
 1

PERIYAR INSTITUTE OF DISTANCE EDUCATION

(PRIDE)

PERIYAR UNIVERSITY

SALEM - 636 011.

B.Sc. COMPUTER SCIENCE

THIRD YEAR

PAPER – VII : PROGRAMMING LANGUAGE

(VISUAL BASIC)

 2

 Prepared By

 R.VALARMATHI, M.Sc., M.Phil.,

 3

B.Sc. COMPUTER SCIENCE

THIRD YEAR

PAPER – VII : PROGRAMMING LANGUAGE (VISUAL BASIC)

Unit: I

1.1 Welcome to VB

1.2 Creating an Application

1.3 2nd Look at IDE, Forms and controls

1.4 Variables in Visual Basic

Unit: II

 2.1 Writing Code in VB

 2.2 Working with Files

Unit: III

 3.1 Menus

 3.2 MDI Applications

 3.3 Debugging Tips

 3.4 The Common Dialog control

 3.5 Introduction to Databases

 3.6 Working with the Data Control

Unit-IV

 4.1 DOA

 4.2 Additional Controls Available in VB 6.0

 4.3 ActiveX data Objects

Unit-V

 5.1 Crystal and Data Reports

 5.2 Distributing your application

 5.3 ActiveX

 5.4 ActiveX and Web pages

 5.5 ActiveX Documents

 4

INTRODUCTION

Dear students,

 Visual Basic is considered “The fastest and easiest way to create

applications for Microsoft Windows”. Visual Basic provides you with a

complete set of tools to simplify rapid application development.

 Visual Basic is an event driven programming language. The “Visual”

part refers to the method used to create the graphical user interface. The

“Basic” part refers to the BASIC language, a language used by more

programmers than any other language in the history of computing.

 This book is intended to the student how to program in Visual Basic.

Totally this book contains five units. The first unit explores the basic concepts

of Visual Basic.

 The second unit explores Writing code in Visual Basic and how to

working with files. The third unit explores Menus, MDI applications,

Debugging Tips, The common Dialog Control, Why databases and How to

working with the Data Control.

 The fourth unit explores the DAO, Additional Controls Available in

VB6.0 and ActiveX Data Objects. The fifth unit explores the Crystal and Data

Reports, Distributing your application, ActiveX and Web Pages and ActiveX

documents.

 All the above said units of lesson of this book have been prepared by

R.VALARMATHI, M.Sc., M.Phil., to make your task much easier while

going through it.

 PRIDE would be happy if you could make use of this learning material

to enrich your knowledge and skills to serve the society.

 5

SYLLABUS

Unit: I:

Welcome to VB: What is Visual Basic - Features of Visual Basic -

Visual Basic Editions - The Visual Basic Philosophy - Developing an

Application. Creating an Application: Objectives- The Tool Box –

Project Explorer - The Properties Window – The Form Window –

What does Visual Basic 6 have for you to create Applications.2nd Look

at IDE, Forms and controls: Objectives - The Form – The Working

with a Control – Opening the Code Window. Variables in Visual Basic:

Objectives – What is a Variable.

Unit: II:

 Writing Code in VB: Objectives – The Code Window – The Anatomy

of Procedure- Editor Features – The For .. Next Statement – The Decision

Maker… If..Loop – The While loop – Selective Case… End Select. Working

with Files: Objectives – Visual Basic File System Controls - Types of Files –

Working with Files.

Unit: III :

 Menus: Objectives – Building the User Interface. The first step – All

about Menus. MDI Applications: Why MDI Forms – Features of an MDI

Form- Loading MDI Forms and Child Forms – The Active Form property.

Debugging Tips: Objectives – The Debugging Methods. The Common Dialog

control: Working with the Common Dialog Control – The file open Dialog Box

– Saving a file – Changing the color. Introduction to Databases: Why databases

– What is a Database – Which Database. Working with the Data Control : The

Data Control – The Bound Controls – Caution – Coding.

Unit-IV:

 DOA: The Jet Database Engine – Functions of the Jet Database Engine

– SQL – The DAO Object Model. Additional Controls Available in VB 6.0 –

Objectives – SSTab Control. Active X data Objects – Objectives Why ADO –

Establishing a Reference.

Unit-V:

 Crystal And Data Reports: Crystal Reports – Data Report. Distributing

your application: Objectives – Working with the Packaging and Deployment

Wizard. Active X: Objectives – What is ActiveX – Why ActiveX. ActiveX and

Web pages: Objectives – ActiveX and Internet. ActiveX Documents: The

Application Form Document . Sample Application in VB Like Inventory

Control.

TEXT BOOK:

1. “ Programming With Visual Basic 6.0”- Mohammed Azam.

 - Vikas Publishing House Pvt Ltd.

 6

UNIT – I

 Objectives:

 The objectives of this unit are to introduce the basic concepts of Visual

Basic and explaining how to create an Application, giving forms and controls,

variables in Visual Basic.

 Contents:

 1.1 Welcome to VB

1.2 Creating an Application

1.3 2nd Look at IDE, Forms and controls

1.4 Variables in Visual Basic

Review Questions

1.1 WELCOME TO VISUAL BASIC (VB)

 It is considered “the fastest and easiest way to create applications for

Microsoft windows(r)”. Whether you are an experienced professional or brand

new to windows programming. Visual Basic (VB) provides you with a

complete set of tools to simplify rapid application development (RAD)

 Windows based applications have a consistent user interface, that helps

the user to simply ‘point and click’. All windows application provides a picture

(or an ‘icon’ as the jargon goes) or a button for a function. The user will point

at that pictures with a mouse and click. The computer simply jumps up to

perform (or sometimes declines) the task. Visual basic is an ideal medium

for developing Windows based application.

What is Visual Basic?

 Visual Basic is an event driven programming language. The “visual”

part refers to the method used to create the graphical user interface (GUI).

 The “Basic” part refers to the BASIC language, a language used by

more programmers than any other language in the history of computing. Visual

Basic has evolved from the original BASIC language and now contains several

hundred statements, functions, and keywords, many of which relate directly to

the windows GUI.

 Note: the Visual Basic programming language is not unique to Visual

Basic. The Visual Basic programming system. Applications Edition included in

Microsoft Excel, Microsoft Access, and many other windows applications uses

the same language. The Visual Basic programming system, Scripting Edition

(VBScript) for Internet programming is a subset of the Visual Basic language.

The investment you make in learning Visual Basic will carry over to these

other areas.

 Where Visual Basic can be used,

1. To create a small utility for yourself.

2. An Application for a department, work group, a large enterprise-

wide system.

 7

3. Distributed applications spanning the globe via the internet.

 Data access features allow you to create databases and front-end

applications for most popular database formats, including Microsoft

SQL Server and other enterprise-level databases.

 Active X (TM) technologies allows you to use the functionally provided

by other applications, such as Microsoft word, Microsoft Excel

spreadsheet, and other windows applications.

 Internet capabilities makes it easy to provide access to documents and

applications across the internet from within your application. (Active X

documents)

 Your finished application is a true. exe file that uses a run-time dynamic

link library (DLL) that you can freely distribute. (Application Setup

Wizard)

Visual Basic (VB) is available in three versions, for a specific set of

development requirements.

 The Visual Basic Learning Edition, allows the programmers to

easily create powerful applications for Microsoft Windows 95 and

Windows NT (r). It includes all intrinsic controls, grid tab, and data-

bound controls. Documentation provided with this edition includes

Learn Visual Basic Now, a printed Programmer’s Guide, online

Help, plus Visual Basic books Online.

 The professional Edition provides computer professionals with a

full-featured set of tools for developing solutions for others. It

includes all the features of the Learning edition, plus additional

Active X controls, including internet controls, and the crystal Report

Writer. Documentation provided with the Professional edition

includes the Programmer’s Guide, online help, the component Tools

Guide and the Crystal Reports for Visual Basic User’s Manual.

 The Enterprise Edition allows professionals to create robust

distributed applications in a team setting. It includes all the features

all of the professional editions, Plus

 The Automation manager,

 Component manager,

 Database management tools,

 The Microsoft visual SourceSafe (TM) project-oriented

version control system, and more.

The Visual Basic Philosophy

 Windows became popular because of its easy and intuitive GUI or

Graphical User Interface. Visual Basic helps create applications that will have

the same GUI as windows. This makes it very easy for users to learn how to

use the software. The Windows GUI is event driven. You have seen that unless

the user initiates an action nothing happens. You have to click a button for

something to happen. Visual Basic is an event driven programming language.

 8

The Controls

 A critical looks at any applications will tell you that it consists of a

number of programs or procedures that perform various activities. For example,

there is one program that accepts text data from the user. There is another

program that verifies the numeric data or validates the data entered by the user.

 Then there is a routine, that checks the options selected by the user.

Another routine to update a file or database and so forth. The people behind

visual basic decided to create special routines that would perform a specific

task.

 Words like routines, procedures, programs were discarded and they

decided to call these special routines with a new name called controls.

The Properties

 Just creating the controls was not enough. The controls are given some

attributes that are clearly defined. A control is supposed to do only such and

activity. For example a control like the Label Box should not allow the user to

edit its contents. A control like the text box that can accept multiline text or

allow word-wrap. All these attributes are called properties. So you have

controls that perform certain activities. And each control has certain properties.

EVENTS

 Now there are a number of things can happen to control. For example, a

command button control can be clicked, as you click the start button in

Windows.

 These are all some of the events that can take place on an application.

Visual Basic allows you to write code to respond to such activities. The

wonderful thing about this is that you need to write code only for those events

that you are interested in. For example, if your program has to respond when

the user clicks a Command Button, you need to write code only for the click

event.

Methods

 The action taken when the event occurs is the method. You may want to

exit the program when the user clicks on the command Button, or you may

show a new picture when the user clicks on a Textbox! Controls in Visual

Basic have many built in methods. As you write the code for the various

controls you will come across the methods.

 From a laymen’s point of view, a method is a piece of code that

accomplishes a task. So in an event driven program, there are ‘controls’, which

have ‘Properties’. When an ‘Event’ occurs to the ‘Controls’ some ‘Methods’

are invoked.

Developing an Application

1. Design the User interface

2. Write code to respond to User Input/Events

 9

Design the User Interface

 The user interface is built using the controls and setting the properties

for the controls. For example the location of the TextBox, where the user will

enter the customer ID.

Write Code to Respond To User Input/Events

 The code invokes the methods associated with the controls. If the user

clicks on the control that displays the next record form the database, or the user

selects particular option, or wants to ‘find’ the details of a client, etc. All such

events have to be acted upon. There are a number of built-in keyword,

associated with the controls that accomplish the given task, As a programmer it

is your job to orchestrate the activity of the controls through the methods.

1.2 CREATING AN APPLICATION

 Creating an application in Visual Basic means working with projects. A

project is the collection of files you use to build an application.

 A project consists of:

 One project file that keeps track of all the components. (.vbp)

 The .frm file. One file for each form (.frm). It contains the

description of the properties of the form and the controls on it.

 One binary data file for each form containing data for properties

of controls on the form (.frx). These files are not editable and

are automatically generated for any .frm file that contains binary

properties, such as picture or icon.

 The (.cls) file for each class module. This file is optional. The

class file is created when you create your own objects.

 The standard (.bas). This is also optional, one file for each

standard module. It contains module level declarations,

procedures.

 The Active X control (.ocx) file, becomes a part of the project

file only if optional controls are added in your program.

 The resource (.res) file, contains bitmaps, text strings that are

used in your program. You can have only one resource file.

The project file is simply a list of the files and objects associated with

the project, as well as information on the environment options.

This information is updated every time you save the project. You can

convert the project into an executable file. You can also create other type of

executable files such as the .ocx, .dll files, etc. Invoke Visual Basic 6.0 (VB6)

by either double clicking on the shortcut path or by going through the pull-up

menu

from Start.After a while it will show a screen that looks like the figure below.

This is New Projects Screen or a dialog box.

 10

Here a number of icons are displayed along with the types of projects

that each will start. The New Project Screen has three tabs. The current tab is

‘New’. The other two tabs are ‘Existing’ and ‘Recent’. Clicking the ‘Existing’

tab will display the existing projects on your system. Clicking the ‘Recent’ tab

will display the projects on which you have recently worked.

Choose the standard. Exe icon by clicking on it, you will then see the

screen that will look something like the following screen.

Type of Files

 .vbp: visual basic project file

 .vpg: Visual Basic Group file

 .mak: project file built with earlier versions of isual basic.

 11

Below the title bar is the menu bar. The menu bar has the following menus

File menu: to open and save a new or existing project , to print and to make a

 project file.

Edit menu: for all editing requirement Cut, paste, Find Undo, etc.

View menu : To view the various parts of your project, and Visual Basic

 environment

Project menu : Inserting or removing forms, or objects to your project.

Format menu : For spacing, placing and appearance of controls in the form.

 12

Debug menu: To remove, the errors that have crept in

Rum menu: to compile, start and stop a program.

Tool menu: To add procedure and to customize the environment for your

project.

Add-Ins menu: To add tools like Data Manager: other wizard, etc.

Window menu: Arranging appearance of various windows on the desktop.

Help menu : For the on-line help that every programmer needs to refer to.

 13

 In order to build your application you need the aid of all the tools/aids

mentioned above.

 The most visible are the

1. The tool box

2. The project explorer window

3. The properties window and the form itself.

Project Explorer

 The project explorer is located on the right side (usually). It organizes

the application as one project. All the code and controls that are used in the

applications are stored in separate files.

 It is called a ‘project explorer’ because it has an interface like the

explorer and it deals with the project. The project Explorer has three icons on

its tool bar. Each icon represents a function.

1. To view the code

2. To view the controls

3. To show or hide the forms.

 Below the ‘project Explorer Window’ you will see the properties

window. This window lists all the properties for an object or control used in

visual Basic.

 For example you can change the caption, the height, the width, etc.,

Each object has a number of properties that can be changed as the need

dictates.

 14

The Form Window

 The controls that we will learn about, their properties, the Project

Explorer, etc., are all concerned with this form.

 The form has a title bar. It has the Minimize, Maximize and the Close

buttons.

Saving the Project

 Go to file menu and choose the Save project option.

 Then you will be asked to give a name for the project. Give an

appropriate name.

 15

Understanding projects

 Following are the options available with visual Basic:

Standard: This project type must be chosen if you wish to develop a small or

large standalones application.

ActiveX EXE: Choose this option if you wish to create an executable

component. An ActiveX executable component can be executed from other

application. This will be program that can provide functionality to a number of

other applications.

Active Control: This helps to create a custom ActiveX control that can be used

in other application. These are like the third party controls that you buy from

other software vendors.

ActiveX DLL: Like the ActiveX EXE it provides added functionality to your

application will work ‘in-process’ with your application.

Data project: Choose this option to create a project with the database

components.

IIS: This helps to create an Internet application.

 16

ActiveX Document: creates a component that can take over the application at

runtime. It creates an internet application that can be executed from a browser.

DHTML Application: creates an application that can be executed from a web

browser only.

What Does Visual Basic 6 Have For You To Create Application?

 Depending upon the edition of VB6, you have, the control you see on

your Tool Box will be a little different.

Customizing This Toolbar

 The Tool Box can be customized, by following the steps given below:

 Place the Mouse on the Tool Box and click the right mouse

button.

 From the pop-up menu choose components.

 A window pops up displaying the controls that are available.

 Click on the controls that you want to add. Push the OK button

and you have them on your ToolBox.

Text Box Control

 In order to display or accept user input in the form of text like name,

customer ID, etc., Visual Basic 6 provides you with this control. It is used to

display text and allows the user to edit the data in the box. A text Box control is

also called an edit field or edit control.

The Picture Box

 A picture Box control can display a graphic from a bitmap, icon, or

metafile, as well as enhanced metafile, JPEG, or, GIF files.

Label Box

 It allows you to display text that you don’t want the user to change,

such as a caption under a graphic.

Option Button

 It allows to display multiple choices from which the user can choose

only one option.

 17

Frame

 The frame controls allows you to create a graphical or functional

grouping controls. To group controls, draw the Frame first, and then draw

controls inside the frame.

List Box

 List box control to display a list of item. The list Box has a small

limitation. It can display only a set of items that are available.You cannot add a

new item to you repository in future.

Combo Box

 The user can either choose an item from the list or enter a value in the

text box. The new value entered can be added to the existing data. The List box

and the Combo Box display data usually from a database.

Data

 Data control provides access to database through controls on your form.

It makes the job of the developer easy when data has to be manipulated in a

database.

Hscrollbar (Horizontal Scroll Bar)

 Provides a graphical tool for quickly navigating through a long list of

items or a large amount of information, for indicating the current position on a

scale, or as an input device or indicator of speed or quantity.

VScroll Bar(vertical scroll bar)

 Provides a graphical tool for quickly navigating through a long list of

items or a large amount of information, for indicating the current position on a

scale, or as an input device or indicator of speed or quantity.

Command Button

 Creates a button that the user can choose to carry out a command. The

user will click on this button and the computer will perform the task associated

with the button.

Check Box

 Creates a box that the user can easily choose to indicate if something is

true or false, or to display multiple choices when the user can choose more than

one.

The Drive, Directory and File List Controls

 These controls are used to display available Drives, Directories and

Files. The user can select a valid drive on his system. The user can be see a

hierarchical structure of directories and files.

The Line And Shape Controls

 These controls are used to draw lines, squares, circles, etc.

