether or not in exception is thrown.  



181 

4.4.7 Throwing Our Own Exceptions For Debugging 

To throw our own exception by using the keyword throw. The general 

form is  

  Throw new Throwable_subclass; 

 

Examples : 

throw new ArithmeticException(); 

throw new NumberformatException(); 

Example Program:   Program for User-Defined Exception Handling 

 import java.lang.Exception; 

import java.io.*; 

class MyException extends Exception 

{ 

MyException(String message) 

{ 

super(message); 

} 

} 

class TestMyException 

{ 

public static void main(String args[]) 

{ 

int x = 0,  y =0; 

DataInputStream in = new DataInputStream(System.in); 

try 

{ 

System.out.println("Enter the  x & y values"); 

     x = Integer.parseInt(in.readLine()); 

y = Integer.parseInt(in.readLine()); 

} 

catch(Exception e){ } 

try 

{ 

 

float z = (float)x / (float) y; 

if (z <0.01) 

{ 



182 

     throw new MyException("Number is too 

small"); 

} 

} 

catch(MyException e) 

{ 

System.out.println("Caught My Exception"); 

System.out.println(e.getMessage()); 

} 

finally 

{ 

System.out.println("I am always here"); 

} 

} 

} 

Output Of Program 

         Enter the  x & y values 

10 

10 

I am always here 

        

Enter the  x & y values 

1 

1000 

Caught My Exception 

Number is too small 

I am always here 

4.4.8 Self Assessment Questions 

Fill in the blank 

1.  Misspelling of identification & keywords are examples of ___________ 

errors. 

2.  To throw our own exception by using the keyword ______________. 

True or False 

1.  Dividing an integer by zero error is not occurred at run time 

2.  Number Format exception is generated when a conversion between string 

and number fails 

3. Finally block can be added in last of the try catch block 



183 

Multiple Choices 

1. Which of the following is occurred at runtime error 

a) missing;    b) missing double quotes in strings 

c) use of undeclared variables  d) out of bounds in Array 

2. Try block, which is doing that 

a) Find the error and inform the error b) Receive the error information 

c) Take corrective action  d) none of the above 

3. Which of the following is keyword 

a) Total   b) Sum  c) Catches  d) throw 

Short Answer 

1. Define exception. 

________________________________________________________________ 

2.  What is the purpose of Finally statement? 

________________________________________________________________ 

Summary 

Packages, interfaces and multithreaded  are the important features of 

java programming.   

In  packages we saw the building blocks of coding in Java. We have 

also discussed about how to create a package, add more classes to package  

and access the contents of a package. Also seen about how to use Java system 

packages. 

       A thread is a single line of execution within the program. Multi threads 

can run concurrently in a single program.  A thread is created either by sub 

classing the Thread class or implementing Runnable interface. We have also 

discussed about the how to synchronized threads ,how to set priorities for 

threads and how to control the execution of threads. 

   Exception handling is another important features of Java. In exception 

handling we have discussed about what exceptions are how to throw system & 

user defined exception and, how to handle different types of exceptions. 

4.5 Unit Questions 

1. What is a package? How do we add a class or an interface to a package? 

2. Describe the complete life cycle of a thread 

3. How do we set priorities for threads? 

4. What is synchronization? When do we use it? 

5. Develop a simple program to illustrate the use of multithreads 

6. What is difference between multiprocessing and multithreading? 

7. Explain the following terms 

a) Final method & final class  b)A bstract method & abstract class 

8. What is an exception? Explain types of exceptions with examples 

9. Explain user defined exception with an example 



184 

4.6  Answer for Self Assessment Questions 

Answer 4.3.10 

Fill in the blank 

1. user defined package  and Built-in package 2. import statement 

True / False 

1.True  2. False 

Multiple Choice 

1. a  2. b 

Short Answer 

1.  To use the classes and or interfaces from other program without 

physically copying them into the program is done by Java package.  

2.   The classes declaring as “not public“ can be used only in the same 

package, not possible to access the outside of the packages is called as 

hiding classes. 

Answer 4.4.11 

Fill in the blank 

1. Runnable interface 2. NORM_PRIORITY 

True / False 

1. True 2. True 

Multiple Choice 

1.   c  2.   d   3.d   4. a 

Short Answer 

1. When two or more threads are waiting to gain control of a resources, due to 

some reasons, the condition on which waiting threads to gain control not 

happened. This situation is known as deadlock.   

2. ThreadDeath, InterruptedException   

Answer 4.5.8 

Fill in the blank 

1. compile time  2. throw 

True / False 

1. False 2. True 3. True 

Multiple Choice 

1. d  2. a  3. d 

Short Answer 

1.  An exception is a condition that is caused by a run-time error in the 

program.  

2.  Finally statement that can be used to handle any exception generated 

within a try  block. 

 



185 

NOTES 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 



186 

UNIT - V 

 

5.1 Introduction 

Applet are small Java programs that are primarily used in Internet 

computing. They can be transported over the Internet from one computer to 

another computer and run using Applet Viewer or any Web Browser. It can 

perform arithmetic operations, display graphics, play sounds, accept user input, 

create animation, and play interactive games. Java applet when run, it can 

produce graphics, sound and moving images. 

Java   Applet has its own area of the screen known as canvas, where it 

creates its display. The size of an applet’s space is decided by the attributes of 

the <APPLET…> tag.  We can write Java applets that draw lines, figures, 

images, and text in different fonts and styles. A Java applet draws graphical 

image inside its space using the coordinate system.  

The variables and arrays are used for storing data inside the programs. 

This approach yields the following problems. 

 The data is lost either when variable goes out of scope or when 

the program is terminated. 

 It is difficult to handle large amount of data using variables and 

arrays. 

We can overcome these problems by storing data on secondary storage 

devices such as floppy disks or hard disks. The data is stored in these devices 

using the concept of files. 

In this unit we shall describe in details about how applet programs 

works, how to draw picture using the graphics object and its methods, and file 

concept in Java. 

5.2 Objectives 

After studying this lesson, you should be able to: 

 Describe the major elements of applet program 

 Describe about how applet program used in Internet pages. 

 Describe about graphics object and its methods. 

 Understand about how to draw the pictures using graphics methods. 

 Describe the classification of files and its related stream classes. 

5.3 Applet Programming 

5.3.1 Introduction  

Applet are small Java programs that are primarily used in Internet 

computing. They can be transported over the Internet from one computer to 

another computer and run suing Applet Viewer or any Web Browser. It can 

perform arithmetic operations, display graphics, play sounds, accept user input, 

create animation, and play interactive games. Java applet when run, it can 

produce graphics, sound and moving images. 

 



187 

Local applets 

An applet developed locally and stored in a local system is known as 

local applet. The local system does not require the Internet connection. It 

simply searches the directories in the local system and locates and loads the 

specified applet as shown in Fig.5.3.1. 

Remote applets 

Remote applet is developed by some one else and stored on a remote 

computer connected to the Internet. We can download the remote applet onto 

our system via the Internet and run it as shown in Fig.5.3.2. 

 

 

           Local Applet    Internet 

     

 

 

 

Local Computer          Local Computer       Remote        Remote Computer   

(Client)     Applet   (Server) 

Fig.5.3.1 Loading Local Applet Fig.5.3.2 Loading a Remote Applet 

Uniform Resource Locator (URL) 

URL is used to locate and load the applet address on the web and must 

be specified in the applet’s HTML document as the value of the CODEBASE 

attribute. 

Example: 

CODEBASE =http : // www.netserver.com / applets 

In the case of local applets CODEBASE may be absent or may specify a local 

directory. 

5.3.2 How Applets Differ From Applications 

The applets and stand-alone applications, both are java program, but 

applets have some difference from stand-alone application as given below. 

 Applets do not use main( ) method  for initiating the execution of 

the program. Applets, when loaded, automatically call certain 

methods of applet class to start and execute the applet program. 

 Unlike stand-alone applications, applets cannot be run 

independently. They are run from a web page using HTML tag. 

 Applets cannot read from or write to the files in the local computer. 

 Applets cannot communicate with other servers on the network. 

 Applets cannot run any program the local computer. 

 Applets are restricted from using libraries from other language such 

as C or C++. 



188 

5.3.3 Preparing To Write Applets  

Before, preparing to write applets program we will need to now 

 When to use applet 

 How an applets works 

 What features an applet has and 

 Where to start, when we first create our own applets. 

Let us consider the situations when we need to use applets 

1. When we need dynamic display of a web page. For example shows 

daily changes of share prices of various companies. 

2. When we require Flash outputs. For example, applets that produce 

sounds, animations etc., 

3. When we want to create program and use it on the Internet for us by 

others on their computers. 

The following steps are used to develop and test the applets. 

