
1

PERIYAR INSTITUTE OF DISTANCE EDUCATION

(PRIDE)

PERIYAR UNIVERSITY

SALEM - 636 011.

B.Sc. COMPUTER SCIENCE

THIRD YEAR

PAPER – V : DATA BASE MANAGEMENT SYSTEM

2

Prepared by :

S.RAJASEKARAN, M.Sc., M.Phil.,

Lecturer, Department of Computer Science,

Vivekanandha College of Arts

and Sciences for Women,

Elayampalayam,

Tiruchengode – 637 205.

 3

B.Sc. COMPUTER SCIENCE

THIRD YEAR

PAPER – V : DATA BASE MANAGEMENT SYSTEM

CLIENT/SERVER TECHNOLOGY AND RDBMS

UNIT I

DBMS- INRODUCTION, ER MODEL,

RELATIONAL MODEL

UNIT II

SQL – STRUCTURE AND LANGUAGES

UNIT III

CONSTRAINTS AND NORMALIZATION

TECHNIQUES

UNIT IV

CLIENT/SERVER INTRODUCTION

UNIT V

NOS, DSS AND TP-MONITORS

 4

INTRODUCTION

Dear Students

 RDBMS is a tool which is used to create and access the information

using database. It provides various techniques to create and manipulate data.

This book can also specify different DBMS languages.

 Totally this book covers five units. The first unit deals with the

introduction about DBMS, Overall structure of DBMS and deals about

database administrator and users. This unit also describes about the structure of

E-R diagram and it benefits and also describes relational model and relational

algebra.

 The second unit deals with the structure of SQL. Various operations

carried out in SQL. Different SQL Languages like DDL, DML, and TCL. The

third unit deals with the concept of constraints, Assertions and Triggers. And

also describes decomposition and different Normalization Techniques with

examples.

The fourth unit deals with the concept of client/server technology and

its advantages. This also describes different types of servers used in this

client/server model. The fifth unit deals with introduction to Network

Operating System, Remote Procedure Call, Decision support system, and Data

warehouse. It also describes about TP Monitors.

 All the above said five units of this book have been prepared by

Mr.S.RAJASEKARAN, M.Sc.,M.Phil., to make your task much easier while

going through it.

 PRIDE would be happy in you could make use of this learning material

to enrich your knowledge and skills to serve the society.

 5

UNIT I

 Overview of Database Management Systems: Introduction - File System

versus a DBMS - Advantages of DBMS - Describing and Storing Data in a

DBMS - Structure of a DBMS - Introduction to Database Design: Introduction

to ER Model - Conceptual Design with ER Model - The Relational Model:

Introduction to Relational Model - Integrity Constraints over Relational

Model - Introduction to Views - Destroying / Altering Tables and Views.

UNIT II

 Relational Algebra and Relational Calculus: Relational Algebra -

Relational Calculus - SQL: Queries, Constraints, Triggers - The form of a

Basic SQL Queries - UNION, INTERSECT, and EXCEPT - Nested Queries -

Aggregate Operators - Null Values - Triggers and Active Databases.

UNIT III

 Schema Refinement and Normal Forms, Security and Authorization:

Introduction to Database Security - Access Control - Discretionary Access

Control - Mandatory Access Control - Security for Interne Applications,

Network Model, Hierarchical Model.

UNIT IV

 Parallel and Distributed Databases: Introduction - Architecture of

Parallel Databases - Parallel Query Evaluation -Parallelizing individual

Operations - Parallel Query Optimization - Introduction to Distributed

Database - Distributed DBMS Architecture - Storing Data in a Distributed

Database - Distributed Catalog Management - Distributed Query Processing -

Updating Distributed Query optimization - Distributed Transactions -

Distributed Concurrency Control -Distributed Recovery, Object Database

Systems: Motivating Examples - Structured Data types - Operations on

Structured Data - Encapsulation and ADTs – Inheritance - Objects, OIDs, and

Reference Types - Database Design for an ORDBMS - ORDBMS

Implementation Challenges – OODBMS - Comparing RDBMS, OODBMS,

and ORDBMS.

UNIT V

 Data Warehousing and Decision Support: Introduction to Decision

Support - OLAP: Multidimensional Data Model - Multidimensional

Aggregation Queries - Window Queries in SQL:1999 - Finding Answers

Quickly -Implementation Techniques for OLAP - Data Warehousing - Views

and Decision Support - View Materialization -Maintaining Materialized Views,

Data Mining: Introduction to Data Mining - Counting Co-occurrences -

Mining for Rules - Tree Structured Rules – Clustering - Similarity Search over

Sequences - Incremental Mining and Data Streams -Additional Data Mining

Tasks.

 6

TEXT BOOKS:

1. “Database Management Systems”

 Ramakrishnan & Gehrke

 MC Graw Hill international Edition

 Third Eition

2. “Database System Concepts”

 Abraham Silberschatz, Henry F.Korth & S.Sudarshan

 MC Graw Hill Company

 Third Edition

 (Only last two topics in Unit III)

 7

Contents

1. Overview of Database Management Systems

 1.1 Introduction

 1.2 File System versus a DBMS

 1.3 Advantages of DBMS

 1.4 Describing and Storing Data in a DBMS

 1.5 Structure of a DBMS

2. Introduction to Database Design

 2.1 Introduction to ER Model

 2.2 Conceptual Design with ER Model

3. The Relational Model

 3.1 Introduction to Relational Model

 3.2 Integrity Constraints over Relational Model

 3.3 Introduction to Views

 3.4 Destroying / Altering Tables and Views

4. Relational Algebra and Relational Calculus

 4.1 Relational Algebra

 4.2 Relational Calculus

5. SQL: Queries, Constraints, Triggers

 5.1 The form of a Basic SQL Queries

 5.2 UNION, INTERSECT, and EXCEPT

 5.3 Nested Queries

 5.4 Aggregate Operators

 5.5 Null Values

 5.6 Triggers and Active Databases

6. Schema Refinement and Normal Forms

6.1 Introduction to Schema Refinement

6.2 Functional Dependencies

6.3 Reasoning about FDs

6.4 Normal Forms

6.5 Properties of Decomposition

6.6 Normalization

6.7 Schema Refinement in Database Design

6.8 Other Kinds of Dependencies

7. Security and Authorization

 7.1 Introduction to Database Security

 7.2 Access Control

 7.3 Discretionary Access Control

 7.4 Mandatory Access Control

 7.5 Security for Interne Applications

 7.6 Network Model

 7.7 Hierarchical Model

 8

8. Parallel and Distributed Database

 8.1 Introduction

 8.2 Architecture of Parallel Databases

 8.3 Parallel Query Evaluation

 8.4 Parallelizing individual Operations

 8.5 Parallel Query Optimization

 8.6 Introduction to Distributed Database

 8.7 Distributed DBMS Architecture

 8.8 Sorting Data in a Distributed Database

 8.9 Distributed Catalog Management

 8.10 Distributed Query Processing

 8.11 Updating Distributed Query Optimization

 8.12 Distributed Transactions

 8.13 Distributed Concurrency Control

 8.14 Distributed Recovery

9 Object Database Systems

 9.1 Motivating Examples

 9.2 Structured Data types

 9.3 Operations on Structured Data

 9.4 Encapsulation and ADTs

 9.5 Inheritance

 9.6 Objects, OIDs, and Reference Types

 9.7 Database Design for an ORDBMS

 9.8 ORDBMS Implementation Challenges

 9.9 OODBMS

 9.10 Comparing RDBMS, OODBMS, and ORDBMS

10 Data Warehousing and Decision Support

 10.1 Introduction to Decision Support

 10.2 OLAP: Multidimensional Data Model

 10.3 Multidimensional Aggregation Queries

 10.4 Window Queries in SQL:1999

 10.5 Finding Answers Quickly

 10.6 Implementation Techniques for OLAP

 10.7 Data Warehousing

 10.8 Views and Decision Support

 10.9 View Materialization

 10.10 Maintaining Materialized Views

11 Data Mining

 11.1 Introduction to Data Mining

 11.2 Counting Co-occurrences

 11.3 Mining for Rules

 11.4 Tree Structured Rules

 11.5 Clustering

 11.6 Similarity Search over Sequences

 11.7 Incremental Mining and Data Streams

 11.8 Additional Data Mining Tasks

 9

 1.OVERVIEW OF DATABASE SYSTEM

1.1 Introduction

Database:

 Database is a collection of data, typically describing the activities of

one or more related organizations.

DBMS:

 Database Management System is software designed to assist in

maintaining and utilizing large collection of data. The alternative to using a

DBMS is to store the data in files and write application-specific code to

manage it.

1.2 File System Vs DBMS

 File systems have many drawbacks over DBMS. The drawbacks are

 We probably do not have 500 GB of main memory to hold all the data.

We must therefore store data in a storage device such a disk or tape and

bring relevant parts into main memory for processing as needed.

 Even if we have 500 GB of main memory, on computer systems with

32-bit addressing, we cannot refer directly to more than about 4 GB of

data. We have to program some method of identifying all data items.

 We have to write special programs to answer each question a user may

want to ask about the data. These programs are likely to be complex

because such of the large volume of data to be searched.

 We must protect the data from inconsistent changes made by different

users accessing the data concurrently. If applications must address the

details of such concurrent access, this adds greatly to their complexity.

 We must ensure that data is restored to a consistent state if the system

crashes while changes are being made.

 Operating systems provide only a password mechanism for security.

This is not sufficiently flexible to enforce security policies in which

different users have to access different subsets of the data.

1.3 Advantages of DBMS

Using a DBMS to manage data has many advantages.

Data Independence: Application programs should not, ideally, be

exposed to details of data representation and storage. The DBMS provides as

abstract view of the data that hides such details.

Efficient Data Access: A DBMS utilizes a variety of sophisticated

techniques to store and retrieve data efficiently. This feature is especially

important if the data is stored on external storage devices.

Data Integrity and Security: If data is always accessed through the

DBMS, the DBMS can enforce integrity constraints. For example, before

inserting salary information for an employee, the DBMS can check that the

department budget is not exceeded. Also, it can enforce access controls that

govern what data is visible to different classes of users.

 10

Data Administration: When several users share the data, centralizing the

administration of data can offer significant improvements. Experienced

professionals who understand the nature of the data being managed, and how

different groups of users use it, can be responsible for organizing the data

representation to minimize redundancy send for fine-tuning the storage of the

data to make retrieval efficient.

Concurrent Access and Crash Recovery: A DBMS schedules concurrent

access to the data in such a manner that users can think of the data as being

accessed by only user at a time. Further, the DBMS protects users from the

effects of system failures.

Reduced Application Development Time: Clearly, the DBMS supports

important functions that are common to many applications accessing data in the

DBMS. This, in conjunction with the high-level interface to the data, facilitates

quick application development. DBMS applications are also likely to be more

robust that similar stand-alone applications because many important tasks are

handled by the DBMS.

1.4 Describing and Storing Data in DBMS

 A data model is a collection of high-level data description constructs

that hide many low-level storage details. A DBMS allows a user to define the

data to be stored in terms of a data model. Most database management systems

today are based on the relational data model.

 A semantic data model is more abstract, high-level data model that

makes it easier for a user to come up with a good initial description of the data

in an enterprise. These models contain a variety of constructs that help describe

a real application scenario. A widely used semantic model called the entity-

relationship (ER) model allows us to pictorially denote entities and relations

among them.

The Relational Model

 The central data description construct in this model is a relation, which

can be thought of as a set of records.

 A description of data in terms of a data model is called a schema. In the

relational model, the schema for a relation specifies its name, the name of each

field, and the type of each field. As an example, student information in a

university database may be stored in a relation with the following schema:

Student(sid : string, name :string, login :string Age :integer, gpa :real)

The preceding schema says that each record in the student relation has

five fields, with field names and types as indicated. An example instance of the

students relation appears in fig 1.1.

 11

Each row in the students relation is a record that describes a student.

Levels of Abstraction

 The database described at three levels of abstraction, as illustrated in the

following figure. The database description consists of a schema at each of these

three levels of abstraction: the conceptual, physical and external.

 It must retrieve data efficiently. This concern led to the design of the

complex data structure for the representation of data in the database. Through

different levels of abstraction, to simplify the user interaction with system:

Physical Level: The lowest level of abstraction describes how the data are

actually stored. At the Physical level, complex low level data structures are

described in detail.

Logical Level: The next higher level of abstraction describes what data are

stored in the database, and what relationships exist among those data. The

entire database is thus described in terms of a small number of relatively simple

structures. The logical level of abstraction is used by database administrators,

who decide what information is to kept in the database.

View Level: The highest level of abstraction describes only part of the entire

database. Despite the use of simple structures at the logical level, some

complexity remains, because of the large size of the database. so that the

interaction with the system is simplified, the view level of abstraction is

defined. The system may provide many views for the same database.

Sid Name Login Age Gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53650 Smith smith@math 19 3.8

53831 Madayan madayan@music 11 1.8

53832 Guldu guldu@music 12 2.0

 12

 Fig. 1.1 The three levels of data abstraction

Most high level programming languages support the notion of a record type.

Fro example, in a Pascal like language, we may declare a record as follows:

 Type customer = record

 Customer-name : string

 Social-security : string

 Customer-street : string

 Customer-city : string

 End;

 This code defines a new record called customer with three fields. Each

field has a name and a type associated with it.

 A physical level, a customer, account, or employee record can be

described as a book of consecutive storage locations.

 At the logical level, each such a record is described by a type definition,

as illustrated I the previous code segment, and the interrelationship among

these recode type is defined.

 At the view level, computer users see a set of application programs that

hide details of the data types. Similarly, at the view level, several views of the

database are defined, and database users see these views. The view can also

provide a security mechanism to prevent users from accessing parts of the

database.

 Physical Level

 Logical Level

 View n View 1 View 2

View Level

 View of Data

 13

Instance and Schemas

 The collection of information stored in the database at a particular

moment is called an instance of the database. The overall design of the

database is called the database schema. Schemas are changed infrequently. At

the lowest level is the physical schema; at the intermediate level is the logical

schema; and at the highest level is a subschema. In general database systems

support on e physical schema, one logical schema and several subschemas.

Data Independence

 The ability to modify a schema definition in one level without affecting

a schema definition in the next higher level is called data independence. There

are two levels of data independence:

1. Physical data Independence is the ability to modify the physical definition

without causing application program to be rewritten. Modifications at the

physical level are occasionally necessary to improve performance.

2. Logical Data Independence is the ability to modify the logical schema

without causing application programs to be rewritten. Modifications at the

logical level are necessary whenever the logical structure of the database is

altered.

 The concept of data independence is similar in many respects to the

concept of abstract data types in modern programming languages.

1.5 Structure of DBMS

 The DBMS accepts SQL commands from a variety of user interfaces,

produces query evaluation plans, executes these plans against the database, and

returns the answers.

Whenever a user issues a query, the parsed query is presented to a

query optimizer, which uses information about how the data is stored to

produce an efficient execution plan for evaluating the query. An execution

plan is a blueprint for evaluating query, usually represented as a tree of

relational operators. Relational operators serve as the building blocks for

evaluating queries posed against the data.

 The code that implements relational operators sits on the top of the file

and access methods layer. This layer supports the concept of a file, which in a

DBMS, is a collection of pages or a collection of records. Heap files, or files of

unordered pages, s well as indexes are supported. In addition to keeping track

of the pages in a file, this layer organizes the information within a page.

 The files and access methods layer sits on the top of the buffer

manager, which brings pages in from disk to main memory as needed in

response to read requests.

 The lowest layer of the DBMS software deals with management of

space on disk, where the data is stored. Higher layers allocate, deallocate, read,

and write pages through this layer called disk space manager.

 The DBMS supports concurrency and crash recovery by carefully

scheduling user requests and maintaining a log of all changes to the database.

 14

DBMS components associated with concurrency control and recovery include

the transaction manager, which ensures that transactions request and release

locks according to a suitable locking protocol and schedules the execution

transactions; the lock manager, which keeps track of requests for locks and

grants locks on

indices

Statistical data

Data files

Data dictionary

 disk storage

 15

database objects when they become available; and the recovery manager,

which is responsible for maintaining a log and restoring the system to a

consistent state after a crash. The disk space manager, buffer manager, and file

and access method layers must interact with these components.

Self-Assesment Questions – I

1. Expansion of DBMS _____________________________.

2. Database is a collection of _________________________.

3. Concurrent access is _____________________________.

4. Transaction is an ______________________________.

5. Expansionof DDL is

a) Data Description Language

b) Data Definition Language

c) Data Derived Language

6. SQL stands for

a) Structured Query Language

b) Standard Query Language

c) Standard Quality Language

Sample questions

1. Write notes about File systems Vs DBMS.

2. Write down the advantages of a DBMS.

3. Explain different levels of abstraction in DBMS?

4. Explain the Structure of DBMS?

Answers for Self-Assesment Questions – I

1. Database Management System

2. Data

3. Simultaneous Access

4. Execution of a user program

5. b – Data Definition Language

6. a – Structured Query Language

 16

 NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 17

2. Introduction to Database Design

 The entity-relationship(ER) data model allows us to describe the data

involved in a real-world enterprise in terms of objects and their relationships

and is widely used to develop an initial database design. It provides useful

concepts that allow us to move from an informal description of what users want

from their database to a more detailed, precise description that can be

implemented in a DBMS.

2.1 Introduction to ER Model

The database design process can be divided in to sis steps. The ER

model is most relevant to the first three steps.

1. Requirement Analysis.

 The very first step in designing a database application is to

understand shat data is to be stored in the database, ahat applications must

be built on top of it, and what operations are most frequent and subject to

performance requirements.

2. Conceptual Database Design

 The information gathered in the requirements analysis step is used

to develop a high-level description of the data to be stored in the database,

along with the constraints known to hold over this data. This step is often

carried out using the ER model. The ER model is one of several high-level,

or semantic, data models used in database design. The goal is to create a

simple description of the data closely matches how users and developers

think of the data and the people and processes to be represented in the data.

3. Logical Design

 We must choose a DBMS to implement our database design, and

convert the conceptual database design into a database schema in the data

model of the chosen DBMS. We will consider only relational DBMSs, and

therefore, the task in the logical design step is to convert an ER schema into

a relational database schema.

4. Schema Refinement

 The fourth step in database design is to analyze the collection of

relations in our relational schema to identify potential problems, and to

refine it. In contrast to the requirements analysis and conceptual design

steps, which are essentially subjective, schema refinement can be guided by

some elegant and powerful theory.

5. Physical Database Design

In this step, we consider typical expected workloads that our

database must support and further refine the database design to ensure

that it meets desired performance criteria. This step simply involve

building indexes on some tables and clustering some tables, or it may

involve a substantial redesign of parts of the database schema.

 18

6. Application and Security Design

Any software project that involves a DBMS must consider aspects of

the application that go beyond the database itself. Design

methodologies like UML try to address the complete software design

and development cycle. Briefly, we must identify the entities and

processes involved in the application. We must describe the role of each

entity in every process that is reflected in some application task, as part

of a complete work flow for this task.

 An entity is an object in the real world that is distinguishable

from other objects; simply it is called as records. An entity is described

using a set of attributes. All entities in a given entity set have the same

attributes. A domain is a possible set of values of a particular attribute.

A key is a minimal set of attributes whose values uniquely identify an

entity in the set. There could be more than one candidate key, if so, we

designate one of them as the primary key. For now we assume that each

entity set contains at least one set of attributes that uniquely identifies

an entity in the entity set. That is, the set of attributes contains a key.

 A relationship is an association among two or more entities.

Collection of set of similar relationships is known as relationship set.

2.2 Conceptual Design With the ER Model

 Develop an ER diagram presents several choices, including the

following:

 Should a concept be modeled as an entity or an attribute?

 Should a concept be modeled as an entity or a relationship?

 What are the relationship sets and their participating entity sets? Should

we use binary or ternary relationships?

 Should we use aggregation?

 We now discuss the issues involved in making these choices.

1. Entity versus Attributes

While identifying the attributes of an entity set, it is sometimes

not clear whether a property should be modeled as an attribute or as

entity set. Fro example, consider adding address information to the

Employee entity set. Entity is nothing but a record and an attribute is a

fields defined in the relation.

2. Entity versus Relationship

The imprecise nature of ER modeling can thus make it difficult

to recognize underlying entities, and we might associate attributes with

relationships rather than the appropriate entities. In general, such

mistakes lead to redundant storage of the same information and can

cause many problems.

 19

3. Binary versus Ternary Relationships

There are situations, however, where a relationship inherently

associates between two entities, is called as Binary relationship.

There are situations, however, where a relationship inherently

associates more than two entities, is called as Ternary relationship.

4. Aggregation versus Ternary Relationships

Aggregation or a ternary relationship is mainly determined by

the existence of a relationship that relates a relationship set to an entity

set. The choice may also be guided by certain integrity constraints that

we want to express.