 18

The Image Control

 This is very similar to the picture Box control. Images displayed in an

Image control can only be decorative and use fewer resources than a Picture

Box.

OLE (Object Linking and Embedding)

 This controls allows you to link your program to another object or

program.

Other Tools for Software Development

 The Visual Basic Integrated Development Environment (IDE) consists of the

following elements:

Menu Bar

 Displays the commands you use to work with Visual Basic. Besides the

standard File, Edit, View, Window, and help menus, menus are provided to

access functions specific to programming such as project, Format, or Debug.

Content Menus

 Contain shortcuts to frequently performed actions. To open a context

menu, click the right mouse button on the object you are using. The specific list

of shortcuts available from context menus depends on the part of the

environment where you click the right mouse button.

Tool Bars

 Provide quick access to commonly used commands in the programming

environment click a button on the toolbar once to carry out the action

represented by that button.

Tool Box

 Provides a set of tools that you use at design time to place controls on a

form.

Project Explorer Window

 Lists the forms and modules in your current project. A project is the

collection of files you use to build an application.

Properties Window

 Lists the property settings for the selected form or control. A property is

a characteristic of an object, such as size, caption, or color.

Object Browser

 You can use the object browser to explore objects in Visual Basic and

other applications, see that methods and properties are available for those

objects, and paste code procedures into your application.

From Designer

 Serves as a window that you customize to design the interface of your

application. You add controls, graphics, and pictures to a form to create the

look you want. Each form in your application has its own form designer

window.

 19

 Serves as an editor for entering application code. A separate code editor

window is created for each form or code module in your application. The

programmer can change the font size of the code.

Form Layout Window

 The form layout window allows you to position the forms in your

application using a small graphical representation of the screen.

1.3. 2ND LOOK AT IDE, FORMS AND CONTROLS :

 The Form

 A form is actually a control and has its own properties, events, and

methods with which you can control its appearance and behavior. You can set a

form’s properties at design time in the Properties window or at run time by

writing code.

Setting Form Properties

 A form in Visual Basic has as many as 50 properties. Each of these

properties will affect the appearance and behavior of the form in subtle or very

obvious ways.

Working With The Properties Window

 You assign properties to a control during the Design Time by invoking

the properties window. The properties window allows to change the current

settings of the controls.

 In order to access the properties of a control,

 Click the right mouse button.

 Choose the properties option from the pop-up menu:

OR

 Select the control . Press F4. This will display the properties window,

with the current setting for the Form.

Name

 It is the name by which the form is referred to in your code. Visual

Basic by default names the forms as Form1, Form2,Form3, etc.

Caption

 The caption can be changed at runtime. The caption must be meaningful

and informative to the user.

Picture

 The name of the file that contains the picture to be displayed on the

form. This can be set at design time and also changed at runtime.

Background Color

 This property determines the background color of the form. In order to

change the settings of this property, double click on the value on the right. A

color palette will pop up. Select the color of your choice.

 20

The Control Box

 The value for this is True or False. If it is set to True, the control Box is

visible on the top left-hand corner of the form. If it is set to false, it is not

visible.

Min Button and Max Button

 The value for each of these properties is true or false. Set this to false if

you do not want the user to minimize or maximize the form during runtime.

Movable

 The default is true. if set to false, this form cannot be move by the user

during the runtime. This property is set to false when you do not want the user

to move the form around and thereby miss out some important information.

Border Style

 This property determines the type of window that the user will see

during runtime. You can allow the user to resize the window, or allow him to

move the window around.

Font Properties

The font properties for a Form include the following:

 Font name: Name of the font

 Font bold: If set to True, the text will be displayed in bold.

 Font Size : You can set the size of the text in points.

Position Properties

 Properties like Left, Top, Height and Width can be set at design time as

well as runtime to locate the form at a place of your choice.

Startup Position

 This property is set at design time will specify the position of the form

at runtime.

Form Methods

 Forms have methods that are used in code to control their behavior.

Visual Basic supports many methods to change the appearance and behavior of

the form at runtime.

Move

 The move method for example, allows the programmer to position the

form at a desired location on the screen.

 The syntax of the move methods is as follows:

 Form name. Move Left, [Top], [Width], [Height]

 Each of the liens of code given below will result in the form changing

its size and position.

 Frminvoice. Move. 0.0, 3500, 4000

 Frm invoice: Move 4000, 4000, 4000, 4000.

 21

Graphic Methods

 There are other properties for drawing lines, circle, clearing the form for

any drawing object. There are methods like getting the color a point at a

particular location.

Circle : to draw a circle (s)

Line: to draw a line (s)

Pset: to draw a point with given color at a given location.

Point: returns the color of screen at the given location.

Show Method

 Before going to the Show Method we need to cover a little ground

about the lifecycle of a form. A form comes to life when the user click starts an

application.

Initialize

 As the name suggests, all the variables associated with this form are

initialized.

Load

 During the load event, the form with all its properties and variables is

loaded in memory. This load event occurs whenever the ‘show’ method is

executed or a form property is referenced.

Activate

 This event occurs when the form gets user input. This event also occurs

when the Show method or set Focus method of the form is called.

Deactivate

 This event occurs when an another form gets the focus.

Unload Event

 When the user closes the Form, the Form is unloaded from the memory.

Terminate

The final event in the lifecycle of a Form. All the memory that was held for the

Form variables is released.

Show Method

 The show method displays the form to the user. It is like setting the

‘visible’ property to True.

Show Style

 There are two options.

1. The form can be opened as Model Form. In this case this form will

have the focus as long as it is displayed.

2. The default option is a modeless form. The user can interact with

other forms even while this Form is displayed.

 22

Hide Method

 You can unload any form that is not immediately required by the user.

As and when the user wants a particular form, the same can be loaded. But such

an approach has its drawbacks. Loading and unloading forms every now and

then can be time consuming. In order to be able to provide the forms quickly to

the user, it is good idea not to unload the form but to hide it. The ‘Hide’ method

comes in handy.

 The syntax is

 Form invoice. Hide

 This will not unload the form, it will merely make the form invisible to

the user, it is the opposite of the show method.

How do you put of create the control on the Form?

 There are two methods of creating the control on the Form: The first

method has following steps:

1. Let us say you want to put a command button on the form.

2. Click with the left mouse button on the command button.

3. Next move the mouse pointer to the location on the toolbar where

you want the command button on the form

4. Notice that the pointer has changed to crosshair.

5. Hold down the left mouse button and drag in any direction.

6. Release the left mouse button.

or

2. Double-click the desired controls on the Toolbox. That control will

appear at the center of the form. Now you can drag the control and place it at a

location of your choice.

Working with a Control

After you have placed the control on the Form, you may want to change the

location or the dimension.

 Windows application have a uniform size for their buttons.To re-size

the control you are given a total of eight sizing handles.The four handles on the

four corners are to increase or decrease the length and breadth of the control

proportionately.

 The two sizing handles on the horizontal edges are used to increase or

decrease the height of the control.

 The two sizing handless on the vertical edges are used to increase or

decrease the width of the control.

 To move a control to another location, click on the control, hold down

the left mouse button and drag the control to a location of your choice.

The Code Window

 After having placed the controls in the right place with the right

temperament, you need to tell the control how it must respond against a given

 23

event. For example, how should the command Button control respond when the

user clicks on it.

Opening the Code Window

 Open the code Window by pressing the right mouse button on the

control. Choose the “view code” option.

OR press F7 after clicking on the control.

OR click on View in the menu bar. Then click view code.

Anatomy of the Code Window

 The title bar will contain the name for the project and Form Name. Next

there are two Combo Boxes. One holds the text Form while the other holds the

text Load. This means that Form is the name of the object and Load is the

event that you want to write the code for.The code for an event must be entered

in the code window.

 The lines given below provide a framework within which you can enter

the code.

 Private sub command_click()

 End sub

The private means that the variables declared and the code used here can be

used only by this function. Then we have the word sub. This is short for sub-

routine or function . Command_click() is the name of the function which is

self-explanatory. End sub means end of this sub-routine.

The First Example

 This is the first example and it is very simple one using only those skills

or topics that we have discussed so far. We need to create a single user-screen,

which will help a child learn the three basic colors. This means that three

different colors need to be displayed. When the user clicks on a particular

color, he must see a message telling him the name of the color that has been

selected.

 We need three buttons with three different colors.

 We need a place where the message can be displayed.

 We need a button that will tell the computer that we are through with

this exercise.

Step 1: Creation and placement of controls

 Create four command button controls

 Create one Text Box.

Design the form so that you arrive at a screen shot like the figure above you are

however free to place the controls the way you like.

Step2:Naming the controls

 Click on Command Button control and press F4 to access the properties

window.

 24

 Change the option appropriately for each of the Buttons. You may even

leave the caption blank.

 On one button, the caption must be “&Quit”. This will be the button

that you will click to exit from this program.

Important

 Always remember to provide a provision for the user to exit from a

Form after clicking a button like “Exit” or “Quit”. This will allow you to

perform necessary tasks like saving data, updating a database. etc. If the user

assumes control, you may as well not develop applications.

Step3: Changing the Color for the Command Buttons

 Click on the style property and change it to ‘Graphical’ and

‘standard’.

 Click on the Back color property and change it to the color that you

want the button to display.

 Observe that the color of the Command Button control has changed to

the color you have selected.

Step4: The Textbox control

 Click on the TextBox control and press F4.

 In the properties window, click on Text. The default value for this

property is “Text1” since this is Textbox1. Delete the value .

 Now you have Four Buttons.

 Three of the buttons have the relevant colors .

 One button s the “Quit” button.

 Ans one is blank TextBox.

Now entering the code:

 Click on one of the buttons. Press F7 or double-click on the button. The

Code Window will pop up as shown in the screen shot.

 Click on the Event Window. Select click. Usually the click event

procedure will be displayed as the default procedure

 Enter the following line

 Text 1. text = “This is Green”

 For the two Command Buttons, add the appropriate code just as

explained above.

 In the command Button with the caption “Quit” add the following line

 Unload Me

 Press F5. Save the changes.

 You have successfully created and executed the first sample program

using Visual Basic 6.

 Explanation: The line Unload Me in the code window of the quit

buttons unloads the form.

 25

 The line Text1. text= “This is Green” assigns the value This is Green

to the Textbox control when you click on the button.

1.4. Variables in Visual Basic

What is a Variable?

 The various values used during computation are stored in what are

called ‘variables’.

Declaring Variables

 Variables in VB are declared using the DIM statement and the

following syntax:

 Dim variable name [As type]

For example:

 Dim Total Bill Amount [As integer]

A variable has to have a name. There are some naming conventions or rules of

nomenclature.

 The name of a variable:

 Must begin with an alphabet;

 Must not have an embedded period or a special character;

 Must not exceed 255 characters.

 Must be unique within the same scope.

Data Types

 Variables have a name and data type. The data type of a variable

determine how the bits/ bytes representing those values are stored in the

computer’s memory.

The following table will give you an idea about variables and their purposes.

Integer : A numeric variable, holds numeric values

 -32,768 to 32, 767.

Long

(Long Integer) : A Numeric Variable-holder a wider of integers than

 integer.-2,147,483,648 to 2, 147, 483, 647.

Single : A numeric variable which holds numbers with decimal

places.

 -3.402823E38 to –1.401298E-45 for negative values.

 -1.401298E-45 to3.402823E38 For positive values.

Double : a numeric variable with a wider range than single.

 1.79769313486232E308 to - 4.94065645841247E-324 for

 negative values; 4.94065645841247E-324 –to-

 1.79769313486232E308.

Currency : For holding monetary values.

 -922,337,203,685,477. 5808 to 922,337,203,685, 477,5807.

 26

String : For holding text or string values.

 0 to approximately 2 billion for variable length.

 1 to approximately 65,400 for fixed length.

Byte : A numeric variable, holding less than the value 255, 0 to

255.

Boolean : For holding True or False values.

Date : For holding date values inclusive of and between

 January 1,100 to December31, 9999.

Object : For holding references to objects in Visual Basic and other

 applications. Any object reference.

User-defined : Number required by elements. The range of each element is

(using Type) the same as the range of its data type.

Variant : A general-purpose variable that can hold most other types of

 variables values (with number). Any numeric value up to the

 range of Double. With character values, it has the same range

 as for variable-length string.

Let us look at the various data types one by one.

Integer : This data type is used to store whole numbers, and cannot be

used in calculations where decimals or fractions are involved. They can store

reasonably large numbers. The Integer data type occupies only two bytes of

memory and is quite fast when used in calculations.

Long : This is the big brother of the Integer data type. It can hold

much larger values, as you can see in the table. It occupies twice as much space

as the Integer. It must be used only where the calculations involve large

numbers and is much slower than the integer.

Single : This is the equivalent of the Floating-Point number. It can store

fractions and provide precision to a fairly high level. It occupies 4 bytes of

memory space and should be used where very high precision is not a must. For

example if you want the value of say, 400000000 raised to power 50, then you

may not have the exact figure.

Double :This solves the problem of precision that the Single data type

lacks.

If occupies 8 bytes of memory space and should be used in applications where

the requirement of precision is very high. This is not advisable for regular

commercial applications as it can be fairly slow compared to the Integer data

type and should be used when you want accuracy in calculations involving

figures beyond the fourth decimal point. Foreign Exchange dealers will tell you

the importance of this accuracy.

Currency :This data type is used for holding values related to items rates,

payroll details and other financial functions. However, this data type should not

be used if you need extreme accuracy beyond the fourth decimal point as for

 27

example, if you are working on Foreign Exchange details or interest rates for

very large values.

Byte : This data type can hold values from 0 to 255. it cannot hold

negative number or numbers larger than 255. Assigning negative values beyond

255 will result in a runtime overflow error. The Byte data type occupies only

one byte of memory.

Boolean :This data type accepts only True or False values. Since the

default value for all numeric data types is zero, the default value for a Boolean

data type is also zero. Zero value is interpreted as False and non-Zero value is

interpreted as True. The VB keywords True and False can be used to assign

values to the Boolean data type.

Date : This variable holds date and time data. It can hold time from

January 1 100 to December 31. 9999, and time from 00.00.00 (midnight) to

23.59.59 (one second before midnight) in one second increments. It occupies 8

bytes of memory. The data is displayed as per the settings in your computer.

You can store it in British format or American format, or any other format that

is available or the Regional Settings on your control panel.

 When other numeric data types are converted to Data, values to the left

of the decimal represent date information, while values to the right of the

decimal represent time. Midnight is 0, and midday is 0.5. Negative whole

numbers represent dates before December 30, 1899.

The string data type: Probably the most commonly used data type is the

string. Every application has details like name, Address, Zip code, Phone

number etc.

Object data type

 In Visual Basic, forms, controls, procedures and recordsets, are all

considered as Objects.

A variable declared as on Object is one that can subsequently be assigned

(using the set statement) to refer to any actual object recognized by the

application.

 Dim objDb As database

 Set objDb = openDatabase (“c:\SISI\EIS.mdb”)

 A variable declared as an object occupies 4 bytes of storage)

The variant data type:

 A variant data type is a variable that can change its type freely. It can

accept text, numeric data or byte data easily without any hiccups. If you don’t

supply a data type, the variable is given the Variant data type by default. Visual

Basic automatically performs any necessary conversion.

 Dim VarValue ‘Variant by default.

 VarValue ‘ VarValue contains “100” (a string).

 VarValue = VarValue-70 ‘ VarValue now contains the numeric

 value 30 The ‘ conversion is done

 automatically

 28

 The variant data type so special is that it can contain values that the

other variables cannot handle. These values are

 The Null value

 The Empty value

 The Error value

The Null Value

 Null is commonly used in database applications to indicate unknown or

missing data.

The Error Value

 In a Variant, Error is a special value used to indicate that an error

condition has occurred in a procedure.

The Empty Value

 A Variant variable has the Empty value before it is assigned a value.

The Empty value is a special value different from 0, a zero-length string (“”),

or the Null value. You can test for the Empty value with the IsEmpty function:

 If IsEmpty (X) Then………….

 A variant can be assigned the Empty value using the Empty keyword.

When a Variant contains the Empty value, you can use it in

expressions, where it is treated as either 0 or a zero-length string, depending on

the expression.

The Scope of a Variable

 The scope of a variable is the range from which the variable can be

referenced- a procedure, a form, and so on. The value of a variable in one

procedure cannot be accessed from another procedure. The value of a variable

is local to that procedure.

 Variable declared using the dim keyword exists only as long as the

procedure is executing. There is one variation though, in the form of the Static

variable. Values in local variables declared with Static exist the entire time

your application is running. Variables are declared as static using the ‘Static’

keyword.

 Static intCounter As Integer

 Variable declared using the Static keyword exist as long as the

application is running and are usually used to update counters.

Module Level Variables

 Variables declared as module-level variables will be available to all

procedures within that module. However they will not be available to

procedures in other modules. A module-level variable is declared using the

Private keyword in the declaration section of the module.

 Private intCount as integer.

 The declaration must be made in the declaration section of the module.

 29

 In order to make the variable available to all other modules, use the

Public keyword. The declaration must be made in the declaration section of the

module. Public variables cannot be declared in procedure. They can be declared

only on the declaration section of a module

 Public intTemp As Integer

 The following table will give you an idea about the scope of a variable

vis-à-vis the method of declaration.

Scope Private Public

Procedure-level Variable are private to

the procedure in which

they appear.