 Building an applet code (.java file) 

 Creating an executable applet (.class file) 

 Designing a Web page using HTML tags 

 Preparing <APPLET> tag 

 Incorporating <APPLET> tag into the Web page. 

 Creating HTML file. 

 Testing the applet code. 

  

5.3.4 Building Applet Code  

Applet program uses the services of two classes, namely, Applet and 

Graphics class from the Java class library. The services of two classes are 

 Applet class and 

The Applet class, which is contained in the java.applet package 

provides life and behavior to the applet through its methods such as init( ), 

start( ) and paint( ).   The Applet class maintains the lifecycle of an applet. 

 Graphics class 

The paint( ) method of the applet  class, when it is called actually 

display the results of the applet program on the screen. The output may be text, 

graphics, or sound. The paint( ) method require graphics object as an argument 

is declared  by the Graphics class. The general form of paint( ) method is   

public void paint (Graphics g)  

This requires that the applet program import the java.awt that contains 

the Graphics class. 



189 

The general form of building applet program is  

import java.awt.*; 

import java.applet.*; 

---------------------- 

---------------------- 

public class appletclassname extends Applet 

{ 

-------------------- 

 -------------------- 

 public void paint ( Graphics g) 

 { 

  ------------------ // Applet operations code  

  ------------------ 

} 

------------------ 

------------------ 

} 

  The appletclassname is the main class for the applet. When the applet 

is loaded, Java creates an instance of this class, and then a series of Applet class 

methods are called on that instance to execute the program. 

5.3.5  Applet Life Cycle   

Every Java applet inherits a set of default behavior s from the Applet 

class. The Applet class maintains the lifecycle of an applet as shown in 

Fig.5.3.3.  The applet states are 

 Born or Initialization state 

 Running state 

 Idle state 

 Dead or Destroyed state 

        Begin  

              (Load Applet)             Initialization  

 

         start ( )      

         stop ( ) 

           Display                 Stopped

  

            paint ( )      start ( )           

           Destroy( ) 

 

           Destroyed   End 

Run Idle 

Dead 

Born 



190 

Fig. 5.3.3 Applet Life Cycle  

Born or Initialization State 

Applet enters the initialization state when it is first loaded.  This is 

achieved by calling the init() method of  Applet class. The   applet is born. At 

this stage, we may do the following, if required 

 Create objects needed by the applet 

 Set up initial values 

 Load images or fonts 

 Set up colors 

The initialization occurs only once in the applet’s life cycle. To provide 

any of the behaviors mentioned above, we must override the init( ) method. 

public void init( ) 

{ 

----------------- (Action) 

----------------- 

} 

Running state 

Applet enters the running state when the system calls the start( ) 

method of applet class. This occurs automatically after the applet is initialized. 

Starting can also occur if the applet is already in ‘stopped’ (idle) state.  

public void start( ) 

{ 

----------------- (Action) 

----------------- 

} 

 

For example we may leave the web page temporarily to another page 

and return back to the page. This again starts the applet running. The start( ) 

method may be called more than once. We may override the start( ) method to 

create a thread to control the applet. 

Idle or Stopped state 

An applet becomes idle when it is stopped from running. Stopping 

occurs automatically when we leave the page containing the currently running 

applet. We can also do so by calling the stop() method explicitly. If we use a 

thread to run the applet, then we must use stop() method to terminate the 

thread. We can achieve this by overriding the stop() method. 

public void stop( ) 

{ 

----------------- (Action) 

----------------- 

} 



191 

Dead or Destroyed state 

An applet is said to be dead when it is removed from memory. This occurs 

automatically by invoking the destroy() method when we quit the browser. 

Destroying stage occurs only once in the applet’s lifecycle. If the applet has 

created any resources, like threads, we may override the destroy() method to 

clean up these resources. 

public void destroy( ) 

{ 

----------------- (Action) 

----------------- 

} 

 

Display State 

Applet moves to the display state whenever it has to perform some 

output operations on the screen. This happened immediately after the applet 

enters into the running state. The paint( ) method is called to display the 

output. We must override paint( ) method if we want  to be displayed on the 

screen. 

public void paint ( Graphics g) 

{ 

----------------- (Display statements) 

----------------- 

} 

 

5.3.6 Creating An Executable Applet  

Executable applet is means that .class file of the applet, which is 

generated by compiling the source program of the applet.  Compiling applet 

program is same as compiling stand- alone application. We use Java compiler ( 

javac ) to compile the applet program. The following steps are required for 

compiling the applet program. 

 Move to the directory containing the source code and type the 

following command: 

> javac appletfilename.java 

 The compiled output file called appletfilename.class is placed in the 

same directory  as the source. 

 If any error message is received, then we must check and correct the 

errors, and  compile the applet program again 

5.3.7 Designing A Web Page  

A Web page or HTML page or HTML document is made up of text and 

HTML tags that can be interpreted (run) by a Web browser or applet viewer. 



192 

Web pages are stored using file extension .html, and it should be stored in the 

same directory as compiled code of the applets. 

A Web page is marked by an opening HTML tag <HTML> and a closing 

HTML tag </HTML> and is divided into three sections are 

 Comment section (optional) 

 Head section (optional) 

 Body section 

Comment Section 

Comment section contains comments about Web page. A comment line 

begins with <! And end with a >. Web browser will ignore the text enclosed 

between them. Comments are optional and can be included anywhere in the 

Web page. 

Head Section 

The head section is defined with a starting <HEAD> tag and a closing 

</HEAD> tag. Head section usually contains a title for web page. The text 

enclosed in the tags <TITLE> and </TITLE> will appear in the title bar of the 

Web browser when it displays the page. The head section is also optional. A 

slash ( / ) in a tag indicates the end of that tag section. 

Body section 

Body section contains the entire information about the web page and its 

behavior. 

5.3.8 Applet Tag  

We have included a pair of <APPLET….> and </APPLET> tags in the 

body section of HTML tags. The <APPLET….> tag supplies the name of the 

applet to be loaded and tells the browser how much space applet requires. The 

ellipsis in the tag<APPLET..> indicates that it contains certain attributes that 

must be specified. The minimum requirement of <APPLET….> tag specifies 

three things. 

 Name of the applet 

 Width of the applet (in pixels) 

 Height of the applet (in pixels) 

The general form of APPLET tag is  

  <APPLET 

   CODE  = appletfilename.class 

   WIDTH = (in pixels) 

   HEIGHT = (in pixels) 

         ----------------------- 

----------------------- > 

  </APPLET> 

 



193 

5.3.9 Adding Applet To Html File  

Adding applet to a HTML document, we should follow the following steps: 

 Insert an <APPLET>tag at an appropriate place in the web page. 

 Specify the name of the applet’s .class file. 

 If the  .class file not in the current directory, use the codebase 

parameter to specify 

o The relative path if file on the local system, or 

o The URL of the directory containing the file, if it is on a 

remote system. 

 Specify the space required for display of the applet in terms of width 

and height in pixels. 

 Add any user-defined parameters using <PARAM>tags. 

 Add alternate HTML text to be displayed when a non-Java browser 

is used. 

 Close the applet declaration with the <APPLET> tag. 

5.3.10 Running The Applet  

To run an applet, it requires the following tools. 

 Java-Enabled Web Browser (such as Internet Explorer or Hot Java) 

 Java appletviewer 

Java-Enabled Web Browser  

If we use a java-enabled Web browser for running the applet program, 

we will be able to see the entire Web page containing the applet. 

Java appletviewer 

If we use a Java appletviewer for running the applet program, we will 

only see the applet output. The appletviewer is available as a part of the Java 

Development Kit. We can use it to run our applet as follows: 

  >appletviewer appletfilename.html 

The argument of the appletviewer is not the .java file or the .class file, but 

rather .html file 

 

 

 

 

 

 

 

 

 

 



194 

5.3.11 More About Applet Tag 

The general form of <APPLET> tag is 

 <APPLET 

[CODEBASE =codebaseURL] 

  CODE  =  appletfilename.class 

  [ALT  = alternateText] 

  [NAME = applet_instance_name] 

  WIDTH = (in pixels) 

  HEIGHT = (in pixels) 

  [ALIGN =alignment] 

  [VSPACE =pixels] 

  [HSPACE =pixel] 

 > 

[ <PARAM NAME =    name1 VALUE     =     value1 >] 

[ <PARAM NAME =    name2 VALUE     =     value2 >] 

----------------- 

----------------- 

[Text to be displayed in the absence of Java] 

 </APPLET> 

The attributes shown inside  [ ]  indicate optional. 