Self-Assesment Questions – II

1. Expansion of ER model _____________________________.

2. Entity is an ____________________________________.

3. Relatinship is an _____________________________.

4. Constraint is an _____________________________.

5. Expansionof UML is

a. Uniform Markup Language

b. Unified Markup Language

c. Unified Modeling Language

Sample questions

6. Write notes Entities, Attributes and Entity Sets.

7. Write down the conceptual ER model.

8. Explain Unified Modeling Language?

9. Explain Aggregation?

Answers for Self-Assesment Questions– II

1. Entity Relationship model

2. Object

3. Association among entities

4. Condition

5. c – Unified Modeling Language

 20

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 21

3. The Relational Model

 The relational model is very simple and elegant, a database is a

collection of one or more relations, where each relation is a table with rows and

columns. This simple tabular representation enables users to understand the

contents of a database, and it permits the use of simple, high-level languages to

query the data. The major advantages of the relational model over the other

data models are its simple data representation and the ease with which even

complex queries can be expressed.

3.1 Introduction to Relational Model

 The main construct for representing data in the data model is a relation.

A relation consists of relation schema and a relation instance. The relation

instance is a table, and the relation schema describes the column heads for the

table. We first describe the relation schema and then the relation instance. The

schema specifies the relation’s name, the name of each field, and the domain of

each field. A domain is referred to in a relation schema by the domain name

and has a set of associated values.

 We use the example of student information in a university database, it

illustrate the parts of a relation schema:

 Students(sid: string, name: string, login: string,

 Age: integer, gpa: real)

 This says, for instance, that the field named sid has a domain named

string. The set of values associated with domain string is the set of all character

strings. An instance of a relation is a set of tuples, also called records, in which

each tuple has the same number of fields as the relation schema. A relation

instance can be taught of as a table in which each tuple is a row, and all rows

have the same number of fields.

As instance of the students relation appears in the following figure. The

instance S1 contains six tuples and has, as we expect from the schema, five

fields. Note that no two rows are identical. That is a requirement of the

relational model – each relations defined to be a set of unique tuples or rows.

 Field names FIELDS(ATTRIBUTES, COLUMNS)

Tuples

(RECORDS,

ROWS)

fig 3.1 An instance S1 of the students relation

Sid Name Login Age Gpa

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53650 Smith smith@math 19 3.8

53831 Madayan madayan@music 11 1.8

53832 Guldu guldu@music 12 2.0

 22

 The following figure illustrates the same relation instance. If the fields

are named, as in our schema definitions and figures depicting relation

instances, the order of fields does not matte either. However, an alternative

convention is to list of fields in a specific order and refer to a field by its

position.

Fig 3.2 An alternative representation of instance S1 of studetns

 The relation schema specifies the domain of each field or column in the

relation instance, these domain constraints in the schema specify an important

condition that we want each instance of the relation to satisfy: the values that

appear in a column must be drawn from the domain associated with that

column. Thus, the domain of a field is essentially the type of that field, in

programming language terms, and restricts the values that can appear in the

field.

 More formlly, let R(f1:D1,….fn:Dn) be a relation schema, and for each

fi, 1≤i≤n, let Domi be the set of values associated with the domain named Di.

An instance of R that satisfies the domain constraints in the schema is a set of

tuples with n fields:

 { <f1 : d1,…, fn : dn> | d1 Є Dom1, … , d n Є Dom n }

 The relational database is a collection of relations with distinct relation

names. The relational database schema is the collection of schemas for the

relations in the database.

Creating and Modifying Relations using SQL

 The SQL language standard uses the word table to denote relation, and we

often follow this convention when discussing SQL. The subset of SQL that

supports the creation, deletion, and modification of tables is called the data

definition language (DDL). Further, while there is a command that lets users

define new domains, analogous to type definition commands in a programming

language,

 The CREATE TABLE statement is used to define a new table. To create

the student relation, we can use the following statement:

Sid Name Login Age Gpa

53832 Guldu guldu@music 12 2.0

53831 Madayan madayan@music 11 1.8

53688 Smith smith@ee 18 3.2

53666 Jones jones@cs 18 3.4

53650 Smith smith@math 19 3.8

50000 Dave dave@cs 19 3.3

 23

 CREATE TABLE Students(Sid CHAR(20),

 Name CHAR(30),

 Login CHAR(20),

 Age INTEGER,

 Gpa REAL)

 Tuples are inserted using the INSERT command. We can insert a single

tuple into the students table as follows.

 INSERT

 INTO students (sid, name, login, age, gpa)

 VALUES (53688, ‘smith’, ‘smith@ee’, 18, 3.2)

 We can optionally omit the list of column names in the INTO clause and

list the values in the appropriate order, but it is good style to be explicit about

column names.

 We can delete tuples using the DELETE command. We can delete all

students tuples with name equal to smith using the command:

 DELETE

 FROM students S

 WHERE S.name = ‘smith’

 We can modify the column values in an existing row using the UPDATE

command. For example, we can increment the age and decrement the gpa of the

student with sid 53688:

 UPDATE students S

 SET S.age = S.age + 1, S.gpa = S.gpa - 1

 WHERE S.sid = 53688

 The WHERE clause is applied first and determines which rows are to be

modified. The SET clause then determines how these rows are to be modified.

To illustrate these points further, consider the following variation of the

previous query:

 UPDATE students S

 SET S.gpa = S.gpa = 0.1

 WHER S.gpa >= 3.3

 If this query is applied on the instance S! of students shown in the previous

figure, we obtain the instance shown in the following figure.

 24

 Fig 3.3 Students instance S1 after Update

3.2 Integrity Constraints over Relations

 A database is only as good as the information stored in it, and a DBMS

must therefore help prevent the entry of incorrect information. An integrity

constraint(IC) is a condition specified on a database schema and restricts the

data can be stored in as instance of the database. If a database instance satisfies

all the integrity constraints specified on the database schema, it is a legal

instance. A DBMS enforces integrity constraints, in that it permits only legal

instances to be stored in the database.

 Integrity constraints are specified and enforced at different times:

1. When the DBA or end user defines a database schema, he or she

specifies the ICs that must hold on any instance of this database.

2. When a database application is run, the DBMS checks for violations

and disallows changes to the data that violate the specified ICs. It is

important to specify exactly when integrity constraints are checked

relative to the statement that causes the change in the data and the

transaction that it is part of. In this chapter different types of

constraints.

Key Constraints

 Consider the students relation and the constraint that no two students

have the same student id. This IC is an example of key constraint. A key

constraint is a statement that a certain minimal subset of the fields of a

relation is a unique identifier for a tuple. A set of fields that uniquely

identifies a tuple according to a key constraint is called a candidate key for

the relation; we often abbreviate this to just key. In this case of the students

relation, the sid field is a candidate key.

There are two parts of candidate key definition:

1. The distinct tuples in a legal instance cannot have identical values in all

the fields of a key.

2. No subset of the set of fields in a key is a unique identifier for a tuple.

 The first part of the definition means that, in any legal instance, the

values in the key fields uniquely identify a tuple in the instance. When

Sid Name Login Age Gpa

50000 Dave dave@cs 19 3.2

53666 Jones jones@cs 18 3.3

53688 Smith smith@ee 18 3.2

53650 Smith smith@math 19 3.7

53831 Madayan madayan@music 11 1.8

53832 Guldu guldu@music 12 2.0

 25

specifying a key constraint, the DBA or user must be sure that this

constraint will not prevent them from storing a correct set of tuples.

 The second part of the definition means, for example, that the set of

fields{sid, name} is not a key for students, because this properly contains

the key {sid}. The set {sid, name} is an example of a super key, which is a

set of fields that contains a key.

Specifying Key Constraints in SQL

 In SQL, we can declare that a subset of the columns of a table

constitute a key by using the UNIQUE constraint. At most one of these

candidate keys can be declared to be a primary key, using the PRIMARY

KEY constraint.

 Let us revisit our example table definition and specify key information

 CREATE TABLE Students(Sid CHAR(20),

 Name CHAR(30),

 Login CHAR(20),

 Age INTEGER,

 Gpa REAL,

 UNIQUE (name, age),

 CONSTRAINT StudentsKey PRIMARY KEY (sid))

 This definition says that sid is the primary key and the combination of

name and age is also a key. The definition of the primary key also illustrates

how we can name a constraint by preceding it with CONSTRAINT constraint-

name. if the constraint is violated, the constraint name is returned and can be

used to identify the error.

Foreign Key Constraints

Sometimes the information stored in a relation is linked to the

information stored in another relation. If one of the relations is modified, the

other must be checked, and perhaps modified, to keep the data consistent. An

IC involving both relations must be specified if a DBMS is to make such

checks. The most common IC involving two relations is a foreign key

constraint.

Suppose that, in addition to Students, we have a second relation:

Enrolled(studid: string, cid: string, grade: string)

 To ensure that only bonafide students can enroll in courses, any value

that appears in the studid field of an instance of the enrolled relation should

also appear in the sid field of some tuple in the students relation. The studid

field of enrolled is called foreign key and refers to students. The foreign key in

the referencing relation must match the primary key of the referenced relation;

that is, it must have the same number of columns and compatible data types,

although the column names can be different.

 26

 Foreign Key

 Primary Key

Enrolled(Referencing

relation)

Students(Referenced

relation)

Fig 3.4 Referential integrity

This constraint is illustrated in the above figure. As the figure shows,

there may well be some students tuples that are not referenced from enrolled.

However, every studid value that appers in the instance of the enrolled table

appears in the primary key column of a row in the students table.

 If we try to insert the tuple (55555, Art104, A) into E1, the Ic is violated

because there is no tuple in S1with sid 55555; the database system should reject

such an insertion. Similarly, if we delete the tuple (53666, jones, jones@cs, 18,

3.4) from S1, we violate the foreign key constraint because the tuple (53666,

History105, B) in E1 contains studid value 53666, the sid of the deleted

students tuple. The DBMS should disallow the deletion or, perhaps also delete

the enrolled tuple that refers to the deleted students tuple.

Specifying Foreign Key Constraints in SQL

 Let us define enrolled(studid: string, cid: string, grade: string):

 CREATE TABLE enrolled (studid CHAR(20),

 cid CHAR(20),

 grade CHAR(10),

 PRIMARY KEY (studid, cid),

FOREIGN KEY (studid) REFERENCES

Students

cid Grade Studid

Carnatic101 C 53831

Reggae203 B 53832

Topology112 A 53650

History105 B 53666

Sid Name Login Age Gpa

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53650 Smith smith@math 19 3.8

53831 Madayan madayan@music 11 1.8

53832 Guldu guldu@music 12 2.0

 27

The foreign key constraint states that every studid value in enrolled must also

appear in students, that is, studid in enrolled is a foreign key referencing

students. Specifically, every studid value in ecrolled must appear as the value

in the primary key field, sid of students.

General Constraints

 Domain primary key, and foreign key constraints are considered to be a

fundamental part of the relational data model and are given special attention in

most commercial systems. Sometimes, however, it is necessary to specify more

general constraints.

 For example, we may require that student ages be within a certain range

of values; given such an IC specification, the DBMS rejects inserts and updates

that violate the constraint. This is very useful in preventing data entry errors. If

we specify that all students must be at least 16 years old, the instance of

students shown in the figure 3.1 is illegal because two students are underage. If

we disallow the insertion of these two tuples, we have a legal instance,

as shown in the following figure.

 Fig 3.5 An instance S2 of the student relation

Current relational database systems support such general constraints in

the form of table constraints and assertions. Table constraints are associated

with a single table and checked whenever that table is modified. In contrast,

assertions involve several tables and are checked whenever any of these tables

is modified.

3.3 Introduction to Views

 A view is a table rows are not explicitly stored in the database but are

computed as needed from a view definition. Consider the students and enrolled

relations. Suppose we are often interested in finding the names and student

identifiers of students who got a grade of B in some course, together with

course identifier. We can define a view for this purpose. Using SQL notation:

 CREATE VIEW B-students (name, sid, course)

 AS SELECT S.naame, S.id, E.cid

 FROM Students S, Enrolled E

 WHERE S.sid = E.studid AND S.grade = ‘B’

The view B-students has three fields called name, sid, and course with

the same domains as the fields sname and sid in students and cid in enrolled.

Sid Name Login Age Gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53650 Smith smith@math 19 3.8

 28

 Fig 3.6 An instance of the B-students view

Views, Data Independence, Security

 The physical schema for a relational database describes how the

relations in the conceptual schema are stored, in terms of the file organizations

and indexes used. The conceptual schema is the collection of schemas of the

relations stored in the database. While some relations in the conceptual

shchema can also be exposed to applications, that is, be part of the external

schema of the database, additional relations in the external schema can be

defined using the view mechanism. The view mechanism thus provides the

support for logical data independence in the relational model. That is, it can be

used to define relations in the external schema that mask changes in the

conceptual schema of the database from applications.

 Views are also valuable in the context of security: we can define

views that give a group of users access to just the information they are allowed

to see.

Updates on Views

 User can be allowed to updates the information in the views is as

follows.

 CREATE VIEW goodstudents (sid, gpa)

 AS sELECT S.sid, S.gpa

 FROM Students S

 WHERE S.gpa > 3.0

 We can implement a command to modify the gpa of a good students

row by modifying the corresponding row in students. We can delete a

goodstudetns row by deleting the corresponding row from students. We can

insert goodstudents row by inserting a row into students, using null values in

columns of students that do not appear in goodstudents. An INSERT or

DELETE may change the underlying base table so that the resulting row is not

in the view.

Need to Restrict View Updates

 While SQL rules on updatable views are more stringent than

necessary, there are some fundamental problems with updates specified on

views and good reason to limit the class of views that can be updated.consider

the students relation and a new relation called clubs:

 Clubs(cname: string, jyear: date, mname: string)

 A tuple in clubs denotes that the student called mnme has been a

member of the club cnamesince the date jyear. Suppose that we are often

name sid course

Jones 53666 History105

Guldu 53832 Reggae203

 29

interested in finding the names and logins of students with a gpa greater than 3

who belong to at least one club, along with the club name and the date they

joined the club. We can define a view for this purpose:

 CREATE VIEW activestudents (name, login, club, since)

 AS SELECT S.sname, S.login, C.cname, C.jyear

 FROM S.Sname = C.mname AND S.gpa > 3

 Consider the instances of students and clubs shown in the following

figures 3.7 and 3.8. when evaluated using the instances C and S3,

activestudents contains the rows ahown in figure 3.9.

 Fig 3.7 An instance C of Clubs

 Fig 3.8 An instance S3 of Students

 Fig 3.9 Instance of Activestudents

3.4 Destroying / Altering Tables and Views

 If we decide that we no longer need a base table and wan to destroy it,

we can use the DROP TABLE command. For example, DROP TABLE

students destroys the students table unless some view or integrity constraint

refers to students; if so, the command fails. If the keyword RESTRICT is

replaced by CASCADE, students is dropped and any referencing views or

cname jyear mname

Sailing 1996 Dave

Hiking 1997 Smith

Rowing 1998 Smith

Sid Name Login Age Gpa

50000 Dave dave@cs 19 3.2

53666 Jones jones@cs 18 3.3

53688 Smith smith@ee 18 3.2

53650 Smith smith@math 19 3.7

Name Login club since

Dave dave@cs Sailing 1996

Smith smith@ee Hiking 1997

Smith smith@ee Rowing 1998

Smith smith@math Hiking 1997

Smith smith@math Rowing 1998

 30

integrity constraints are dropped as well; one of these two keywords must

always be specified. A view can be dropped using the DROP VIEW command,

which is just like DROP TABLE.

 ALTER TABLE modifies the structure of an exixting table. To add a

column called maiden-name to students, for example, we would use the

following command:

 ALTER TABLE students

 ADD COLUMN maiden-name CHAR(10)

 The definition of students is modified to add this column, and all

existing rows are padded with null values in this column. ALTER TABLE can

also be used to delete columns and add or drop integrity constraints on a table:

we do not discuss these aspects of the command beyond remarking that

dropping columns is treated very similarly to dropping tables or views.

Self-Assesment Questions – III

1. A relation consists of a _____________and ________________.

2. Primary Key is used to _____________________________.

3. Unique key is used to check _____________________________.

4. INSERT is used to _____________________________.

5. Referential integrity can be implemented through

a. Primary Key

b. Unique

c. Foreign Key

6. Table can be create by using the query

a. Create table

b. Alter table

c. Drop table

Sample questions

7. Write notes about integrity constraints.

8. Write down the querying relational data.

9. Explain Foreign key constraints?

10. Explain the concept of view?

Answers for Self-Assesment Questions – III

1. Relation Schema, Relation instance

2. Identify the individual record

3. Both Primary Key and Not Null

4. Insert the tuples into the relation

5. c– Foreign Key

6. a – Create table

 31

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 32

4. Relational Algebra and Calculus

 Query languages are specialized languages for asking questions, or

queries that involve the data in a database. The inputs and outputs of a query

are relations. A query is evaluated using instances of each input relation and it

produces an instance of the output relation.

 In defining relational algebra and calculus, the alternative of referring

to fields by position is more convenient than referring to fields by name:

Queries often involve the computation of intermediate results, which are

themselves relation instances; and if we use field names to refer to fields, the

definition of query language constructs must specify the names of fields for all

intermediate relation instances. This can be tedious and is really a secondary

issue, because we can refer to fields by position anyway. On the other hand,

field names make queries more readable.

 Due to these considerations, we use the positional notation to formally

define relational algebra and calculus. We also introduce simple conventions

that allow intermediate relations to inherit fiels names, for convenience.

 We present a number of sample queries using the following schema:

 Sailors (sid: integer, sname: string, rating: integer, age: real)

 Boats (bid: integer, bname: string, color: string)

 Reserves(sid: integer, bid: integer, day: date)

 In several examples illustrating the relational algebra operators,

we use the instances S1 and S2 (of sailors) and R1 (of Reserves) shown in the

following figures 4.1, 4.2, and 4.3 respectively.

 Fig 4.1 Instance S1 of sailors

Fig 4.2 Instance S2 of Sailors

Sid Sname Rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

58 Rusty 10 35.0

Sid Sname Rating age

28 Yuppy 9 35.0

31 Lubber 8 55.5

44 Guppy 5 55.5

58 Rusty 10 35.0

 33

Sid Bid day

22 101 10/10/96

58 103 11/12/96

Fig 4.3 instance of R1 of Reserves

a. Relational Algebra

 Relational algebra is one of the two formal query languages

associated with the relational model. Queries in algebra are composed using

a collection of operators. A fundamental property is that every operator in

the algebra accepts relation instances as arguments and returns a relation

instance as the result. This property makes it easy to compose operators to

form a complex query – a relational algebra expression is recursively

defined to be a relation, a unary algebra operator applied to a single

expression, or a binary algebra operator applied to two expressions. We

describe the basic operators of the algebra (selection, projection, union,

cross-product, and difference), as well as some additional operators.

1. Selections and Projection

 Relational Algebra includes operators to select rows from a relation

(σ) and project columns (∏. These operations allow us to manipulate data

in a single relation. Consider the instance of the sailors relation shown in

the fog 4.2 denoted as S2. we can retrieve rows corresponding to expert

sailors

by using the σ operator. The expression

 σrating>8(S2)

evaluates to the relation shoen in the fig 4.4. the subscript rating>8 specifies

the relation criterion to be applied while retrieving tuples.

 Fig. 4.4 σrating>8(S2) Fig.4.5∏sname,rating(S2)

 The selection operator σ specifies the tuples to retain through a selection

condition. In general, the selection condition is a Boolean combination (i.e., an

expression using the logical connectives ^ and v) of terms that have the form

attribute op constant or attribute1 op attribute2, where op is one of the

comparison operators <,<=,=,≠,>=, or >. The reference to an attribute can be by

Sid Sname Rating age

28 Yuppy 9 35.0

58 Rusty 10 35.0

Sname Rating

Yuppy 9

Lubber 8

guppy 5

Rusty 10

 34

position (of the form .i or i) or by name. the schema of the result of a selection

is the schema of the input relation instance.

 The projection operator ∏ allows us to extract columns from a relation; for

example, we can find out all sailor names and ratings by using ∏. The

expression

 ∏sname,rating(S2)

 evaluates to the relation shown in fig 4.5. the subscript sname, rating

specifies the fields to be retained; the other fields are projected out. The schema

of the result of a projection is determined by the fields that are projected in the

obvious way. Suppose that we wanted to find out only the ages of sailors. The

expression

 ∏ age(S2)

 evaluates to the relation shown in figure 4.6. the important point to note is

that, although three sailors are aged 35, a single tuple with age=35.0 appears in

the result of the projection. This follows from the definition of a relation as a

set of tuples. In practices, real systems often omit the expensive stop of

eliminating duplicate tuples, leading to relations that are multisites.

 Since the result of a relational algebra expression is always a relation, we

can substitute an expression wherever a relation is expected. Fro example, we

can compute the names and ratings of highly rated sailors by combaining two

of the proceeding queries. The expression

 ∏sname,rating(σrating>8(S2)

 produces the result shown in fig. 4.7. it is obtained by applying the

selection to S2 and then applying the projection

 Fig 4.6. ∏ age(S2) Fig. 4.7∏sname,rating(σrating>8(S2)

Set Operations

 The following standard operations on sets are also available in relational

algebra: union (u), intersection (n), set difference (-), and cross-product (x).

 Union: RuS returns a relation instance containing all tuples that occur

in either relation instance R or relation instance S (or both). The

Relations R and S must be union-compatible, and the schema of the

result is defined to be identical to the schema of R.

 Two relation instances are said to be union-compatible if the

following conditions hold:

o they have the same number of the fields and

o corresponding fields, taken in order from left to right, have the

same domains.