Not applicable. You

cannot declare public

variables within a

procedure

Module level Variables are private to

the module in which

they appear

Variables are available

to all modules.

Constants

 Constants store values like variables, but as the name implies, those

values remain constant throughout the execution of an application. There are a

number of built-in constants in Visual Basic.

Creating Your Own Constants

 The syntax for declaring a constant is:

 [Public / Private] Const constant name [As type]= expression

 Constant name should be a valid name

 As type is the data type.

 expression is the numeric or string value that has to be assigned to the

constant.

The naming rules are the same as those for creating variable names.

 The following piece of code will help calculate the circumference of

Circle A.

 Const conPi = 3. 1415926

 Dim IntRad = Val (Textl. Text)

 CircumCircle A = 2 * ConPi * IntRad

Scope of a Constant

 By declaring a Constant in the declarations section of form, standard, or

class module, rather than within a procedure, the Constant will be available to

all the procedures in the module.

 By declaring a Constant using the Public keyword, it is available

throughout the application .

 Declaring a constant in a procedure will be available to that procedure

only.

 30

Circular References

 Constants can be defined with reference to other constants. Consider the

following;

 Public Const conA = ConB* 1.414

 Public Const conB = ConA * 2

 Since both the constants are available throughout the application. Visual

Basic will generate an error. This method of defining constants where each is

defined in terms of the other is called Circular Reference.

Converting Data Types

 Visual Basic provides functions to convert values into data types. The

following table lists these functions.

Conversion function Converts an expression to

Cbool Boolean

Cbyte Byte

Ccur Currency

Cdate Date

CDbl Double

Cint Integer

CLng Long

CSng Single

CStr String

Cvar Variant

CVErr Error

Arrays, How do you define them?

 An array is a set of similar items. All items in an array have the same

and are identified by an index. Arrays allow you to refer to a series of variable

by the same name and to use a number (an index) to tell them apart.

 Syntax

 Dim Varname [([subscripts])] as [New] type [,varname….]

 Dim nums (10) as integer.

 Dim x (10 to 20) as integer.

Declaring Fixed- Size Arrays

 The scope of the array will depend upon the method of declaration.

 1. To create a local array, use the Private statement in a procedure to

declare the array.

 DIM Counters (10) As integer

 31

 2. To create a module-level array, use the Private statement in the

Declarations section of a module to declare the array

 Private counters (10) As integer

 3. To create a public array, use the Public statement in the Declarations

section of a Form.

 Public counters (10) As Integer

Multi-dimensional arrays

 Arrays can have more than one dimension. A table of data will be

represented by multidimensional array. You would declare the array as follows

 Dim Saleval (11,2) As integer.

Dynamic Arrays

Dynamic Array are used when you do not know the number of elements for an

array. A dynamic array can be resized at any time and this helps you to manage

memory efficiently. Can use a large array for a short time and then free

memory to thesystemwhen you are no longer using the array. The size of the

array after having declared a smaller array.

The ReDim is used in conjunction with the Dim statement while declaring

these arrays.

 Declaring a Dynamic Array

1.You declare the array as dynamic by giving it an empty dimension

list.

Dim DynSaleval()

2.Use the Redim statemen to allocate the actual number of elements.

ReDim DynSaleval (11,4)

The Preserve Keyword

 Whenever the ReDim statement is used the previous array and its

contents are destroyed. Visual Basic resets the values to the Empty value (for

variant arrays), to zero (for numeric arrays). To a zero-length string (for string

arrays), or to Nothing (for arrays of objects). This is useful when you want to

prepare the array for new data, or when you want to shrink the size of the array

to take up minimal memory. However, if you need to expand or increase the

size of he array ReDim by itself is not good news. In order to allow the array to

‘grow’ the Preserve keyword is used. The statement

 ReDim Preserve Saleval (12,9)

 Will not destroy the data that has already been entered. It will only add

the value for the second dimension.

 In the case of a single dimension dynamic array, you can enlarge an

array by one element without losing the values of the exiting elements using the

UBound function to refer to the upper bound. The Ubound function can be

used to get the ubound of the array.

 32

Review Questions:

1. List out the features of VB?

2. What is error value?

3. Explain the uses of project Explorer?

4. Discuss about scope of variable?

5. How will you develop an application in VB?

6. Explain in detail about VB controls.

7. What are the types of toolbars available in VB?

8. What are the advantages of VB programming?

9. What is the usage of various windows available in VB IDE?

10. With suitable example, explain the creation of an application in VB.

11. Explain the different data types used in VB with suitable examples.

12. Which controls does the value as “Value” possess?

13. State two examples for custom controls.

14. What is a variable?

15. How are variables declared and assigned values?

16. How do you put or create the control on the Form?

 33

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 34

UNIT-II

Objectives:

 This objective of this unit are to understand the code window, Use the

various functions in Visual Basic, Understand the various control structures

used in Visual Basic, Understand which control structure can be used for a

given situation, Write programs using control structures. Next this unit gives

the controls provided by Visual Basic for file management, the various types of

files, File management functions, opening and closing files, Reading and

writing data to files.

Contents:

 2.1 Writing Code in VB

 2.2 Working with Files

Review Questions

2.1 Writing Code in visual Basic:-

The code window

 VBA is the name of the programming language used in Visual Basic. It

is the language used for the other desktop products from the Microsoft stable,

and has over a period of time added many features to make the job of

programmers (composers) as easy as possible.

 Visual Basic provides you the code window to compose (view, write,

edit) all your VBA code. You can have as many code windows, as there are

modules and cut and paste code between them. The code window has probably

all the features (including a certain amount of intuition) that a programmer will

hope for.

Opening the code Window

 The right mouse button on the control. Choose the “View Code” option.

 OR press F7 after clicking on the control.

 OR Click on View in the menu bar and click view code.

 OR right click the name of the form from the Project Explored and

select view code.

 The code window will open on the default event of that control. For

example if the Form has the focus, the code window will open on the Form’s

Load event.

Part of the Code Window

Project Name

 The name of the project to which this procedure belongs is displayed in

the title bar. The project is the outermost container of all procedures for an

application.

 35

Module Name

 Next in the hierarchy after the Project is the Module. A project can

contain more than one module. (A form is also a module). Therefore, while

editing the code it would be very helpful to know the name of the module

whose code is being edited.

Object Box

 This displays all the object associated with that form and the form itself.

Procedures / Events Box

 This will list all the events recognized by Visual Basic for the control or

form displayed in the object box.

Split Bar

 Use the Split bar to view different part of the code. Each part can be

independently scrolled at the same time (remember the Norton Editor?). Click

on ‘Windows’ on the menu bar. From the drop down menu select ‘Split’. This

will split the code window into two horizontal panes. This way you can scroll

up or down the code for two different procedures, compare, cut and paste the

code from one pane to another. The object box will display the names of the

procedure that has the focus, preventing confusion about the procedure to

which a piece of code may belong.

 Double click on the bar to close the pane or move the split bar to the

bottom of the code window.

Margin Indicator Bar

 The gray area on the left side of the code window is the margin

indicator. You will find this now empty area come alive when you debug your

program.

Procedure View Icon

 Displays the selected procedure. Only one procedure at a time is

displayed in the code window.

Full Module View Icon

 Displays the entire code in the module.

The Procedure Separator

 It is a horizontal gray line that separates two procedures. It can be

turned on or off.

The Anatomy of a Procedure

 The procedure is the piece of code that gets executed when the control

that it is associated with senses an event. The event as mouse click, mouse

move, or a method invoked by the code.

A procedure consists of all or most of the following.

1. Name Every procedure must have a name. The name of a procedure is

usually tied to the control. You can have a procedure called.

cmdExit_Click(). This means that this procedure will be executed

 36

against the ‘Click’ event of the ‘cmdExit’button. The ‘Sub’ before the

name means that the procedure is a Subroutine.

2. Declaration area Strictly speaking, there is no clear demarcated area

where one should make all the declarations for variables, constants, etc.

However it is considered a good idea to declare all the variable at the

beginning of the procedure. This makes it easy to located variables and

verify the same during the process of debugging.

3. Statements The procedure deals with basic execution. A procedure will

contain VBA statements (or code if you like) that will perform the

intended task. A procedure can have as many statements as you care to

add, but keeping your procedures short and simple will render them

easy to debug.

4. Call to other procedures and / or functions One way of reducing the

number of lines in a procedure is to break up the entire activity into

smaller functions or procedures that can be called as and when required.

Therefore, if a particular task has to be performed by more than one

event, that task can be written as a procedure to a function and called as

and when required. The principle used here is “Write once-use many

times”. A call to another procedure or function is not a must for every

procedure.

5. Terminator All good things come to an end. Every procedure

(subroutine in this case) is terminated by the “End Sub” statement.

Subroutine or Function

Subroutines and Functions are both procedures that are executed as a

unit of code. The difference is that Function will return a value to the

calling program, and can therefore be used as a variable in order to

return a value. On the other hand, a procedure will not return any value

to the calling program.

 The function is declared with the ‘Function’ key word and terminated

with the ‘End Function’ statement.

Example

 Function sum (intn1 an integer, intn2 as integer) as integer

 sum = intn1 + intn2.

 End function

 The functions ‘sum’ can be called anywhere in the program. It can be

called by simply passing the variables to it as arguments.

 Dim intnum1 as integer, intnum2 as integer

 Dim intans as Integer

 intans = sum (intnum1, intnum2)

Automatic Word Completion

 Visual Basic provides you with the Auto Word Completion option. To

enter a ginger strainer like ‘Mouse Button Constants’, enter the alphabet ‘m’

 37

and press Ctrl+Spacebar. A drop-down list box will appear with a scrollable list

of keywords starting with ‘m’. If you type in enough of the word to narrow the

selection to the word you want, press Tab or Spacebar. The rest of the word is

completed by Visual Basic.

Auto List Members

 This feature is similar to the Auto Word completion. In this case, as

soon as you enter the name of a Visual Basic object that has been created on

the Form, followed by the period, a drop-down list box appears with all the

properties and methods of that object.

 In order to assign a caption to a Label Box, enter ‘lblWarning’. A drop

down listbox appears with all the properties and methods associated with the

Lable Box object. From the list, select the property that you want (caption in

this case), and press spacebar. The word is completed by Visual Basic.

Color Cueing

 This is an important feature that makes the programmers’ job easy. As a

standard, statements with errors appear in red, comments in green, Visual Basic

keywords in blue and Identifiers like SQL in black.

Line Continuation Character

 This character is the underscore “-“ and comes in handy when you have

long statements to make. The Statement that you may have seen so far are very

simple and short. However, while working on SQL statements or Windows API

declarations, you will find they are very long and will not fit on one line.

 The line continuation character makes the reading of statements easy

too.

Set rst = dbs. Open Recordset (“SELECT Productcode, “-

 & “ProductName FROM Product;”)

Commenting and Uncommenting Statements

 Debugging code is usually done procedure by procedure. While

debugging your code, you may need to stop a particular procedure from

executing while another r procedure executes, as the helps to isolate a problem.

One way to accomplish this is to delete the offending procedure. The other

option is to comment the entire block. Visual Basic provides the ‘Comment

Block’ button on the View |Toolbar| Edit. Select the block and click on the

‘Comment block’ button, whereby the entire block will turn green.

 You can uncomment the block by clicking on the ‘Uncomment block’

button.

 Visual Basic provides you the necessary control structures in order to

develop your applications. In a program you may want to

 perform an action if a condition is true.

 perform an action repeatedly a certain number of times.

 perform an action till a certain condition becomes true.

 perform an action as long as a condition remains true.

 38

 perform different actions for different values of a variable.

The Control Structures in Visual Basic are

1. If condition Then [statements] [Else statements]

which conditionally execute a group of statements, depending on the

value of an expression.

2. For counter = start to end [Step step] [Statements] … Next which

repeats a group of statement a specified number of times.

3. Do[{while| Until} condition] … Loop

Which repeats a block of statements while a condition is True or until a

condition becomes True.

4. While condition [statements] Wend

Which executes a series of statements as long as a given condition is

True.

5. Select Case test expression [Case expression list-n [statements –n]]…

End select.

Which executes one of several groups of statements, depending on the

value of an expression.

The For …Next Statement

This structure is used when you want to execute a statement or a block

of statements a certain number of times.

Example-1

 For intI = 1 to 10

 intTotal = intTotal + intI

 Next intI

This loop will compute the sum of the numbers from 1 to 10.

The statements intTotal = intTotal + intI is performed 10 times.

Example-2

For intI = 5 to 100 Step 5

 debug . print intoI

 Next intI

will print all the numbers from 5 to 100 that are divisible by 5.

The Decision Maker … If

 The If conditions …. statement is used when the program has to

perform an instruction or a block of instructions depending upon the value of

an expression. If the expression returns True then a set of statement(s) is

executed. The program may or may not execute any statement(s) if the

expression. If the expression returns True, then a set of statement(s) is

executed. The program may or may not execute any statement(s) if the

expression returns False.

 39

Syntax

 If condition Then the condition must return a True or False

 [statements]

 [Elself condition –n Then the condition must return a True or False

 [elseifstatements]…

 [Else

 [elsestatements]]

 End If

Example 1

 If string1 = string2 then MsgBox Both the strings are equal.

Example 2

 If CandiateAge <= 18 then

 Juniors = juniors +1

 else if candidateAge <= 50 then

 Seniors = Seniors +1

 else

 Oldies = Oldies +1

 End if

 When the If … statement returns a true value, the statements following

the THEN keyword will be executed. In the first example, when the If… does

not return true value, no action is taken.

How does it work

1. The first IF statement evaluates the expression.

2. If an expression returns a True value the statement after THEN keyword

executed.

3. If the expression returns a False value, the rest of the Elself conditions

(if any) evaluated by turn.

4. If any expression returns a True value, the statements following the

related THEN keyword are executed.

5. If there are no Else If or Else conditions program execution continues

with the statements following the End If statement.

The Loop

 Do [{While | Until} condtion]

 [statements]

 [Exit Do]

 Loop

Example code

 intI =1

 Do While intI < 10

 40

 intsum = intsum + intI

 intI = intI +1

 loop

The While Loop

While condition [statements] Wend

This structure executes a series of statements as long as a given

condition is true.

Syntax

 While condition

 [statements]

 wend

Example Code

 Dim intI as Integer

 intI =1

 While intI < 10

 intsum = intsum +1

 intI = intI +1

 wend

Select Case … End Select

 This method is used when the program has to execute one of several

groups of statements, depending on the value of an expression.

Syntax

 Select Case testexprssion

 [Case expressionlist-n

 [statements-n]] …

 [Case Else

 [elsestatements]]

 End Select

Example Code

Select Case CandidateAge

 Case <= 18

 MsgBox you are in the Juniors

 Case <= 50

 MsgBox you are in the Seniors

 Case Else

 MsgBox You are in the Oldies

 End Select

 41

2.2. Working with Files

 All the data that you create, manipulate etc is stored as a file. Even

databases are stored as files, such as Biblio.mdb, Nwind.mdb etc.

You will have to transfer data from a file to your database, or write data

from your database to file. You may have to transfer data from the Microsoft

platform to another platform or vice-versa.

File handling are in two views. First, we will look at the controls that

Visual Basic has provided to help us navigate through the drives and directories

of our computer. Having found the file that we want, we will look at opening,

reading, writing and closing that file. We will also look at the types of files that

are used and how we can perform various functions on these files.

Visual Basic File System Controls

Moving from one drive to another : The Drive ListBox

Moving from one directory to another : DirListBox

List file(s) in a directory : FileListBox

The DirveListBox Control

 This is a drop-down list box that will display the list of drives on your

computer. It gets all information from the Operating System and allows the

user to select a drive of his choice. Selecting a particular drive records a change

in the Drive property of the DriveListBox.

The DirListBox Control]

 A drop-down list box that displays a hierarchical list of directories in

the current drive.

The FileListBox

 Displays all files in the current Directory or Folder. Allows users to set

up search criteria for files.

Visual Basic has built in functions such as

 ChDrive : Changes the current logged drive

 ChDir : Changes the default directory

 MkDir : Creates a new directory

 RmDir : Deletes a directory

 Name : Renames a file

 Kill : Deletes a file

 File Copy : Copies source file to destination

 File Date Time : Returns the date and time when the file

was

 modified

 GetAttr : Returns the attributes of a file as an

Integer value

 SetAttr : Sets the attributes of a file.

 42

Ch Drive : Change the current logged drive.

Syntax

 ChDrive drive

 drive is a string, which specifies an existing drive

 if the drive does not exist, the drive will not change.

Example

ChDrive “A”

 This will change the drive to “A”

ChDir : Changes the current directory or folder.

Syntex

 ChDir Path

Example

 ChDir “C:\AZAM\EMSQUARE”

 This will change the current directory to ‘C:\AZAM\EMSQUARE’

MKDir : Creates a new directory or folder.

Syntax

 MkDir path

 path is a string that identifies the directory to be created.

 path may include the drive name. If drive is not specified, then new

directory is created in the current drive.

Example

 MkDir”c:\EMSQUARE\Expermnt”

 This will create a directory ‘expermnt’ under ‘c:\EMSQUARE’

RmDir : Deletes a directory

Removes an existing directory or folder.

Syntax

 RmDir path

 path is a string that identifies the directory or folder to be removed.

 path may include the drive.

Example

RmDir “C:\Temp\Temp1”

Name : Renames a disk file, directory, or folder.