5.3.12 Passing Parameters To Applets  

We can supply user-defined parameters to an applet using 

<PARAM…> tags. Each <PARAM…> tag has a name attribute such as color, 

and value attribute such as red. Inside the applet code, the applet can refer to 

that parameter by name to find its value. For example, we can change the color 

of the text displayed to red by an applet using <PARAM…> tag as follows: 

<APPLET  ….> 

<PARAM NAME = “color” VALUE = “red”> 

</APPLET> 

To set up and handle parameters we need to do two things: 

 Include appropriate <PARAM…>tags in the HTML document. 

 Provide code in the applet to parse these parameters 

The parameters are passed to an applet when it is loaded. We can define 

the init ( ) method in the applet to get hold of the parameters defined in the 

<PARAM> tags. This is done by using the getParameter ( ) method, which 

takes one string argument containing the value of that parameter. 

Example Program: Program for Passing parameters from HTML to Applets 

import java.awt.*; 

import java.applet.*; 



195 

public class paramapplet extends Applet 

{  String s; 

 public void init() 

   { 

           s = getParameter("str"); 

           if(s = = null) 

              s = "Java"; 

           s = "Hello"+s; 

 } 

      public void paint(Graphics g) 

      { 

         g.drawString(s,20,200); 

      }    

  } 

When run applet program using the following HTML file displays the output as 

given below. 

<html> 

<applet 

code = paramapplet.class  

width =300 

height=200 

> 

<param name="str" value="Applet"> 

</applet> 

</html> 

Output Of Program 

  

 

 

 

 

 

 

 

 

 

 

 

 

Applet Viewer : paramapplet.class 
 

 

     

 

  Hello Applet 
 

 

 

 

 

   appletloader.started 



196 

5.3.13 Aligning The Display  

We can align the output of the applet using the ALIGN attribute. This 

attribute can have one of the nine values: 

     LEFT, RIGHT, TOP, TEXT TOP, MIDDLE, ABSMIDDLE, 

BASELINE, BOTTOM, ABSBOTTOM 

For Example 

ALIGN = RIGHT   - will display the output at the right margin of the 

page 

5.3.14 More About HTMLTags  

The number of HTML tags that can be used to control the style and 

format of the display in the web pages as shown in a Table 5.3.1. 

Table 5.3.1. HTML tags and its Function 

Tag     Function 

<HTML> ------ </HTML>   To indicate the beginning and end of the 

HTML File. 

<HEAD> ------ </HEAD> To include the details about the web page 

and also contains <TITLE> tag 

<TITLE> ------ </TITLE> To display the text in the title bar. 

<BODY> ------ </BODY>  To include the main text of the web page. 

<CENTER> ---- </CENTER> To place the text in the center of the page. 

<APPLET …> ---- </APPLET> To declare the applet details as its 

attributes and also it is used to declare 

user-defined Parameters. 

<PARAM ….>  To supply the user-defined parameter. 

<! …….> To add comments. It is ignored by the 

Web-browser. It may be placed any where 

in a web page. 

<B> -----</B> To display text as BOLD type. 

<BR> To skip a line. 

<P> This tag move to the next line and start a 

paragraph of text. 

<FONT ….> ----</FONT> To change the color and size of the text. 

<HR> To draw horizontal line. 

<H1>----</H1> To display the headings. The header tag 

<H1> will have largest size and tag <H6> 

will have smallest size. 

<H6>-----<H6> 

5.3.15 Displaying Numerical Values  

In applet, we can display numerical values by converting then into 

strings and then using the drawString( ) method of Graphics class. We can do 



197 

this easily by using valueOf() method of String class . Program illustrate how 

an applet handles numerical values. 

Example Program :Program for displaying numerical values 

import java.awt.*; 

import java.applet.*; 

public class Numvalues extends Applet 

{ 

public void paint(Graphics g) 

{ 

int a =10; 

int b=20; 

int s = a + b; 

String s1 = "sum:" + string.valueOf(sum); 

g.drawString(s, 100, 100); 

} 

} 

When run applet program using the following HTML file displays the output as 

given below. 

<html> 

<applet 

code = GetUserIn.class 

width =300 

height=200 

> 

</applet> 

</html> 

Output: 

 

 

 

 

 

 

 

 

 

 

 

 

Applet Viewer : Numvalues.class 
 

 

    Applet 
 

Sum : 30 
 

 

 

   appletloader.started 



198 

5.3.16 Getting Input From The User 

Applets work in a graphical environment. Therefore, applets treat inputs 

as text. We must create area of the screen in which user can type and edit input 

items. we can do by suing the TextField class of the applet package. Once text 

fields are created for receiving input, we can type values in the field and edit 

them if need. 

Receive the items from field for calculation. They need to convert to the 

corresponding data type. The results are then converted back to string for 

display. Program shows this implementation. 

Example Program: Program for interactive input to an applet 

import java.awt.*; 

import java.applet.*; 

public class GetUserIn extends Applet 

{ 

TextField t1, t2; 

public void init() 

{ 

t1 = new TextField(10); 

t2 = new TextField(10); 

add(t1); 

add(t2); 

t1.setText("o"); 

t2.setText("o"); 

} 

public void paint(Graphics g) 

{ 

int x=0, y=0,z=0; 

String s1,s2,s; 

g.drawString("Input a number in each box", 10, 50); 

try 

{ 

s1 = t1.getText(); 

x = Integer.parseInt(s1); 

s2 = t2.getText(); 

y = Integer.parseInt(s2); 

} 

catch(Exception e) 

{ 

} 



199 

z = x+y; 

s= String.valueOf(z); 

g.drawString("The Sum is : ",10, 75); 

g.drawString(s,100,75); 

} 

public boolean action(Event ev , Object ob) 

{ 

   repaint(); 

   return true; 

} 

} 

Run the applet GetUserIn using the following steps: 

 Type and save the program (.java file) 

 Compile the applet using java compiler (javac) it generate .class  file 

 Write a HTML document (.html file) 

<html> 

<applet 

code = GetUserIn.class 

width =300 

height=200 

> 

</applet> 

</html> 

 Use the appletviewer to display the results 

Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applet Viewer : GetUserIn.class 
 

    Applet 
 

 

 
 

Input a number in each box 

 

The Sum is :   30 

 

 

   appletloader.started 

10 20 



200 

5.3.17 Self Assessment Questions 

Fill in the blank 

1.  The ____________method of the Applet class which displays result of the 

applet code on the screen. 

2.   HTML stands for _________________________. 

3.  __________class in Java.awt.package, which allows you to type the 

information from the keyword 

True or false 

1. Remote applet, which is imported from the local system. 

2. Applet does not use the main( ) method for initiating the execution of the 

code. 

3. Internet explores does not support for executing applet program. 

Multiple choices 

1. What method is used to initiative the execution of 

a) stop()  b) print()  

c) stop()  d) init() 

2. Which tag is used to execute the applet program 

a) <body>  b) <applet>  

c) <head>  d) <center> 

Short Answer 

1.  Define local applet. 

________________________________________________________________

________________________________________________________________ 

5.4 Graphics Programming 

5.4.1 Introduction 

Java   Applet has its own area of the screen known as canvas, where it 

creates its display. The size of an applet’s space is decided by the attributes of 

the <APPLET…> tag.  We can write Java applets that draw lines, figures, 

images, and text in different fonts and styles. 

  A Java applet draws graphical image inside its space using the 

coordinate system as shown in Fig.5.4.1. Java, coordinate system has the origin 

(0,0) in the upper-left corner. The positive x values are to the right, and positive 

y values are to the bottom. The values of coordinates x and y are in pixels. 

 

 

 

 

 

 

 



201 

 

 
       (20,20) 

 

 

 

 

 

 

 

 

 

 

 

               (60,60) 

           x 

  (0, 0)                                (80, 0) 

 

 

 

                y 

   

 

 

 

 

 (0, 80)            (80, 80)

  

 

 

Fig.5.4.1 Coordinate system 

5.4.2 The Graphics Class  

Java‘s Graphics class includes methods for drawing many different 

types of shapes, from simple lines to polygons to text in a variety of fonts.  To 

draw a shape on the screen, we may call one of the methods available in the 

Graphics class. Table 5.4.1 shows the commonly used drawing methods 

available in the Graphics class. All the drawing methods have arguments 

representing end points, corners, or starting locations of a shape as values in the 

applet’s coordinate system. To draw a shape, we only need to use the 

appropriate method with the required arguments. 

  Table 5.4.1 Drawing methods of the Graphics class 

 Method   Description 

clearRect ( )   Erases a rectangular area of the canvas. 

copyArea ( )  Copies a rectangular area of the canvas to another area. 

drawArc ( )   Draws a hollow arc. 

drawLine ( )   Draws a straight line. 

drawOval ( )   Draws a hollow oval. 

drawPolygon ( )  Draws a hollow polygon 

drawRect ( )   Draws a hollow rectangle. 

drawRoundRect ( )  Draws a hollow rectangle with rounded corner. 

drawstring ( )   Displays a text string. 

fillArc ( )   Draws a filled arc. 

fillOval ( )   Draws a filled oval. 

fillPolygon ( )   Draws a filled polygon 



202 

fillRect ( )   Draws a filled rectangle. 

fillRoundRect ( )  Draws a filled rectangle with rounded corners. 

getColor ( )   Retrieves the current drawing color. 

getFont ( )   Retrieves the currently used font. 

getFontMetrics ( )  Retrieves information about the current font 

setColor ( )   Set the drawing color. 

setFont ( )   Set the font. 