Sname Rating

Yuppy 9

Rusty 10

Age

35.0

55.0

 35

 Intersection: RnS returns a relation instance containing all tuples that

occur in both relations R and S. The relations R and S must be union-

compatible, and the schema of the result is defined to be identical to the

schema of R.

 Set-diffrence: R-S returns a relation instance containing all tuples that

occur in the relation R but not in S. The relations R and S must be

union-compatible, and the schema of the result is defined to be identical

to the schema of R.

 Cross-product: RxS returns a relation instance whose schema contains

all the fields of R (in the same order as they appear in R) followed by

all the fields of S (in the same order as they appear in S). the result of

RxS contains one tuple (r, s) (the concatenation of tuples in r and s) for

each pair of tuples r r, s S. the cross-product in operation is sometimes

called Cartesian-product.

 We use the convention that the fields of RxS inherit names from the

corresponding fields of R and S. it is possible for both R and S to contain one

or more fields having the same name; this situation creates a naming conflict.

The corresponding fields in RxS solely by position.

 In the preceding definitions, note that each operator can be applied to

relation instances that are computed using a relational algebra expression.

 We now illustrate these definitions through several examples. The union

of S1 and S2 is shown in fig. 4.8. fields are listed in order; field names are also

inherited from S1. S2 has the same field names, of course, since it is also an

instance of sailors. In general, fields of S2 may have different names; recall that

we require only domains to match. Note that the result is a set of tuples. Tuples

that appear in both S1 and S2 appear only once in S1uS2. also, s!uS2 is not a

valid operation because the two relations are not union-compatible. The

intersection of S1 and S2 is shown in Fig.4.9, and the set-difference S1-S2 is

shown in Fig. 4.10.

Fig. 4.8 S1 U S2

Sid Sname Rating age

22 Dustin 7 45.0

28 Yuppy 9 35.0

31 Lubber 8 55.5

44 Guppy 5 55.5

58 Rusty 10 35.0

 36

Fig. 4.9 S1 n S2

 Fig. 4.10 S1 - S2

Fig. 4.11 S1 X S2

 The result of the cross-product S1xR1 is shown in fig.4.11. because R1

and S1 both have a field named sid, by our convention on field names, the

corresponding two fields in S1xR1 are unnamed, and referred to solely by the

position in which they appear in Fig 4.11. The fields in S1xR1 have the same

domains as the corresponding fields in R1 and S1. In figure 4.11, sid is listed in

parentheses to emphasize that it is not an inherited field name; only the

corresponding domain is inherited.

Renaming

 A renaming operator ρ for this purpose. The expression takes an arbitary

relational algebra expression E and returns an instance of a relation called . R

contains the same tuples as the result of E and has the same schema as E, but

some fields are renamed. The field names in relation R are the same as in E,

except for fields renamed in the renaming list F, which is a list of terms having

the form old name -> new name or position -> new name. For ρ to be well

defined, references to fields (in the form of old names or positions in the

renaming list) may be unambiguous and no two fields in the result may have

the same name. Sometimes we want to only rename fields in the result may

have the relation; we therefore treat both R and F as optional in the use of ρ.

(Of course, it meaningless to omit both.)

Sid Sname Rating age

31 Lubber 8 55.5

58 Rusty 10 35.0

Sid Sname Rating age

22 Dustin 7 45.0

Sid Sname Rating age Sid Bid Day

22 Dustin 7 45.0 22 101 10/10/96

22 Dustin 7 45.0 58 103 11/12/96

31 Lubber 8 55.5 22 101 10/10/96

31 Lubber 8 55.5 58 103 11/12/96

58 Rusty 10 35.0 22 101 10/10/96

58 Rusty 10 35.0 58 103 11/12/96

 37

 For example, the expression ρ(C(1-> sid1, 5->sid2), S1xR1) returns a

relation that contains the tuples shown in fig. 4.11 and has the following

schema: C(sid: integer, sname: string, rating: integer, age: real, sid2:integer,

bid: integer, day:dates).

Joins

 The join operations one of the most useful operations in related algebra and

the most commonly used way to combine information from two or more

relations. Although a join can be defined as a cross-product followed by

selections and projections, joins arise much more frequently in practice than

plain cross-products.

Condition Joins

 The most general version of the join operation accepts a join condition c

and a pair of relation instances as arguments and returns a relation instance.

The join condition is identical to a selection condition in form. The operation is

defined as follows:

 R S = σc(RxS)

 This is defined to be a cross-product followed by a selection. Note that

the condition c can refer to attributes of both R and S. The reference to an

attribute of a relation, say R, can be by position or by name.

 An example, the result of S1 R1 is shown in fig.4.12. because sid

appears in both S1 and R1. The corresponding fields in the result of the cross-

product S1xR1 are unnamed. Domains are inherited from the corresponding

fields of S1 and R1.

Equijoin

 A common special case of the join operation R S is when the join

condition consists solely of equalities of the form R.name1=S.name2,that is,

equalities between two fields in R and S. In this case, obviously, there is some

redundancy in retaining both attributes in the result. For join conditions that

contain only such equalities, the join operation is refined by doing an additional

projection in which S.name2 is dropped. The join operation with this

refinement is called equijoin.

 The schema of the result of an equijoin contains the fields of R followed

by the fields of S that do not appear in the join conditions. If this set of fields in

the result relation includes two fields that inherit the same name from R and S,

they are unnamed in the result relation.

We illustrate S1 R.sid=S.sid R1 in the following fig. 4.13. Note that only one

field called sid appears in the result.

Fig. 4.12 S1 X S1.sid<R1.sid R1

Sid Sname Rating age Sid Bid Day

22 Dustin 7 45.0 58 103 11/12/96

31 Lubber 8 55.5 58 103 11/12/96

 38

Fig. 4.13 S1 X R.sid=S.sid R1

Natural Join

 A further special case of the join operation R S is an equijoin in which

equalities are specified on all fields having the same name in R and S. In this

case, we can simply omit the join condition; the default is that the join

condition is a collection of equalities on all common fields. We call this special

case a natural join, and it has the nice property that the result is guaranteed not

to have two fields with the same name.

 The equijoin expression S1 R.sid=S.Sid R1 actually a natural join and

can simply be denoted as S! R1, since the only common field as sid. If the two

relations have attributes in common, S! R1 is simply the cross-product.

Division

 The division operator is useful for expressing certain kinds of example,

“Find the names of sailors who have reserved all boats.” Understanding how to

use the basic operators of the algebra to define division is a useful exercise,

however, the division operator does not have the same importance as the other

operators-it is not needed as often, a database systems do not try to exploit the

semantics of division by implementing it as a distinct operator.

 Consider two relation instances A and B in which A has two fields x and

y and B has just one field y, with the same domain as in A. we define the

division operation A/B as the set of all x values such that for every y value in

B, there is a tuple (x,y) in A.

 Another way to understand division is as follows. For each x value in A,

consider the set of y values that appear in tuples A with that x value. If this set

contains B, the x value is in the result of A/B.

 Division is illustrated in figure 4.14. It helps to think of A as a relation

listing the parts supplied by suppliers and of the B relations as listing parts.

A/Bi computes suppliers who supply all parts listed in relation instance Bi.

Sid sname rating Age bid day

22 Dustin 7 45.0 101 10/10/96

58 Rusty 10 35.0 103 11/12/96

 39

A

 B1

 A/B1

 B2

 A/B2

 B3

 A/B3

Fig.4.14. Division operation Examples

 To understand the division operation in full generality, we have to

consuider the case when both x and y are replaced by a set of attributes. The

generalization is straight forward and left as an exercise for the reader.

4.2 Relational Calculus

 Relational calculus is an alternative to relational algebra. In contrast to

the algebra, which is procedural, the calculus is nonprocedural, or declarative,

in that it allows us to describe the set of answers without being explicit about

how they should be computed. Relational calculus has had a big influence on

the design of commercial query language such as SQL and, especially, Query-

by-Example (QBE).

 The variant of the calculus we present in detail is called the tuple

relational calculus (TRC). Variables in TRC take on tuples as values. In

another variant, called the domain relational calculus (DRC), the variables

Sno pno

s1 p1

s1 p2

s1 p3

s1 p4

s2 p1

s2 p2

s3 p2

s4 p2

s4 p4

pno

p2

sno

 S1

S2

S3

S4

pno

p2

p4

sno

S1

S4

pno

p1

P2

p4

sno

s1

 40

range over field values. TRC has had more of an influence on SQL, while DRC

has strongly influenced QBE.

Tuple Relational Calculus

 A tuple variable is a variable that takes on tuples of a particular

relational relation schema as values. That is, every value assigned to a given

tuple variable has the same number and type of fields. A tuple relational

calculus query has the form { T | p(T) }, where T is a tuple variable and p(T)

denotes a fomula that describes T; we will shortly define formulas and queries

rigorously. The result of this query is the set of all tuples t for which the

formula p(T) evaluates to true with T=t. The language for writing for writing

formulas p(T) is thus at the heart of TRC and essentially a simple subset of

first-order logic. As a simple example, consider the following query.

Find all sailors with a rating above 7.

 { S | S Є sailors ^ S./rating > 7 }

when this query is evaluated on an instance of the sailors relation, the tuple

variable S is instantiated successively with each tuple, and the test S.rating>7 is

applied. The answer contains those instances of S that pass this test. On

instance S3 of sailors, the answer contains sailors tuples with sid 31,31,58,71,

and 74.

Syntax of TRC Queries

WE now define these concepts formally, beginning with the notion of a

formula. Let Rel be a relation name, R and S be tuple variables, a be an

attribute of R, and b be an attribute of S. Let op denote an operator in the set

{<,>,=,≠,≤,≥}. An atomic formula is one of the following:

 RЄ Rel

 R.a op S.b

 R.a op constant, or constant op R.a

A formula is recursively defined to be one of the following, where p and q are

themselves formulas and p® denotes a formula in which the variable R

 Any atomic formula

 P, p^q, pvq, or pq

 R(p(R)), where R is a tuple variable

 R(p(R)), where R is a tuple variable

 In the last two clauses, the quantifiers and are said to bind variable R.

A variable is said to be free in a formula or subformula if the formula does not

contain an occurrence of a quantifier that binds it.

A TRC query is defined to be expression of the form {T|p(T)}, where T is the

only free variable in the formula p.

Semantics of Queries

 TRC query {T|p(T)}, as denoted earlier, is the set of all tuples t for

which the formula p(T) evaluates to true with variable T assigned the tuple

 41

value t. to complete this definition, we must state which assignments of tuple

values to the free variables in a formula make the formula evaluate to free.

A query is evaluated on a given instance of the database. Let each free variable

in a formula F be bound to a tuple value. For the given assignment of tuples to

variables, with respect to the given database instance, F evaluates to true if one

of the following jolds:

 F is an atomic formula RЄ Rel, and R is assigned a tuple in the instance

of relation Rel.

 F is a comparision R.a op S.b, R.a op constant, or constant op R.a, and

the tuples assigned to R and S have field values R.a and S.b that make

the comparison true.

 F is the form p and q is not true, or of the form p^q, and both p and q

are true, or if the form pvq and one of them is true, or of the form pq

and q is true whenever p is true.

 Fis the form R(p(R)), and there is some assignment of tuples to the free

variables in p(R), including the variable R, that makes the formula p®

true.

 F is the form R(p(R)), and there is some assignment of tuples to the free

variables in p(R) that makes the formula p(R) true no mater what tuple

is assigned to R.

Domain Relational Calculus

A domain variable is a variable that ranges over the values in the

domain of some attribute. A DRC query has the form { <x1,x2,…xn> ¦

p(<x1,x2,….xn>) }, where each xi is either a domain variable or a constant and

p(<x1,x2,….xn>) denotes a DRC formula whose only free variable are the

variables among <x1,x2,….xn> for which the formula evaluates to true.

 A DRC formula is defined in a manner very similar to the definition of

a TRC formula. The main difference is that the variables are now domain

variables. Let op denote an operator in the set {<,>,=,≠,≤,≥} and let X and Y be

domain variables. An atomic formula in DRC is one of the following:

 <x1,x2,….xn> Є Rel, where Rel is a relation with n attributes; each xi

1<= I <= n is either a variable or a constant.

 X op Y

 X op constant or constant op X

A formula is recursively defined to be one of the following, where p and q are

themselves formulas and p(X) denotes a formula in which the variable X

appears:

 Any atomic formula

 ¬P, p n q, pVq, or p q

 E X(P(X)), where X is a domain variable

 V X(P(X)), where X is a domain variable

 42

The reader is invited to compare this definition with the definition of

TRC formulas and see how closely these two definitions correspond. We will

not define the semantics of DRC formulas formally.

Set-theoretic formulation

Basic notions in the relational model are relation names and attribute

names. We will represent these as strings such as "Person" and "name" and we

will usually use the variables and a,b,c to range over them. Another

basic notion is the set of atomic values that contains values such as numbers

and strings.

Our first definition concerns the notion of tuple, which formalizes the

notion of row or record in a table:

Tuple

A tuple is a partial function from attribute names to atomic values.

Header

A header is a finite set of attribute names.

Projection

The projection of a tuple t on a finite set of attributes A is

.

The next definition defines relation which formalizes the contents of a

table as it is defined in the relational model.

Relation

A relation is a tuple (H,B) with H, the header, and B, the body, a set of

tuples that all have the domain H.

Such a relation closely corresponds to what is usually called the extension of a

predicate in first-order logic except that here we identify the places in the

predicate with attribute names. Usually in the relational model a database

schema is said to consist of a set of relation names, the headers that are

associated with these names and the constraints that should hold for every

instance of the database schema.

Relation universe

A relation universe U over a header H is a non-empty set of relations

with header H.

Relation schema

A relation schema (H,C) consists of a header H and a predicate C(R)

that is defined for all relations R with header H. A relation satisfies a

relation schema (H,C) if it has header H and satisfies C.

[edit] Key constraints and functional dependencies

One of the simplest and most important types of relation constraints is the key

constraint. It tells us that in every instance of a certain relational schema the

tuples can be identified by their values for certain attributes.

http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Partial_function
http://en.wikipedia.org/wiki/Finite_set
http://en.wikipedia.org/wiki/Set
http://en.wikipedia.org/wiki/Relation
http://en.wikipedia.org/wiki/First-order_logic
http://en.wikipedia.org/wiki/Logical_schema
http://en.wikipedia.org/wiki/Logical_schema
http://en.wikipedia.org/wiki/Constraint_%28database%29
http://en.wikipedia.org/w/index.php?title=Relational_model&action=edit§ion=13

 43

Superkey

A superkey is written as a finite set of attribute names.

A superkey K holds in a relation (H,B) if:

 and

 there exist no two distinct tuples such that t1[K] =

t2[K].

A superkey holds in a relation universe U if it holds in all relations in U.

Theorem: A superkey K holds in a relation universe U over H if and

only if and holds in U.

Candidate key

A superkey K holds as a candidate key for a relation universe U if it

holds as a superkey for U and there is no proper subset of K that also

holds as a superkey for U.

Functional dependency

A functional dependency (FD for short) is written as for X,Y

finite sets of attribute names.

A functional dependency holds in a relation (H,B) if:

 and

 tuples ,

A functional dependency holds in a relation universe U if it

holds in all relations in U.

Trivial functional dependency

A functional dependency is trivial under a header H if it holds in all

relation universes over H.

Theorem: An FD is trivial under a header H if and only if

.

Closure

Armstrong's axioms: The closure of a set of FDs S under a header H,

written as S + , is the smallest superset of S such that:

 (reflexivity)

(transitivity) and

(augmentation)

Theorem: Armstrong's axioms are sound and complete; given a header

H and a set S of FDs that only contain subsets of H, if

and only if holds in all relation universes over H in which all

FDs in S hold.

http://en.wikipedia.org/wiki/Candidate_key
http://en.wikipedia.org/wiki/Proper_subset
http://en.wikipedia.org/wiki/Functional_dependency
http://en.wikipedia.org/wiki/Armstrong%27s_axioms

 44

Completion

The completion of a finite set of attributes X under a finite set of FDs S,

written as X + , is the smallest superset of X such that:

The completion of an attribute set can be used to compute if a certain

dependency is in the closure of a set of FDs.

Theorem: Given a set S of FDs, if and only if

.

Irreducible cover

An irreducible cover of a set S of FDs is a set T of FDs such that:

 S + = T +

 there exists no such that S + = U +

 is a singleton set and

 .

[edit] Algorithm to derive candidate keys from functional dependencies

 INPUT: a set S of FDs that contain only subsets of a header H

 OUTPUT: the set C of superkeys that hold as candidate keys in

 all relation universes over H in which all FDs in S hold

 begin

 C := ∅; // found candidate keys

 Q := { H }; // superkeys that contain candidate keys

 while Q <> ∅ do

 let K be some element from Q;

 Q := Q - { K };

 minimal := true;

 for each X->Y in S do

 K' := (K - Y) ∪ X; // derive new superkey

 if K' ⊂ K then

 minimal := false;

 Q := Q ∪ { K' };

 end if

 end for
 if minimal and there is not a subset of K in C then

 remove all supersets of K from C;

 C := C ∪ { K };

 end if

 end while

 end

http://en.wikipedia.org/w/index.php?title=Relational_model&action=edit§ion=14

 45

Self-Assesment Questions – IV

1. Union operation will _____________________________.

2. combine two or more elations is known as ___________________.

3. Expansion of TRC is _____________________________.

4. Expansion of DRC is _____________________________.

5. Relational Algebra is a

a) Programming Language

b) Communication Language

c) Query Language

6. Symbol of cross product is

a) U

b) n

c) x

Sample questions

7. Write notes about Relational Algebra.

8. Write down the Tuple Relational Calculus.

9. Explain different types of joins?

10. Explain Domain Relational Calculus?

Answers for Self-Assesment Questions – IV

1. combine two sets

2. Join

3. Tuple Relational Calculus

4. Domain Relational Calculus

5. c – query Language

6. c – x

 46

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 47

5. SQL: Queries, Constraints, Triggers

 Structured Query Language (SQL) is the most widely used

commercial relational database language. It was originally developed at

IBM in the SEQUEL-XRM and system-R projects (1974-1977). Other

vendors introduced DBMS products based on SQL, and it is a de facto

standard. SQL continues to evolve in response to changing needs in the

database area. The current ANSI / ISO standard for SQL id called

SQL:1999.

SQL language has several aspects to it.

 The Data Definition Language (DDL) : This subset of SQL supports

the creation, deletion, and modification of definitions for tables and

views. Integrity constraints can be defined on tables, either when the

table is created or later.

 The Data Manipulation Language (DML) : This subset of SQL

allows users to pose queries and to insert, delete, and modify rows.

 Triggers and Advanced Integrity Constraints: the new SQL:1999

standard includes support for triggers, which are actions executed

by the DBMS whenever changes to the database meet conditions

specified in the trigger.

 Embedded and Dynamic SQL : Embedded SQL features allow SQL

code to be called from a host language such as C or COBOL.

Dyanmic SQL allow a query to be constructedat run-time.

 Client-Server Execution and Remote Database Access: These

commands control how a client application can connect to an SQL

database server, or access data from a database over a network.

 Transaction Control Language: Various commands allow a user to

explicitly control aspects of how a transaction is to be executed.

 Security: SQL provides mechanisms to control users access to data

objects such as tables and views.

 Advanced features : The SQL:1999 standard includes object-

oriented features, recursive queries, decision support queries, and

also addresses areas such as data mining, spatial data, and text and

XML, data management.

 Here we will present a number of sample queries using the

following table definition.

Sailors(sid:integer, sname:string, rating:integer, age:real)

Boats(bid:integer, bname:string, color:string)

Reserves(sid:integer, bid:integer, day:date)

 We illustrate queries using the instances S3 of sailors, R2 of

Reserves, and B1 of Boats are reproduced in the following diagrams

5.1, 5.2 and 5.3 respectively.

 48

 Fig 5.1 Instance S3 of sailors

Sid Bid day

22 101 10/10/96

22 102 10/10/98

22 103 10/08/98

22 104 10/07/98

31 102 11/10/98

31 103 11/06/98

31 104 11/12/98

64 101 09/05/98

64 102 09/08/98

74 103 09/08/98

 Fig 5.2 Instance of R12of Reserves

bid name Color

101 Interlake Blue

102 Interlake Red

103 Clipper Green

104 Marine Red

 Fig 5.3 Instance of B1 of Boats

Sid Sname Rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

 49

5.1 The form of a Basic SQL Query

 This section presents the syntax of a simple SQL query and explains its

meaning through a conceptual evaluation strategy. A conceptual evaluation

strategy is a way to evaluate the query that is intended to be easy to understand

rather than efficient. A DBMS would typically execute a query in a different

and more efficient way.

The basic form of an SQL query is as follows:

 SELECT [DISTINCT] select-list

 FROM from-list

 WHERE qualification

 Every query must have a SELECT clause, which specifies columns to be

retained in the result, and a FROM clause, which specifies a cross-product of

tables. The optional WHERE clause specifies selection conditions on the tables

mentioned in the FROM clause

 Such a query intuitively corresponds to a relational algebra expression

involving selections, projections, and cross-products. The close relationship

between SQL and relational algebra is the basis for query optimization in a

relational DBMS.

Let us consider simple examples.

 SELECT DISTINCT S.sname, S.age

 FROM Sailors S

 The answer is a set of rows, each of which is a pair {sname, age}. If two

more sailors have the same name and age, the answer still contains just one pair

with that name and age. This query is equivalent to applying the projection

operator of relational algebra.