Syntax

 Name oldname as newname

 oldname is the name of the file that has to be renamed or moved

 newname is the string that identifies the new name that the file should

have.

 43

 If the new name contains the name of a different directory then the file

is moved to the new directory.

 new name cannot already exist.

 The file being renamed should not be open.

Example

 Name OldFile As NewFile *OldFile is renamed as NewFile

Kill : Deletes a file or files

Syntax

 Kill pathname

 pathname is the name of the file(s) to be deleted

 Kill accepts wildcard characters like “*” and “?” to delete a group of

files.

 Kill will not delete an open file.

Example

Kill “testdoc” ‘to delete the file ‘testdoc’.

Kill “*.Doc” to delete all the ‘*.Doc” files in the current directory.

FileCopy : copies the source file to the specified destination.

 FileCopy source, destination

 Source is a string that identifies the name of the file to be copied.

 destination is a string that identifies the target file name.

 FileCopy should not be used to copy an open file.

Example

 Filecopy Maxfile Highfile.

FileDate Time : Returns a Variant (Date) that indicates the date and time when

a file was created or last modified.

Syntax

 FileDateTime (pathname)

 pathname is the name of the file.

Example

 Dated = File Date Time (“Maxfile”)

 *This will return the date and time when the file

‘Maxfile’ was last modified.

GetAttr : Returns the attributes of a file as a Integer value

Syntax

 GetAttr (pathname)

*pathname is string that identifies the file.

 44

Example

 Dim Fileattrib As Integer

 Fileatrib = GetAttr(Maxfile)

SetAttr: Sets the attributes of a file.

Syntax

SetAttr pathname, attribuites

 pathname is a string that identifies a file.

 attributes, is a numeric expression or constant that specifies file

attribute.

Example

 SetAttr Highfile, vbHidden + vbSystem

 The method of access of a file is the basis of classification. From the

programming point of view files are classified as

 Sequential access files

 Random access files

 Binary access files

Working with Files

What is a Record?

A file can have records of the same size or of different sizes. You can

therefore have a fixed-length record or a variable-length record. In the

illustration below, we have the same file displayed as a ‘variable-

length’ record file.

RR234, Raw Rice IR50,17.00,KG,1400

RR317,Raw Rice Poni,20.00,KG,2050

WTPP12,Wheat Punj1,12.00,KG,130

SUO16,SunFOil V1,45.00,KG,700

In this case, each record is of different size and is separated by a

comma. Do not be under the impression that a file will contain

headings that will be self-explanatory. The programming involved in

reading data from these two types of files is different.

While working with any type of file you will need to

 Open a file

 Read the file

 Close the file

 Determine the end of file

 Determine the length of file

 Determine the beginning of file.

 45

Opening a Sequential File

The file can be read character by character, or by lines, or as a block of

characters.

Complete Syntax

 Open pathname for mode [Access] [look] As [#] file number

[Len=reclength]

 For the sake of this function we will look at the syntax for opening a file

for reading follows

Syntax

 Open pathname form Input As [#] file number

 Open is the command to open the file.

 Pathname is the full pathname of the file to be opened.

 Input specifies that the file must be opened for reading purposes.

 file number is the number assigned to the file for purposes of

identification

 the file number must be unique. The range is from 1 to 511.

Example:

Open c:\EMSQUARE\Item Master.txt for Input As #1

Closing a File

A file must be closed for the operating system to write the data from the

associated buffer to the file. The Close command ensures that this

done.

Syntax

 Close [file number List]

 Close is the command.

 file number List is the list of the file number that represent the files that

have to be closed.

 The file number will be returned to a list that is displayed by the

function ‘Free File’.

 If file has been opened for writing, then the output buffer is written to

buffer allotted for hat file.

Reading a File

The Open command creates a buffer in the memory which helps in I/O

operations. The buffer is block of memory that is reserved for I/O operation on

the file. The Read operation transfers the contents of the file from the disk to

the buffer. The ’Input’ function provided by Visual Basic reads a sequential

file’s contents into the buffer. The Input function has three options or methods

of work.

 46

1. Input

Syntax

Input (number, [#] file number)

 Input is the command name.

 number is the number of characters to be read.

 filenumber is the number of the open file that has to be read.

Example

string 1= Input (25, # 1)

2. Input #

Syntax

Input # file number, varlist

Where * file number is the file number of the file to be read.

 * varlits is the list of variable that will hold the data.

Example:

 Input # 1, Serial Num, Name, Designation

3. Line Input #

This version of the Input command reads an entire line into a variable.

It will continue to read the contents of the file till it encounters a

Carriage Return-Linefeed sequence.

Syntax

Line Input # file number, databuffer

 Line means read the entire line.

 file number is the file number of the file to be read.

 databuffer is the variable that will hold the line that has been read.

Example:

Line Input # 1, linebuffer

Review Questions:

1. What are the types of file system controls?

2. Write the difference between file and record.

3. Explain types of files.

4. Explain the uses of picture box with its properties.

5. Explain For..Next statement, decision maker _If, While, Select case?

6. Design your form and write code for simple arithmetic calculator.

7. How will you give name to the text box?

8. Write a note on the For..Next loop.

9. Explain with example, about the Exit for statement.

10. Explain the steps followed while adding a text box.

11. What is a record? Explain with example.

12. Write a program to append ten strings into a file.

 47

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 48

UNIT-III

Objectives:

 The objective of this unit are to Appreciate interface-related

issues, List the items in the menu editor, Create menus for your applications,

Change the structure or order of menu items, Add code to menu items. Next it

gives you to understand the meaning of MDI forms, Understand the features of

MDI forms, Work with multiple MDI child forms, Create a small application

using MDI forms.

 This unit also discusses When and how debugging is to be

done, Setting the Error Trap, Writing an Error-Handling Routine, The

Immediate, Watch and Debug windows, The common Dialog Control, Why

databases are used to store data, Database terminology, Using the Visual Data

Manager, Creating tables, Modifying tables, Working with the Data Control.

Contents:

 3.1 Menus

 3.2 MDI Applications

 3.3 Debugging Tips

 3.4 The Common Dialog control

 3.5 Introduction to Databases

 3.6 Working with the Data Control

Review Questions

3.1. MENUS

Building the User Interface. The First Step:

Design the form that you want the user to see on paper. I know that

computers are meant to reduce paper work but nevertheless go ahead.

The same applies to coding as well.

Overcrowding

Do not clutter up the form. Let there be enough of white or blank space. When

a user sees too many buttons, textboxes, label boxes, etc, he is going to feel that

the program is too confusing or ‘high-funda’.

Important Information Must be Given Prominence

 Not all information about your customer or the items that you sell is

equally important. The customer name and address are important while

generating an invoice, but details about his spouse or pets may not be relevant,

unless you have promotional scheme of some sort. In such situations, the extra

information can be provided to the user if he pushes a button such as “More

Info”.

Consistency

 Visual Basic offers a host of controls. However, do not make the

mistake of using all of them. A number of controls can be used to do the same

 49

job. The List Box, ComboBox and TextBox can be used to display a list of

names. Do not use different controls at different places, unless you are

compelled by the application. For a particular task use the same control

throughout.

The Fonts

 The fonts are another area where the designer might run away with his

imagination. Stick to the standard fonts like Times New Roman, System, Arial,

Courier, etc or supply the fonts along with the software.

Consistency Across Forms and the Application

 The forms too must look related. The color of forms and placement of

controls on individual forms must be uniform. You cannot have the save button

on the right hand bottom corner of one form and in the middle on another form.

Affordances

 Affordances are visual clues to the purpose of an object. The mouse that

you use is shaped in such a way that you know it must be held under the palm.

Simplicity

 Keep it simple son! (KISS). Yes. Make sure that the interface you

present to the user is simple and easy to use.

Usability

 The user must be able to use your application with ease. He is not

concerned with the technical brilliance or the brevity of your code. He may also

not care about the version of Visual Basic used to develop the application. He

would not like to unlearn all that he has learnt so far.

Images

 A picture is worth a thousand words. Use context sensitive help. Use

the status bars to display a message or use balloon help. Check out how

Microsoft products offer this type of help. It is not a bad idea to use the icons

that they do.

Colors

 Use simple colors. The user is going to be looking at the form that you

have designed. If it has a riot of colors and your name is not Rembrandt, it will

not be well received. While programming for an international audience, make

sure that the colors used are soft and mild.

Interacting With the User

 In order to stop the user from pressing the panic button, or condemning

your application, you should build in messages that will convey the problem at

hand to the user and accept his choice under the circumstances, before you take

action.

All about Menus

 Menus contain a number of options, logically organized and easily

accessible by the user. Toolbars supplement the menus by providing quick

access to a number of frequently used options.

 50

 Visual Basic provides a very simple method to create menus for your

application. You create Menus using the Menu Editor.

In the figure below you have the Standard Menu Bar.

File Edit View Format Window

 Help

The Menu System

 The menu bar consists of a number of options. Window-based

applications follow the standard of a File menu on the left, then optional menus

such as Edit and Tools, followed by Help on the right.

 When the user clicks a menu option, a list of options is displayed.

Clicking on any item on the list will generate a click event. You can write a

program to respond to that event. An option on the list can have its own

submenu. A menu item can have four child menus.A menu is tied to a form.

You cannot have a menu without a form.

A menu item can

1. Have a check mark to provide an on and off settings.

2. Have an arrow on the right side to indicate a child menu.

3. Be disabled or enabled depending upon the situation.

4. Have keyboard equivalents for easy access.

5. Have separator line to logically group menu items.

6. Have an ellipsis to indicate a dialog box.

Menu Conventions

 You must first decide on the Main Options and sub-options for each of

the main options. The placement of submenus is very important. Users expect

to find Copy, Cut and Paste beneath the Edit menu; moving them to the File

menu would be confusing at best. Don’t deviate from the established guidelines

unless you have a good reason to do so. Each of the Menu Items that you create

will be treated like controls, and can be coded to trigger related activities.

The Menu Editor

 Start a new project. With the form in focus, click on Tools | Menu

Editor. This will display the Menu Editor.

The Menu Editor has the following Items:

1. The Caption Box: What you type here is what the user sees.

2. The Name Box: The name entered here is the control name for the

menu item. You enter the code for menu item under this control name.

3. Shortcut Box: You enter the shortcut keys for the menu items here.

Click on the down arrow, a drop-down list box will be displayed with

all the shortcut keys. Click on the one you want to use.

4. The Checked Check Box: Click on this if you want to display a tick

mark to show that a menu item has been selected. The default is off.

This can be turned On or OFF at run time.

 51

5. Enabled Check Box: Click on this to make a menu item enabled. If a

menu item is enabled, it will respond to the mouse click. This can be

turned On or OFF at run time.

6. The Visible Check Box : If it is set to Off then the menu item and its

sub-menus will not be visible. This can be turned On or Off at run time.

7. The Tex Window: This gives a preview of what you have entered. You

can also view the hierarchy of menus and sub-menus by looking at the

indentations.

8. The Left Arrow button brings the menu item one level up.

9. Clicking on the Right Arrow moves the menu item one level deeper.

10. The up Arrow interchanges the current line with the line above.

11. The Down Arrow interchanges the current line with the line below.

12. Index : Allows you to assign a numeric value that determines

 the control’s position within a control array. This position isn’t

 related to the screen position.

 13. Help contextID: Allows you to assign a unique numeric value for

 the context ID. This value is used to find the appropriate Help

 topic in the Help file identified by the Help File property.

 14. Negotiate Position : Allows you to select the menu’s Negotiate

 Position property. This property determines whether and how

 the menu appears in a container form .

 15. Next: Moves selection to the next line.

 16. Insert : Inserts a line in the list box above the currently selected

 line.

 17. Delete : Deletes the currently selected line.

 18. OK : Closes the Menu Editor and applies all changes to the last

 form you selected.

 19. Cancel : Closes the Menu Editor and cancels all changes.

Adding the ToolBar

 The ToolBar must hold relevant icons that represent frequently accessed

functions. For example, the icon with Scissors represents the action ‘Cut’,

where you cut a block of selected text. The icon with a floppy represents the

action ‘Save’.

ToolBar Conventions

 A ToolBar is a supplement to the Menu Bar. It offers mouse shortcuts

for frequently used functions.

 It can be used without a menu bar only if the options on the menu are

few. Trying to provide buttons for all functions of Microsoft Word would be an

unnecessary exercise.

 Let us now create a ToolBar

 52

 You need the ToolBar control. If you do not have it on your ToolBox,

do the following.

 Place the mouse on the ToolBox and click the right mouse button.

 From the pop-up menu choose components.

 From the pop-up menu choose components.

 A window pops up displaying the controls that are available.

 Click on Microsoft Windows common controls

 Click on Wang image edit control.

Push the OK button and you will see some new controls on your ToolBox.

3-2 Multiple Document Interface Applications

 The MDI was designed for applications like Microsoft Word and

Microsoft Excel, which need to show more than one document (multiple

documents) at the same time.

 An MDI application allows the user to display multiple documents at

the same time, with each document displayed in its own window. Documents

or child windows are contained in a parent window.

Why MDI Forms?

1. An MDI Form acts like a container for the other forms in the

application. Therefore the user can start an application, minimize it and

close it with a single point control. One need not close all the

constituent forms.

2. Most of the control buttons and code for the various forms can be

shared. After all functions like adding, displaying, sorting records, etc.

are commonly used by most of the forms.

3. Reduce the number of controls. Common controls can be available with

the MDI form and shared by the other forms.

4. All activities like day-end operations and updating of records can be

handled from the MDI form.

An MDI Application consists of

1. One MDI Parent form

2. One or more MDI Child Form(s)

3. Optionally independent forms and modules.

Creating a simple MDI application

 Start a new Standard. Exe project

 Click on Projects

 From the drop-down menu, Click on ‘Add MDI Form’

 A form with a darker color will be displayed. This is the MDI Form.

1. An application can have only one MDI form. If a project already has an

MDI form, the Add MDI Form command on the Project menu will be

unavailable.

 53

2. It can contain only those controls that have an ‘Align’ property or those

controls that are not visible during runtime. This is because the internal

area of an MDI form is defined by the area not covered by these

controls. These are Toolbar, Picture Box, and Data control. The Align

property here is related to the alignment of the control on the form.

3. To place other controls on an MDI Form, you can draw a picture box on

the form, and then draw other controls inside the picture box. You can

use the Print method to display text in a picture box on an MDI For, but

not to display text on the MDI Form itself.

4. An MDI form object can’t be modal.

5. The menu for the Child form will be displayed as the menu on the MDI

Form when the Child Form has the focus.

6. You can access the collection of controls on an MDI Form using the

controls collection. For example, in order to hide all the controls on an

MDI Form you can use code similar to the following.

For Each Control in MDIForm1. Controls

 Control. Visible = False

 Next control.

7. The default Auto Show Children property displays the child forms

automatically when they are loaded.

8. The default Scrollbars property will display the scroll bars when the

child forms extend beyond the boundaries of the parent form.

9. The count property of the MDI form tells you the number of controls in

the controls collection.

 54

To create an MDI child Form, select Form 1 (or add anew form) and set its

MDI child Property to true.

 When you double-click on a Word document on your desktop, the

Word program is automatically invoked. The document is the child form, and

the Word program, is the MDI parent form. When you load a child form, its

parent form (the MDI form) is automatically loaded and displayed. When you

load the MDI form, however its children are not automatically loaded.

 You can set the AutoShowChildren property as False, in order to load

MDI child window as hidden, and leave them hidden until you display them

using the show method.

 MDI application may open, save and close several child forms in one

session. The functions and the methods we can use to specify the active child

form or control, load and unload MDI and child forms, and maintain state

information for a child form.

 This property returns the form that is the active window in the

application. If a control in the child form has the focus, it returns the name of

that form.

Syntax

 Object. ActiveForm

 Note : An active dialog box is not the same as an active form.

 In the click event of the MDI Form add the following

 ActiveForm.Text1.Text = “This is to test if we have got it right”.

 At the bottom of the pop-up menu, a list of open documents will be

displayed with a tick mark against the current document.

 Add a menu item Windows to your MDI Form.

 Check the box ‘Window List’.

 The size of the MDI Child Form (with a sizeable border) is determined

by Windows, based on the size of the Parent. Therefore the size and position of

the child Form at runtime will be different from its size at design time.

 Open the menu editor again. To the menu item Window, add a sub-

option. Call it Arrange. In the click event of the Arrange menu item, add the

following line.

 Private Sub arrangemethod_Click()

 MDIForm1. Arrange vbCascade

 End Sub

 Now run the application. You will be able to cascade the windows. The

MDI Forms’ ‘Arrange’ method has four options. They are

 vbCascade : Arranges open forms such that the title bars of

 forms behind the current form are visible.

 vbVertical : Open forms are displayed vertically.

 vbHorizontal : Open forms are displayed horizontally

 55

 vbArrangeIcons : Icons of minimized forms are neatly lined up

 at the bottom of the MDI form.

3.3 Debugging Tips

 Debugging is an integral part of software development.

1. How to avoid bugs

2. How to trap and weed out bugs that have crept in anyway

3. How to handle the bugs that could not be trapped

The usage of the term ‘bug’ has many versions. Whenever a problem

occurred in a system, it was called a bug. The process of finding out and

removing the error is called debugging. Therefore the programmer (that means

you) has to carry out the debugging process before distributing the software to

the end-user.