 

5.4.3 Lines And Rectangles  

The drawLine ( ) method  is used to draw a line, it takes two pair of 

coordinates, (x1, y1) and (x2, y2) as arguments and draws a line between them. 

The general form is  

  g.drawLine(x1, y1, x2, y2); 

Example: 

  g.drawLine( 10, 10, 50, 50); 

The g is the Graphics Object passed to paint ( ) method. 

The drawRect ( ) method is used  to draw a rectangle, it takes four 

arguments, the first two represent the x and y coordinates of the top left corner 

of the rectangle, and remaining two represent width and height of the rectangle. 

The general form is  

  g.drawRect(x, y, width, height); 

Example: 

  g.drawRect(20, 60,     30 ,            20); 

 

         (  x,   y )      width height 

  top left corner   

     

 

 

 

          Rectangle 

The drawRect ( ) method draws only the outline of a box. We can draw 

a solid box using the method fillRect ( ) method. This also takes four 

parameters, the first two represent the x and y coordinates of the top left corner 

of the rectangle, and remaining two represent width and height of the rectangle. 

The general form is  

 

  g.fillRect(x, y, width, height); 

 



203 

Example: 

  g.fillRect(20, 60,     30 ,            20); 

 

         (  x,   y )      width height 

  starting point   

  

 

    

 

      Filled Rectangle 

We can also draw rounded edges rectangles, using the methods 

drawRoundRect ( ) and fillRoundRect ( ). These two methods are same as 

drawRect ( ) and fillRect ( ) methods except that they take extra two arguments 

representing the width and height of the angle of corner.The general forms are  

 

g.drawRoundRect(x, y, width, height , width of angle of corner, 

 height  of angle of corner); 

g.fillRoundRect(x, y, width, height, width of angle of corner, 

        height  of angle of corner); 

 

Example: 

g.drawRoundRect(20, 60, 30 ,  20, 10, 10); 

   

 

 

 

      Rounded Rectangle 

g.fillRoundRect(20, 60, 30 , 20, 10, 10); 

 

 

 

 

Example Program: Program for Hut Drawing Using Lines, Rectangles and 

    FillRectangle 

 import java.awt.*; 

import java.applet.*; 

public class hut extends Applet 

{ 

    public void paint(Graphics g) 



204 

      { 

 g.drawRect(100,100,80,80); 

 g.drawLine(100,100, 140,50); 

   g.drawLine(140,50 ,180,100); 

   g.drawRect(130,140, 20,40); 

   g.fillRect(130,140,20,40); 

      } 

} 

When run applet program using the following HTML file display the output as 

given below. 

<html> 

<applet 

code = hut.class 

width =300 

height=200 

> 

</applet> 

</html> 

 

Output 

 

5.4.4 Circles And Ellipses 

The drawOval() method can be used to draw a circle or an ellipse. The 

drawOval ( ) method takes four arguments, The first two represent the top left 

corner of the imaginary rectangle and other two represent the width and height 

of the oval itself. If the width and height are same, the oval becomes a circle. 

The general form is  

   drawOval(x, y, width, height); 

 



205 

Example: 

   drawOval(20, 20, 160, 120); 

    

        (20, 20) 

 

           height  (120) 

 

      width(160)   

The drawOval ( ) method only draws outline of an oval.  We can draws 

a solid oval by using fillOval ( ) method. The fillOval ( ) method takes four 

arguments. The first two represent the top left corner of the imaginary rectangle 

and other two represent the width and height of the filled oval itself. If the 

width and height are same, the filled oval becomes a filled circle.  

The general form is  

   fillOval(x, y, width, height); 

Example: 

   fillOval(20, 20, 160, 120); 

          (20, 20) 

 

           height  (120) 

 

      width(160)   

We can draw an object using a color object as follows. 

 g.setColor(Color.green);  

 

After setting the color, all drawing operations will occur in that color. 

5.4.5 Drawing Arcs  

The drawArc ( ) method is used to draw arcs.  The drawArc ( ) method 

takes six arguments, the first four are the same as the arguments of drawOval ( 

) method  and last two represent the starting angle of the arc and the number of 

degrees around the arc. 

In drawing arcs, java actually formulates the arc as an oval and then 

draws only a part of it as dictated by last two arguments. Java consider the 3 O’ 

clock position as zero degree position and degree increase in anti-clockwise 

direction as shown in Fig.5.4.2.  So, to draw an arc from 12.00 O’ clock 

position to 6.00 O’ clock position, the starting angle would be 90o, and the 

sweep angle would be 180o. 

 

 

 



206 

                 90 o 

    

 

 

    180 o 

                 0 o  

 

 

              270 o 

Fig.5.4.2. Arc as a part of an oval      Fig.5.4.3. Drawing an arc in clockwise 

We can also draw an arc in backward direction by specifying the sweep 

angle as negative. For example, the last angle is –135o and the starting angle is 

35o, then the arc is drawn as shown in Fig.5.4.3. We can use fillArc ( ) method 

to fill the arc. 

Example Program: Program for Human Face Drawing  

import java.awt.*; 

import java.applet.*; 

public class face extends Applet 

{ 

     public void paint(Graphics g) 

     { 

  g.drawOval(40,40,120,150); 

  g.drawOval(57,75,30,20); 

  g.drawOval(110,75,30,20); 

  g.fillOval(68,81,10,10); 

  g.fillOval(121,81,10,10); 

  g.drawOval(85,100,30,30); 

  g.fillArc(60,125,80,40,180,180); 

  g.drawOval(25,92,15,30); 

  g.drawOval(160,92,15,30); 

         } 

} 

When run applet program using the following HTML file display the output as 

given below. 

<html> 

<applet 

code = face.class 

width =300 

height=200 

 

      180 o 

 35 o

 

 

 

 

 

 

 

 

 

 

 

      -

135 o 

       



207 

> 

</applet> 

</html> 

Output 

 

5.4.6 Drawing Polygons  

Polygons are shapes with many sides. The drawPolygon ( ) method is 

used to draw a polygon. This method takes three arguments: 

 An array of integers containing x coordinates. 

 An array of integers containing y coordinates. 

 An integer for the total number of points. 

It is obvious that x and y arrays should be of the equal size and we must repeat 

the first point at the end of the array for closing the polygon.  

We can also draw a filled polygon by using the fillPolygon ( ) method. 

Second, way of calling the methods drawPolygon ( ) and fillPolygon ( ) 

is to use a Polygon object. The Polygon class enables us treat the polygon as an 

object. This approach involves the following steps. 

 Defining x coordinate values as an array. 

 Defining y coordinate values as an array. 

 Defining the number of points n. 

 Creating a Polygon object and initializing it with the above x, y 

and n  values. 

 Calling the method drawPolygon ( ) or fillPolygon ( ) with the 

 Polygon object as argument. 

The Polygon class is useful to add points to the Polygon. 

We first create an empty polygon and then add points to it one another. 

Finally call drawPolygon ( ) method using the poly object as an argument to 

complete the process of drawing the polygon. 

Example Program:  Program for drawing polygon 



208 

import java.awt.*; 

import java.applet.*; 

public class poly extends Applet 

{ 

  int x1[]={20,120,220,20}; 

 int y1[]={20,120,20,20}; 

  int n1=4; 

  int x2[]={140,220,220,140}; 

  int y2[]={140,20,220,140}; 

  int n2=4; 

 public void paint(Graphics g) 

 { 

    g.drawPolygon(x1,y1,n1); 

    g.fillPolygon(x2,y2,n2); 

 } 

} 

When run applet program using the following HTML file display the output as 

given below. 

<html> 

<applet 

code = poly.class 

width =300 

height=200 

> 

</applet> 

</html> 

Output 

 



209 

5.4.7 Line Graphs  

We can design applets to draw line graphs to illustrate graphically the 

relationship between two variables. 

import java.awt.*; 

import java.applet.*; 

public class linegraph extends Applet 

{ 

  int x1[]={0,60,120,180,240,300,360, 400}; 

 int y1[]={400, 280,220,140,60, 60,100,220}; 

  int n1=x1.length; 

  public void paint(Graphics g) 

  { 

    g.drawPolygon(x1,y1,n1); 

   } 

} 

When run applet program using the following HTML file display the output as 

given below. 