 Fig. 5.4 Answer to Q15

Sname age

Dustin 45.0

Brutus 33.0

Lubber 55.5

Andy 25.5

Rusty 35.0

Horatio 35.0

Zorba 16.0

Art 25.5

Bob 63.5

Sname age

 50

Fig. 5.5 Answer to Q15 without DISTINCT

Our next query is equivalent of the selection operator of relational

algebra.

SELECT S.sid, S.sname, S.rating, S.age

FROM Sailors AS S

WHERE S.rating>7

This query uses the optional keyword AS to introduce a range variable.

Incidentally, when we want to retrieve all columns, as in this query, SQL

provides convenient shorthand. We can simply write SELECT *. This notation

is useful for interactive querying, but it is poor style for queries that are

intended to be reused and maintained because the schema of the result is not

clear from the query itself.

As the above example illustrate, the SELECT clause is actually used to

do projection, whereas selections in the relation algebra sense are expressed

using the WHERE clause ! this mismatch between the naming of the selection

and projection operators in relational algebra and the syntax of SQL is an

unfortunate historical accident.

We now consider the syntax of the basic SQL query in more detail.

The from-list in the FROM clause is a list of table names. A table name

can be followed by a range variable; a range variable is particularly useful

when the same table name appears mare than once in the from-list.

The select-list is a list of column names of tables named in the from-list.

Column names can be prefixed by a range variable.

The qualification in the WHERE clause is a Boolean combination (i.e.,

an expression using the logical connections AND, OR and NOT) of conditions

of the form expression op expression, where op is one of the comparison

operators {<,<=,+,>,>=,<>}. An expression is a column name, a constant, or an

expression.

Dustin 45.0

Brutus 33.0

Lubber 55.5

Andy 25.5

Rusty 35.0

Horatio 35.0

Zorba 16.0

Horatio 35.0

Art 25.5

Bob 63.5

 51

The DISTINCT keyword is optional. It indicates that the table

computed as an answer to this query should not contain duplicates, that is, two

copies of the same row. The default is that duplicates are not eliminated.

Here we describe the meaning of the query.

1. Compute the cross product of the tables in the from-list.

2. Delete rows in the cross-product that fail the qualification.

3. Delete all columns that do not appear in the select-list.

4. If DISTINCT is specified, eliminate duplicate rows.

 This straight forward conceptual evaluation strategy makes the rows

that must be present in the answer to the query. However, it is likely to be

quite inefficient.

Q1. Find the names of the sailors who have reserved boat number 103.

It can be expressed in SQL as follows.

SELECT S.sname

FROM Sailors s, Reserves T

WHERE S.sid = R.sid AND R.bid=103

 Let us compute the answer to this query on the instances R3 of

reserves and S4 of Sailors shown in the fig. 5.6 and 5.7, since the

computation on our usual example instances would be unnecessarily

tedious.

 Fig. 5.6 Instance R3 of Reserves Fig. 5.7 Instance S4 of Sailors

 The first step is to construct the cross-product S4 X R3, which is shown

in the fig. 5.8.

Sid Sname Rating age Sid Bid day

22 Dustin 7 45.0 22 101 10/10/96

22 Dustin 7 45.0 58 103 11/12/96

31 Lubber 8 55.5 22 101 10/10/96

31 Lubber 8 55.5 58 103 11/12/96

58 Rusty 10 35.0 22 101 10/10/96

58 Rusty 10 35.0 58 103 11/12/96

 Fig. 5.8 S4 X R3

 The second step is to apply qualification S.sid = R.sid AND R.bid = 103. this

step eliminates all but the last row from the instance shown in figure 5.8. the

third step is to eliminate unwanted columns; only sname appears in the

SELECT clause. The result shown in fig 5.9.

Sid Bid day

22 101 10/10/96

58 103 11/12/96

Sid Sname Rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

58 Rusty 10 35.0

 52

 Fig. 5.9 Answer to query Q1 on R3 and S4.

UNION, INTERSECT, AND EXCEPT

 SQL provides three set- manipulation constructs that extend the basic

query form presented earlier. Since the answer to a query is a multi set of rows,

it is natural to consider the use of operations such as union, intersection, and

difference. SQL supports these operations under the names UNION,

INTERSECT, and EXCEPT. SQL also provides other set operations: IN, op

ANY, op ALL, op EXISTS.

Consider the following examples.

Q2 Find the names of sailors who have reserved a red or green boat.

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid

 AND (B.color = ‘red’ OR B.color = ‘green’)

 This query is easily expressed suing the OR connective in the WHERE

clause. However the following query, which is identical except for the use of

AND rather than ‘OR’ in the English version, turns out to much more difficult:

Q3 Find the names of sailors who have reserved both a red and a green boat.

The query has been written as follows.

SELECT S.sname

FROM Sailors S, Reserves R1, Boats B1, Reserves R2, Boats B2

WHERE S.sid = R1.sid AND R1.bid = B1.bid

 S.sid = R2.sid AND R2.bid = B2.bid

 AND B1.color = ‘red’ AND B2.color = “green’.

 The previous query is difficult to understand. The same query can be

rewritten by using UNION.

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

UNION

SELECT S2.sname

FROM Sailors S2, Reserves R2, Boats B2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

 The following query can returns the sailors who can reserve both green and

a red boat.

SELECT S.sname

Sname

Rusty

 53

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

INTERSECT

SELECT S2.sname

FROM Sailors S2, Reserves R2, Boats B2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

Q4 Find the sids of all sailors who have reserved red but not green boats.

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

EXCEPT

SELECT S2.sname

FROM Sailors S2, Reserves R2, Boats B2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

Sailors 22, 64, and 31 have reserved red boats. Sailors 22, 74, and 31 have

reserved green boats. Hence the answer contains just the sid 64.

Q5 Find all sids of sailors who have a ratting of 10 or reserved boat 104.

SELECT S.sid

FROM Sailors S

WHERE S.rating = 10

UNION

SELECT R.sid

FROM Reserves R

WHERE R.bid = 104

The first part of union returns the sids 58 and 71. the second part returns 22 and

31. the answer is , therefore, the set of sids 22, 31, 58, and 71.

Similarly, we can use UNION ALL, INTERSECT ALL and EXCEPT ALL.

NESTED QUERIES

 One of the most powerful features of SQL is nested queries. A nested query

is a query that has another query embedded within it. The embedded query is

called a sub query. The embedded query can of course be a nested query itself;

thus queries that have very deeply nested structures are possible. A sub query

typically appears within the WHER clause of a query. Sub queries can

sometimes appear in the FROM clause or the HAVING clause.

 54

Introduction to Nested Queries

 As an example, let us rewrite the following query, which we discussed

earlier, using a nested sub query:

Q1 Find the names of sailors who have reserved boat 103.

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid

 FROM Reserves R

 WHERE R.bid = 103)

 The nested subquery computes the set of sids for sailors who have

reserved boat 103, and the top-level query retrieves the names of sailors whose

sid is in this set. The IN operator allows us to test whether a value is in a given

set of elements; an SQL query is used to generate the set to be tested. Note that

it is easy to modify this query to find all sailors who have not reserved boat 103

– we can just replace IN by NOT IN.

An example of multiple nested query is as follows.

Q2 Find the names of sailors who have reserved a red boat.

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid

 FROM Reserves R

 WHERE R.bid IN (SELECT B.bid

 FROM Boats B

 WHERE B.color=’red’)

 The innermost sub query finds the set of bids of red boats. The sub query

one level above finds the set of sids of sailors who have reserved one of these

boats. On instances B1, R1 and S3, this set of sids contains 22,31, and 64. the

top-level query finds the name of sailors whose sid is in this set of sids; we get

Dustin, Lubber and Horatio.

Q3 Find the names of sailors who have not reserved a red boat.

SELECT S.sname

FROM Sailors S

WHERE S.sid NOT IN (SELECT R.sid

 FROM Reserves R

 WHERE R.bid IN (SELECT B.bid

 FROM Boats B

 WHERE B.color=’red’)

 This query computes the names of sailors whose sid is not in the set 22, 31,

and 64.

 55

Correlated Nested Queries

 In the nested queries seen thus far, the inner sub query has been

completely independent of the outer query. In general, the inner subquery could

depend on the row currently being examined in the outer query. Let us rewrite

the following query once more.

Q1 Find tha names of sailors who have reserved boat number 103.

SELECT S.sname

FROM Sailors S

WHERE EXISTS (SELECT *

 FROM Reserved R

 WHERE R.bid = 103

 AND R.sid = S.sid)

 The EXIST operator is another set comparison operator, such as IN. it

allows us to test whether a set is nonempty, an implicit comparison with the

empty set. Thus, for each sailor row S, we test whether the set of Reserves rows

R such that R.bid = 103 AND S.sid = R.sid is nonempty. If so, sailor S has

reserved boat 103, and we rewrite the name. The sub query clearly depends on

the current row S and must be re-evaluated for each row in sailors. The

occurrence of S in the sub query is called a Correlation, and such are called

Correlated Queries.

 As further example, by using NOT EXISTS instead of EXISTS, we can

compute the names of sailors who have not reserved a red boat. Closely related

to EXISTS is the UNIQUE predicate.

5.5 Aggregated Operators

 SQL provide five aggregated operations, which can be applied any

column of a relation.

1. COUNT([DISTINCT] A) : The number of (unique) values in the relation.

2. SUM([DISTINCT] A) : The sum of all (unique) values in the A column.

3. AVG([DISTINCT] A) : The average of all (unique) values in the a column.

4. MAX(A) : The maximum value in the A column.

5. MIN(A) : The minimum value in the A column.

Note that it does not make sense to specify DISTINCT in conluction with MIN

or MAX.

Find average of all sailors.

 SELECT AVG(S.age)

 FROM Sailors s

 On instance S3, the average age is 37.4. Of course, the WHERE clause

can be used to restrict the sailors considered in computing the average age.

 Find the average age of sailors with a rating of 10.

 SELECT AVG(S.age)

 FROM Sailors S WHERE S.rating=10

 56

There are two sailors, and their average age is 25.5. MIN can be used

instead of AVG in the above queries to find the age of the youngest. However,

finding both the name and the age of the oldest sailor is more tricky, as the next

query illustrates.

 Find the name and age of the oldest sailor

 SELECT S.sname, MAX(S.age)

 FROM Sailors S

We can be use nested query to compute the desired answer

 SELECT S.sname, S.age

 FROM Sailors S

 WHERE S.age= (SELECT MAX (S2.age)

 FROM Sailors S1)

 Observe that we have use the result of an aggregate operation in the sub

query as an argument to a comparison operation. The following equivalent

query for the above one is legal in the SQL standard but, unfortunately, is not

supported in many systems.

SELECT S.sname, S.age

 FROM Sailors S

 WHERE (SELECT MAX (S2.age)

 FROM Saiolrs S2) = S.age

We can count the number of sailors using the COUNT operation.

 SELECT COUNT(*)

 FROM Sailors S

Count the number of different Sailors name by using DISTINCE

 SELECT COUNT (DISTINCT S.sname)

 FROM Sailors S

Find the names of sailors who are older than oldest sailor with a rating of 10.

 SELECT S.sname

 FROM Saiolrs S

 WHERE S.age > (SELECT MAX (S2.age)

 FROM Sailors S2

 WHERE S2.rating=10)

 On instance S3, the oldest sailor with rating 10 is sailor 58, whose age

is 35. The names of older sailors are both, Dustin, Horatio, and Lubber. Using

ALL this query could alternativelt be written as follows:

 SELECT S.sname

 FROM Saiolrs S

 WHERE S.age > ALL (SELECT MAX (S2.age)

 57

 FROM Sailors S2

 WHERE S2.rating=10)

GROUP BY and HAVING Clauses

 We want to apply aggregate operations to each of a number for groups

of rows in a relation, where the number of groups depends on the relation

instance.

Find the age of the youngest sailor for each rating level.

 SELCT MIN (S.age)

 FROM Sailors S

 WHERE S.rating = i

 Where i=1,2,…..,10. writing 10 such queries is tedious. To write such a

queries, we need a major extension to the basic SQL query form, namely, the

GROUP BY clause. In fact, the extension also includes an optional HAVING

clause that can be used to specify qualifications over groups.

The general form of an SQL query is

 SELECT [DISTINCT] select-list

 FROM from-list

 WHERE qualification

 GROUP BY grouping-list

 HAVING group-qualification

Set-Comparison Operators

 We have already seen the set of set-comparison operators EXISTS, IN,

and UNIQUE, along with their negated versions. SQL also supports op ANY

and op ALL, where op is one of the arithmetic comparison operators {

<,<=,=,<>,>,>=}.

Q1 Find sailors whose rating is better than some sailor clled Horatio.

SELECT S.sid

FROM Sailor S

WHERE S.rating > ANY (SELECT S2.rating

 FROM Sailors S2

 WHERE S2.sname = “Horation’)

 If there are several sailors called Horatio, this finds all sailors whose

rating is better than that of some sailor called Horatio. On instance S3, this

computes the sids 31,32,58,71, and 74.

Q3 Find sailors whose rating is better than every sailor clled Horatio.

SELECT S.sid

FROM Sailor S

WHERE S.rating > ALL (SELECT S2.rating

 FROM Sailors S2

 WHERE S2.sname = “Horation’)

 58

This query can returns the result as the sids 58 and 71.

Another example by using ALL is as follows.

Q4 Find the sailors with the highest rating.

SELECT S.sid

FROM Sailors S

WHERE S.rating >= ALL (SELECT S2.rating

 FROM Sailors S2)

 The sub query computes the se of all rating values in sailors. The outer

WHER condition is satisfied only when S.rating is greater than or equal to each

of these rating values, that is, when it is the largest rating value. In the instance

S3, the condition is satisfied only for rating 10, and the answer includes the

sides of sailors with this rating i.e., 58 and 71.

Note that IN and NOT IN are equivalent to =ANY and <> ALL respectively.

NULL Values

 Thus far, we have assumed that column in a row are always known. In

practice column values can be unknown. For example, when a sailor, says Dan,

joins a yacht club, ha may not yet have a rating assigned. Since the definition

for the sailors table has a rating column, what row should we insert for Dan?

 SQL provides a special column value called null to use in such

situations. We use mull when the column is either unknown or inapplicable.

Using our sailor table definition, we might enter the row <98, Dan, null, 39> to

represent Dan, the presence of null values complicates many issues, and we

consider the impact of null values on SQL in this section.

Comparison Using Null Values

 Consider a comparison such as rating =8. If this is applied to the row for

Dan, is this condition true or false? Since Dan’s rating is unknown, it is

reasonable to say that this comparison should evaluate to the value unknown. In

fact, this is the case for the comparisons rating > 8 and rating < 8 as well.

Perhaps less obviously, if we compare two null values using <, >, =, and so on,

the result is always unknown. For example, if we have null in two distinct rows

of the sailor relation, any comparison returns unknown.

 SQL also provides a special comparison operator IS NULL to test

whether a column value is null; for example, we can say rating IS NULL,

which should evaluate to true on the row representing Dan. We can also say IS

NOT NULL, which would evaluate to false on the row for Dan.

Logical Connections AND, OR, and NOT

 Now, what about Boolean expressions such as rating = 8 OR age<40

and rating = 8 AND age < 40 ? Considering the row for Dan again. Because,

age < 40, the first expression evaluates to true regardless of the value of rating,

but what about the second? We can only say unknown.

 But this example raises an important point – once we have null values,

we must define the logical operators And, OR and NOT using a three-valued

 59

login in which expressions evaluate to true, false, or unknown. We extend the

usual interpretations of AND, OR, and NOT to cover the case when one of the

arguments is unknown as follows. The expression NOT unknown is defined to

be unknown. OR of two arguments evaluates to true if either argument

evaluates to true, and to unknown if one argument evaluates to false and the

other evaluates to unknown. AND of two argements evaluates to false if either

argument evaluates to false, and to unknown if one argument evaluates to

unknown and the other evaluates to true or unknown.

Impact on SQL Constructs

 Boolean expressions arise in many contexts in SQL, and impact of null

values must be recognized. For example, the qualification in the WHER clause

eliminates rows for which the qualification does not evaluate to true. Therefore,

in the presence of null values, any row that evaluates to false or unknown is

eliminated. Eliminating rows that evaluate to unknown has a subtle but

significant impact on queries, especially nested queries involving EXISTS or

UNIQUE.

 Another issue in the presence of null values is the definition of when

two rows in a relation instance are regarded as duplicates. The SQL definition

is that two rows are duplicates if corresponding columns are either equal, or

both contain null. Contrast this definition with the fact that if we compare two

null values using =, the result is unknown in the context of duplicates, this

comparison is implicitly related as true. As expected, the arithmetic operations

+, -, * , and / all return null if one of their arguments is null. COUNT (*)

handles null values just like other values; that is , they get counted. All the

other aggregate operations (COUNT, SUM, AVG, MIN, MAX and

DISTINCT) simply discard null values.

Outer joins

 Some interesting variance of the join operation that rely on null values,

called outer joins, are supported in SQL. Consider the join of two tables, say

Sailors Reserves. Tuples of Sailors that do not match some row in reserves

according to the join condition c do not appear in the result. In an outer join ,

on the other hand, sailor rows without a matching reserves row appear exactly

once in the result.,with the result columns inherited form reserves assigned null

values.

 In fact, there are several variance of the outer join ideas. In a left outer

join, sailors rows without a matching reserves row appear in the result, but not

vice-versa. In aright outer join, reserves rows without a matching sailors row

appear in the result, but not vice-versa. In a full outer join, both sailors and

reserves rows without a match appear in the result.

 SQL allows the desired type of join to be specified in the FROM clause.

For example, the following query list <sid, bid> pairs corresponding to sailors

and boats. They have reserved:

SELECT S.sid, R.bid

 60

FROM Sailors S NATURAL LEFT OUTER JOIN Reserves R

 The NATURAL keyword specifies that the join condition is equality on

all common attributes, and the WHER clause is not required. On the instances

of sailors and Reserves shown in the fig 5.6., this query computes the result

shown in the fig. 5.10.

Fig. 5.10. Left Outer Join of Sailors1 and Reserves1.

Disallowing null values

 We can disallow null values by specifying Not Null as part of the field

definition; for example, Sname char(20) NOT NULL. In addition, the field in

primary are not allowed to take on null values. Thus, there is an implicit not

null constraint for every field listed in a PRIMARY KEY constraint. On

coverage of null values is far from complete.

Triggers and Active Databases

 A trigger is a procedure that is automatically invoked by the DBMS in

response to specify changes to the database, and is typically specified by the

DBA. A database that has a set of associated triggers is called an active

database. A trigger description contains three parts:

 Event : A change to the database that activates the trigger.

 Condition: A query or test that is run when the trigger is activated.

 Action: A procedure that is executed when the trigger is activated and

its condition is true.

 A trigger can be thought of as a ‘daemon’ that monitors a database, and

is executed when the database is modified in a way that matches the event

specification. An insert, delete or update statement could activate a trigger,

regardless of which user or application invoked the activating statements.

 A condition in a trigger can be true/false statements or a query. A query

is interpreted as true, if the answer set is nonempty and false, if the query has

no answers. If the condition part evaluates to true, the action associated with

the trigger is executed.

 A trigger action can examined the answers to the query in the condition

part of the trigger, refer to old and new values of tuples modified by the

statement activating the trigger, execute new queries, and make changes to the

database.

Example Triggers in SQL

 The example shown in the following fig 5.11, written using Oracle server

syntax for defining triggers, illustrate the basic concepts behind the triggers.

Sid Bid

22 101

31 null

58 103

 61

The trigger called init_count initializes a counter variable before every

execution of an INSERT statement that adds tuples to the student relation. The

trigger called incr_count increments the counter for each inserted tuple that

satisfies the condition age < 15.

CREATE TRIGGER init_count BEFORE INSERT ON Students

 /* Event */

 DECLARE

 Count INTEGER;

 BEGIN

 Count := 0; /*Action*/

 END

CREATE TRIGGER incr_count AFTER INSERT ON Students

 /* Event */

 WHEN (new.age <15) /* Condition */

 FOR EACH ROW

 BEGIN

 Count := count +1; /* Action */

 END

Fig. 5.11 Examples illustrating Triggers.

Self-Assesment Questions – V

1. From clause is used to _______________________.

2. Expansion of DML_______________________.

3. Nested query is_______________________.

4. SUM function is used to_______________________.

5. Null value is

a) Empty

b) 0

c) 1

6. Distinct will

a) Remove the duplicate values

b) Consider the duplicate values

c) Remove the different values

 62

Sample questions

7. Write notes about SQL query.

8. Write down Union and intersection.

9. Explain different aggregate functions?

10. Explain Null values and nested queries?

11.

Answers for Self-Assesment Questions – V

1. specify table name

2. Data Manipulation Lnguage

3. Query within query

4. sum all values in a column

5. a – Empty

6. a – Remove the duplicate values

 63

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 64

6.SCHEMA REFINEMENT AND NORMAL FORMS

6.1Introduction to Schema Refinement

We now present an overview of the problems that schema refinement is

intended to address and a refinement approach based on decompositions.

Redundant storage of information is the root cause of these problems. Although

decomposition can eliminate redundancy.