1. When your application doesn’t produce correct results.

2. When your application halts unexpectedly.

3. When your application goes into an infinite loop.

The errors that can occur in your program are classified into three

categories. They are

1. Errors of Syntax

2. Logical Errors

3. Runtime Errors.

“DIM intI Integer”

 The moment you press the Enter button, a message box will pop-up and

tell you that you made a mistake.

 Click on the Tool and choose options from the menu. Under the ‘Editor’

tab you will find the following items checked. They are code settings and wind

settings.

Code Settings

1. Auto Syntax check

2. Require variable declaration

3. Auto list members

4. Auto quick info

5. Auto data tips.

Window Settings

1. Drag-and-Drop Text Editing

2. Default to Full module View

3. Procedure Separator.

DIM intMaxmarks as Integer

Maxmarks = marks + Maxmarks

Debug . print Maxmrks

 56

 The Auto Syntax Check option will not trap this error. However, the

option ‘Require variable Declaration’ will ensure that wrongly spelt variables

will not spoil the show.

 When we entered the statement “DIM intI as”, a drop-down list box

appears with all the possible options we need. This will reduce the time taken

to type and also minimize the chances of spelling errors.

 This option will provide you with the complete syntax for the function

that you intend to write. It is context sensitive and it is not necessary to

remember the syntax of every function by rote.

 We will look at this function when we take up debugging. With such

options at your disposal, you can be sure that syntax errors can be minimized.

1. Plan your program. Make sure you know where your program should

begin, the path it should take and where it should end. Draw Data-flow

diagrams, flow-charts, etc., such that your logic is clear. Then begin to

write your code.

2. Use a standard naming convention. You can have your own naming

convention, but it must be maintained throughout the application.

3. The names used for the controls, variables, etc must be meaningful.

Remember that there is no constraint on the Visual Basic programmer

today as there was for programmers some years ago.

4. Declare the variables at the beginning, although you can declare them

anywhere in the procedure.

5. Comment your code. Wherever necessary, add your comments. Start

with a narration about the purpose of the procedure and to what it is

related.

A run-time error results when a statement attempts an invalid operation.

Logical errors occur when there is a flaw in the program logic.

 Logical errors have to be trapped by going over the program very

carefully and supplying data of any type. Runtime errors are caused by

hardware faults, change is in the settings, etc.

 The tools and methods include setting watches, setting breakpoints,

stepping through the code using the locals window, the immediate window, the

Stack, etc.

 Traditionally the programmer fraternity uses the message box to display

the state of values that have been assigned to a variable.

 Look at the code below

 Private Sub Command1_Click()

 Dim intI As Integer

 For intI = 1 To 20 step 4

 MsgBox intI

 ‘Other statements…..

 Next intI

 57

 End Sub.

 A routine like this will keep the programmer informed about the value

of the variable intI.

 The other method is to use the Debug object. The debug object will

send the output to the immediate window.

Private Sub Command1_Click()

 Dim intI As Integer

 For intI = 1 To 20 Step 4

 Debug. print intI

 Next intI

End Sub

 The values assigned to the variable ‘intI’ will be displayed in the

‘Immediate Window’.

The Debug Toolbar

 In order to begin debugging you need the ‘Debug Toolbar’. The options

on the Debug toolbar are available as sub-options of the Debug Menu item.

However it is more convenient to have the Debug toolbar on top. To bring up

the Debug toolbar, right-click the toolbar and select Debug from the pop-up

menu.

The Start Button:

 You start the program by clicking on this button. It is like pressing the

F5 button and choosing the Run option.

The Break Button:

 It pauses the program. It is like pressing the Ctrl +Break key.

The End Button:

 Halts the program. The next sets of buttons come into play only if we

set the Break point.

The Breakpoint:

 Debugging is the art of weeding out a bug. A time-tested method is to

first isolate the problem. You can specify the point where the program should

 58

halt by setting ‘Breakpoint’. Click on the gray margin area on the left side of

your code window in line with the statement where you want to pause the

execution. A brown dot will appear in the margin. Now run the program. The

program will pause before it reaches the statement that has been marked as the

Breakpoint.

Toggle Breakpoints:

 You can have more than one breakpoint, Click on this button to shift the

breakpoints.

Step Into:

 Now that the program has paused where you want it to, you can step

through the code line by line. Click on the Step Into icon to execute one line of

code. You can watch what happens to the variables in the procedure.

Step Over:

 The procedure you are watching may branch to another procedure. If

you are confident that the called procedure is perfect, you need not cover that

ground again. Click on the Step .over icon. The called procedure will be

executed, and control will be returned to the next line in the current procedure.

Step Out:

 If you have seen all that you need to see in the current procedure, click

on Step Out icon.

 The next set of buttons deals with the following Windows.

 Locals Window

 Immediate Window

 Watch Window

 Quick Watch

 Call Stack

The Locals Window:

 Click on the Locals Window icon. A Window like the one in the figure

will be displayed. This Window will display all the variables that are declared

in the current procedure.

The Quick Watch Window:

 Right click on a variable whose value you want to watch. From the

pop-up menu select ‘Add Watch’. The following dialog box will pop-up. Enter

the name of the variable for confirmation. Now run the application after setting

a breakpoint. Observe the value of the variable change as you step through the

code. You will be able to note when a variable assumes a certain value and take

appropriate action.

The Immediate Window:

 This is the window to which the ‘Debug-print’ sends the output. In this

window you can directly execute a statement as if you are directly

communicating with the interpreter.

 59

The Watch Window:

 In this window all the variables used in the application till the

breakpoint are displayed. The Watch window also displays the name of the

procedure where the variables is used and the value that variables assume.

What is an Error Handler?

 It is a routine that traps errors and directs the user or the program to

perform a certain task to overcome the error.

The err object

 The VBA engine is always on the lookout for errors that may occur in

your application (as if the Project Manager is not enough). Whenever an error

occurs, VBA activates the err object. The err object has the following

properties and methods.

The Clear Method : The err.clear clears the properties of the error

object.

The Raise Method: Helps raise an user-defined error.

 Description property

 Help Context property

 Help File property

 Number property

 Last DLLError property.

3.4 The Common Dialog Control

 The Windows Common Dialog Control allows you to deploy the dialog

boxes that it provides with all its applications. The Common Dialog control lets

you display the following dialog boxes.

 Open a File

 Save a File

 Set a Color

 Set a Font

 Print a Document

The Common Dialog control can display the following dialogs, using the

specified methods.

 Method Dialog Displayed

 ShowOpen Show Open Dialog Box

 ShowSave Show Save As Dialog Box

 ShowColor Show Color Dialog Box

 ShowFont Show Font Dialog Box

 ShowPrinter Show Print or Print Options Dialog Box

 ShowHelp Invokes the Windows Help Engine.

 60

Working with the Common Dialog Control

 Add the Common Dialog Control to your toolbox by Right clicking on

the toolbox and selecting ‘Components’ from the pop-up menu. Next select

‘Microsoft Common Dialog Control 6.0 from the list of components.

 Draw it on your form. During runtime it is not visible. Right click

on the common dialog control and select Properties from the pop-up menu.

You can set the properties for each of the methods.

Small Program

 Start a new project. Give it an appropriate name.

 Add the Microsoft Common Dialog Control to your toolbox.

 Draw the following controls on the form

 One textbox control

 Five Command Button controls (Open, Save, Color, Print and Exit.).

 Write some simple code to allow the user to open a file and display its

contents in the textbox. We therefore need to use the Show Open method. Add

the following line in the code window of the open command Button

commonDialog1. ShowOpen.

 There are two ways you can give a title to the dialog box.

 By setting the title at design time

 By setting the title at runtime through code.

 The user to pen a file of his choice and display its contents. However,

the user may also want to create a new file, add some text and save it in a

directory of his choice.

 The ShowSave method to allow the user to enter the name of the file in

which the text entered in the textbox has to be saved.

 Dim intfreefilenum As integer

 Dim intFileLength As Integer

 Dim strdatabuffer As String

 On Error GoTo cancel

 CommonDialog1. DialogTitle = “Enter the name of the file to save”

 CommonDialog1.ShowSave

Changing the color

 The Common Dialog control also provides the means to change the

color of the text or other controls on the form. In order to display the Color

Dialog Box you must use the ShowColor method. Double Clikc on the ‘color’

button on your form to bring up the code window. Add the following line.

 CommonDialog1. ShowColor

 61

Printing a document

The printer dialog box is a great help when you are building

applications for clients or for the other user departments. To the Print button’s

code add the following line.

 CommonDialog1. ShowPrinter

Rich TextBox Control

 The Rich TextbBox control allows the user to enter and edit text with

more advanced formatting features than the conventional TextBox control.

 The Rich TextBox control provides a number of properties you can use

to apply formatting to a selected portion of text within the control. Select the

portion of the text to be formatted and apply the necessary changes. You can

make text bold or italic, change the color, and create superscripts and

subscripts. You can also adjust paragraph formatting by setting both left and

right indents, as well as hanging indents.

3.5 Introduction to Databases

 A database is a collection of records that can be manipulated with ease.

The conceptual view will map into a physical view of the database. The

physical view of the database will map into the way the data is actually stored.

This method of separating the physical storage from the user view will permit

data independence. The views of all the users will be used to develop the

conceptual view of the data and any change in the user’s view will be

accommodated by the conceptual view.

What is a database?

 A database can be defined as a collection of record stored in tables. It

has a set of rules and tools to manage these records. There are different types of

databases, each with its own format.

The most commonly known database types are

 Relational Model

 Network Model

 Hierarchical Model

Tables

 A table is a basic repository in which data is stored, and has a specific

structure for storing data. It is made up of one or more than one column. The

data is stored in the form of Rows and Columns.

Rows

 A record is one row in a table. The row will span across all the columns

of the table, and each row has one full set of information about one ‘subject’.

Columns

 Each row has four columns or attributes, and every time an attribute of

a record is added a column will be added. An attribute is referred to as a Field,

and the Column type will be decided based on the type of data to be stored.

 62

Why Relational Databases?

 Data redundancy can be avoided if you create tables in the following

form.

Supplier Table

 Supplier Code

 Supplier Name

 Address 1 (Door number & Street)

 Address 2 (Road, Area)

 Address 3 (City, State and Zip)

Item Table

 Item Code

 Item Name

 Description

 Price

Supplier Item table

 Supplier Code

 Item Code

 The Supplier Table has a relationship with the Supplier_Item Table

through the Suppler Code. Likewise, the item Table has a relationship with the

Supplier_Item Table through the Item Code.

The Primary Key

 A primary key is a unique filed or a combination of more that one field

that identifies a record.

 In the above example, the Supplier Code is a primary key, since no two

records have the same serial number. The Supplier Code can be the unique

fields that identify the supplier in the supplier table.

Index

 An index is a list that contain the key field of the record and (a pointer

to) its physical location in the database. Therefore the database engine can

located a record quickly.

Creating a Table

 You can create your own tables,

 Using DAO (data Access Objects)

 Using Microsoft Access

 Using Visual Data Manager that comes with Visual Basic.

Working with Visual Data Manger

 The Visual Data Manager option is available under the Add Ins Menu.

 63

Click on the Visual Data Manager. Visual basic responds by showing

you the VisData window.

 The menu items available are File, Utility, Window and Help

 There are NINE buttons too. Drag your mouse over the buttons and take

a look at the balloon help.

 From the File Menu select the option New.

 From the pop-up menu select Access. Depending upon the version of

Visual basic that is installed on your machine, you will be asked to choose the

version of MDB. Select the larger number (The bigger the better?)

 Choose Access 2.0 if your application is going to work on Window 3. X

Access 7.0 is for the 32-bit platform only. Visual Basic will now preset you

with a Save Dialog Box. Enter the name of the file for your database.

 Now Visual Basic will display two windows, the Database window and

the SQL statement window. The Database windows will have an item

Properties click on the box with + to see the properties that have been set or

available for this database.

Creating a table

 Right click the mouse in the database window. From the pop-up menu

select new Tables. This will result in another window being displayed with a

number of text boxes, checkboxes and a rabbit. If you do not see a rabbit, it

means you are following instructions. Enter the name of the Table that you

want to create.

Click on the AddFields button

1. In the textbox for Name, enter EmpNo.

2. Select the Type. From the drop-down list box, select Integer.

3. Notice that length is fixed as 2. Some of the other options are made

unavailable.

4. Click on Required. This means that the EmpNo cannot hold a Null

value

5. Now click on OK.

The AddField Dialog Box is now waiting for the next field to be entered.

Add the next two fields too.

Modifying tables

 Now you have created a table with some fields. There is a saying that

the only thing that is constant is change!

 64

Modifying the Name of a field

 You can modify the name of a field by editing it in the Table structure

dialog box. The other properties that can be modified are

 Ordinal Position

 Validation Rule

 Default Value

 Allow Zero Length

 Required

Copying a table

 You can copy an entire table with the data and structure to another

database. In the database window, right-click on the table that you want to

copy. From the pop-up menu choose ‘Copy Structure’. Enter the destination

database where you want to copy the table. You can copy the data as well by

checking the ‘Copy Data’ check box.

3.6 Working with the Data Control

 A database can be created easily with the help of the Visual Data

Manager. The tables can be populated by simply entering the data in the

respective fields. Next we need to create an application to display the data from

the database, and allow the users to add new records or modify existing data.

To created such an application we have to

1. Establish a connection with the database.

2. Extract the fields from the relevant tables.

3. Display them on the form

4. Accept changes made to the data on the form and update the database.

The Data control

1. Establishes a connection to a database.

2. Returns a set of records from the database.

3. Enables you to move from record to record

4. Enables you to display and manipulate data from the records in bound

controls.

How does the Data control Work?

 In order for the Data control to deliver the goods, two properties need to

be set. These properties can be set at runtime or design time. The properties are

Database Name: This specifies the name of the database that must be

 opened.

Record Source: This specifies the name of the table(s) of the database from

 which the data has to be extracted.

 When you run the program after setting these properties. Visual Basic

connects to the database specified, and returns a set of records from the table(s)

 65

in the form of a Recordset. A Recordset is an object that points to the data in

the database.

Using the Data control

 The Data control is part of the standard toolbox. It looks like this.

Draw the Data control on the form as you would draw a textbox control.

It looks like this.

 It has buttons for moving from record to record. You have buttons to

move to the next or last record and to move to the previous and first record.

You can also set the caption property for the Data control.

Setting the properties for the Data Control

 We will take a look at the important properties of the Data control.

BOFAction : Action to be taken when the used reaches the beginning of

File.

EOFAction : Here we tell the Data control what to do when we reach

the end of File.

Caption : The text to be displayed on the Data control’s title bar.

Connect : This tells the Data control the type of database that will be

 accessed. It could be FoxPro, dBase, Paradox, Access, etc.

 The default is Access.

DatabaseName : Specifies the name of the database that the Data control will

access. Give the name of the file that contains the database. Hard coding the

name here is not a wise thing to do. It can be set at runtime.

Recordset Type: This property specifies the type of Recordset object the

control will use to access the database.

There are three options: 1. Table 2. Dynaset. 3. Snapshot.

RecordSoruce : The RecordSoruce property specifies the source of the

records accessible through bound controls on your form.

 66

Setting the Properties

Click on the Data control and bring up the Properties window

1. Click on Name: Let us call it Customerdata.

We will be referring to the Data control with this name.

2. Click on BOFAction. Set it on MoveFirst.

When the Beginning of File is reached, the Data control must be told to

point to the first record.

3. Click on Caption. Set it to Customers. This will be the title of the Data

control. The default is Data 1.

4. Click on the connect property. Select Access. Access is the default.

This tells visual basic the type of database that will be used. Visual

Basic can work with a number of other databases.

5. Click on database Name Property

We have to mention the name of the MDB file that must be opened by

the Data Control.

6. Click on EOFAction. Set it to MoveLast.

This tells the Data control to point to the last record when the user

reaches the End of File.

7. Click on Recordset Type Property. Select 0-Table type.

A Recordset Type property determines the type of object that will create

by the Data control. The options are 1. Table Type where an editable

Recordset is created based on data from a single table. 2. Dynaset,

where an editable Recordset is created based on data from one or

more tables.

3. Snapshot, where a non-editable Recordset is created based on data

from one or more table.

8. Click on RecofdSource Property. Set it to Customer_Data.

In this property we tell the Data control the table or query that must be

used while creating the Recordset.

 67

 Some of the controls can be ‘bound’ to the Data control. Each bound

control is bound to one field of the Recordset. They display the fields from the

current record of the Recordset.

 The following controls are all data-aware and can be bound to a single

filed of a Recordset managed by the Data control.

 Label

 TextBox

 CheckBox

 Image

 OLE

 ListBox

 Picture

 ComboBox.

The following controls are all capable of managing sets of records when

bound to a Data control. All of these controls permit several records to be

displayed or manipulated at once.

 DBList

 DBCombo

 DBGrid

Binding the Bound controls

 We can make a control Data-aware by setting its properties. In order to

make the TextBox, Data-aware, we need to bind it to the Data control. This is

how we go about it.

 Select Text 1. Bring up the Properties window

1. Click on DataSource Property. Set it to Customerdata. This is the name

of the Data control. From now on this text box will display a field from

the Recordset returned by the Data Control.

2. Click on DataField. A list of fields available will drop down. Select

Customer Name.

Enhancing our Program

 Let us see how we can add extra functionality to our program.

Add the following to your form.