<html> 

<applet 

code = linegraph.class 

width =300 

height=200 

> 

</applet> 

</html> 

Output 

 



210 

5.4.8 Using Control Loops In Applet  

We can use all control structures in an applet. 

import java.awt.*; 

import java.applet.*; 

public class forloop extends Applet 

{ 

    public void paint(Graphics g) 

   { 

   for(int i = 0; i <= 3; i++) 

   { 

    if((i % 2) == 0 ) 

       g.drawRoundRect(120, i*60+5, 30, 

30,10,10); 

     else 

    g.fillRoundRect(120, i*60+5, 30, 30, 5, 5); 

    }  

  } 

} 

When run applet program using the following HTML file display the output as 

given below. 

<html> 

<applet 

code = linegraph.class 

width =300 

height=200 

> 

</applet> 

</html> 

Output 

 



211 

5.4.9 Drawing Bar Charts 

Applets can be designed to display bar charts, which are commonly 

used in comparative of data. 

The method getParameter( ) is used to fetch the data values from the 

HTML file. The getParameter( ) returns only string values and therefore we 

use the wrapper class method parseInt to convert strings to integer values.  

Example Program: Program to draw a barchart 

import java.awt.*; 

import java.applet.*; 

public class barchart extends Applet 

{ 

 int n=0; 

 String label[]; 

 int value[]; 

 public void init() 

   { 

         try 

    { 

      n = Integer.parseInt(getParameter("columns")); 

      label = new String[n]; 

      value = new int[n]; 

     label[0] = getParameter("label1"); 

     label[1] = getParameter("label2"); 

     label[2] = getParameter("label3"); 

      label[3] = g etParameter("label4"); 

      value[0] = Integer.parseInt(getParameter("c1")); 

 value[1] = Integer.parseInt(getParameter("c2")); 

     value[2] = Integer.parseInt(getParameter("c3")); 

       value[3] = Integer.parseInt(getParameter("c4")); 

         } 

        catch(NumberFormatException e) 

        {  } 

     } 

     public void paint(Graphics g) 

{ 

          for(int i=0;i<n;i++) 

         { 

       g.drawString(label[i],20,i*50+30); 



212 

        g.fillRect(50,i*50+10,value[i],40); 

             } 

      } 

      } 

When run applet program using the following HTML file display the output as 

given below. 

<html> 

<applet code=barchart.class  width=500 height=500> 

<param name="columns" value="4"> 

<param name="c1" value="110"> 

<param name="c2" value="150"> 

<param name="c3" value="100"> 

<param name="c4" value="170"> 

<param name="label1" value="2001"> 

<param name="label2" value="2002"> 

<param name="label3" value="2003"> 

<param name="label4" value="2004"> 

</applet> 

</html> 

Output 

 

5.4.10 Self Assessment Questions 

Fill in the blank 

1.__________________ method in Graphic class which is used to draw both  

square and  rectangle pictures. 

2. Polygons are shapes with ___________sides.  

True or False 

1. drawPolygon( ) method is one of the method of Graphics class. 

2. Method getParameter( ) return all the kinds of values. 



213 

Multiple choices 

1. Which method is used to draw circle  as well as ovals 

a) drawLine( )  b) fillrect( )  

c) drawOval( )  d) drawstring()  

Short Answer 

1. How many pair of coordinates used in drawLine( ) method? 

________________________________________________________________

________________________________________________________________ 

5.5 Managing Input / Output Files 

5.5.1 Introduction  

The variables and arrays are used for storing data inside the programs. 

This approach yields the following problems. 

 The data is lost either when variable goes out of scope or when 

the program is terminated. 

 It is difficult to handle large amount of data using variables and 

arrays. 

We can overcome these problems by storing data on secondary storage 

devices such as floppy disks or hard disks. The data is stored in these devices 

using the concept of files. 

A file is a collection of related records. A record is composed of fields 

and a field is a group of characters as shown in Fig.5.5.1. Storing and managing 

data using files is called as file processing which includes tasks such as creating 

files, updating files and manipulation of data. 

 

         Field(4    (Characters)

  

 

         Record (3 Fields) 

 

 

         File (3 Records) 

 

 

 

Marks Field 

        Roll No. Field  

 

Name Field  

 

Fig. 5.5.1 Data representation in Java files 

0 0 0 0 0 0   0 0 

J o h n 

    John                  1001            50.00 

    John                  1001            50.00 

    Kala                  1002            60.00 

   Mani                  1003            57.00 



214 

Java supports many features for managing input and output of data using 

files. Reading and writing of data in a file can be done at the level of bytes or 

characters or fields. Java also provides capabilities to read and write class 

object directly. The process of reading and writing objects is called object 

serialization. 

5.5.2 Concepts Of Streams 

In file processing, input refers to the flow of data into a program and 

output means the flow of data out of a program. Input to a program may come 

from key board, the mouse, the memory, the disk or another program and 

output from a program may go to the screen, the printer, memory, the disk, or 

another program (See Fig 5.5.2). 

Java uses the concept of streams to represent the ordered sequence of 

data. A stream presents a uniform, easy-to-use, object-oriented interface 

between the program and the input/output devices. 

     Sources                      Destinations                    

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5.2 Relationship of Java program with I/O devices 

Java streams are classified into two basic types. 

 Input stream extracts (i.e. reads) data from the source (file) and sends it 

to the program. 

 Output stream takes data from the program and sends (i.e. writes) it to 

destination (file). 

Fig. 5.5.3 illustrates the use of input and output streams. In both the cases, the 

program does not know the details of end points (i.e. source and destination). 

 

 

 

 

 

 

Keyboard Screen 

Mouse Printer 

Memory Memory 

Disk Disk 

Network Network 

Java 

Program 



215 

    Input stream          Reads 

 

    (i) Reading data into a program 

 

           Writes       Output stream 

 

  

   (ii) Writing data to a destination 

  Fig. 5.5.3 Using input and output streams 

5.5.3 Stream Classes  

The java.io package contains a large number of stream classes that 

provide capabilities for processing all types of data. These classes may be 

categorized into two groups based on the data type on which type operate. 

 Byte stream classes that provide support for handling I/O operations on 

bytes. 

 Character stream classes that provide support for managing I/O 

operations on characters. 

Fig. 5.5.4 shows how stream classes are grouped based on their functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig.5.5.4 Classification of Java Stream Classes 

5.5.4 Byte Stream Classes  

Java provides two kinds of byte stream classes: Input stream classes 

and Output stream classes. 

Source Program 

Destination Program 

Java 

Stream Classes 

Byte Stream 

Classes 

Character 

Stream Classes 

Input Stream 

Classes 

Output Stream 

Classes 

Reader 

Classes 

Writer 

Classes 

Memory File Pipe Memory File Pipe 



216 

Input Stream Classes 

Input stream classes that are used to read 8-bit bytes include super class 

known as InputStream and a number of subclasses for supporting various 

input-related functions.  Fig 5.5.5 shows the class hierarchy of input stream 

classes. The InputStream class defines methods for performing input functions 

(See Table 5.5.1) such as 

 Reading bytes 

 Closing streams 

 Marking positions in streams 

 Skipping ahead in a stream 

 Finding the number of bytes in a stream 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5.5 Hierarchy of input stream classes 

The class DataInputStream extends FilterInputStream and 

implements the interface DataInput . Therefore, the DataInputStream class 

implements the methods described in DataInput in addition to using the 

methods of InputStream class. The DataInput interface contains the 

following methods: 

 readShort( ) 

 readInt( ) 

 readLong( ) 

Objec

t 

Input Stream 

FileInputStream 
SequenceInputStream 

PipeInputStream ObjectInputStream 

ByteArrayInputStream StringBufferInputStream 

FilterInputStream 

PushBackInputStream BufferedInputStream 

DataInputStream 

DataInput 



217 

 readFloat( ) 

 readUTF( ) 

 readDouble( ) 

 readLine( ) 

 readChar( ) 

 readBoolean( ) 

Table 5.5.1 InputStream Methods 

 Method   Description 

 read( )    Reads a byte from the input stream 

 read(byte b[ ])   Reads an array of bytes into b 

 read(byte b[ ], int n, int m) Reads m bytes into b starting from nth byte  

 available( )   Gives number of bytes available in the input 

 skip( n )  Skips over n bytes from the input stream 

 reset( )   Goes back to the beginning of the stream 

 close( )   Closes the input stream 

Output Stream Classes 

Output stream classes are derived from the base class OutputStream as 

shown in Fig 5.5.6. The OutputStream is an abstract class and therefore we 

cannot instantiate it. The several subclasses of the Outputstream can be used 

for performing the output operations. Table 5.5.2 gives a description of all the 

methods defined by the OutputStream class. The OutputStream includes 

methods that are designed to perform the following tasks: 

 Writing bytes 

 Closing streams 

 Flushing streams 

The class DataOutputStream, counterpart of DataInputStream, 

implements the interface DataOutput. Therefore, the DataOutputStream 

class implements the methods described in DataOutput in addition to using the 

methods of OutputStream class. The DataOutput interface contains the 

following methods: 

 writeShort( ) 

 writeInt( ) 

 writeLong( ) 

 writeFloat( ) 

 writeUTF( ) 

 writeDouble( ) 

 writeLine( ) 

 writeChar( ) 

 writeBoolean( )      object 

 



218 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Fig.5.5.6 Hierarchy of output stream classes 

Table 5.5.2 OutputStream Methods 

Method   Description 

write( )   Writes a byte to the output stream 

write(byte b[ ])  Writes all bytes in the array b to the output 

stream 

write(byte b[ ], int n, int m) Writes m bytes from array b starting from nth byte  

close( )   Closes the output stream 

flush( )   Flushes the output stream 

 

5.5.5 Character Stream Classes  

Character streams can be used to read and write 16-bit Unicode characters. 