Problems Caused by Redundancy

Storing the same information redundantly, that is, in more than one

place within a database, can lead to several problems:

 Redundant Storage: Some information is stored repeatedly.

 Update Anomalies: If one copy of such repeated data is updated,

an inconsistency is created unless all copies are similarly

updated.

 Insertion Anomalies: It may not be possible to store certain

information unless some other, unrelated, information is stored

as well.

 Deletion Anomalies: It may not be possible to delete certain

information without losing some other, unrelated, information as

well.

Consider a relation obtained by translating a variant of the Hourly_Emps entity

set.

 Hourly_Emps(ssn, name, rating, hourly_wages, hours_worked)

It leads to possible redundancy in the relation Hourly_Emps, as illustrated in

the following fig.

Ssn Name Lot Rating Hourly_

wages

Hours_

worked

123-22-3666 Attishoo 48 8 10 40

231-31-5368 smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

 Fig. 6.1 An instance of the Hourly_Emps Relation

If the same value appears in the rating column of two tuples, the IC tells us

that the same value must appear in the hourly_wages column as well. This

redundancy has same negative consequences as before:

 Redundant Storage: The rating value 8 corresponds to the hourly wage

10, and this association is repeated three times.

 Update Anomalies: the hourly-wages in the first tuple could be updated

without making a similar in the second tuple.

 65

 Insertion Anomalies: We cannot insert a tuple for an employee unless

we know the hourly wage for the employee’s rating value.

 Deletion Anomalies: If we delete all tuples with a given rating value,

we lose the association between that rating and its hourly_wage value.

Decomposition

A decomposition of a relation schema R consists of replacing the

relation schema by two (or more) relation schemas that each contain a

subset of the attributes of R and together include all attributes in R.

Intuitively, we want to store the information in any given instance of R by

storing projections of the instance.

We can decompose Hourly_Emps into two relations:

Hourly_Emps2(snn, name, lot, rating, hours_worked)

Wages(rating, hourly_wages)

The instance of these relations corresponding to the instance of

Hourly_Emps relation in the above fig. is shown in the following fig.

Ssn Name Lot Rating Hourly_

wages

Hours_

worked

123-22-3666 Attishoo 48 8 10 40

231-31-5368 smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

Rating Hourly_

wages

8 10

5 7

 Fig.6.2. Instacne of Hourly_Emps2 and Wage

Note that we easily record the hourly wage for any rating simply by

adding a tuple to wages, even if no employee with that rating appears in the

current instance of Hourly_Emps.

Problems Related to Decomposition

Two important questions must be asked repeatedly:

1. Do we need to decompose a relation?

2. What problem does a given decomposition cause?

To help with the first question, several normal forms have been proposed for

relations. If a relation schema is in one of these normal forms, we know that

certain kinds of problems cannot arise. Considering the normal form of a given

 66

relation schema can help us to decide whether or not to decompose it further. If

we decide that a relation schema must be decomposed further, we must choose

a particular decomposition.

With respect to the second question, two properties of decompositions

are of particular interest. The lossless-join property enables us to recover any

instances of the decomposed relation from corresponding instances of the

smaller relations. The dependency-preservation property enables us to enforce

any constraint on the original relation by simply enforcing some constraints on

each of the smaller relations. That is, we need not perform joins of the smaller

relations to check whether a constraint on the original is violated.

6.2 Functional Dependencies

A functional dependency (FD) is a kind of IC that generalizes the

concept of a key. Let R be a relation schema and let X and Y be nonempty sets

of attributes in R. we say that an instance R satisfies the FD X Y if the

following holds for every pair of tuples t1 and t2 in r.

 If t1.X = t2.X, then t1.Y = t2.Y

We use the notation t1.X to refer the projection of tuple t1, onto the

attributes in X, in a natural extension of our TRC notation t.a for referring to

attributes of tuple t. an FD X Y essentially says that if two tuples agree on

the values in attributes X, they must also on the values in attributes Y.

The following fig. illustrates the meaning of the FD AB C by

showing instance that satisfies this dependency. The first two tuples show that

an FD is not the same as a key constraint; although the FD is not violated, AB

is clearly not a key for the relation. The third and fourth tuples illustrate that if

two tuples differ in either the A field or the B field, they can differ in the C

field without violating the FD.

A B C D

A1 B1 C1 D1

A1 B1 C1 D2

A1 B2 C2 D1

A2 B1 C3 D1

 Fig. 6.3. An instance that satisfies AB C

6.3 Reasoning about FDs

Given a set of FDs over a relation schema R, typically several

additional FDs hold over R whenever all of the given FDs hold. As an example,

consider:

Workers(ssn, name, lot, did, since)

We know that ssn did holds, since ssn is the key, and FD did lot is

given to hold. Therefore, in any legal instance of workers, if two tuples

have the same ssn value, they must have the same did value, and because

 67

they have the same did value, they must also have the same lot value.

Therefore, the FD ssnlot also holds on windows.

Closure of a set of FDs

the set of all Fds implied by a given set F of Fds is called the closure of

F,denoted as F+. an important question is how we can infer, or compute the

closure of a given set F of Fds. The answer is simple and elegant. The

following three rules, called Armstrong’s Axioms, can be applied repeatedly to

infer all FDs implied by a set of FDs. We use X, Y and Z to denote sets of

attributes over a relation schema R:

 Reflection: If X Y, the X Y.

 Augmentation: If XY, then XZ YZ for any Z.

 Transitivity: If XY and YZ, then XZ.

Theorem1

Armstrong’s Axioms are sound, in that they generate only FDs in F+

when applied to a set F of FDs. They are also complete, in that repeated

applications of these rules will generate all FDs in the closure F+.

It is convenient to use some additional rules while reasoning about F+:

Union: If x Y and XZ, then XYZ.

Decomposition:If XYZ, then XY and XZ.

These additional rules are not essential; their soundness can be proved

using Amstrong’s Axioms.

Attribute Closure

If we just want to check whether a given dependency, say, X Y, is in

the closure of a set F of FDs, we can do so efficiently without computing F+.

we first compute the attribute closure X+ with respect to F, which is the set of

attributes a such that XA can be inferred using the Amstrong Axioms. The

algorithm for computing the attribute closure of a set X of attributes is shown

in the following fig 6.4.

Closure = X

Repeat until there is no change: {

 If there is an FD UV in F such that U closure,

 Then set closure = closure U V

 }

 Fig. 6.4. Computing the Attribute Closure if Attribute set X

6.4 Normal Forms

The Normal Forms based on FDs are First Normal Form (1NF), Second

Normal Form (2NF), Third Normal Form(3NF), Boyce-code Normal

Form(BCNF). These forms have increasingly restrictive requirements: Every

relation in BCNF is also in 3NF, every relation in 3NF is also in 2NF, and

every relation in 2NF is also in 1NF. a relation is in First Normal Form if every

field contains only atomic values, that is not lists or sets. This requirement is

 68

implicit in our definition of the relational model. Although some of the newer

database systems are relaxing this requirement. 2NF is mainly of historical

interest. 3NF and Boyce-code NF are important form a database design

standpoint.

While studying normal forms, it is important to appreciate the role

played by FDs. Consider a relation schema R with attributes ABC. In the

absence of any ICs, any set of ternary tuples is a legal instance and there is no

potential for redundancy. On the other hand, suppose that we have the FD

AB. Now if several tuples have the same value, they must also have the same

B value. This potential redundancy can be predicted using the FD information.

If more detailed IC, are specified, we may be able to detect more subtle

redundancies a well.

Boyce-Codd Normal Form

Let R ba a relaion schema, F be the set of FDs given to hold over R, X

be a subset of the attributes of R, and A be an attribute of R. R is in Boyce-

Codd Normal Form if, for every FD XA in F, on of the following statements

is true:

 A X ; that is, it is a trivial Fd, or

 X is a super key.

Intuitively, in a BCNF relation, the only nontrivial dependencies are

those in which a key determines some attributes. Therefore, each tuple can be

thought of as an entity or relationship, identified by a key and described by the

remaining attributes. Each attribute must describe the key, the whole key, and

nothing but the key. If we use ovals to denote attributes or sets of attributes and

draw arcs to indicate FDs, a relation in BCNF has the structure illustrated in the

following fig. 6.5.

 . . .

 Fig. 6.5 FDs in a BCNF Relation

BCNF ensures that no redundancy can be detected using FD

information alone. It is thus the most desirable normal form. If we take into

account only FD information. This point is illustrated in fig. 6.6.

X Y A

x Y1 A

X Y2 ?

 Fig. 6.6. An instance illustrating BCNF

KEY
Nonkey

attr1

Nonkey

attr2 Nonkey

attrk

 69

This figure shows an instance of a relation with three attributes X,Y,

and A. there are two tuples with the same value in the X column. Now suppose

that we know that this instance satisfies an FD X A. we can see that one of

the tuples has the value a in the column. Therefore, if a elation is in BSNF,

every field of every tuple records a piece of information that cannot be inferred

from the values in all other fields in the relation instance.

Third Normal Form

Let R be a relation schema, F be the set of FDs given to hold over R, X

be a subset of the attributes of r, and A be an attribute of R. R is in third normal

form if, for every FDA in F, one of the following statements is true:

 A X; that is, it is a trivial Fd, or

 X is a supre key, or

 A is part of some key for R.

The definition of 3NF is similar to that of BCNF, with the only

difference being the third condition. Every BCNF relation is also in 3NF. to

understand the third condition, recall that a key for a relation is a minimal set of

attributes that uniquely determines all other attributes. A must be part of a key.

It is not enough for A to be part of a super key, because the later condition is

satisfied by every attribute1 finding all keys of a relation schema is known to

be an NP-complete problem, and so is the problem of determining whether a

relation schema is in 3NF.

Suppose that a dependency X A causes a violation of 3NF. there are two

case:

 X is a proper subset of some key K. Such a dependency is sometimes

called a partial dependency. In this ceas, we store pairs redundancy.

 X is not a proper subset of any key. Such a dependency is sometimes

called a transitive dependency, because it mans we have a chain of

dependencies K X A. The problem is that we cannot associate an X

value with a K value unless we also associate an A value with an X

value.

6.5 Properties of Decompositions

Decomposition is a tool that allows us to eliminate redundancy. It is

important to check that a decomposition does not introduce new problems. In

particular, we should check whether a decomposition allows us to recover the

original, and whether it allows us to check integrity constraints efficiently.

Lossless-Join Decomposition

Let R be a relation schema and let F be a set of FDs over R. A

decomposition of R into two schemas with attribute sets X and Y is said to be a

lossless-join decomposition with respect to F if, for every instance r of R that

satisfies the dependencies in F.

This definition can easily be extended to cover a decomposition of R

into more than two relations. In general, though, the other direction does not

 70

hold. If we take projections of a relation and recombine them using natural join,

we typically obtain some tuples that were not in the original relation.

By replacing the instance r shown in fig. 6.7 with the instances ПSP(r)

and ПPD(r), we lose some information. In particular, suppose that the tuples in

r denote relationships. We can no longer tell that relationships (s1, p1, d3) and

(s3, p1, d1) do not hold. The decomposition of schema SPD into SP and PD is

therefore lossy if the instance r shown in the figure is legal, that is, if this

instance could arise in the enterprise being modeled.

All decomposition used to eliminate redundancy must be loseless. The

following simple test is very useful.

Theorem ! : Let r be a relation and F be a set of FDs that hold over R. The

decomposition of R into relations with attribute sets R1 and R2 is lossless if

and only if F+ contains either the Fd R1nR2R1 or the FD R1nR2R2.

Dependency Preserving Decomposition

 Consider the contents relation with attributes CSJDPQV. The given

FDs are CCSJDPQV, JPC, and SDP. because Sd is not a key the

dependency SDP causes a violation of BCNF.

We can decompose contracts into two relations with schemas CSJDQV

and SDP to address this violation; the decomposition is lossless join. There is

one subtle problem, however. We can enforce the integrity constraint JPC

easily when a tuple is inserted into contracts by ensuring that no no existing

tuple has the same JP values but different C vlalues. Once we decompose

contracts into CSJDQV and SDP, enforcing this constraint requires an

expensive join of the two relations whenever a tuple is inserted in to CSJDQV.

We say that this decomposition is not dependency-preserving decomposition.

A dependency-preserving decomposition allows us to enforce all FDs

by examining a single relation instance on each insertion or modification of a

tuple. To define dependency-preserving decompositions precisely, we have to

introduce the concept of a projection of Fds.

Let R be a relation schema that is decomposed into two schemas with

attribute sets X and Y, and let F be a set of FDs over R. the projection of F on

X is the set of Fds in the closure F+ that involve only attributes in X. we denote

the projection of F on attributes X as Fx.

The decomposition of relation schema R with FDs F into schemas with

attribute sets X and Y is dependency-preserving if (Fx U Fy)+= F+. that is, if

we take the dependencies in Fx and Fy and compute the closure of their union,

we get back all dependencies in the closure of F.

6.6 Normalization

Having covered the concepts needed to understand the role of normal

forms and decompositions in database design, we now consider algorithms for

converting relations to BCNF or 3NF. If a relation schema is not in BCNF, it is

possible to obtain a lossless-join decomposition into a collection of BCNF

relation schemas.

 71

Decomposition into BCNF

We now present an algorithm for decomposing a relation schema R

with a set of FDs F into a collection of BCNF relation schemas:

1. Suppose that R is not in BCNF. Let X R, A be a single attribute in R,

and XA be an FD that causes a violation of BCNF. Decomposes R

into R – A and XA.

2. If either R – A or XA is not in BCNF, decompose them further by a

recursive application of this algorithm.

R –A denotes the set of attributes other than A in R, and XA denotes the

union of attributes in X and A. Since XA violates BCNF, it is not a trivial

dependency; further, a is a single attribute. Therefore, A is not in x; that is, X n

A is empty. Therefore, each decomposition carried out in step1 is lossless-join.

BCNF and Dependency-preservation

Sometimes, there simply is no decomposition into BCNF that is

dependency preserving. Consider the relation schema SBD, in which a tuple

denotes that sailors S has reserved boat B on date D. If we have the FDs

SBD and DB, SBD is not in BCNF because D is not a key. If we try to

decompose it, however, we cannot preserve the dependency SBD.

Decomposition into 3NF

Clearly, the approach we outlined lossless-join decomposition into

BCNF also gives us a lossless-join decomposition into 3NF.

Minimal cover for a set of FDs

A minimal cover for a set of FDs is a set G of FDs such that:

1. Every dependency in G is of the form Xa, whole A is a single

attribute.

2. The closure F+ is equal to the closure G+

3. if we obtain a set H of dependencies from G by deleting one or more

dependencies or by deleting attributes from a dependency in G, then

F+≠ H+.

A minimal cover fro a set F of FDs is an equivalent set of dependencies

that is minimal in two respects:

1. Every dependency is as small as possible; that is, each attribute on the

left side is necessary and the right side is a single attribute.

2. Every dependency in it is required for the closure to be equal to F+.

As an example, let F be the set of dependencies:

AB, ABCDE, EFG, EFH, and ACDFEG.

First, let us rewrite ACDFEG so that every right side is a single

attribute:

ACDFE and ACDFG.

 72

Next consider ACDFG. this dependency is implied by the following

FDs:

AB, ABCDE, and EFG.

Therefore, we can delete it. Similarly, we can delete ACDFE.

A minimal cover for F is the set:

AB, ACDE, EFG, and EFH.

The preceding example illustrates a general algorithm for obtaining a

minimal cover of a set F of FDs:

1. Put the FDs in a Standard Form: Obtain a collection G of equivalent

FDs with a single attribute on the right side.

2. Minimize the left side of each FD: For each FD in G, check each

attribute in the left side to see if it can be deleted while preserving

equivalent to F+.

3. Delete Redundant FDs: Check each remaining FD in G to see if it can

be deleted while preserving equivalence to F+.

Dependency-Preserving Decomposition into 3NF

Dependency preserving decomposition into 3NF relations, let R be a

relation with a set of FDs that is a minimal cover, and ler R1, R2, …, Rn be a

lossless-join decomposition of R.

Self-Assesment Questions – VI

1. F Closure can be represented by_______________________.

2. Normal forms are used to _______________________.

3. Expansion of BCNF is _______________________.

4. Expansion of FD is _______________________.

5. Decomposition is used to

a) Split the table

b) Join the tables

c) Combine the tables

6. Which is not a valid normal form

a) 1 NF

b) 8 NF

c) 5 NF

7. Sample questions

8. Write notes about Functional dependency.

9. Write down the concept of Decomposition.

10. Explain different types Normal forms?

11. Explain Multivalued Dependencies?

 73

Answers for Self-Assesment Questions – VI

1. F+

2. Reduce redundant values

3. Boyce-Codd Normal Form

4. Functional Dependency

5. a – split the table

6. b – 8 NF

 74

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 75

7. Security and Authorization

 The data stored in a DBMS is often vital to the business interests of the

organization and is regard as a corporate asset. In addition to protecting the

intrinsic value of the data, corporations must not be revealed to certain groups

of users for various reasons. In this chapter we discuss about various security

and authorization mechanisms.

7.1 introduction to Database Security

There are three main objectives when designing a secure database application:

Security: Information should not be disclosed to unauthorized users. For

example, a student should not be allowed to examine other student’s grades.

Integrity: Only authorized users should be allowed to modify data. For

example, students may be allowed to see their grades, yet not allowed to

modify them.

Availability: Authorized users should not be denied access. For example, an

instructor who wishes to change a grade should be allowed to do so.

To achieve these objectives, a clear and consistent security policy

should be developed to describe what security measures must be enforced. In

particular, we must determine what part of the data is to protected and which

users get access to which portions of the ata. Next, security of the underlying

DBMS an operating system, as well as external mechanism, such as securing

access to buildings, must be utilized to enforce the policy, we emphasize that

security measures must be taken at different levels.

We use the following schemas in our exapmpl.

Sailors(sid: integer, sname:string, rating: integer, age:real)

Boats(bid:integer, bname:string, color:string)

Reserves(sid:integer, bid:integer, day:date)

7.2 Access Control

A database for an enterprise contains a great deal of information and

usually has several groups of users. Most users need to access only a small part

of the database to carryout their tasks. Allowing users unrestricted access to all

the data can be undesirable, and a DBMS should provide mechanisms to

control access to data.

A DBMS offers two approaches to access control. Discretionary access

control is based on the concept of access rights, or privileges, and mechanisms

for giving users such privileges. A privilege allows a user to access some data

object in a certain. A user who creates a database object such as a table or view

automatically gets all applicable privileges on that object. The DBMS

subsequently keeps track of how these privileges are granted to other users, and

possibly revoked, and measures that at all times only users with the necessary

privileges can access an object. SQL supports discretionary access control

through the GRANT and REVOKE commands. The GRANT command gives

privileges to the users, and the REVOKE command takes away privileges.

 76

Mandatory access control is based on system wide policies that cannot be

changed by individual users.

7.3 Discretionary Access Control

SQL supports discretionary access control through the GRANT and

REVOKE commands. The GRANT command gives users privileges to base

and views. The syntax of this command is as follows:

GRANT privileges ON users [WITH GRANT OPTION]

For our purposes object is either a base table or a view. SQL recognizes

certain other kinds of objects, but we do not discuss them. Several privileges

can be specified, including these:

SELECT: The right to accesss all columns of the table specified as the object,

including columns added later through ALTER TABLE command.

INSERT: The right to insert rows with values in the named column of the table

named as object. If this right is to granted with respect to all columns, including

columns that might be added later, we can simply INSERT. The privilege

UPDATE(column name) and UPDATE are similar.

DELETE: The right to delete rows from the table named as object.

REFERENCES: the right to define foreign keys that refer to the specified

column of the table object. REFERENCES without a column name specified

denotes this right with respect to all columns, including any that are added

later.

Examples:

UPDATE sailors S

SET S.rating = 8

UPDATE sailors S

SET S.rating = S.rating-1

 The first query update rating value for all the tuples in sailors as 8, and

the second query will reduce the rating value by 1.

GRANT INSERT ON sailors TO Michel

This will grant the insert privilege to michel on the schema sailors.

General syntax:

REVOKE [GRANT OPTION FOR] privileges

 ON object FROM users { RESTRICT | CASCADE }

7.4 Mandatory Access Control

To apply mandatory access control policies in a relational DBMS, a

security class must be assigned to each database object. The objects can be at

the granularity of tables, rows, or even individual column values. Let us assume

that each row is assigned a security class. This situation leads to the concept of

a multilevel table.

Consider the instance of the Boats table in fig a. users with S and TS

clearance get both rows in the answer when they ask to see all rows in Boats.

 77

A user with C clearance gets only the second row, and user with U clearance

gets no rows

Fig a. An instance B1 of Boats

The Boats is defined to have bid as the primary key. Suppose that a user

with clearance C wishes to enter the row <101, Picante, Scarlet, C>. we have a

dilemma:

 If the insertion is permitted, two distinct rows in the table have key 101.

 If the insertion is not permitted because the primary key constraint is

violated, the user trying to insert the new row, who has clearance C, can

infer that there is a boat with bid=101 whose security class is higher

than C. this situation compromises the principle that users should not be

able to infer any information about objects that have a higher security

classification.

This delimma is resolved by effectively treating the security

classification as part of the key. Thus, the insertion is allowed to continue, and

the table instance is modified as shown in fig b.