1. Two LabelBox controls

2. Two TextBox controls

3. Five CommandButtons

4. Some Red Paint.

Setting the properties

For the Data control set the following properties

 Name Customerdata

 BOFAction 0- Move First

 68

 Caption Customer Data

 Connect Access

 DatabaseName C:\azam\VB-exercises\invoice.mdb

 EOFAction 0-Move Last

 Recordset Type 1- Dynaset

 RecordSource Customer_Data

For the TextBox Controls set the following properties

 Name C_Code/C_Name/Amt_Due

 DataSource Customerdata

 DataField Customer_Code/Customer_Name/Amount_Due

For the fourth textbox, change the name to FindTxt.

For the CopmmandButtons give the following captions,

 Add, Modify, Delete, Update and Find.

Coding

Adding a New Record

 In order to add a new record we must invoke the ‘AddNew’ method

which will create a blank record in the memory. This blank record becomes the

current record. After you enter the data, you can add the new record to the

database by either of the following methods.

1. Moving to another record

2. Invoking the ‘Update’ method

Add the following code to the Add button

Private Sub CmdAdd_Click)

Customerdata. Recordset. AddNew.

 69

Deleting a Record

 In order to delete a record, we have to invoke the ‘delete’ method. The

current record that is displayed will get deleted. Once this record is deleted, we

must move the record pointer to the next record. Your code will look like

this,

 Private Sub CmdDelete_Click)

 Customerdata. Recordset. Delete.

Updating the Database

 The Data control itself handles the task of updating the database with

the changes made to the current record, when you move the record pointer to

another record.

UpdateRecord and UpdateControls Method

 These methods are special to the Data control. The Update Record

method allows the users to save the changes to the current record and continue

editing.

 The Update Controls method does the reverse of the above. This

method will be of use when the user wants to roll back the editing changes

made to the current record before updating.

Finding a Record

 The Find method works only when the Recordset type is a Dynaset or

snapshot. If the Recordset type is set to Table type, then you have to use the

Seek method.

 Private Sub CmdFind_Click)

 Customerdata. Recordset.FindFirst “Customer_Name = “’& Trim

 (Text3.Text) & “”’ End Sub.

The DBGrid Control

 The DBGrid control displays fields from a Recordset object as a series

of rows and columns, and enables manipulation of this data.

 Let us see the DBGrid in action

 Start a new project

 On the form add the following control

 One Data Control

 One DBGrid Control

 If you do not have the DBGrid control, as part of your ToolBox (which

is usual), Right click on the ToolBox. Select Components from the pop-up

menu. From the list displayed thereafter, click on DBGrid control. Click on OK

and you have it on your ToolBox.

 Set the properties for the controls as follows

 Data Control

 DataSource: C:\VB\Biblio.mdb

 70

 RecordSource: Publishers

 DBGrid Control

 DataSource: Data 1

Now run the program.

Review Questions:

1. What is database?

2. Write any five additional controls in VB.

3. Explain VB built_in functions.

4. Explain the features of MDI.

5. Explain debugging methods?

6. Write in detail about Bound controls?

7. What are the two important properties for menu controls?

8. How will you add a picture box control to the form?

9. How will you add one module to the form?

10. How will you add a menu in an application? Explain.

11. With suitable example, explain:i. Simple Combo box. ii. Drop-down list

combo box.

12. Explain in detail about common dialog control.

 71

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 72

UNIT-IV

Objectives:

 The objective of this unit discusses: The Jet database engine, Function

of a database, An introduction to SQL, Working with Data Access Objects.

Additional Controls Available in Visual Basic 6.0, Why ADO, What is ADO,

The structure and component of ADO, Working with ADO.

Contents:

 4.1 DOA

 4.2 Additional Controls Available in VB 6.0

 4.3 Active X data Objects

 Review Questions

4.1. Data Access Objects

The Jet Database Engine:

Jet Database engine was the genie doing all the hard work behind

Microsoft Access. Jet 1.0 could handle the functions that were expected of a

database engine. Apart from the standard DDL, DML, maintenance and

security features, it could gather data from different sources at the same time,

and introduced the concept of Dynaset. A database engine provides the link

between the data and the application. The Jet Database engine could be used

with all the Microsoft products, from MS excel to Visual C++. It worked as

the data manger in a data access application built using other products like

Visual Basic or Visual C++. DAO 1.1 allowed users to use the DDL to control

the Jet engine. The next version of Jet implemented a better hierarchical model

and allowed the user to control all its capabilities through the DAO.

 DAO, Hierarchical Model

From then on, there was no looking back for Jet. It is now a 32-bit

implementation and provides.

 Referential integrity

 Cascading updates and deletes

 Replication and synchronization.

 73

 Replication over the Internet.

 The Jet database engine can read and write data stored in other

database formats.

 It can read data stored in.

o Spreadsheets

o Text files.

o HTML tables and lists.

o ODBC database.

Functions of the Jet Database Engine

Microsoft Jet provides the seven basic function of a DBMS:

 Data definition and integrity. It allows the users to create and modify

structures for holding data, such as tables and fields. It also ensures that

rules are applied to data operations to prevent data corruption from

invalid entries or operations.

 Data manipulation: It allows the users to add new data, modify or delete

existing data from the system.

 Data storage: It holds data as per the structures and stores it in the file

system.

 Data retrieval: It allows the users to retrieve and view the data from the

system.

 Database maintenance: compact, repair, and convert data and database

objects.

 Security: control users’ access to database objects and data, thereby

protecting objects and data against unauthorized use.

 Data sharing: It allows more than one user to access the data in a multi-

user environment.

Data Definition (DDL) and Data Manipulation (DML) Language

 DDL deals with the structure of your data. Data Definition deals with

creating tables, adding fields, creating indexes etc. The activity carried out by

the Visual Data Manager comes under this. Once the structures are defined they

are stored in a single file. The data definition and well as the data is stored in

one file. DAO methods are used to create these structures.

 DML deals with the content of your database. The Data Manipulation

Language deals with allowing the user access to the data in the database. You

can create views, or select some of the data through queries. You can access the

data using SQL statements, or by using DAO.

 The general sentiment is that DAO is most suitable for DDL functions

and SQL is suitable, for DML functions.

Storage

 The Jet Database is stored as a single file with the. MDB (Microsoft

access Database) extension. The .mdb files are stored in the ISAM format. The

 74

records are stored in a variable – length format, on pages that are 2k in length.

One record cannot span two pages.

Retrieval

 Data can be retrieved form the database, either through SQL statements

or through DAO. Data retrieval is normally through ‘Queries’, that are

instructions to the database to present the data in a certain format.

Relationships

 Jet is an RDMBS, and hence the tables are built in such a way that one

table will have a relationship with one or more tables in the database. The data

is spread across more than one table in order to reduce the redundancy of data

and allow easy access to data.

Multi-user Environment

 Jet allows more than one user to access the database. It is a remote

multi-user implementation. In this case the data resides on a single server, and

the database engine resides on each of the workstations. It cannot handle more

than a few dozen users, unlike the other databases like Oracle or SQL server.

SQL:-

What is SQL?

 SQL is a database programming language. The earliest version was

called Sequel, and we still like to use the same. SQL is an industry-standard

database interface, and the knowledge of SQL commands allows you to access

and manipulate a wide variety of database products from many different

vendors.

The SELECT statement

 The SELECT statement fetches the data from the database as a set of

records.

 The syntax for SELECT must include

 The criteria for selection

 The source of data from where the data has to be selected.

Example

 SELECT * from Titles.

Syntax

 Select [predicate] { * | table. * | [table.] field1 [As alias1] [,table.]

field2 [As alias 2] [, ….]] }

 FROM table expression [, …] {IN external database }

 [WHERE…]

 [GROUP BY…]

 [HAVING…]

 [ORDER BY…]

 [WITH OWNERACCESS OPTION]

 75

The DAO object Model

The model includes much more than fields and tables, and is illustrated below.

The DAO object model

Understanding the DAO Object Model

 The DAO object model models the structure of a relational database

system. This includes creating databases, defining tables, fields, and indexes,

establishing relations between tables, and navigating and querying the database.

 There are 15 objects in the DAO object model, as listed here.

1. DBEngine object

 This DAO object holds all other objects and maintains engine options.

The DBEngine object contains and controls all other objects in the hierarchy of

DAO objects.

2. Workspace Object

 Defines and manages the current user session. This object contains

information on open databases, and provides mechanisms for simultaneous

transactions for a user. In a multi-user environment, this makes a lot of sense.

Each use has his own workspace. A workspace is a non-persistent object that

defines how your application interacts with data-either by using the Microsoft

Jet database engine, or IDBCDirect to access external data.

3. Database object

 Represents a database with at least one open connection. This can be a

Microsoft Jet database or an external data source. You use the Database object

and its methods and properties to manipulate an open database.

 76

4. TableDef object

 Contains both Field and Index objects to describe database tables. A

Table Def is the stored definition of a ‘base’ table or a ‘linked’ table. Through

its methods like Open Recordset, you can link various types of Recordset

objects.

5. QueryDef Object

 Represents a stored SQL query statement with zero or more

parameters, maintained in a Microsoft Jet database.

6. Recordset object

 A Recordset object represents a set of records in a table, or the records

returned by a query. You use Recordset object to manipulate data in a database

at a record level. When you use DAO objects, you manipulate data almost

entirely, using Recordset objects. DAO has five types of Recordset objects:

table Dynaset, snapshot, forward-only, and dynamic.

7. Container object

 Represents a particular set of objects in a database for which you can

assign permissions in a secure workgroup. In addition to the container objects

provided by DAO, an application may define its own container objects such as

saved forms, modules, reports, or script macros.

8. Relation object

 Represents a relationship between fileds in tables and queries. You can

use the Relation object to create, delete, or change the type of relationship, and

determine which tables supply the fields that participate, whether to enforce

referential integrity, and whether to perform cascading updates and deletes.

9. Filed object

 Represents a filed in table, query, index, relation, or Recordset. A filed

object represents a column of data with a common data-type and a common set

of properties. A filed object contains data, and you can use it to read data from

a record or write data to a record.

10. Index object

 Represents an index on a table in the database.

11. Parameter object

 Represents a value associated with a Query Def object. Query

parameters can be input, output, or both.

12. Document object

 Contains information about individual objects in the database (such as

tables, queries, or relationships).

13. User object

 Represents a user account with particular access permissions.

 77

14. Group object

 Represents a group of user accounts that have common access

permissions in a particular workspace.

15. Error object

 Contains information about an error that occurred during a DAO

operation. Any operation involving DAO can generate one or more errors. For

example, a call to an ODBC server might result in an error from the database

server, an error from. ODBC, and a DAO error. As each such error occurs, an

Error object is placed in the Errors collection of the DBE Engine object. A

single event can therefore result in several Error objects appearing in the Errors

collection.

4.2 Additional Controls Available in Visual Basic 6.0

SSTab Control :

 The SSTab Control provides an easy way of presenting several dialogs

or screens of information on a single form, using the same interface seen in

many commercial Microsoft Windows applications. Only one tab is active in

the control at a time, displaying the controls it contains to the user, while hiding

the controls in the other tabs.

 The Tabbed Dialog control provides a group of tabs, each of which acts

as a container for other controls.

 For each of the ‘tabs’ you can set properties, add other controls and

write code necessary. The properties are set using the property Pages.

Working with SSTab Control

Start a new project.

 The SSTab control is not part of the standard controls on the Toolbox.

To add the SSTab controls, carry out the following instructions.

 Right click on the toolbox.

 Select Components form the pop-up menu.

 From the components select Microsoft Tabbed Dialog Control 6.0.

 You will see this control on you Toolbox.

Draw the control on your Form. It will appear like this.

New we need to set the Properties for each of the Tabs. We need to,

 Add controls to each of the tabs.

 Change the caption for each of the tabs.

 Write code for the controls where necessary.

 78

 Give the captions for the tabs as follows

 Tab0: General

 Tab1: Financial

 Tab2: Personal

 At run time, the user can navigate through the tabs by either clicking on

them, by pressing CTRL + TAB, or by using mnemonics defined in the caption

of each tab.

Adding Controls to tabs

Add controls to a particular tab’s ‘client area’, just as you add controls to a

from.

The Image List control

 The Image List control acts like a repository of images for the other

controls.

 An Image List control contains a collection of images that can be used

by other windows common controls-specifically the List View, Tree View, Tab

Strip, and Toolbar controls. The List Image object has the standard collection

object properties: Key and Index. It also has standard methods, such as Add,

Remove, and Clear. However, once the ImageList has been associated with

another control you cannot delete or insert images in the ListImages collection.

Adding images to the Image List

 The ImageList control contains the ListImages collection of ListImage

objects, each of which can be referred to by its Index of Key property value. To

add an image to a control at design time, use the ImageList control’s Property

pages dialog box.

 79

 To add ListImage objects at design time.

 Right-click the ImageList control and click Properties to bring up the

Property pages.

 Click Insert Picture to display the Select Picture dialog box.

 Use the dialog box to find either bitmap or icon files, and click Open.

 Click on the Key box and enter a string that will uniquely identify that

image. This string can be used to refer to the image that has been added to the

ImageLists collection.

 Optional, Assign a Tag property setting by clicking in the Tag box and

typing a string. The Tag property doesn’t have to be unique.

 Add as many images as you need for + he project.

TabStrip Control

 The function of a TabStrip control is very similar to that of the SSTab.

 The control consists of one or more Tab objects in a Tabs collection.

Creating Tabs at Design Time of Run Time

 To create Tab objects at design time.

1. Right-click the TabStrip control and click Properties to display the

Property Pages dialog box.

2. Click Tabs to display the Tabs page and make the changes.

MSFlexGrld contol

 The MSFlexGrid control displays and operates on data in a table from.

The Flex Grid is designed to only display the data and not allow the user to

enter data in it. However, the user can sort, merge, and format tables containing

strings and pictures.

 80

Tool Bar Control

 The Tool Bar control is another control used to enhance the user

interface. This control allows us to create a toolbar for our application. A

toolbar contains buttons that provide a graphic interface for the user to access

an application’s most frequently used functions and commands. These are

actually shortcuts to items in an application’s menu.

 The ToolBar control is part of the Microsoft Windows Common

Controls 6.0 library.

Creating a ToolBar

 A ToolBar normally contains buttons with or without images/icons that

represent a particular activity. A button with the image of a pair of scissors will

represent an activity like cutting.

 The ToolBar control consists of one of one or more Button objects n a

Buttons collection. At both design time and run time, you can create Button

objects. Each button can have an image, a caption, a ToolTip, or three.

1. Right-click on the Toolbar control and click Properties to display the

ToolBar Property Pages.

2. Click the Buttons tab to display the dialog box shown.

3. Click Insert Button to insert a new Button object.

4. Set appropriate properties, such as Key, Caption, Image, and

ToolTipText.

5. Set the Button object’s Style properly by clicking the style, box and

selecting a style.

 81

The Status Bar Control

 At the bottom of the screen a more explanatory line on that button is

displayed, and at the bottom of the screen you will also observe that it displays

the status of the Caps Lock, Scroll Lock, NUM lock, etc. This line is called the

Status Bar. It also displays other information like the line and column number

where your cursor is positioned, and the page number.

 The Status Bar control can hold up to a maximum of sixteen panels or

frames. Each of these panels can give different types of information like the

time, micro help for a button, the status of a key, etc.

Working with the StatusBar control:

 The Status Bar is a member of the Microsoft Windows Common

Controls group. On your Tool Box, the Status Bar icon looks like this.

 Draw the Status Bar on your form. It will automatically get aligned to

the bottom of the form. By default it will show single panel.

The panel object and the panels collection

The Status Bar control is built around the Panels collection. Each object

can display an image and text. To add panel objects at design time, right-click

on the control and click on properties to display the property pages dialog box.

By setting the Style property you can specify the status that should by

displayed in the associated panel. The Style properties available are Text, Caps,

Num. Ins, Scrl, Time, data and kana.

 At run time, you can dynamically change the text, images, or widths of

any Panel object, using the Text, Picture and Width properties. Panel created

with the Add method, as shown in the code below:

 The Status Bar control is named “Status Bar1”

 Dim Panl As Panel

 82

 Set Panl = StatusBarl. Panels.Add()

Tree View Control

 The Tree View control is very interesting control to work with. With

this control you can display the data as a hierarchy. The windows explorer is

built around a TreeView control. It displays the drives, directories,

subdirectories and files in the form of a hierarchy. You can use the same

control to display the data from a database.

 Each item on the TreeView is a Node (like a directory) object. A Node

object can have Child Nodes. A Child Node can be a simple node or it can have

other Child Nodes. The TreeView control provides methods to expand and

collapse Node objects.

 You can navigate through a tree in code by retrieving a reference to

Node objects using Root, Parent, Child, First Sibling, Next, Previous, and Last

Sibling properties. A Tree View control can use only one Image List at a time.

Creating a Tree View control

 The Tree View control looks like this on your toolbox.

 A Tree View control is made up of nodes. Each node is placed ‘relative’

to another node.

 The new node will also have a relationship with the ‘relative’ node. To

add a node, use the Add Method. The Syntax is as follows.

 Object. Add (relative, relationship, key, text, image, selected image),

where

 Object : The name of the Tree View control.

 Relative : The index number or key of a pre-existing Node

 object. The relationship between the new node

 and this pre-existing node is found in the next

 argument.

 Relationship : Optional. Specifies the relative placement of the new

 Node object and the pre-existing node object referred

 to in the relative position.