There are two kinds of character stream classes: Reader stream classes and 

Writer stream classes. 

Reader Stream Classes 

 Reader stream classes are designed to read character from the files. The 

Reader class is the base class for all other classes in this group as shown in 

Fig. 5.5.7. The Reader class contains methods that are identical to those 

FileOutputStream ObjectOutputStream 

PipedOutputStream 

FilterOutputStream 

ByteArrayOutputStream 

BufferedOutputStream PushbackOutputStream 

DataOutputStream 

DataOutput 

OutputStream 



219 

available in the InputStream class except is designed to handle characters (See 

Table 5.5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 5.5.7 Hierarchy of reader stream classes 

Writer Stream Classes 

 The writer stream classes are designed to perform all output operations 

on files. The Writer stream classes are designed to write characters. The 

Write class is an abstract class, which acts as a base class for all the other writer 

stream classes as shown in Fig 5.5.8. This base class contains methods that are 

identical to those available in the OutputStream class except is designed to 

handle characters (See Table 5.5.2). 

 

 

 

 

 

 

 

 

 

 

 

Reader 

BufferedReader StringReader 

CharArrayReader PipeReader 

FilterReader InputstreamReader 

FileReader PushBackReader 

Object 



220 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5.8 Hierarchy of writer stream classes 

5.5.6 Using Stream  

All the classes are known as I/O classes, not all of them are used for 

reading and writing operations only. Some perform operations such as 

buffering, filtering, data conversion, counting and concatenation while carrying 

out I/O tasks. 

5.5.7 Other Useful I/O Classes  

The java.io package supports many other classes for performing certain 

specialized functions. They include among others: 

 Random Access File 

 Stream Tokenizer 

The RandomAccessFile enables us to read and write bytes, text and 

Java data types to any location in a file (when used with appropriate access 

permissions). This class extends object class and implements DataInput and 

DataOutput interfaces as shown in Fig.5.5.9. This forces the 

RandomAccessFile  to implement the methods described in both these 

interfaces. 

The class StreamTokenizer, a subclass of object can be used for 

breaking up a stream of text from an input text file into meaningful pieces 

called tokens. The behaviour of the StreamTokenizer class is similar to that of 

Object 

Reader 

BufferedReader StringReader 

CharArrayReader PipeReader 

FilterReader InputstreamReader 

OutputStreamWriter 

FileWriter 



221 

the StringTokenizer (class of java.util package) that breaks a string into its 

component tokens. 

 

        Interface             Interface  

 

 

 

 

 Fig. 5.5.9 Implementation of the RandomAccessFile 

5.5.8 Using The File Classes  

The java.io package includes a class known as the File class that 

provides support for creating files and directories. The class includes several 

constructors for instantiating the File objects. This class also contains several 

methods for supporting the operations such as 

 Creating a file 

 Opening a file 

 Closing a file 

 Deleting a file 

 Getting the name of a file 

 Getting the size of a file 

 Checking the existence of a file 

 Renaming a file 

 Checking whether the file is writable 

 Checking whether the file is readable 

5.5.9 Input / Output Exceptions  

When creating files and performing I/O operations on them, the system 

may generate I/O related exceptions. The basic I/O related exception classes 

and their functions are given in Table.5.5.4. 

Each I/O stream statement or group of I/O statements must have an 

exception handler around it as shown below or the method must declare that it 

throws an IOException. 

  try 

  { 

   --------------- 

   --------------- // I/O statements 

--------------- 

  } 

  catch( IOException    e) 

  { 

Object 

DataInput DataOutput 

RandomAccessFile 



222 

   --------------- // Message output statement 

 } 

Table 5.5.4 Important I/O Exception Classes and their Functions 

I/O Exception class  Function 

EOFException   Signals that end of the file or end of streamhas been 

    reached unexpectedly during input 

FileNotFoundException  Informs that a file could not be found 

InterruptedIOException  Warns that an I/O operations has been interrupted 

IOException           Signals that an I/O exception of some sort has occurred 

 

5.5.10 Creation Of Files  

To create and use a disk file, it is necessary to decide the following 

about the file and its intended purpose: 

 Suitable name for the file 

 Data type to be stored 

 Purpose (reading, writing, or updating) 

 Method of creating the file 

A filename is unique string of characters that helps identify a file on the 

disk. The length of a filename and characters allowed are dependent on the OS 

on which the Java program is executed. A filename may contain two parts, a 

primary name and an optional period with extension.  

Examples: 

Input.data salary 

Test.doc student.txt 

Inventory rand.dat 

Data type is important to decide the type of file stream classes to be 

used for handling the data. We should decide whether the data to be handled is 

in the form of characters, bytes or primitive type. 

The purpose of using a file must also be decided before using it. For 

example, we should know whether the file is created for reading only, or 

writing only, or both the operations. 

For using a file, it must be opened first. This is done by creating a file 

stream and then linking it to the filename. A file stream can be defined using 

the classes of Reader/Input Stream for reading data and Writer/Output 

Stream for writing data. The common stream classes used for various I/O 

operations are given in Table. 5.5.5. 

 

 

 

 

 



223 

  Table 5.5.5 Common Stream Classes used for I/O Operations 

Source or   

Destination  Character     Bytes 

          Read          Write        Read          Write 

Memory       CharArrayReader CharArrayWriter     

ByteArrayInputStream    ByteArrayOutputStream 

File        FileReader FileWriter   FileInputStream FileOutputStream 

Pipe PipedReader  PipedWriter PipedInputStream PipedOutputStream 

 

5.5.11 Reading / Writing Characters  

Subclasses of Reader and Writer implement streams that can handle 

characters. The two subclasses used for handling characters in files are  

 FileReader (for reading characters) and 

 FileWriter (for writing characters).  

Example Program : Program for Reading  and Writing a Character 

import java.io.*; 

class WriteReadCharacter 

{ 

 public static void main(String args[]) 

  { 

  //write character 

    try 

    { 

     // creates file stream fw and opens “city.dat”file 

     FileWriter fw = new FileWriter("city.dat");  

     int  ch; 

     // Read character through the keyboard 

     while((ch = System.in.read( )) != -1)  

            { 

           fw.write(ch);  

// write character to the file “city.dat” 

            } 

           fw.close( );  // close file 

  } 

  catch(IOException e) 

  { 

     System.out.println(e); 

     System.exit(-1); 



224 

     } 

    // Read character 

  int b; 

  try 

    { 

   //create file stream fr and  opens “city.dat” file 

      FileReader fr=new FileReader("city.dat"); 

   // read character from the file ”city.dat” 

        while((b = fr.read( )) != -1) 

    { 

             System.out.print((char)b); 

// write character on monitor  

} 

        fr.close(); // close file 

} 

   catch(IOException e) 

{ 

 System.out.println(e);  System.exit(-1); 

    } 

  } 

} 

Output of program 

S 

A 

L 

E 

M 

Z 

S 

A 

L 

E 

M 

5.5.12 Reading / Writing Bytes  

Two commonly used classes for handling bytes are  

 FileInputStream Classes. 

 FileOutputStream Classes. 



225 

How File Input Stream class is used for reading bytes from a file. The 

program reads an existing file and displays its bytes on the screen. The 

following program uses both FileInputStream and FileOutputStream classes 

to copy files. We need to provide a source filename for reading and a target 

filename for writing. 