Fig b. An instance B1 of Boats after insertion

7.5 Security for Internet Applications

When a DBMS is accessed from a secure location, we can rely upon a

simple password mechanism for authenticating users. However, suppose our

friends wants to place an order for a book over the internet. This presents some

unique challenges: Encryption techniques provide the foundation for modern

authentication.

Encryption

The basic idea behind encryption is to apply an encryption algorithm to

the data, using a user-specified or DBA-specified encryption key. The output of

the algorithm is the encrypted version of the data. There is also a decryption

algorithm, which takes the encrypted data and decryption key as input and then

returns the original data. Without the correct decryption key, the decryption

algorithms produces gibberish. The encryption and decryption algorithms

themselves are assumed to be publicly known, but one or both keys are secret.

Bid bname color Security class

101 Salsa Red S

102 Pinto Brown C

Bid bname color Security class

101 Salsa Red S

101 Picante Scarlet C

102 Pinto Brown C

 78

In symmetric encryption, the encryption key is also used as the

decryption key. The ANSI Data Encryption Standard (DES), which has been in

use since 1977, is a well-known example of symmetric encryption.

Another approach to encryption, called public-key encryption, has

become increasingly popular in recent days. Each authorized user has a public

encryption key, known to every one, and a private decryption key, known only

to him or her. Since the private decryption keys are known only to their

owners, the weakness of DES is avoided.

The encryption function is S = I mod L.

The decryption function is I = S mod L.

Certifying Services : The SSL protocol

A number of companies serve as certification authorities, eg. Verisign.

Amazon generates a public encryption key e and sends the public key to

verisign. Verisign then issues a certificate to amazon that contain the following

information:

< verisign, Amazon, http://www.amazon.com,e>

The certificate is encrypted using Verisign’s own private key, which is

known to Internet Explorer, Netscape Navigator and other browsers.

Digital Signatures

Public key cryptography can be used to create digital signatures for

messages. That is, messages can be encoded in such a way that, if Elmer gets a

message supposedly from Betsy, he can verify that it is from Betsy and further,

prove that it is from Betsy, even if the message is sent form a hotmail account

when Betsy is traveling.

A clever use of the encryption scheme, however, allows Elmer to verify

whether the message was indeed sent by Betsy. Betsy encrypts the message

using her private key and then encrypts the result using Elmer’s public key.

If authenticating the sender is the objective and hiding the message is

not important, we can reduce the cost of encryption by using message

signature. A signature is obtained by applying a one-way function to the

message and is considerably smaller. We encode the signature as in the basic

digital signature approach, and send the encoded signature together with the

full, un encoded message. The recipient can verify the sender of the signatures

just described, and validate the message itself by applying the one-way

function and comparing the result with the signature.

7.6. Network Model

 A network database consists of a collection of records which are

connected to one another through links. A record is in many respects similar to

an array in the entity-relationship model. Each record is a collection of fields

(attributes), each if which contains only one data value. A link is an association

between precisely two records. Thus, a link can be viewed as a restricted form

of relationship in the sense of the E-R model.

 79

Data Structured Diagrams

 A data structured diagram is a scheme representing the design of a

network database. Such a diagram consists of two basic components namely

boxes, which corresponds to record type and lines which corresponds to links.

 A data structure diagram serves the same purpose as an entity

relationship diagram, namely, it specifies the overall logical structure of the

database.

Binary Relationship

 Consider the entity relationship diagram

7.7 Hierarchical Model

A hierarchical database consists of a collection of records which are

connected to one another through links. Each record is a collection of

fields(attributes), each of which contains only one data value. A link is an

association between precisely two records. Thus, a link is similar to the link

concept in the network model.

Consider a database representing a customer account relationship in a

banking system. There are two record types namely customer and account. The

customer record consists of three fields called name, street, and city. Similarly

the account record consists of two fields called number and balance.

a hierarchical database is a collection of such rooted trees, and hence

forms a forest. We refer to each such rooted tree as a database tree.

Tree Structured Diagram

 A tree structure diagram is the scheme for a hierarchical database. Such

a diagram consists of two components, namely boxes and lines. Boxes, which

correspond to record types and lines which corresponds to links. A tree

structure diagram serves the same purpose as an entity relationship diagram;

namely, it specifies the overall logical structure of the database.

A tree structure diagram is similar to a data structure diagram in the

network model. The main difference is that, in the later, record types are

organized in the form of an arbitrary graph, while in the former; record types

are organized in the form of a rooted tree. The record tree is defined as there

can be no cycles in the underlying graph. The relationships formed in the graph

must be such that only one to one and one to many relationships exist between

a parent and a child.

 The database scheme is represented as a collection of tree structure

diagrams. For each such diagram. There exists one single instance of a database

tree. The root of this tree is a dummy node. The children of that node are

instances of the appropriate record type. Each such child instance may, in turn,

have several instance may, in turn have several instances, of various record

type, as specified in the corresponding tree structure diagram.

 80

Single Relationship

 Between two entities, there is only one relationship is called as single

relationship, which is also called as one-to-one relationship.

Several Relationships

 Between two entities, there is more than one relationship is called as

several relationship, which is also called as one-to-many and many-to-one

relationship.

Self-Assesment Questions – VII

1. Encryption will _______________________.

2. Revoke will _______________________.

3. Decryption will _______________________.

4. Digital signature is _______________________.

5. Grant is used to

a) Give permission to access the data

b) Cancel permission to access the data

c) Cancel permission to delete table

6. DES stands for

a) Domain Encryption Standard

b) Data Encryption Standard

c) Data Enterprise Standard

Sample questions

7. Write notes about database security.

8. Write down the concept of encryption and decryption.

9. Explain different access control techniques?

10. Explain Digital signatures?

11. Explain network and Hierarchical Data models?

Answers for Self-Assesment Questions – VII

1. convert plain text into cipher text

2. withdraw the access permission

3. convert cipher text into plaintext

4. add the signature with the document

5. a – Give permission to access the data

6. b – Data Encryption Standard

 81

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 82

8. Parallel and Distribution Database

8.1. Introduction

we have thus far considered centralized database management systems,

in which all the data is maintained at a single side, and assumed that the

processing of individual transactions are essentially sequential. One of the most

important trends in database is the increased use of parallel evaluation

techniques and data distribution. There are four distinct motivations.

Performance: Using several resources (Eg. CPUS and disks) in parallel can

significantly improved performance.

Increased availability: If a site containing a relation goes down, the relation

continues to be available it a copy is maintained at another site.

Distributed access to data: An organization may have branches in several

cites. Although analysts may need to access data corresponding to different

sites, we usually find locality in the access patterns, and this locality can be

exploited by distribution the data accordingly.

Analysis of distributed data: Organizations increasingly want to examine all

the data available to them, even when it is stored across multiple sites and on

multiple databases systems. Support for such integrated access involves many

issues; even enabling access to widely distributed data can be a challenge.

A parallel Database System is one that seeks to improve performance

through parallel implementation of various operations such as loading data,

building indexes, and evaluating queries. Although data may be stored in a

distributed fashion in such a system, the distributed is governed solely by

performance consideration.

In a Distributed Database System, data is physically stored across

several sites, and each site is typically managed by a DBMS that is capable of

running independently of the other sites. The location of data items and the

degree of autonomy of individual sites have a significant impact on all aspects

of the system, including query optimization and processing, concurrency

control, and recovery. In contrast to parallel database the distributed of data is

governed by factors such as local ownership and increased availability in

addition to performance issues.

8.2 Architecture for Parallel Databases

The basic idea behind parallel database is to carry out evaluation steps

in parallel whenever possible in order to improve performance. There are many

opportunities for parallelism in a DBMS; database represent one of the most

successful instance of parallel computing.

The shared- nothing architecture requires more extensive reorganization

of the DBMS code, but it has been shown to provide linear speed-up, in that the

time taken for operations decreases in proportion, to the increase in the number

of CPUs and disks, and linear scale-up, in that performance is sustained if the

CPUs and disks are increased in proportion to the amount of data consequently,

even more powerful parallel database systems can be built by taking advantage

 83

of rapidly powerful improving performance for singly CPU systems and

connecting as many CPU as desired.

Speed-up and Scale-up is illustrated in fig. 8.1. the speed-up curves

show how for a fixed database size, name transactions can be executed per

second by adding CPUs. The scale-up curves show how adding more resources

enables us to process large problems. The first Scale-up graph measures the

number of transactions executed per second as the database. Size is increased

and the number of CPUs is correspondingly increased. An alternative way to

measure Scale-up is to consider the time taken per transaction as more CPUs

are added to process an increasing number of transactions per second; the good

here is to sustain the response time per transaction.

8.3 Parallel Query Evaluation

A relational query execution plan is a graph of relational algebra

operations and the operators in a graph can be executed in parallel. Of an

operator consumes the output of a second operator, we have pipelined

parallelism (the output of the second operator is worked on by the first operator

as soon as it is generated); if not, the two operators can proceed essentially

independently. An operator is said to block if it produces no output until it has

consumed all its inputs pipelined parallelism is limited by the presence of

operators (E.g. Sorting or aggregation) that block.

In addition to evaluating different operators in parallel, we can evaluate

each individual operator in a query plan in parallel fashion. The key to

evaluating an operator in parallel is to partition the input data; we can then

work on each partition is parallel and combain the results. This approach is

called data-partitioned parallel evaluation. By expressing some care, existing

code for sequentially evaluating relational operators can be ported easier for

data-partitioned parallel evaluation.

An important observation which explains why shared-nothing parallel

database systems have been very successful, is that database query evaluation

is very amenable to data-partitioned parallel evaluation. The goal is to

minimize data shipping by partitioning the data and by structuring the

algorithms to do most of the processing at individual process.

Data Partitioning

Partitioning a large dataset horizontally across several disks enable s us

to exploit the I/O bandwidth of the disks by reading and writing them in

parallel. There are several ways to horizontally partition a relation. We can

assign tuples to processors in a round-robin fashion, we can use hashing, or we

can assign tuples to processors by ranges of field values. If there are n

processors, the ith tuple is assigned to processor I mod n in round-robin

partitioning. In hash partitioning, a hash function is applied to tuple to

determine its processor. In range partitioning tuples are stored, and n ranges are

chosen for the sort key values so that each range contains roughly the same

number of tuples; tuples in range I are assigned to processor i.

 84

Round-robin partitioning is suitable for efficiently evaluating queries

that access the entire relation. If only a subset of the tuples (Eg. Those that

satisfy the selection condition age = 20) is required, hash partitioning and range

partitioning are better than round-robin partitioning because they enable us to

access only those disks that contain matching tuples. If range selection such as

15<age<25 are specified, range partitioning is superior to hash partitioning

because qualifying tuples are likely to be clustered together on a few

processors. On the other hand, range partitioning can lead to data skew; that is,

partitions with widely varying number of tuples across partitions or disks.

Skew causes processors dealing with large partitions be to become performance

bottlenecks. Hash partitioning has the additional virtue that it keeps data evenly

distributed even if the data grows and shrinks over time.

To reduce skew in range partitioning, the main question is how to

choose the range by which tuples are distributed. One effective approach is to

take samples from each processor, collect and sort all samples, and divide the

sorted set of samples into equally sized subsets. If tuples are to be partitioned

on age, the age ranges of the sampled subsets of tuples can be used as the basis

for redistributing the entire relation.

8.4 Parallelizing Individual Operations

1. Bulk Loading and Scanning

We design with two simple operations; Scanning a relation and

loading a relation. Pages can be read in parallel while scanning a

relation, and the retrieved tuples can then be merged, if the relation is

partitioned access several disks. More generally, the idea also applies

when retrieving all tuples that meet a selection condition, if hashing or

range partitioning is used, selection queries can be answered by going

to just those processors that contain relevant tuples.

A similar observation holds for bulk loading. Further, if a

relation has associated indexes, any sorting of data entries required for

building the indexes during bulk loading can also be done in parallel.

2. Sorting

A simple idea is to let each CPU sort the part of the relation that

is on its local disk and to then merge these sorted sets of tuples. The

degree of parallelism is likely to be limited by the merging phase.

A better idea is to first redistribute all tuples in the relation using

range partitioning. For example if we want to sort a collection of

employee tuples by salary, salary values range from 10 to 210 and we

have 20 processors, we could send all tuples with salary values in the

range 10 to 20 to the first processor, all in the range 21 to 30 to the

second processor, and so on.

Each processor then sorts the tuples assigned to it, using some

sequential sorting algorithm. For example, a processor can collect tuples

until its memory is full, then sort these tuples and write out a run, until

all incoming have been written to such sorted runs on the local disk.

 85

These runs can then be merged to create the sorted version of the set of

tuples assigned to this processor. The entire sorted-relation can be

retrieved by visiting the processors in an order corresponding to the

range assigned to them and simple scanning the tuple.

The basic challenge in parallel sorting is to do the range

partitioning so that each processor receives roughly the same number of

tuples,; otherwise, a processot that receives a disproportionately large

number of tuples to sort becomes a bottleneck and limits the scalability

of the parallel sort. One good approach to range partitioning is to obtain

a sample of the entire relation by taking samples at each processor that

initially contains part of the relation. The sample is sorted and used to

identify determined, we will not discuss how good subrange boundaries

can be identified.

Having decided on a partitioning strategy, we can assign each

partition to a processor and carry out a local join, using any join

algorithm, we want , at each processor. In this case a number of

partitions K is chosen to be equal to the number of processors n that are

available for carrying out the join, and during partitioning, each

processor sends tuples in the ith partition to processor i. after

partitioning each processor joins the A and B tuples assigned to it. Each

join process executes sequential join code, a merge operator merges all

incoming A tuples, and another merge operator merges all incoming B

tuples. Depending on how we want to distribute the result of the join of

A and B, the output of the join process may be split into several data

streams. The network of operators for parallel join is shown in fig. 8.2.

to simplify the fig. we assume that the processors doing the join are

distinct for the processors that initially contain tuples of A and B show

only four processors.

If range partitioning is used, the algorithm outlined above leads

to a parallel version of a sort merge join, with the advantage that the

output is available in sorted order. If hash partitioning is used, we

obtain a parallel version of a hash join.

8.5 Parallel Query Optimization

 In addition to parallelizing individual operations, we can obviously

execute different operations in a query in parallel and execute multiple

queries in parallel. Optimizing a single query for parallel execution has

received more attention; systems typically optimize queries without regard

to other queries that might be executing at the same time.

 Two kinds of inter operation parallelism can be exploited with in a

query:

 The result of one operator can be pipelined into another. For

example consider a left-deep plan in which all the joins use index

nested loops. The result of the first joins is the other relation tuples

for the next join node. As tuples are produced by the first join, they

 86

can be used to prove the inner relation in the second join. The result

of the second join can similarly be pipelined into the next join, and

so on.

 Multiple independent operations can be executed concurrently. For

example, consider a (non left –deep) plan in which relations A and

D are joined, and the results of these two joins are finally joined.

Clearly, the join of A and B can be executed concurrently with the

join of C and D.

 An optimizer that seeks to parallelize query evaluation has to consider

several issues, and we will only outline the main points. The cost of executing

individual operations in parallel (Eg. Parallel sorting) obviously differs from

executing them sequentially, and the optimizer should estimate operation costs

accordingly.

8.6 Introduction to Distributed Databases

The classical view of a distributed database system is that the system

should make the impact of data distribution transparent. In particular the

following properties considered desirable:

Distributed data independence: Users should be able to ask queries without

specifying where the referenced relations or copies of the relations, are located.

This principle is a natural extension of physical and logical data independence.

Distributed transaction atomicity: Users should be able to write transactions

that access and update data at several sites just as they would write transactions

over purely local data. In particular the effects of a transaction across sites

should continue to be atomic; that is all changes persist if the transaction

commits, and non persist if it aborts.

Types of Distributed Database

If data is distributed but all servers run the some DBMS software, we

have a homogeneous distributed database system. If different sites run under

the control of different DBMS, essentially autonomously, and are connected

somehow to enable access to data from multiple sites, we have a heterogeneous

distributed database system, also referred to as a multi database system.

The key to building heterogeneous systems is to have well-accepted

standards for gateway protocols. A gateway protocol is an API that expose

DBMS functionality to external applications. Examples include ODBC and

JDBC. By accessing database servers through gateway protocols, their

differences are masked, and the differences between the different servers in a

distributed system are bridged to a large degree.

Gateways re not a panacea however, they add a layer of processing that

can be expensive, and they do not completely mask the difference between

servers. For example, a server may not be capable of providing the services

required for distributed transaction management, and even if it is capable,

standardizing gateway protocols at the way down to this level of interaction

poses challenges that have not yet been resolved satisfactorily.

 87

Distributed data management in the final analysis, comes at a

significant cost in terms of performance, software complexity and

administration difficulty. This observation is especially true of heterogeneous

systems.

8.7 Distributed DBMS Architecture

There are three alternative approaches to separating functionality across

different DBMS related processes; these alternative distributed DBMS

architectures are called client-server, collaborating server and middleware.

1. client-server system

A client-server system has on or more client processes and one

or more several process. Clients are responsible for user-interface

issues, and servers manage data and execute transactions. Thus a client

process could run on a personal computer and send queries to a server

running on a main frame.

This architecture has become very popular far several reasons.

First, it is relatively very simple to implement due to its clear separation

of functionality and because the server is centralized. Second expensive

server machines are not underutilized by dealing with mundane iser-

interactions, which are now related to inexpensive client machines.

Third, users can run a graphical user interface that they are familiar with

rather than the user interface on the server.

While writing client-server application, it is important to

remember the boundary between the client and the server and to keep

the communication between them as set-oriented as possible. In

particular, opening a cursor and fetching tuples on at a time generates

many messages and should be avoided. (Even if we fetch several tuples

and cache them at the client, messages must be exchanged when the

cursor is advanced to ensure that the current row is locked).

2. Collaborating Server system

The client-server architecture does not allow a single query to

span multiple servers because the client process would have to be

capable of breaking such a query into appropriate sub queries to be

executed at different sites and then piecing together the answers to the

sub queries. The client process would thus be quite complex, and its

capabilities would begin to overlap with the server; distinguishing

between clients and servers becomes harder. Eliminating this distinction

leads us to an alternative server system we can have a collection of

database servers, each capable of running transaction against local data,

which cooperatively execute transactions spanning multiple servers.

When server receives a query that requires access to data at

other servers, it generates appropriate sub queries to be executed by

other servers and puts the results together to compute answers to the

original query. Ideally, the decomposition of the query should be done

 88

using cost-based optimization, taking into account the costs of network

communication as well as local processing costs.

3. Middleware Systems

The middleware architecture is designed to allow a single query

to span multiple servers, without requiring all database to be capable of

managing such multi site execution strategies. It is especially alternative

when trying to integrate several legacy systems, whose basic

capabilities cannot be extended.

The idea is that we need just one database server that is capable

of managing queries and transactions spanning multiple servers; the

remaining servers only need to handle local queries and transactions.

We can think of this special server as a layer of software that

coordinates the execution of queries and transactions across one or

more independent database servers; such software is often called

middleware. The middleware layer is capable of executing joins are

other relational operations on data obtained from the other servers, but

typically, does not itself maintain any data.

8.8. Storing Data in a Distributed DBMS

In a distributed DBMS, relation are stores across several sites.

Accessing a relational that is stored at a remote site incurs message passing

costs, and to reduce this overhead, a single relation may be partitioned or

fragmented across several sites, with fragments stored at the sites where they

are most often accessed, or replicated at each site where the relation is in high

demand.

1. Fragmentation

Fragmentation consists of breaking a relation into smaller relations or

fragments, and storing the fragments, possibly at different sites. In

horizontal fragmentation, each fragment consists of a subset of rows of

the original relation. In vertical fragmentation, each fragment consists

of s subset of columns of the original relation. Horizontal and vertical

fragmentation are illustrated in fig. 8.4.

Tid eid name city age Sal

T1 53666 Jomes Madraas 12 35

T2 53688 Smith Chicago 18 32

T3 53650 Smith Chicago 19 48

T4 53831 Madayan Mumbay 11 20

T5 53832 guldu Mumbay 12 20

 Fig. 8.4. Horizontal and Vertical Fragmentations

Typically the tuples that belong to a given horizontal fragment

are identified by a selection query; for example, employee tuples might

be organized into fragments by city, with all employees in a given city

 89

assigned to the same fragments. The horizontal fragment show in fig.

8.4 corresponds to Chicago. By storing fragments in the database site at

the corresponding city, we achieve locality of reference from Chicago,

and storing this data on Chicago makes it local (and reduces

communication costs) for most queries. Similarly, the tuples in a given

vertical fragment are identified by a projection query. The vertical

fragment in the figure results from projection on the first two columns

of the employee relation.

When a relation is fragments, we must be able to recover the

original relation from the fragments.

 Horizontal fragmentation: The union on the horizontal

fragments must be equal to the original relation. Fragments are

usually also required up to be disjoint.

 Vertical fragmentation: The collection of vertical fragments

should be a lossless join decomposition.

2. Replication

Replication means that we store several copies of a relation or

relation fragment. An entire relation can be replicated at one or more

sites. Similarly, one or more fragments of a relation can be replicated at

other sites.

Increased availability of Data: If a site that contains a replication

goes down, we can find the same data at other sites. Similarly, if local

copies of remote relations are available, we are less vulnerable to failure

of communication links.