 Key : A Unique string that can be used to retrieve the Node

 with the Item method.

Text : The name of the node object that will be displayed in

 the Tree View control.

 Image : Optional. The index of an image in an associated

 Image List control that is shown when the

 Node is selected.

 tvwCustTree.Nodes.Add “state”, tvwchild “city”

 Will add a node called the city which will be a Child Node to the State

Node. The constants which can be used and the effects of using these constants

are given below.

 83

Constant Value Description

tvwLast 1 The Node is placed after all other nodes at

 the same level of the node named in relative.

tvwNext 2 The Node is placed after the node named in

 relative

tvwPrevious 3 The Node is placed before the node named in

 relative.

tvwChild 4 The Node becomes a child node of the node

 named relative.

Example

 tvwCusTree. Nodes.Add “State”, tvwNext

 The above statement will add a new node next to the “State” node.

Working with the Tree View control

 Draw a Tree View control on your form. Add the following code to the

form load event.

 Private sub Form_Load ()

Dim NewNode As Node

 Set NewNode = TreeView1. Nodes. Add (, , “c”, “Customer”)

Set NewNode = TreeView1. Nodes. Add (“c” tvwChild,

“child1”, “Customer_code”)

Set NewNode = TreeView1. Nodes. Add (“c” tvwChild,

“child2”, “Customer_code”)

Set NewNode = TreeView1. Nodes. Add (“c” tvwChild,

“child3”, “Customer_City”)

End sub

 Run the program, you will see a figure like the one below. When you

click on the item Customers in the Tree View control, the node will display the

child nodes.

 84

Displaying Data from a Database

 Use the Tree View control to display the data from the Supplier and the

Supplier _ Item tables.

 Dim db As Database

 Dim rsSupplier As Recordset ‘for the supplier table

 Dim rsItems As Recordset ‘for the Supplier _ product table

 Dim New Node As Node

 In the form load event, add the following code.

Private sub Form _ Load ()

 ‘Open the database

 Set db = Open Database (“C:\azam\vbexercise\Invoice.MDB”)

 ‘ Create recordset form the two tables.

 Set rsItems = db. OpenRecordset (“Supplier _ Product”, db

 OpenDynaset)

 Set rsSupplier = db. OpenRecordset (“Supplier”,

 dbOpenDynaset)

 ‘Initialize the Tree View control, Add a new node and set its text

property.

 TreeView1. Sorted = True

 Set NewNode = Tree View. Nodes. Add()

 NewNode. Text = “Suppliers”

End sub

Populating the Tree View control

 We need to list the suppliers from the Supplier table. For each supplier

one node must be added. These nodes must be child nodes to the first node that

we created in the form load event. Therefore, the syntax must be as follows.

 Set New Node = Tree View 1. Nodes. Add(1,tvwChild), where

 ‘1’ specifies the first node (relative) and the constant tvwChild indicates

that the new node must be a child node to the first node.

Your code will look like this.

 ‘Move to the first record of the Recordset.

rsSupplier. Move First

 Dim intIndex As Integer ‘Variable for index. We will use this index

later.

 ‘Add a node for every record in the Recordset. For each node the

Supplier Name will be the text.

Do Until rsSupplier.EOF

Set NewNode = TreeView1. Nodes. Add (1,tvwChild, , rsSupplier. Fields (1))

 ‘ The above can be written in two lines for readability

 85

 ‘ Set NewNode = TreeView1. Nodes. Add(1, tvwChild)

 ‘ NewNode. Text = rsSupplier. Fields (1)

Slider Control

 A Slider control is a window containing a slider and optional tick

marks. You can move the slider by dragging it, clicking the mouse to either

side of the slider, or using the keyboard.

 To see a number of Slider controls in action, right click your mouse on

the Speaker icon on your taskbar. Select ‘Open Volume Controls’. You will see

a figure like this.

The Slider control can be used to,

1. Select a particular value.

2. Select a range of numbers to be passed into an array.

3. Resize a form, field, or other graphic object.

Tick Style and Tick Frequency Properties

 The Slider control consists of two parts: the thumb and the ticks. The

appearance of the control depends on the Tick Style property.

 In addition to the placement of the ticks, you can also program how

many ticks appear on the control by setting the Tick Frequency property. The

Min and Max properties determine the upper and lower limits of a Slider

control, at design time, right-click on the control, click Properties to display the

Property pages dialog box, and set the Min, Max Values. At run time, you

can reset the Min and Max settings to accommodate different ranges.

SmallChange and LargeChange Properties

 The SmallChange and LargeChange properties determine how the

Slider control will increase or decrease when the user clicks it. The

smallChange property specifies how many ticks the thumb will move when the

 86

user presses the left or right arrow keys. The LargeChange property specifies

how many ticks the thumb will move when the user clicks the control or when

the user presses the PAGEUP or PAGEDOWN keys.

MaskEdit Box Control

 The MaskedEdit control is used to prompt users for data input using a

mask pattern. You can also use it to prompt for dates, currency and time, or to

convert input data to all upper- or lowercase letters. When you define an input

mask using the Mask property, each character position in the Masked Edit

control will map to a placeholder of a specified type, or to a literal character.

The MaskedEdit control is a bound control and can be used with a data control

to display or update filed value in a data set.

Possible Uses To prompt for date/time, number, or currency information.

The Mask Property

The Mask property determines the type of information that is input into

the MaskedEdit control.

Mask character Description

 # Digit placeholder.

 . Decimal placeholder.

 , Thousands separator.

 : Time separator.

 / Date separator.

 \ Treat the next character in the mask string as a

literal.

 & Character placeholder.

> Convert all the characters that follow to

 uppercase.

 < Convert all the character that follow to

 lowercase.

 A Alphanumeric character placeholder.

 a Alphanumeric character placeholder.

9 Digit placeholder.

C Character or space placeholder

? Letter place holder.

 MaskEdBox1.Mask = (###)-###-####

 The text property of the example above returns the string “(555)-555-

5555”- the phone number that was entered.

Defining the Input Character

 All mask characters are underlined.

 You can also change the underline input character to a different

character by using MaskEdBox1.PromptChar = “*”.

 87

 Data type Value Description

 Number (Default) Empty string General Numeric format.

 Displays as entered.

 Number $#,##0.00; ($#,##0.00) Currency format. Uses

 thousands separator; displays negative

 numbers enclosed in parentheses.

 Number 0 Fixed number format. Displays at least

 one digit.

 Number #,##0 Commas format. Uses commas as

 thousands separator.

 Number 0% Percent format. Multiplies value by

 100 and appends a percent sign.

 Number 0.00E+00 Scientific format. Uses standard

 scientific notation.

 Date/Time dddddd Long Date format. Same as the Long

 Date setting in the international section

 of the Microsoft Windows Control

 panel.Example: Tuesday, May 26,1992.

Date/Time dd-mmm-yy Medium Date format. Example: 26-may-92.

Date/Time ddddd Short Date format. Same as the Date

 settings in the international section of

 the Microsoft Windows Control Panel.

 Example: 5/26/92.

Date/Time ttttt Long Time format. Same as the Time

 setting in the International section of the

 Microsoft Windows Control Panel.

 Example: 05:36:17 A.M.

Date/Time hh:mm A.M/P.M Medium Time format. Example: 05:36 A.M.

Date/Time hh:mm Short Time format. Example: 05:36.

The ValidationError Event

 The ValidationError event occurs when the MaskedEdit control

receives invalid input, as determined by the input mask. Unless you write an

event handler to respond to the ValidationError event, theMaskedEdit control

will simply remain at the current insertion point and nothing will happen.

 88

4.3ActiveX Data Objects

 ADO is meant to replace DAO, RDO and ODBC,

What we need is a simple, consistent application programming interface

(API) that enables applications to gain access to and modify a wide variety of

data sources. A data source may be a database, a text file, a spreadsheet, a

graphics application, a cluster of heterogeneous databases, or something yet to

be invented.

OLE DB

 OLE DB, a set of Component Object Model (COM) interfaces that

provide uniform access to data stored in diverse information sources. It is

defined as a general- purpose set of interfaces designed to let developers build

data access tools as components using the Component Object Model (COM).

OLE DB enables applications to have uniform access to data stored in DBMS

and non- DBMS information containers, while continuing to take advantage of

the benefits of database technology without having to transfer data from its

place of origin to a DBMS.

 OLE DB has what it calls ‘providers’ which let you access the different

data sources. For different data sources you have different data providers.

1. A Cursor Service. A cursor is defined as a temporary, read-only

table that saves the results of a query with an assigned name. The

cursor is available for browsing, reporting, or other uses until it is

closed.

2. A service to perform batch updates.

3. A shape service to build the data in the form of a hierarchy.

4. A remote data service provider for managing data in multi-tier

environments over connected or disconnected networks.

The ADO acts like the intermediary between the application and the OLE DB.

ADO

 “ADO’s primary benefits are ease of use high speed, low memory

overheads, and a small disk footprint. ADO supports key features for building

client/server and Web-based applications.

 89

 The ADO features an object model like the DAO and the RDO but it is

much flatter.

The ADO programming model illustrated below allows you do all this more.

The goal of ADO is to gain access, to edit, and update data sources. It

provides classes and objects to perform each of the following activities:

Connection Make a connection to a data source.

Command Create on object to represent an SQL command.

Parameter Specify columns, tables, and values in the SQL command as

 variable parameters.

Recordset Execute the command and store the result, if the command is row

returning, in a cache. Allow the user to sort, view or edit the data. If necessary,

update the data source.

Connection You can access a data source using the Connection object. Unless

a connection is made, data cannot be exchanged between the data source and

the application. The connection object specifies the name of the data source,

the provider that will be used to access the data, and other parameters.

Command Once a connection has been established with the data source, the

data has to be extracted. This is done using the Command object. The

command adds, deletes and updates data in the data source, or retrieves data in

the form of rows in a table.

Parameter The command to retrieve data can be qualified using parameters.

Parameters are arguments to a command that alter the result of the execution of

the command. Parameters are especially useful for executing commands that

behave like functions.

Recordset Although ADO allows you to access any type of data, our

discussion here is limited to data from a database. The command object when

executed will return a set of rows from one or more tables. This set of

rows is called a Recordset.

 90

 The Recordset is the primary means of examining and modifying data

in the rows.

 Specify which rows are available for examination

 Traverse the rows

 Specify the order in which the rows may be traversed

 Add, change, or delete rows

 Update the data source with changed rows

 Manage the overall state of the Recordset.

Field A row of a Reckordset consists of one or more fields. If you envision the

Recordset as a two dimensional grid, the fields line up to form columns. Each

field (column) has among its attributes a name, a data type, and a value.

Error Errors can occur at any time in your application, due to the data source

being corrupted or renamed by somebody, or the Password being changed.

Property There are two types of properties: built-in and dynamic. Built- in

properties are parts of the ADO object, and are always available. Dynamic

properties are added to the ADO object’s Properties collection by the

underlying data provider.

Collection The objects in the collection can be retrieved with a collection

method, either by name, as a text string, or by ordinal as an integer number.

 The command object has the Parameters collection, which contains all

Parameter objects that apply to that Command object.

 The Recordset object has the Fields collection, which contains all Field

objects that define the columns of that Recordset object.

 The connection, Command, Recordset, and Field objects all have a

Properties collection, which contain all the Property objects that apply to their

respective containing objects.

Events ADO 2.0 introduces the concept of events to the programming model.

Events are notifications that certain operations are about to occur, or have

already occurred.

Connection Events: Events are issued when transactions on a connection

begin, are committed, or rolled back, when Commands execute, and when

Connections start or end.

Recordset Events: Events are issued to report the progress of data retrieval in

the following cases. When you navigate through the rows of a Recordset

object, when you change a field in a row of a Recordset, change a row in a

Recordset, or make any change in the entire Recordset.

Establishing a Reference

 To use ADO in your project, you have to make a reference to it. This is

done just as we made the reference to DAO. Click on Projects, and from the

menu Select References. From the list displayed in the reference dialog box,

select Microsoft Active X Data Objects 2.0 Library and the Microsoft Active X

Data Objects Recordset 2.0 Library. Now you can use ADO in your project.

 91

The ODBC Data Source Administrator

 ODBC is defined as “a standard protocol for database servers. ODBC

has drivers for various databases that enable applications to connect to the

databases and access their data.” The condition is that these databases must

have SQL as the standard for data access. From the Control Panel, double click

on the ODBC icon. This will bring up the ODBC Data Source Administrator

dialog box. Click on the Add button to add a data source. Another dialog box

will be displayed, asking you to select the driver.

 Select Microsoft Access driver (*.mdb) since we are going to work on

our Invoice. mdb. Click on Finish. The next dialog box displayed will ask you

to specify the name of the database.

 Click on Select to choose the name of the .mdb file. After selecting the

.mdb file, enter the name of the data source. You will be using this name as the

DSN (Data Source Name). Click OK and exit from the ODBC administrator.

Using the Data Source Name in Our Project

 In the General declaration, add the following lines of code

 Dim adocon As New ADODB. Connection

 Dim rs As Recordset

 Dim strconnect As string

 The first line declares and sets ‘adocon’ as an ADODB connection

object. You cam declare the above as follows

 Dim adocon as ADODB. Connection

 In the Form-Load event you can say

 Set adocon As New ADODB. Connection

 We have declared the connection object. Now to set the connection to a

data source.

Creating the command We can create a command object and assign the

command string as the commandText as follows.

 Dim comd As New ADODB. Command

 Comd. CommandText = “SELECT * from customer”

 The command object must be linked to the connection object using the

following line.

 comd.ActiveConnection = adocon

Executing the command The command can be executed by either using the

command object, or by using the Recordset object.

 Add the following lines to your code

 set rs = comd.Execute

 MsgBox rs.Fields (1)

Manipulating the records in the recordset

 Add a command button to your form. Add the following lines of code to

its click-event.

 92

 Private Sub Command1-Click()

 rs. MoveFirst

 Do While Not rs. EFO

 Debug. Print rs. Fields (0) & “ “; rs. Fields (1)

 rs. MoveNext

 Loop

 End Sub

 This segment of code will display the first two fields of the Recordset.

Remember that this Recordset returns all the fields from the Customer Table of

the invoice.mdb. We are viewing only the first two fields of the Recordset. The

Move First method moves the record pointer to the first record. The MoveNext

method moves the record pointer to the next record.

USING THE ADO DATA CONTROL

 We can display the data from a Recordset (data source) using ADO

code, or with the help of the ADO Data Control. In order to use the ADO Data,

we need to add the control to the form. The ADO Data works just like the Data

control that we worked on earlier. However the Data control cannot work with

ADO, so we need add the ADO Data control.

 Right click on the ToolBox, and from the pop-up menu select

Components. From this dialog box click on Microsoft ADO Data Control 6.0

(OLEDB). The ADO Data control gets added to your Tool Box. Draw the ADO

data control on your form and set the properties. Right Click on the ADO Data

control and select ADODC Properties from the menu. The Property Pages

dialog box will look like this.

 The Property Pages of ADODC contain four tabs. They allow you to set

the various properties of the ADODC. They are

 93

General In this tab you specify how the ADODC should connect to a data

source. There are three options.

Use data links file You will need this option if you are going to link a textbox

or a grid or some such control to an application like. Excel or Word via DDE.

Use ODBC data source name You can mention the name of the DSN that we

created using the ODBC Data Source Administrator. The DSNs already created

will be displayed in a drop-down ListBox. You can select the one you need to

work with, or you can build a new DSN.

Use connection string You can build the connection string here by clicking on

the ‘Build’ button. This will bring up a Wizard and guide you along.

Authentication This lets you enter Authentication information like the User

Name and Password.

RecordSource Here you can specify the method of creating the Recordset.

That is, you can indicate the Command Type (adCmdUnknown or adCmdText

or adCmdTable, or adCmdStoredProc)

Updating the data in the Data Source

There are two approaches that ADO uses to add or modify the data in the

database

1. Changes made to the data or the rows are made in the ‘copy buffer’ and

not directly to the Recordset. If the changes are acceptable then they are

applied to the Recordset.

2. Changes are made directly to the data source either immediately or in a

batch mode. These modes are governed by the CursorLocation and

LockType properties. Changes will made to the data source in the

immediate mode as soon as soon as you confirm an update.

Review Questions:

1. Define simplicity?

2. Define SQL and its name.

3. Define DDL and DML.

4. Explain functions of jet database engine?

5. Explain DAO object model?

6. How to create Database?

7. How to create Table? Explain it with example.

8. Write VB code for Quiz program.

9. Explain SSTab control.

10. How to edit and update the record?

11. What is the difference between TabStrip and SSTab?

12. How to create a TreeView control?

13. What is ADO? Write the structure and component of ADO.

14. How to work with ADO? Explain.

 94

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 95

UNIT-V

Objectives:

 The objective of this unit is to introduce Crystal and Data Reports,

Distributing Your Application, What is ActiveX, DDE and OLE, the

technologies before ActiveX, What is an ActiveX Control, Creating an

ActiveX Control, Writing the code, adding properties, Registering the ActiveX

Control.

 This unit also discusses ActiveX and Internet, Microsoft ActiveX

Control Pad, Creating a Web Page, What is HTML, Placing an ActiveX

Control on the Page, ActiveX Documents.