Example Program : Program for Writing and Reading bytes 

import java.io.*; 

class WriteReadByte 

{ 

  public static void main(String args[]) 

            { 

  byte cities[]={'S' , 'A' , 'L' , 'E' , 'M' , '\n' , 'M' , 'A', 'D' , 'R' , 'A' , 'S' , 

'\n'}; 

   // Write data to the file 

  try 

    { 

    FileOutputStream fos = new 

FileOutputStream("city.dat"); 

       fos.write(cities); 

       fos.close(); 

  } 

     catch(IOException e) 

  { 

  System.out.println(e); 

      System.exit(-1); 

     } 

   // Read data from a file 

   int b; 

   try 

   { 

     FileInputStream fis=new FileInputStream("city.dat"); 

       while(( b = fis.read( )) ! = -1) 

       { 

          System.out.print((char)b); 

       } 

    fis.close(); 

} 

  catch(IOException e) 

   { 



226 

    System.out.println(e); 

    System.exit(-1); 

   } 

 } 

} 

Output of Program 

SALEM 

MADRAS 

5.5.13 Handling Primitive Data Types 

If we want to read/write the primitive data types such as integers and 

doubles, we can use filter classes as wrappers on existing input and output 

streams to filter data in the original stream. The two filter classes used for 

creating “data streams” for handling primitive types are  

 DataInputStream Classes 

 DataOutputStream Classes 

The hierarchy of data stream classes as shown in Fig.5.5 

A data stream for input can be created as 

FileInputStream fis = new FileInputStream(infile); 

    DataInputStream dis = new DataInputStream(fis); 

 

This creates the input file stream fis and then creates the input data stream dis. 

A data stream for ouput can be created as 

    FileOutputStream fos = new FileOutputStream(outfile); 

 DataOutputStream dos = new DataOutputStream(fos); 

  

This create the output file stream fos and then create the output data stream 

dos. 

Note that the file objects infile and outfile must be initialized with 

appropriate file names before they are used. We may also use file names 

directly in place of file objects. 

In the below program first creates “prim.dat” file and then writes a 

primitive data type values into it using data output stream. At the end of writing 

, the streams are closed. 

The program also creates a data input stream, and connects it to 

“prim.dat” file. It then reads data from the file and displays them on the screen. 

Finally, it closes the streams. 

Example Program:  Program for Writing and reading primitive data 

import java.io.*; 

class writereadprimitive 

{ 



227 

 public static void main(String args[]) throws IOException 

 { 

   File f=new File("prim.dat"); 

   // write primitive data to the “prim.dat” file 

    FileOutputStream fos=new FileOutputStream(f); 

DataOutputStream dos=new DataOutputStream(fos); 

     dos.writeInt(2008); 

      dos.writeDouble(443.56); 

      dos.writeBoolean(false); 

      dos.writeChar('P'); 

     dos.close( ); 

    fos.close( ); 

     // read primitive data from the “prim.dat” file 

FileInputStream fis=new FileInputStream(f); 

     DataInputStream dis=new DataInputStream(fis); 

      System.out.println(dis.readInt()); 

      System.out.println(dis.readDouble()); 

     System.out.println(dis.readBoolean()); 

      System.out.println(dis.readChar()); 

      dis.close(); 

      fis.close(); 

   } 

} 

Output of Program 

2008 

443.56 

false 

P 

5.5.14 Concatenation And Buffering Files  

To combine two or more input streams (files) into a single input stream 

(file). This process is known as concatenation of files and is achieved using the 

SequenceInputStream class. One of the constructors of this class takes two 

InputStream objects as arguments and combines them to construct a single 

input stream. 

Java also supports creation of buffers to store temporarily data that is 

read from or written to a stream. The process is known as buffered I/O 

operation. A buffer sits between the program and the source (or destination) 

and functions like a filter. Buffers can be created using the 

BufferedInputStream and BufferedoutputStream classes. 



228 

Example Program: Program for concatenation and buffering 

import java.util.*; 

import java.io.*; 

class conbuf 

{ 

      public static void main(String args[ ] ) throws IOException 

    { 

  // open the files to be concatenated 

  FileInputStream  f1  = new FileInputStream ( "text1.dat"); 

  FileInputStream  f2  = new FileInputStream ( "text2.dat"); 

  // concatenate f1 and f2 into f3 

  SequenceInputStream f3 = new SequenceInputStream( f1, f2); 

  // create buffered input and output streams 

  BufferedInputStream inbuf = new BufferedInputStream(f3); 

   BufferedOutputStream outbuf = 

      new BufferedOutputStream(System.out); 

  // read and write till the end of buffers 

  int c; 

  while( ( c= inbuf.read( ) ) != -1) 

  { 

   outbuf.write((char) c); 

  } 

  inbuf.close( ); 

  outbuf.close( ); 

  f1.close( ); 

  f2.close( ); 

} 

       } 

The entire process of concatenation, buffering and displaying the contents of 

two files is illustrated in Fig.5.5.10. 

          inbuf 

              

       f3     read( ) 

 

        outbuf  write ( ) 

 

                                      System.out 

Fig. 5.5.10 Illustration of concatenation and buffering 

f1 

f2 

f1 + f2 

Program 

Screen 



229 

Given the content of “text1.dat” and “text2.dat” as 

Contents of “text1.dat: 

  Java development kit 

Contents of “text1.dat: 

 welcome 

Then, the Output Of Program 

 Java development kit 

  Welcome 

5.5.15 Random Access Files  

The RandomAccessFile class supported by the java.io package allows 

us to create files that can be used for reading and writing data with random 

access. That is, we can “jump around” in the file while using the file. Such files 

are known as random access files. 

A file can be created and opened for random access by giving a mode 

string as parameter to the constructor when we open the file. We can use one of 

the following two mode strings: 

 ‘r’ for reading only 

 ‘rw’ for both reading and writing 

An existing file can be updated using the ‘rw’ mode. Random access 

files support a pointer known as file pointer that can be moved to arbitrary 

positions in the file prior to reading or writing. The file pointer is moved using 

the method seek() in the RandomAccessFile class. 

Example Program: Program for writing and reading from RandomAccessFile 

import java.io.*; 

class random 

{ 

 public static void main(String args[])  

  { 

          try 

          { 

   RandomAccessFileraf =  

new RandomAccessFile("ran.dat","rw"); 

      raf.writeInt(2000); 

      raf.writeDouble(43.56); 

      raf.writeBoolean(false); 

     raf.writeChar('p'); 

raf.seek(0); 

System.out.println(raf.readInt()); 

System.out.println(raf.readDouble()); 



230 

System.out.println(raf.readBoolean()); 

System.out.println(raf.readChar()); 

          } 

      catch(IOException e) 

      {   } 

  } 

} 

Output Of Program 

2000 

43.56 

false 

p 

5.5.16 Interactive Input And Output 

The process of reading data from the keyboard and displaying output on 

the screen is known as interactive I/O. There are two types of interactive I/O. 

First one is referred to as simple interactive I/O, which involves simple input 

from the keyboard and simple output in a pure text form. The second type is 

referred to as graphical interactive I/O, which involves input from various input 

devices and output to graphical environment on frames and applets. 

In this section we shall consider how to use interactive I/O while 

handling files. 

Simple Input and Output 

 The System class contains three i/o objects, namely System.in, 

System.out, and System.err where in, out and err are static variables. The 

variable in is of InputStream type and the other two are of PrintStream type. 

We use this objects to input from keyboard, output to the screen and display 

error messages. 

 To perform keyboard input for primitive data types, we need to use  the 

objects of DataInputStream and StringTokenizer classes. 

 

Example Program: Program for Creating files interactively from keyboard 

input 

import java.util.*; 

import java.io.*; 

class inventory 

{ 

static DataInputStream din = new DataInputStream ( System.in); 

static StringTokenizer st; 

public static void main(String args[ ] ) throws IOException 

{ 



231 

DataOutputStream dos = new DataOutputStream 

 ( new  FileOutputStream(" invent.dat")); 

System.out.println("Enter code number"); 

st = new StringTokenizer( din.readLine( ) ); 

int code = Integer.parseInt( st.nextToken( )); 

System.out.println("Enter number of items"); 

st = new StringTokenizer( din.readLine( ) ); 

int items = Integer.parseInt( st.nextToken( )); 

System.out.println("Enter cost"); 

st = new StringTokenizer( din.readLine( ) ); 

double cost = new Double( st.nextToken( )). doubleValue( ); 

dos.writeInt(code); 

dos.writeInt(items); 

dos.writeDouble(cost); 

dos.close( ); 

DataInputStream dis = new DataInputStream  

( new  FileInputStream(" invent.dat")); 

int codeno = dis.readInt( ); 

int totitems = dis.readInt( ); 

double itemcost = dis.readDouble( ); 

double totcost = totitems * itemcost; 

dis.close( ); 

System.out.println("Code Number:" + codeno); 

System.out.println("Item cost:" + itemcost); 

System.out.println("Total items:" + totitems); 

System.out.println("Total cost  :" + totcost); 

} 

} 

Output Of Program 

Enter code number 

100 

Enter number of items 

300 

Enter cost 

200 

Code Number:100 

Item cost:200.0 

Total items:300 



232 

Total cost  :60000.0 

Graphical Input and Output 

The program uses the TextField classes to receive information from user at 

keyboard and then write information to a file (tele.data) and also read 

information from file. 