Faster query evaluation: Queries can execute faster by using a

local copy of a relation instead of going to a remote site.

8.9 Distributed Catalog Management

Keeping track of data distributed across several sites can get

accomplished. We must keep track of how relations are fragmented and

replicated- that is how relation fragments are distributed across several sites

and where copies of fragments are stored.

Naming Objects

If a relation is fragmented and replicated, we must be able to uniquely

identify each replica of each fragment. Generating such unique names requires

some autonomy is compromised.

The usual solution to the naming problem is to use names consisting of several

fields. For example, we would have:

A local name field, which is the name assigned locally at the site where

the relation is created. Two objects at different sites could have the same local

name, but two objects at a given site cannot have the same local name.

A birth site field, which identifies the site where the relation was

created, and where information is maintained about all fragments and replicas

of the relation .

 90

Those two fields identify a relation uniquely; we call the combination a

global relation name.

Catalog structure

A centralized system catalog can be used but is vulnerable to failure of

the site containing the catalog. An alternative is to maintain a copy of a global

system catalog, which describes all the data at every sites.

A better approach, which preserves local autonomy and is not

vulnerable to a single site failure, was developed in the R* distributed database

project, which was a successor to the system R project at IBM site maintains a

local catalog that describes all copies of data stored at that site.

To locate relation, the catalog at its birth site must be looked up. This

catalog information can be cached at other sites for quicker access, but the

cached information may become out of date if, for example, a fragment is

moved. we would discover that the locally cached information is out of date

when we use it to access the relation, and at that point , we must update the

cache by looking at the birth site of a relation.

Distributed Data Independence

Distributed data independence means that users should be able to write

queries without regard to how a relation is fragmented or replicated; it is the

responsibility of the DBMS to compute the relation as needed.

In particular, this property implies that users should not have to specify

the full name for the data objects accessed while evaluating a query. The local

name of a relation in the system catalog is really a combination of a user name

and a user-defined relation name. users can give whatever name they wish to

give their relations, without regard to the relations created by other users.

A user may want to create objects at several sites or to relations created

by other users. To do this, a user can create a synonym for a global relation

name, using an SQL-style command and subsequently refer to the relation

using synonym.

8.10 Distributed Query Processing

1. Non Joins queries in a Distributed DBMS

 Even simple operations such as scanning a relation, selection and

projection are affected by fragmentation and replication consider the

following query:

SELECT S.age

FROM Sailors S

WHERE S.rating > 3 AND S.rating<7

 Suppose that the sailors relation horizontally fragmented, with all

tuples having a rating less than 5 at Shanghai and all tuples having a rating

greater than 5 at Tokyo.

 The DBMS must answer this query by evaluating it at both sites and

taking the union of the answers. If the SELECET class contained

 91

AVG(S.age). combining the answers cannot be done by simple taking the

union. The DBMS must compute the sum and count of age values at the

two sites and use this information to compute the average of all sailors.

 If the WHERE clause contained just the condition S.rating>6, on the

other hand, the DBMS should recognize that this query can be answered by

just executing it and Tokyo.

2. Joins in a Distributed DBMS

 Joins are relations at different sites can be very expensive, and we

now consider the evaluation options that must be considered in a distributed

environment. Suppose that the sailors relation is stored at London, and that

the reserves relation is stored at paris. We will consider the cost of various

strategies for computing sailors reserves.

Fetches as needed

 We would be a page oriented nested loops join in Landon with

Sailors as the outer, and the each Sailors page, fetch all Reserves pages

from Paris. If we cache the fetched reserves pages in London until the join

is complete, pages are fetched only once but lets assume that reserves pages

are not cached, just to see how bad things can get. (this situation can get

much worse it we use a tuple-oriented nested loops join).

 The cost is 500 td to scan sailors plus, for each sailors page, the cost

of scanning and shipping all of reserves, which is 1,000 (td +ts).The total

cost is therefore 500 td + 500000(td +ts).

Semi joins and bloom joins

 Two techniques semi join and bloom join have been proposed reducing

the number of reserves tuples to be shipped. The first technique is called

semijoin, the idea is to proceed in three steps:

1. At London, compute the projection of sailors on to the join columns (in this

case just the sid field), and ship this projection to Paris.

2. At Paris, compute the natural join of the projection received from the first

site with the reserves relation. The result of this join is called the reduction of

reserves with respect to sailors. Clearly only those reserves tuples in the

reduction will join with tuples in the sailors relation. Therefore, ship the

reduction of reserves to London, rather than the entire reserves relation.

3. At London, compute the joi of the relation of reserves with sailors.

Let us compute the cost using this example technique for our join query.

If we assume that the size of the sid field is 10 bytes, the cost of projection is

500 for scanning sailors, plus 100 for creating the temporary, plus 400 for

sorting it (in two passes). Plus 100 for the final scan, plus 100 for writing the

result of 12000 . (Because sid is a key, there are no duplications to be

eliminated, if optimizer is good enough to recognize this, the cost of projection

is just (500+100) .

The second technique, called Bloom join, is quite similar/ the main

diference is that a bit-vector is shipped in the final stop, instead of the

 92

projection of sailors, A bit-vector of (some chosen) size K is computed by

hashing each tuple of sailors into the range 0 to K-1 and setting bit I to 1, if

some tuple hashes to I, and 0 otherwise. In the second step, the reduction of

reserves is computed by hashing each tuple of reserves (using the sid field) into

the range 0 to K-1, using the same hash function used to construct the bit-

vector and discarding tuples whose hash value I corresponds to a 0 bit. Because

no Sailors tuples hash to such an I \, no Sailors tuple can join with any reserves

tuple that is not in the relation.

Cost-based Query Optimization

We have seen how data distribution can affect the implementation of

individual operations such as selection, projection, aggregation and join. In

general , ofcourse a query involves several operations, and optimizing queries

in a distributed database poses the following additional challenges.

 Communication costs must be considered. If we have several copies of

a relation, we must also decide which copy to use.

 If individual sites are run under the control of different DBMS, the

autonomy of each site must be represented while doing global query

planning.

8.11 Updating Distributed Data

1. Synchronous Replication

There are two basic techniques for ensuring that transactions see the

same value regardless of which copy of an object they access.

In the first technique called Voting, a transaction must write a majority

of copies in order to modify an object and read at least enough copies to make

sure that one of the copies is current. For example, if there are 10 copies and 7

copies are written by update transactions, then at least 4 copies must be read.

Each copy has version number and the copy with the highest version number is

current. This technique is not attractive in most situations because reading an

object requires reading multiple copies in most applications, objects are read

must more frequently that they are updated and efficient performance on reads

is very important.

In the second technique, called read-any write-all, to read an object, a

transaction can read any one copy, but to write an object, it must write all

copies. Reads are fast, especially if we a local copy, but writes are slower,

relative to the first technique. This technique is attractive when reads are must

more frequent than writes, and it usually adopted for implementing

synchronous replications.

2. Asynchronous Replication

Synchronous replication comes at a significant cost. Before an update

transaction can commit, it must obtain exclusive locks on all copies assuming

that the read-any write –all technique is used of modified data. The transaction

may have to send lock requests to remote sites, and wait for the locks to be

granted, and during this potentially long period, it continues to hold all its other

 93

locks. If sites or communication links fail, the transaction cannot commit until

all sites at which it has modified data recover and are reachable. Finally, even if

licks are transaction requires several additional to be sent as part of a commit

protocol.

For these reasons, synchronous replication is undesirable or even

unachievable in many situations. Asynchronous replication is gaining in

popularity, even through it allows different copies of the same object to have

different values for short periods of time. This independence, users must be

aware of which copy they are accessing, recognize that copies are brought up-

to-date only periodically, and live with this reduced level of data consistency.

Nonetheless, this seems to be a practical compromise that is acceptable in many

situations.

Primary site Versus Peer-to-Peer Replication

Asynchronous replication comes in two flavors. In primary site

asynchronous replication, one copy of a relation is designated as the primary or

master copy. Replicates of the entire relation or of fragments of the replication

can be created at other sites; these are secondary copies, and unlike the primary

copy, they cannot be updates. A common mechanism for setting up primary

and secondary copies is that users first register or publish the relation at the

primary site and subsequently subscribe to a fragment of a registers relation

from another site.

In Peer-to-Peer asynchronous replication, more than one copy

(although perhaps not all) can be designated as being updatable, that is a master

copy. In addition to propagating changes, a conflict resolution strategy must be

used to deal with conflicting changes made at different sites.

The main issue in implementing primary site replication is determining

how changes to the primary copy are propagated to the secondary copies.

Changes are usually propagated in two steps called Capture and Apply.

Changes made up committed transactions to the primary copy are some how

identified during the capture step and subsequently propagated to secondary

copies during the apply step.

8.12 Distributed Transactions

In a distributed DBMS, a given transaction is submitted at some one

site, but it can access data at other sites as well. Here we discuss about sub

transaction. When a transaction is submitted at some site, the transaction

manager at that site breaks it up into a collection of one or more sub

transactions that execute at different sites, submits them to transaction

managers at the other sites.

8.13 Distributed concurrency control

Lock management can be distributed across sites in many ways:

Centralized: A single site is in-charge of handling lock and unlock requests for

all objects.

 94

Primary Copy: One copy of each object is designed the primary copy. All

requests to lock or unlock a copy of this object are handled by the lock manager

at the site where the primary copy is stored, regardless of where the copy itself

is stored.

Fully Distributed: Requests to lock or unlock a copy of an object stored at a

site are handled by the lock manager at the site where the copy is stored.

8.14 Distributed Recovery

Recovery in a distributed DBMS is more complicated that in a

centralized DBMS for the following reasons:

 New kinds of failure can arise, namely, failure of communication links

and failure of a remote site at which a sub transaction is executing.

 Either all sub transactions of a given transaction must commit or none

must commit, and this property must be guaranteed despite any

combination of site and link failures. This guarantee is achieved using a

commit protocol.

As in the centralized DBMS, certain actions are carried out as part of

normal execution in order to provide the necessary information to recover from

failures. A log is maintained at each site, and in addition to the kinds of

information maintained in a centralized DBMS, actions taken as part of the

commit protocol are also logged. The most widely used commit protocol is

called Two-phase commit (2PC). A variant called 2PC with Presumed Abort,

which we discuss below, has been adopted as an industry standard.

(1) Normal execution

Each site maintains a log, and the actions of a sub transaction are

logged at the site where it executes. The transaction manager at the site where

the transaction originated is called coordinator for the transaction; transaction

managers at sites where its sub transaction executes are called subordinates

(with respect to the coordination of this transaction).

We now describe the two-phase commit (2PC) protocol, interms of the

message exchanged and the log records written. When the user decides to

commit a transaction, the commit command is sent to the coordinator for the

transaction. This initiates the 2PC protocol.

1. The coordinator sends a prepare message to each subordinate.

2. When a subordinate receives a prepare message, it decides whether to

abort or commit its sub transaction. It force-writes an abort a prepare

log record, and then sends a no or yes message to the coordinator.

Notice that a prepare log record is not used in a centralized DBMS; it is

unique to the distributed commit protocol.

3. If the coordinator receives yes message from all subordinate, it force-

writes a commit log record and then sends a commit message to all

subordinates. If it receives even one no message, or does not receive

any response from some subordinate for a specified time-out interval, if

 95

force-writes an abort log record, and then sends an abort message to all

subordinates.

4. When a subordinate receives an abort message, it force-writes an abort

log record, sends an ack message to the coordinator, and aborts the sub

transaction. When a subordinate receives a commit message, if force-

writes a commit log record sends an ack message to the coordinator,

and commits the sub transaction.

5. After the coordinator has received ack messages from all subordinates,

it writes an end log record for the transaction.

The names two-phase commit reflects the fact that two rounds of

messages are exchanged; first a voting phase, then a terminating phase, both

initiated by the coordinator. The basic principle is that any of the transaction,

where as there must be unanimity to commit a transaction. When a message is

sent in 2PC, it signals a decision by the sender. In order to ensure that this

decision survives a crash at the sender’s site, the log record describing the

decision is always forced to stable storage before the message is sent.

A transaction is officially committed at the time the coordinators

commit log record reaches stable storage. Subsequently failures cannot affect

the failures of the outcome; it is irrevocably committed. Log records written to

record the commit protocol actions contain the type of record, the transaction

id, an the identity of the coordinator. A coordinators commit or log record, also

contains the identifies of the subordinates.

(2) Restart after a failure

When a site comes back up after a crash, we invoke a recovery process that

reads the log and processes all the transactions that were executing the commit

protocol at the time of the crash. The transaction manager at this site could

have been the coordinator for some of these transactions and a subordinate for

others. We do the following in the recovery process.

 If we have a commit or abort log record for transaction T, its status is

clear; we redo or undo T respectively. If this site is the coordinator,

which can be determined from the commit or abort log record, we must

periodically resend, because there may be other link or site failures in

the system. A commit or abort message to each subroutine until we

receive an ack. After we have received acks from all subordinates, we

write an end log record for T.

 If we have prepare log record for T but no commit or abort log record,

this site is a subordinate and the coordinator can be determined from the

prepare record. We must repeatedly contact the coordinator site to

determine the status of T. once the coordinator responds with either

commit or abort, we write a corresponding log record, redo or undo the

transactions; and then write an end log record for T.

 If we have no prepare, commit or abort log record for transaction T, T

certainly could not have voted to commit be before the crash; so we can

unilaterally abort undo undo T and write an end log record. In this case

 96

we have no way to determine whether the current site is the coordinator

or a subordinate for T. however, if this site is the coordinator it mite

have sent a prepare message prior to the crash, and if so, other sites may

have votes yes. If such a subordinate site contacts the recovery process

at the current site, we now know that the current site is the coordinator

for T, and given that there is no commit or abort log record, the

response to the subordinate should be to abort T.

Observe that if the coordinator site for a transaction T fails,

subordinates who have voted yes cannot decide whether to commit or abort T

until the coordinator site recovers, we say that T is blocked. In principle, the

active subroutine sites could communicate among themselves, and if at least

one of them contains abort or commit log record for T, its status becomes

globally known. In order to communicate among themselves, all subordinates

must be told the identify of the other subordinates at the time they are sent the

prepare message. However 2PC is still vulnerable to coordinator failure during

recovery because even if all subordinates at the time they are sent the prepare

message. However, 2PC is still vulnerable to coordinator failure during

recovery because even if all subordinates have voted yes, the coordinator may

have decided to abort T, and this decision cannot be determined until the

coordinator site recovers.

(3) Two-phase Commit Revisited

Now that we have examined how a site recovers from a failure, and

seen the inter action between the 2PC protocol, it is instructive to consider how

2PC can be refined further. In doing so, we will arrive at a more efficient

version of 2PC, but equally important perhaps, we will understood the role of

the various steps of 2PC more clearly. There are three basic observations.

1. The ack messages in2PC are used to determine when a coordinator can

forget about a transaction T. until the coordinator knows that ll

subordinates are aware of the commit/abort decision for T, it must keep

information about T in the transaction table.

2. If the coordinator site fails after sending out prepare messages but

before writing a commit or abort log record, when it comes backup it

has no information about the transaction’s commit status prior to the

crash. However, it is still free to abort the transaction unilaterally

(because written a commit record, it can still cast a no vote itself). If

another site inquires about the status of the transaction, the recovery

process as we have seen, responds with an abort message. Ths, in the

absence of information, a transaction is presumed to have aborted.

3. If a subroutine does no updates, it has no changes to either redo or

undo; in other words its commit or abort status is irrelevant.

 When a coordinator aborts a transaction T, it can undo T and

remove it from the transaction table immediately. After all,

removing T from the table results in a ‘no information’ state

 97

with respect to T, and the default response in this state which is

abort, is the correct response for an aborted transaction.

 By the same token, if a subordinate receives an abort message, it

need not waiting to hear from subordinates after sending an

abort message does not receive an abort or commit message for

a specified time-out interval, it will contact the coordinator

again. If the coordinator decided to abort, there may no longer

be an entry in the transaction table for this transaction, but it will

receive the default abort message, which is the correct response.

 Because the coordinator is not waiting to hear from subordinates

after deciding to abort a transaction, the names of subordinates

need not be recorded in the abort log record for the coordinator.

 All abort log records can simply be appended to the log tail,

instead of doing a force-write. After all, if they are not written to

stable storage before a crash the default decision is to abort the

transaction.

The third basic observation suggests some additional refinements:

 If a sub transaction does not updates the subroutine can respond to a

prepare message from the coordinator with a reader message, instead of

yes or no. the subordinate writes no log records in this case.

 When a coordinator receives a reader message, it treats the message as

yes vote, but with the optimization that it does not send any more

messages to the subordinate, because the subordinates commit or abort

status is irrelevant.

 If all the subtransactions, including the sub transaction at the

coordinator site, send a reaer message, we don’t need the second phase

of the commit protocol. Indeed, we can simply remove the transaction

from the transaction table, without writing any log records at any site

for this transaction.

 The two phase commit protocol with the refinement discussed in this section is

called two phase commit protocol.

 (4) Three phase Commit

A commit protocol called three-phase commit (3PC) can avoid blocking

even if the coordinator site fails during recovery. The basic idea is that when

the coordinator sends out prepare messages and receives yes votes from all

subordinates, it sends all sites a precommit message, rather than a commit

message, when a sufficient number more than the maximum number of failures

that must be handled-of acks have been received, coordinator force-write a

commit lo record and sends a commit message to all subordinates. In 3PC the

coordinator effectively postpones the decision to commit until it is sure that

enough sites know about the decision to commit; if the coordinator

subsequently fails, these sites can communicate with each other and detect that

 98

the transaction must be committed message – without waiting for the

coordinator to recover.

The 3PC protocol imposes a significant additional cost during normal

execution and requires that communication link failures do not lead to a

network partition in order to ensure freedom from blocking. For this reasons, it

is not used in practice.

Self-Assesment Questions – VIII

1. Fragmentation _______________________.

2. Server will _______________________.

3. Data can be transferred across various servers is _______________.

4. Expansion of ODBC is _______________________.

5. Capture will

a) remove the changes

b) accept the changes

c) modify the changes

6. Replication means

a) store several copies of a relation

b) store one copies of a relation

c) delete several copies of a relation

Sample questions

7. Write notes about parallel query evolution.

8. Write down the parallel query optimization.

9. Explain distributed architecture?

10. Explain how to update distributed data?

11. Write note about distributed concurrency control.

Answers for Self-Assesment Questions – VIII

1. Breaking a relation into smaller relation

2. Response the client’s request

3. Middleware

4. Open Database Connectivity

5. b – accept the changes

6. a – store several copies of a relation

 99

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 100

9.Object Database Systems

Object Database systems have developed along two distinct paths.

Object Oriented Database System: Object Oriented Database Systems are

proposed as an alternative to relational systems and are aimed at application

domains where complex objects play a central role. The approach is heavily

influenced by object oriented programming languages and can be understood as

an attempt to add DBMS functionality to a programming language

environment.

Object Relational Database: Object Relational Database system can be

thought to as an attempt to extent relational database system with the

functionality necessary to support a broader class of application and in many

ways, provide bridge between the relational and object-oriented paradigms.

9.1 Motivating Examples

New Data types

User-defined Data types: Dinky’s assets include Herbert’s image, voice, and

video footage, and these must be stored in the database. To handle these new

types, we need to be able to represent richer structure. Further, we need special

functions to manipulate these objects. For example, we may want to write

functions that produce a compressed version of an image or a lower resolution

image.

Inheritance: As the number of data types grows, it is important to take

advantage of the commonality between different types. For example, both

compressed images and lower-resolution images are, at some level, just images.

It is therefore desirable to inherit some features of image objects wile defining

compressed image objects and lower-resolution image objects.

Object Identity: Given that some of the new data types contain very large

instances, it is important not to store copies of objects; instead, we must store

references, or pointers, to such objects.

Here we discuss some basic examples used in DBMS:

1. CREATE TABLE Frames

 (frameno integer, Image jpeg-image, catalog integer);

2. CREATE TABLE Categories

 (cid integer, name text, lease_price float, comments text);

3. CREATE TYPE theater_t AS

 ROW(ino integer, name text, address text, phone text)

 REF IS SYSTEM GENERATED;

4. CREATE TABLE Theaters OF theater_t REF is tid SYSTEM

 GENERATED;

5. CREATE TABLE Nowshowing

 (film integer, theater REF(theater_t) SCOPE Theaters, start

 date, end date);

 101

6. CREATE TABLE Films

 (filmno integer, title text, stars VARCHAR(25), ARRAY[10],

 director text, budget float);

7. CREATE TABLE Countries

 (name text, boundary polygon, population integer, language

 text);

users to define arbitrary new data types is a key feature of ORDBMS.

The DBMS allows users to store and retrieve objects of type jpeg-image, just

like an object of any other type, such as integer. New atomic data types usually

need to have type-specific operations defined by the user who creates them. For

example, one might crop. The combination of an atomic data type and its

associated methods is called an abstract data type, or ADT. Traditional SQL

comes with built in ADTs, such as integers or strings. Object relational systems

include these ADTs and also allow users to define their own ADTs.