Contents:

 5.1 Crystal And Data Reports

 5.2 Distributing your application

 5.3 Active X

 5.4 Active X and Web pages

 5.5 Active X Documents

 Review Questions

5.1Crystal and Data Reports

Crystal Reports Crystal Reports is a third party product developed by

Seagate of Singapore. It has been bundled with various data access tools. It can

work with Visual Basic on your PC.

Prerequisites for working with Crystal reports

HardWare A printer must be installed. It need not be physically connected

though. This is because Crystal Reports builds the reports based on the

properties of the printer.

Application You can access Crystal Reports only through the VB IDE. If

Crystal report has not been installed then follow the steps given below. Prepare

a pencil copy of the report structure that you want to create.

Installation So, Crystal Reports has been installed and you have a rough

‘copy’ of the report that you want.

 96

Creating a Report through a Wizard

 You are presented with the Create New Report Wizard that will allow

you to create new reports. You can choose the report style. For this exercise,

click on Standard.

 The wizard in the dialog box will ask you to select the database(s) that

you will be using to generate the report. Let us select Nwind.mdb for a change.

(You will be generating your own reports using the Invoice.mdb). Upon

selecting the Nwind.mdb, all the tables and stored queries/view will get added

to the ListBox. After you have added all the databases that you want to work on

click on ‘Done’.

 If you think there are too many tables and views and you do not need all

of them, then you can delete some of them. Click on the button ‘Back’.

 You can select the items that you do not need and click on remove to

remove them one by one. When you are sure you have only those tables that

you need click Next to continue. You will see the figure with the selected tables

and their relationship. Click Next to continue.

 You can add the fields that you wish to include in your report. The

fields that you select here will appear on the report. However the selection

criteria for the selected records need not depend on these fields alone. When

you have selected the fields and added them one by one in the ‘Report fields’

ListBox. Click on Next to continue.

 You can choose the fields on which the report is to be sorted out. For

example, you can sort all the details based on the City, or the Product that a

customer uses, or the Turnover of the company, etc. Select the fields on which

the criteria are to be built and then select the sort order. For example, you can

sort the details in the ascending order or descending order. When you are

through with this click Next to continue.

 Select the fields on which you have to perform calculations like group

total, sub-total, etc. For example if you want to know the number of customers

 97

in a particular city, then select Customer-City and add it to the “Total Fields’

ListBox. Here you can also choose if you want to total the number of customers

for a city or if you want to the add the figures for a particular column. For our

example choose Count. Then Click Next to continue.

 Choose the fields based on which the records must be selected from the

database. In the Report Fields ListBox you are presented with the fields that

you have selected for the report. If none of these fields meet your requirements

to determine the selection criteria, you can scroll down further and select from

the fields that have not been included in the report. Build your selection criteria

and click Next to continue.

 Select the layout of the report. Select the report layout style that you

think suits you best. The selection of the style will depend upon the type of data

that you are likely to have on the report. Next you preview the report.

Data Report

 Data Report is the new offering from Microsoft perhaps with a view to

replacing Crystal Reports in the long run. Data Report as it stands today is ment

for programmers. A general user of computers will not be able to get around it.

You need to follow the following steps to generate a report using the data

Repost.

1. Create a data source using ADO.

2. Add the data Report object to your project.

3. Place text boxes representing the various filed that you want on the

Data Report object.

4. Link the Textboxes to the various fields of the data source.

5. Display the Report using the Show method.

Getting acquainted with Data Report Designer

 The Data Report Designer is not part of your toolbox. To add it to

your toolbox, right click on the toolbox and select Components from the pop-

up menu. On the Component dialog box, click on the ‘Designer’ tab and select

‘Data Report’. Close this dialog box.

 Click on ‘Project’ In this menu you will see a new item ‘Add Data

Report’. Select this item to add a Data Report Designer to your IDE. The Data

Report Designer is a separate from by itself. Open the Project Explorer and

you will see another item called Data Report with the Form-1.

Parts of the Data Report

 The Data Report consists of three main components.

 Data Report object

 Section object

 Data Report Controls

This is the visual Designer component of the Data Report object. The designer

component can be controlled programmatically using the Data Report object.

The Data Report controls, which are special control that you can create on the

 98

Data Report designer. These tools are placed under a separate tab on your

toolbox.

The default Data Report designer contains these Sections

 Report Header: You give the tile of the report in this section. If the

first page of the report should contain only the tile, then set its Force

Page Break property to rpt Page Break After.

 Page Header: You give the page heading here.

 Group Header/Footer: you give the heading for every group here. For

example your report can contain details of customer for each city here.

So the Group Header can be the name of city. A group header must

also have a Group Footer.

 Details: This section contains the actual data. The records are

displayed in this section.

 Page Footer: You give the page footer here. This can be the page

number or any relevant text like the data of report, etc.

 Report Footer: You give the summary for the report in this section.

This can contain the address, the bibliography, contact address, etc. the

report Footer appears between the last Page Header and Page Footer.

Data Report Controls

Following are the new set of controls that are placed under the Data report tab

on your toolbox.

 TextBox Control (RptTextBox)- To display text or other formatted

data.

 Label Control (RptLable) - To display the labels on the report to

identify fields or sections.

 Image Control (RptImage) - To display picture on the report. This

control cannot be tied to a data field.

 Line Control (RptLine) – To draw lines on the report.

 Shape Control (Rptshape) – To draw rectangles,circles,etc on the

report.

 Function Control (RptFunction) – This is a special text box that

calculates value as the report is generated.

Extracting the Data

 First create a data source using ADO. Let us create a list that consists

of Customer Name, Customer-City and Order-Value. We need to work with

two tables.

Dim adocon As ADODB. Connection

Dim adors As ADODB. Recordset

In the Form load event add code to create the connection and then to create a

Recordset. The following lines of code will do the trick

 Set adocon = New ADODB. Connection

 99

 Adocon. Open “DSN = Ivoice”

Working with the Data Report

 In the details section of the Data Report designer, add three of the

RptTextBox controls. Notice that it is just like adding ordinary textbox

controls. Also observe that these textboxes contain a caption called ‘Unbound’.

This means that these RptTextBox controls are not bound to any data source or

data field.

Displaying the Report

 We are now ready to display the data. We have created the Recordset.

We have assigned the fields in the data Report Designer. We need to link the

Record source to the Data Report. Then we must call the show method of the

Data Report. The following lines have to be added to the “Display” command

button.

 Set DataReport1. Data Source = adors

 DataReport1. Show

 Run the program now.

Creating Multiple Reports

 Displaying more than one report using only one Data Report involves

a little work. Details like Caption, Page Headers, Footers, etc for each of the

reports must be determined. The heading for the data must also be determined.

The data and the source of the data must also be worked out. Depending upon

the number of reports that you may need to display on a form, you have to

work out if it is feasible to create a Recordset or a number of Record sets for

all the reports. Creating a Recordset every time the user asks for a report may

not be a good idea especially in a multi-user environment.

5.2 Distributing your application

Working with the Packaging and Deployment Wizard

 The wizard compresses your application files and places them in

cabinet (.cab) files. You can choose to have a single .cab file or multiple files

to be copied on floppies.

 There are two ways which you can start the wizard. The wizard can be

invoked from within the VB IDE. It is available under the Add_ Ins menu

option. The other recommended method is to invoke it from the Visual Studio

Program group.

 Click on the Start button and select the Programs option. Then select

Microsoft Visual Studio 6.0, and Microsoft Visual Studio 6.0 Tools. Under

this option you will find the Packaging and Deployment Wizard.

From this Dialog box you can

1 Select the project that you want to package.

A drop down list box will display the past projects. You can the name of the

 project that you want to package, or you can click on the Browse button to

 select the project.

 100

After selecting the project you can choose to,

 Package the project.

 Deploy the packaged project either on floppies, the local drive, or on the

 Internet. Manage the deployment scripts.

Click on the Package button to begin packaging your application. You can

choose the packaging script in dialog box. If you have already packaged the

current project, its previous setting is stored in a script.

 Choose the type pf the package that you want to create. You can

create a Standard Setup program that the user can install using the Setup.exe

programs. Creating a standard setup program, choose the option to create the

Standard Exe program. Click Next.

 Select the directory where the setup program must be saved. Choose

the directory where you want to save the new package. Click Next.

 Choose the drive that you wish to include. If you have used only

DAO, then you will need only Jet drivers. Select the driver and add it to the

ListBox with the heading ‘Included drivers’. Click Next to continue.

 AlistBox will show you all the files that he wizard will add for your

application to work. These files are the standard drivers, DLLs. For every

control that you have added to your toolbox, you will see that the wizard adds

the OCXs, DLLs, dependency files, etc. You have to specify whether you want

the entire setup program in one large file, or in smaller units. If you plan to

distribute your application on CD-ROMS, then you can choose the option to

create a single .cab file.

 Enter the tile that will appear during installation. If you so desire, your

application can appear on the Start Menu itself. Click Next to continue.

 This dialog box displays the name and the current location of each file

in the package, the files that will be installed and the folders where they will be

copied. You can specify the location to which your application files will be

installed on the user’s machine.

 Select the file whose location information you wish to change, and

then click on the macro under the heading ‘Install Location’. A dropdown

ListBox will display the other location (macros) that are available where you

can copy the file.

 You can specify the files that can be shared by other applications.

Click Next to continue.

 Now you have to give the name under which the Setup script has to be

saved. Accept the name suggested by the Wizard, and click Finish.

5.3 ActiveX

What is ActiveX?

Why ActiveX?

 The concept of ActiveX was developed for very simple reasons.

 101

 To be able to make changes in the imported data such that the data in

the parent application was also updated.

 To be able to place different types of data or ‘objects’ in one

document.

 The technology was DDE or Dynamic Data Exchange.

 This technology allowed application to exchange data.

 It also allowed one application to send commands to the other

application.

 Next came OLE, an acronym for Object Linking and Embedding.

 Under this technology, one document could display an object from

different applications.

 The advantage of this technology was that no conversion of data was

done from one application to another.

 Programmers who work in the C language are very found of using the

term ‘function’.

OLE 2. The Next Step

OLE 1.0 did not succeed because of various limitations.

The need was for a document to load and save an object that it did

not know about.

The application should provide an interface to edit objects that it

contains.

To support drag-and-drop of objects that it does not know about.

To execute commands on objects belonging to unknown

applications.

 Microsoft came up with some specifications on Objects and how they

should be handled. The specifications are as under, and are COM

specifications. COM stands for Component Object Model, the new buzzword

in computers.

1. A common method for applications to exchange objects.

2. A method to identify an object and relate an object with applications

that can manipulate it.

3. A standard set of error codes and an error-reporting and responding

system.

4. A system to invoke an object. Check if it is in use, and delete it if it is

not in use. This ensures that memory resources are not blocked.

5. A set of rules for applications to access and manipulate objects.

 An application that accepts or requests an object is called as the client

or container. The application that provides an object is called the Server.

Rule 1: Word must know how to accept the spreadsheet from Excel.

Rule 2: If the user double-click on the spreadsheet, Word (or the

system) must be able to identify the object and invoke Excel.

 102

Rule 3: In case of an error like Excel being corrupted or “This

 Application has performed….’ Error, both the applications

must be notified. A copy of the FIR is to be sent to the MLA!

Rule 4: Once the modifications have been completed on the object, the

 instance of Excel must be closed. This will ensure that

resources are not blocked.

Rule 5: This ensure that the spreadsheet is presented as a spreadsheet,

 and that the rules for presenting spreadsheet data are followed.

Let us take a look at some of the properties of ActiveX controls.

Any control or object has

 Properties : Like BackColour, Font, Resize, Paint, etc.

 Events : Click, MouseMove, KeyPress, LostFocus, etc.

 Methods : The code associated with the control.

5.4 ActiveX and Web Pages

ActiveX and Internet

 ActiveX Documents go well with the Microsoft’s strategy for the

internet.

 The internet is a collection of computers that are wired together and

talk in TCP/IP. The World Wide Web is a collection of documents that are

linked together. The documents are viewed by the users in the form of Pages.

The Pages will have topics that are linked to other topics and so forth. These

pages are read by what is called as Internet Browsers. The browsers

understand a language called HTML’ or HyperText Markup Language.

 All pages that have to be placed on the web have to be created using

this language. ActiveX Controls can be added to Web Pages to improve the

functionality of the Page. An ActiveX control can be loaded on the page to

play a movie clip .avi file or to present a form. Microsoft has provided a new

tool to simplify the addition of ActiveX controls to a Page. This tool is called

Microsoft ActiveX Control Pad.

 An HTML page begins with a tag <HTML>. This tag tells the

browser that the file is an HTML file, and hence must be treated with respect.

 An HTML page can contain text with different styles. Each style for

the sake of (our) convenience can be called a Para. Each Para is preceded by a

tag and ends with a tag. A tag is a bit of text that tells the browser how the

following text has to be read and displayed.

 The ending tag for a Para will tell the browser that the Para has come

to an end the next definition if any will begin with the next tag. The HEAD

section includes the tile pf the page and the name of the creator of this page,

etc. The BODY section is where most of the action is. You can add text here or

pictures, or other controls.

 103

Some definitions are here for you:

HTTP: Hypertext Transfer Protocol. This protocol is used to transfer pages

 from the server to the client.

Server: The computer that has the pages that you requested.

Client: Your computer that has made the requested.

URL: Uniform Resource Locator. This contains the information needed to

locate the page that you want. An URL has

 The Protocol

 The Server name

 The Pathname of the file in the server’s directory

 Page Name, the name of the file that has the page

 Page Number#, the page number which hold the text that you want.

5.5 ActiveX Documents

 An ActiveX document is Visual Basic Program (with the various

controls) that can be read and displayed by a browser.

Now how do we go about creating an ActiveX Document?

Start Visual Basic.

Select ActiveX Document Exe from the opening menu.

 You will see a form called the UserDocument1. It will look similar to

the regular Visual Basic form.

From the Toolbox paste the controls to arrive the following picture.

You are welcome to make it look different.

Add the following code to User Document_ Initialize ()

Private Sub UserDocument _ Initialize()

Dim db As Database

Dim db As Recordset

‘open the database

 Set db = OpenDatabase (App.Path & “\ Car Finance.mdb”)

Set datal = db. OpenRecordset (‘Schemes”)

‘the following code will populate the grid

Gridl.Rows = 11

Gridl.Cols = 7

Gridl . Colwidth (0) = Gridl . Width * 0.14

Gridl . ColWidth (1) = Gridl . Width * 0.163

Gridl . ColWidth (2) = Gridl . Width * 0.16

Gridl . ColWidth (3) = Gridl . Width * 0.16

Gridl . ColWidth (4) = Gridl . Width * 0.17

Gridl . ColWidth (5) = Gridl . Width * 0.07

 104

Gridl . ColWidth (6) = Gridl . Width * 0.1

If datal . RecordCount > 0 Then datal . MoveFirst

i = 1

Do While Not datal . EOF

Grid1.Row = i

Grid1.TextMatrix(i,0) = data1!carname

Grid1.TextMatrix(i,1) = data1!company

Grid1.TextMatrix(i,2) = Format(data1!sellingprice,

”###, ###, ##0.00”) & “ Rs.”

Grid1.TextMatrix(i,3) = Format(data1!inipayment,

”###, ###, ###0.00”) & “ Rs.”

Grid1.TextMatrix(i,4) = Format(data1!ms,

”###, ###, ##0.00”) & “ Rs.”

Grid1.TextMatrix(i,5) = data1!months

Grid1.TextMatrix(i,6) = data1!interest & “%P.A.”

Data1.MoveNext

i = i+1

Loop

If data1.RecordCount > 0 Then data1. MoveFirst

Combo1. Clear

Do While Not data1.EOF

 If Not IsNull(data1.carname) Then Combo1.AddItem data1!carname

 data1.MoveNext

Loop

Data1.Close

Db. Close

SSFrame1.visible = False

End Sub

In the Click Event of the Application Form Command Button add the

following code:

Private Sub SSCommand3_Click()

SSFrame1.visible = False

End Sub

The Application Form Document

Create the document using SSFrame and Paste it in the same document.

In the Click Event accept Command Button Add the Following Code

Private Sub SSCommand2_Click()

Dim db As Database

Dim datal As Recordset

Set db = OpenDatabase (App.path & “\CarFinance.mdb”)

 105

Set datal = db . OpenRecordset (“ ApplicationForm”)

‘Storing the information in to our database

datal . Index = “AppIndex”

datal . Seek “=”, Trim (Textl (1) . Text)

If Not datal . NoMatch Then

Datal. Edit

Else

datal . Edit

Else

 Datal . AddNew End If

datal ! ClientName = Text1 (1) . Text

datal ! address = Text1(2) . Text

datal ! phone = Text1(3) . Text

datal ! schemewanted = Text (4) . Text

datal ! schemewanted = Trim (Combol . Text)

datal . Update

datal . Close

db . Close

End Sub.

In the Home Command Button, add the following code:

Private Sub SSCommand3_ Click ()

SSFramel . Visible = False

End Sub

Review Questions:

1. Write the types of reports.

2. What is ActiveX?

3. Explain the concept of iterating ActiveX controls?

4. How to create an ActiveX control?

5. Write VB code to display student information system.

6. Explain DDE events and OLE.

7. Explain about distribution of your application.

8. How to create a Web Page?

9. What is HTML? Explain with example.

10. What is a tag? Explain in detail.

11. How to place an ActiveX Control on the page?

12. What is an ActiveX document? Explain in detail.

13. Create the document using SSFrame and Paste it in the same document.

 106

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