Example Program: Program for file operation using I/O stream 

import java.io.*; 

import java.awt.event.*; 

import java.awt.*; 

import java.applet.*; 

public class tele extends Frame implements ActionListener 

{ 

  TextField t1,t2,t3,t4,t5; 

    Label l1,l2,l3,l4,l5; 

  Button b1,b2,b3,b4,b5; 

  TextArea ta; 

   tele() 

  { 

        setLayout(new FlowLayout()); 

         setTitle("TELEPHONE BILL SYSTEM"); 

           setBackground(Color.yellow); 

         l1 = new Label("Enter Telephone Number"); 

         t1 = new TextField(6); 

                 l2 = new Label("Enter Address"); 

         t2 = new TextField(20); 

           l3 = new Label("Enter Unit"); 

               t3 = new TextField(8); 

         l4 = new Label("Enter Cost"); 

         t4 = new TextField(5); 

         l5 = new Label("Total Amount"); 

         t5 = new TextField(5); 

         ta = new TextArea(20,30); 

       b1 = new Button("calculate"); 

        b2 = new Button("write"); 

       b3 = new Button("read"); 

        b4 = new Button("clear"); 

         b5 = new Button("exit"); 

        add(l1); add(t1); 



233 

        add(l2); add(t2); 

        add(l3); add(t3); 

       add(l4); add(t4); 

        add(l5); add(t5); 

       add(b1); add(b2); 

        add(b3); add(b4); 

      add(b5); add(ta); 

      b1.addActionListener(this); 

        b2.addActionListener(this); 

       b3.addActionListener(this); 

        b4.addActionListener(this); 

              b5.addActionListener(this); 

           } 

           public void actionPerformed(ActionEvent ae) 

          { 

    String s=ae.getActionCommand(); 

    try 

    { 

        if(s.equals("calculate")) 

       { 

          float 

f=Integer.parseInt(t3.getText())*Float.parseFloat(t4.getText()); 

          t5.setText(String.valueOf(f)); 

      } 

     if(s.equals("write")) 

    { 

       FileOutputStream fos= new FileOutputStream("hai.dat"); 

         DataOutputStream dos= new DataOutputStream(fos); 

        dos.writeInt(Integer.parseInt(t1.getText())); 

         dos.writeUTF(t2.getText()); 

         dos.writeInt(Integer.parseInt(t3.getText())); 

         dos.writeFloat(Float.parseFloat(t4.getText())); 

         dos.writeFloat(Float.parseFloat(t5.getText())); 

         dos.close();  fos.close(); 

      } 

    if(s.equals("read")) 

      { 

         FileInputStream fis= new FileInputStream("tele.dat"); 



234 

         DataInputStream dis= new DataInputStream(fis); 

         ta.append(dis.readInt()+"\n"); 

         ta.append(dis.readUTF()+"\n"); 

         ta.append(dis.readInt()+"\n"); 

         ta.append(dis.readFloat()+"\n"); 

         ta.append(dis.readFloat()+"\n"); 

         dis.close();  fis.close(); 

      } 

      if(s.equals("clear")) 

      { 

         t1.setText(" "); 

         t2.setText(" "); 

    t3.setText(" "); 

       t4.setText(" "); 

         t5.setText(" "); 

          ta.setText(" "); 

      } 

      if(s.equals("exit")) 

   { 

        System.exit(0); 

      } 

     } 

     catch(Exception e) 

    { 

      System.out.println(e); 

     } 

  } 

  public static void main(String args[]) 

 { 

   tele t=new tele(); 

   t.setSize(500,500); 

   t.show(); 

 } 

} 

 

 

 

 



235 

Output Of Program 

 

 

 

5.5.17 Other Stream Classes 

Object Stream 

It is also possible to perform input and output operations on objects 

using the object streams. The object streams are created using the 

ObjectInputStream and ObjectOutputStream classes. In this case, we may 

declare records as objects and use the object classes to write and read these 

objects from files. This process is known as object serialization. 

Piped Stream 

Piped stream provide functionality for threads to communicate and 

exchange data between them. Figure shoes how two threads use pipes for 

communication. The write thread sends data to the read thread through a 

pipeline that connects an object of PipedInputStream to an Object of 

PipedOutputStream. The objects InputPipe and OutputPipe are connected 

using the connect( ) method. 

Pushback Streams 

 The pushback streams created by the classes PushbackInputStream 

and PushbackReader can be used to push a single byte or a character (that was 

previously read) back into the input stream so that it can be reread. This is 

commonly used with parsers. When a character indicating a new input token is 

read, it is pushed back into the input stream. 

Filtered Streams 

 Java supports two abstract classes, namely FilterInputStream and 

FilterOutputStream that provide the basic capability to create input and 

output streams for filtering input/output in a number of ways. These streams, 

known as filters, sit between an input stream and an output stream and perform 



236 

some optional processing on the data they transfer. We can combine filters to 

perform a series of filtering operations as shown in Fig 5.5.11. Note that we 

used DataInputStream and DataOutputStream as filters in the program for 

handling primitive type data.  

         Input Stream                  Output Stream 

 

   Fig. 5.5.11. The concept of using filters 

5.5.18 Self Assessment Questions 

Fill in the blank 

1. ___________concept in Java is used to store the data or information 

permanently. 

2. ______________ and _______________classes are used to store the 

characters and read the character in a file 

True / False 

1. DataOutputStream and DataInputStream classes are supported for handling  

primitive data values 

2. Random access file class can not do write and read operations 

simultaneously 

Multiple Choice 

1. The process of reading and writing objects is called as 

a) object-serialization     b) object-

deserialization c) Object-serialization & object deserialization d) None of 

the above 

2. FileInputStream and FileOutputStream classes are used to handles only 

a) 16 bit bytes   b) 8 bit bytes    

c) 32 bit bytes    d) None of the above 

3. The following are classes of awt package 

a) TextField( )   b) Bulton( )  

c) Label( )    d) All of the above 

Short Answer 

1. List out types of a  stream?  

________________________________________________________________

________________________________________________________________ 

2. What is random access file? 

________________________________________________________________

________________________________________________________________ 

Summary 

Applets are Java programs developed for use on the Internet. They 

provides dynamic and interactive applications over the world wide web. 

Filter 1  Filter 2 Filter 3 



237 

Java Graphics class supports many methods that enables us to draw 

many types of shapes. We can also use these methods to enhance the 

appearance of outputs of applets. 

Managing Input/Output files means for storing and retrieving data. In 

this lesson we have discussed about  various Input/Output stream classes and 

their related programs. 

 

5.6  Unit Questions 

1. Discuss the steps involved in developing and running a local applet 

2. Describe the different stages in the life cycle of an applet 

3. Develop an applet that receives three numeric values as input from the 

user and then  displays the largest of three on the screen. Write a 

HTML page and test the applet. 

4. Explain methods of Graphic Class with examples. 

5. What are input and output streams? Explain with illustrations? 

6. State the steps involved in creating a disk file. 

7. Write a program that will count the number of characters. The number of 

words and lines in the file. 

8. Write a program to crate a sequential file that could store details about 5 

products. Details include product code, cost and number of items 

available and are provided through the keyboard 

9. Write statements to create data streams for the following operators 

a) Reading primitive data from a file 

b) Writing primitive data to a file 

10. Describe the most commonly used classes for handling i/o related 

exceptions? 

5. 8 Answer For Self Assessment Questions 

Answer 5.3.16 

Fill in the blank 

1. paint( )  2. HyperText Markup Language 3. Textfields class 

True / False 

1. False 2. True 3. False 

Multiple Choice 

1. d  2. b 

Short Answer 

1. An applet developed locally and stored in a local system is known as local 

applet. 

Answer 5.4.10 

Fill in the blank 

1. drawRect()  2. many sides.  



238 

True / False 

1. True  2. False 

Multiple Choice 

1. c 

Short Answer 

1. The drawLine ( ) method  is used to draw a line, it takes two pair of 

coordinates, (x1, y1) and (x2, y2) as arguments and draws a line between them 

Answer 5.5.17 

Fill in the blank 

1. File  2. FileWriter and FileReader  

True / False 

1. True 2. False 

Multiple Choice 

1. c 2. b 3.  d 

Short Answer 

1. Input stream extracts (i.e. reads) data from the source (file) and sends it to 

the  program.Output stream takes data from the program and sends (i.e. writes) 

it   to  destination (file). 

2. We can “jump around” in the file while using the file. Such files are known 

as  random access files. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



239 

NOTES 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 



240 

NOTES 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 

…………………………………………………………………….…………….. 