The label ‘abstract’ is applied to these datatypes because the database

system does not need to know how an ADT’s data is stored or how the ADTs

methods work. It merely needs to know that methods are available and the

input and output types for the methods. Hiding of ADT internals is called

encapsulation. Note that even in a relational system, atomic types such as

integers have associated methods that are encapsulated into ADTs. In the case

of integers the standard methods for the ADT are the usual arithmetic operators

and comparators. To evaluate the additional operator on integers, the database

system need to know how to invoke the laws of addition – it merely needs to

know how to invoke the additional operators code and what type of data to

expect in return.

In an object-oriented system, the simplification due to encapsulation is

critical because it hides any substantive distinctions between data types and

allows an ORDBMS to be implemented without anticipating the types and

methods that users might want to add.

9.2 Structured Data types

Atomic types and user-defined types can be combined to describe more

complex structures using type constructors. The set of syntax is an example of

constructor. Other common type constructors include:

Row(n1t1,…..nntn): A type representing a row, or a\tuple of n fields n1….n1

of types t1,…..tn respectively.

Listof(base): A type representing a sequence of base-type items.

ARRAY(base): A type representing an array of base-type items.

Setof(base): A type representing a set of base-type items. Sets cannot contain

duplicate elements.

Bagof(base): A type representing a bag or multiset of base-type items.

To fully appreciate the power of type constructors, observe that they be

composed; for example, ARRAY(Row(age:integer, sal:integer)). Types using

 102

listof, ARRAY, bagof or setoff as the outermost type construction are

sometimes referred to as collection types, or bulk data types.

9.3 Operations on Structured Data

Manipulating Data Structured Types

The DBMS provides built-in methods for types supported through type

constructors. These methods are analogous to built-in operations such as

additional and multiplication for atomic typres such as integer.

Built-in operators for structured types

Rows: given an item I whose type is row(n1t1,….nntn), the field

extraction method allows us to access an individual field nk, using the

traditional dot notation i.nk. if now constructors are nested in a type definition,

dots may be nested to access the fields of the nested row; for example, i.nk.m1.

if we have a collection of rows, the dot notation gives us a collection as a

result. For example, if it is a list of rows, tn ; if I is a set of rows, i.nk gives is a

set of items of type tn.

This nested-dot notation is often called a path expression because it

describes a path through the nested structure.

Sets and Multisets: Set objects can be compared using the traditional

set methods <,<=,=,>,>=. Two set objects can be combined to form a new

object using the U, n and – operators.

Each of the methods for sets can be defined for multisets, taking the

number of copies of elements into accounts. The U operation is simply adds up

the number of copies an element, the n operation counts the lesser number of

items a given element appears in the two input multi sets, and - subtracts the

number of times a given element appears in the second multiset from the

number of times it appears in the first multi set. For example, using multi set

semantics U({1,2,2,2},{2,2,3}) = {1,2,2,2,2,2,3}; n(1,2,2,2},{2,2,3})= {2,2};

and –({1,2,2,2} ,{1,2})={1,2}.

Lists: Traditional list operations include head, which returns the first

elements, tail, which returns the list obtained by removing the first element;

prepend, which takes an element and inserts it as the first element in a list; and

append, which appends one list to another.

Arrays: Array types support an array index method to allow users to

access array items at a particular offset. A postfix ‘square bracket’ syntax is

usually used, for example, foo-array[5].

Others: the operators listed above are just a sample. We also have the

aggregate operators count, sum, avg, max and min, which can be applied to any

object of a collection type. Operation for type conversions are also common.

For example, we can provide operators to converts a multicast objects to a set

object by eliminating duplicate.

 103

9.4 Encapsulation and ADTs

The combination of atomic data type and its associated methods is

called an abstract data type(ADT). Traditional SQL comes with built-in ADTs,

such as integer or strings.

The label abstract is applied to these datatypes because the database

system does not need to know how an ADTs data is stored nor how the ADTs

methods work. It merely need to know what methods are available and input

and output types for the methods. Hiding ADT internals is called encapsulation.

Note that even a relational system, atomic types such as integers have

associated methods that encapsulate them. In the case of integers, the standard

methods for the ADT are the usual arithmetic operators and comparators. To

evaluate the addition operator on integers, the database system need not

understand the laws of addition – it merely needs to know how to invoke the

addition operator’s code and what type of data to expect in return.

 9.5 Inheritance

In object-database systems, unlike relational systems, inheritance is

supported directly and allows type definitions to be reused and refined very

easily. It can be very helpful when modeling similar but slightly different

classes of objects. In object database systems, inheritance can be used in two

ways for reusing and refining types, and for creating hierarchies of collections

of similar but not identical objects.

Defining types with inheritance

In the Dinky database we model movie theaters with the type theater_t.

Dinky also wants their database to represent a new marketing technique in the

theater business, the theater_cafe, which serves pizza and other meals while

screening movies. Theater_cafes require additional information to be

represented in the database. In particular, a theater_cafe is just like a but an

additional attribute representing the theater’s menu. Inheritance allows us to

capture this specialization explicitely in the database design with the following

DDL statement:

CREATE TYPE theatercafe_t UNDER theater_t(menu text);

This statement creates a new type, theatercafe_t, which has the same

attributes and methods are theater_t, along with one additional menu of type

text. Methods defined on theater_t apply to objects of type theatercafe_t, but

not vice versa. We say that theatercafe_t inherits the attributes and methods of

theater_t.

Note that the inheritance is not merely a macro to shorten CREATE

statements. It creates an explicit relationship in the database between the

subtype (theatercafe_t) and the super type (theater_t). an object of the subtype

is also considered to be an object of the supertype. This treatment means that

any operations that apply to the supertype also apply to the sub type. This is

generally expressed in the following principle:

 104

The Substitution Principle: Given a super type A and subtype B, it is

always possible to substitute an object of type B into a legal expression written

for object of type A, without producing type errors.

This principle enables easy code reuse because queries and methods

written for the supertype can be applied to the subtype without modification.

Note that inheritance can also be used for atomic types, in addition to

two types. Given a super type image_t with methods title(), number-of-colors(),

and display(), we can define sup type thumbnail-image_t for small images that

it inherits the methods fro image_t.

Building of Methods

In defining a sub type, it is sometimes useful to replace a method for the

super type with the new version that operates differently on the sub type.

Consider the image_t type, and the subtype jpeg_image_t from the Dinky

database. Unfortunately, the display() method for standard images does not

work for JPEG images, which are specifically compressed. Thus, in creating

type jpeg_image_t, we write a special display() method for JPEG image and

register it with the database system using the CREATE FUNCTION

command:

CREATE FUNCTION display(jpeg_image) RETURNS jpeg_image

AS EXTERNAL NAME ‘/a/b/c/jpeg.class’ LAN-GUAGE ‘ java’;

Registering a new method with the same name as an old method is called

Overloading the method name.

Because of overloading, the system must understand which method is

intended in a particular expression. For example, when the system needs to

invoke the display() method on an object of type jpeg_image_t, it uses

specialized display method. When it needs to display on an object of type

image_t that is not otherwise sub typed, it invokes the standard display

method. The process of deciding which method to invoke is called binding the

method to the object. In certain situations this binding can be done when an

expression is parsed, but in other case \s the most specific type of an object

cannot be known until runtime, so the method cannot be bound until then. Late

binding facilities add flexibility, but can make it harder for the user to reason

about the methods that get invokes for a given query expression.

Collection Hierarchies, Type Extents and Queries

Type inheritance was invented for object-oriented programming

language and our discussion of inheritance up to this point differs little form the

discussion one might find in a book on an object-oriented language such as

C++ or Java.

However, because database systems provide query languages over

tabular datasets, the mechanisms from programming languages are enhanced in

object database to deal with tables and queries as well. In particular, in object-

relational systems we can define a table containing object of particular type,

such as the theaters table in the Dinky schema. Given a new sub type such as

 105

theater_cafe, we would like to create another table theater_cafe_t to store the

information about theater_cafes. But when writing a query over the theaters

table, it is sometimes desirable to ask the same query over the theater_cafes

table, after all , it use project out the additional columns, an instance of the

theater_cafes table can be regarded as an instance of the theater table.

Rather than requiring the user to specify query for each such table, we

can inform the system that a new table of the such type is to be treated as part

of a table of the super type, with respective queries over the later table. In our

example, we can say:

CREATE TABLE theater_cafes OF TYPE theater_cafe_t UNDER theaters

This statement tells the system that queries over the theaters table

should actually be run over all types in oth the theaters and theater_cafes tables.

In such cases, if the sub type definition involves method overloading, late

binding is used to ensure that the appropriate methods are called for each tuple.

In general, the UNDER clause can used to generate an arbitrary tree of

tables, called a collectionhierarchy. Queries over a particular tree T in the

hierarchy are run over all tuples in T and its descendentss. Sometimes, a user

may want the query to run only on T and not on the descendents; additional

syntax, for example the keyword ONLY, can be used in the queries FROM

clause to achieve this effect.

Some systems automatically create special tables for each type, which

contain references to every instances of the type that exists in the database.

These tables are called type extents and allow queries over all objects of a

given type, regardless of where the objects actually reside in the database. They

extents naturally from a collection hierarchy that parallels the type hierarchy.

9.6 Objects, Object identity and Reference types

In object, database systems data objects can be given an object

identifier, which is some value that is unique in the database across time. The

DBMS is responsible for generating oids and ensuring than an oid identifies an

object uniquely over its entire lifetime. In some systems, all tuples stored in any

table are objects and are automatically assigned unique oids; in other system, a

user can specify the table for which the tuples are to be assigned oids. Often,

there are also facilities for generating oids for larger structures as well as

smaller structures.

An objects oid can be used to refer to it from elsewhere in the data.

Such a reference has a type (similar to the type of a pointer in a programming

language), with a corresponding type constructor.

Ref(base): a type representing a reference to an object of type base.

The ref type constructor can be interleaved with the type constructors for

structured types, for example, Row(ref(ARRAY(integer))).

 106

Notations of equality

The distinction between reference types and reference-tree structured

types raises another issue: the definition of equality. Two objects having the

same type are defined to be deep equal if and only if.

The objects are of atomic type and have same value, or

The objects are of reference type, and the deep equals operator is true

for the two referenced objects, or

The objects are of structured type, and the deep equals operator is true

for all the corresponding subparts of the two objects.

Two objects that have the same reference type are defined to be shallow

equal if they both refer to the same object (ie., both references use the same

oid). The definition of shallow equality can be extended to objects of arbitrary

type by taking the definition of deep equality and replacing deep equals by

shallow equals in parts 2 and 3.

9.7 Database Design for an ORDBMS

An ORDBMS supports a much better solution. First we can store the

video as an ADT object and write methods that capture any special

manipulation that we wish to perform. Second, because we are allowed to store

structured types. Such as lists, we can store the sequence for a probe in a single

tuple, along with the video information1 this layout eliminates the need for

joins in queries that invoke both the sequence and video information. An

ORDBMS design for our example consists of a single relation called

probes_AllInfo:

Probes_AllInfo (pid:integer, ocseq:location-seq, camera:string,

video: mpeg tream)

This definition involves two new types, location-seq and mpeg_stream.

The mpeg_stream type is defined as an ADT with a method display() that takes

a start time and an end time and displays the portion of the video recorded

during that interval. This method can be implemented efficiently by looking at

the total recording duration and the total length of the video and interpolating to

extract the segment recorded during the interval specified in the query.

Our first query is shown below in extended SQL syntax; suing this

display method. We now retrieve only the required segment of the video, rather

than the entire video.

SELECT display(P.video,1:10p.m May 10 1996, 1:15p.m May 10 1996)

FROM Probes_AllInfo P

WHERE P.pid=0

Now consider the location_seq type. We would define it as a list type

containing a list of row type objects:

CREATE TYPE location_seq listof

(row(time:timestamp, lat:real, long:real))

 107

Consider the locseq field in a row for a given probe. This field contains

a list of rows, each of which has three fields. If the ORDBMS implements

collection types in their fullgenerality, we should be able to extract the time

column from this list to obtain a list of timestamp values, and to apply the MIN

aggregate operator to this list to find the earliest time at which the given probe

ecorded. Such support for collection types would enable us to express out

second query as shown below:

SELECT P.pid, MIN(P.locseq.time)

FROM Probes_AllInfo P

Current ORDBMS are not as general and clean as this example query

suggests. For instance, the system may not recognize that projecting the time

column from a list of rows gives us a list of timestamp values; or the system

may allow us to apply an aggregate operator only to a table and not nested list

value.

Object Identity

We now discuss some of the consequences of using refernce type if ids.

The use of oids is especially significant because it is a structured data type or

because it is a big object such as an image. Although reference types and

structured types seen similar, they are actually quite different.

 Deletion: Objects with references can be affected by the deletion of

objects that they reference; while reference-free structured objects are

not affected by deletion of other objects. For examples, the theaters

table were dropped from the database an object of type theater might

change value to null, because the theater_t object that it refers to has

been deleted, while a similar object of type my_theater would not

change value.

 Update: Objects of reference types will change value if the referenced

object is updated. Objects of reference-free structured types change

value only if updated directly.

 Sharing versus Copying: An identified object can be referenced by

multiple reference- type items, so that each update to the object is

reflected in many places. To set a similar affect in reference-free types

requires updating all copies of an object.

There are also important storage distinctions between reference

types and non reference types, which might affect performance:

 Storage Overhead: Storing copies of a large value in multiple

structured type objects may use more space than storing the value once

and referring to it elsewhere through reference type objects. This

additional storage requirement can affect both disk usage and buffer

management (if many copies are accessed at once).

 Clustering: the subparts of a structured object are typically stored

together on disk. Objects that are far away on the disk, and the disk arm

may require significant movement to assemble the object and it

 108

references together. Structured objects can thus be more efficient than

reference types if they are typically accessed is their entirely.

Many of these issues also arise in traditional programming languages

such as C or Pascal, which distinguish between the notions of referring to

objects by value and by reference. In database design the choice between using

a structured type or a reference type will typically include consideration of the

storage costs, clustering issues and the effect of updates.

9.8 ORDBMS Implementation Challenges

Storage and Access Methods

Since object-oriented database store new types of data, ORDBMS

implementors need to revisit some of the storage and indexing issues.

Storing Large ADT and Structured Type Objects

Large ADT objects and structured objects complicate the layout of data

on disk. User defined ADTs can be quite large. In particular, they can bigger

than a single page. Large ADts like BLOBs require special storage, typically in

adifferent location on disk from tuples that contain them.

Structured object can also be large, but unlike ADT objects, they often

vary in size during the lifetime of a database. For example, consider the star

attribute of the film table. As the year pass, some of the bit actors in an old

movie may become famous. When a bit actor becomes famous, Dinky might

want to advertise his or her presence in the earlier flimes.

This includes an insertion into the stars attribute of an individual tuple

in flims. Because these bulk attributes can grow arbitrary, flexible disk layout

mechanisms are required.

Query Processing

ADTs and structured types call for new functionality in processing

queries in ORDBMS. They also change a number of assumptions that affect the

efficiency of queries. So all the queries can be processed in an effective manner

by using the following methods.

 User-defined Aggregation function

 Method Security

 Method Caching

 Pointer Swizzling

Query Optimization

To handle the new query processing functionality, an optimizer must

know about the new functionality and use it appropriately. Here two issues in

exposing information to the optimizer and an issue in the query planning that

was ignored in the relational system.

 109

Different optimizing methods

 Registering Indexes with the optimizer

 Reduction factor and Cost estimation for ADT methods

 Expensive Selection Optimization

9.9 OODBMS

We define OODBMS as a programming language with support for

persistent objects. While this definition reflect the origins of OODBMSs

accurately, and to a certain extent the implementation focus of OODBMS

support collection types makes it possible to provide a query language over

collections. Indeed, a standard has been developed by the Object Database

Management Group (ODMG) and is called Object Query Language, or OQL.

The ODMG data model is the basis for an OODBMS, just like the

relational data model is the basis for an RDBMS. A database contains a

collection of objects, which are similar to entities in the Er model. Every object

has a unique oid, and a database contains collections of objects with similar

properties; such a collection is called a class.

The properties of a class are specified using ODL and are of three

kinds. Attributes, relationship and methods. Attributes have an atomic type or a

structured type. OLD supports the set, bag, list, array and struct type

constructors.

Relationships have a type that is either reference to an object or a

collection of such references. A relationship captures how an object is related

to one or more objects of the same class or of a different class. A relationship in

the ODMG model is really just a binary relationship in the sense of the ER

model. A relationship has a corresponding inverse relationship; intuitively, it is

the relationship ‘in the other direction’.

Methods are functions that can be applied to objects of the class. There

is no analog to methods in the ER or relationship models.

The keyword interface is used to define a class. For each interface, we

can declare an extent, which is the name for the current set of objects of that

class. The extent is analogous to the instance of a relation, and the interface is

analogous to the schema. If the user does not anticipate the need to work with

the set of objects of a given class - it is sufficient to manipulate individual

objects the extent declaration can be omitted.

The following ODL definitions of the movie and theater classes

illustrate the above.

Interface Movie

(extent Movies key moviename)

{attribute data start;

Attribute data end;

Attribute string moviename;

Relationship set <theater> shown at inverse theater: now showing:}

 110

The collection of database objects whose class is movie is called

Movies. No two objects in Movies have the same moviename value, as the key

declaration indicates,. Each movie is shown at a set of theaters and is shown

during the specified period. A theater is an object of class theater, which is

defined below:

Interface Theater

(extent Theaters key theatername)

{attribute string theatername;

Attribute string address;

Attribute integer ticketprice;

Relationship set <Movie> now showing inverse

Movie :: ShownAt;

Float numshowing() raise(error counting Movies);

}

Each theater shown several movies and charges the same ticket price for

every movie. Observe that the shownAt relationship of Movie and the

nowshowing relationship of theater are declared to be inverse of each other.

Theater also has a method numshowing() that can be applied to a theater object

to find the number of movies being shown at that theater.

OQL

The ODMG query language OQL was deliberately designed to have

syntax similar to SQL, in order to make it easy for users familiar with SQL to

learn OQL. Let us begin with a query that fields pairs of movies and theaters

such that the movie is shown at the theater and the theater is showing than one

movie.

SELECT mname:M.moviename, tname:

T.theaterName

NAME Movie M, M.shownAt T

WHERE T.numshowing() > 1

The SELECT clause indicates how we can given names to fields in the

result; the two result fields are called mname and tname. The part of this query

that differs from SQL is the FORM clause. The variable M is bound in turn to

each movie in the extent movies. For a given movie M, we bind the variable T

in turn to each theater in the collection M.ShownAt. thus, the use of the

path expression M.ShownAt allows us to easily express a nested query. The

following query illustrates the grouping construct OQL.

SELECT T.ticketprice,

AvgNum:AVG(SELECT P.T.numShowing()

FROM partition P)

FROM Theaters T

GROUP BY T.ticketprice

 111

For each ticketprice, we create a group of theaters with the ticketprice.

This group of theater is the partition for that ticket price and is referred to using

OQL keyword partition. In the SELECT clause, for each ticketprice, we

compute the average number of movies shown at theaters in the partition for

that ticketprice.

9.10 Comparing RDBMS with OODBMS and ORDBMS

RDBMS Versus ORDBMS

Comparing and RDBMS with an ORDBMS is straightforward. The resulting

simplicity of the data model makes it easier to optimize queries for efficient

execution, for example, a relation system is also easier to use because there are

fever features to master. On the other hand, it is less versatile than an

ORDBMS.

OODBMS Versus ORDBMS: Similarities

OODBMSs and ORDBMSs both support user-define ADTs, a

structured types, object identity and reference types, and inheritance. Both

support a query language for manipulating collection types. ORDBMSs support

ODL/OQL. The similarities are by no means accidental: OODBMSs in turn

have developed query languages based on relational query languages. Both

OODBMSs and ORDBMSs provide DBMS functionality such as concurrency

control and recovery.

OODBMS Versus ORDBMS: Differences

The fundamental difference is really a philosophy that is carried all the

way through: OODBMS try to add DBMS functionality to a programming

language, whereas ORDBMS try to add richer data types to a relational DBMS.

The query facilities of OQL are not supported efficiently in most

OODBMSs, whereas the query facilities are the center pieced of an ORDBMS.

To some extent, this situation is the result of different extent, it is also a

consequence of the systems being optimized for very different kinds of

applications.

OODBMSs aim to achieve seamless integration with a programming

language such as C++, Java or Smalltalk. Such integration is not an important

goal for an ORDBMS.

Self-Assesment Questions – IX

1. Inheritance will _______________________.

2. combining data and functions into a single unit is_______________.

3. Expansion of ORDBMS is _______________________.

4. Expansion of OODBMS is _______________________.

5. Expansion of ODM is

a) Operator Data Model

b) Object Domain Model

c) Object Data Model

 112

6. Expansion of OQL is

a) Object queue Language

b) Object Query Language

c) Operator Query Language

Sample questions

7. Write notes about structured data types.

8. Write down the concept of inheritance.

9. Explain ORDBMS?

10. Differentiate RDBMS,OODBMS and ORDBMS?

11. Explain OQL?

12. Explain different operations in structured datatypes?

Answers for Self-Assesment Questions – IX

1. derive new class from the existing class

2. class

3. Object Relational Database Management System

4. Object Oriented Database Management System

5. c – Object Data Model

6. b – Object Query Language

 113

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 114

10. Data Warehousing and Decision Support

Database management systems are widely used by organizations for

maintaining data that documents their everybody operations. In applications

that update such operational data, transactions typically make small changes

and a large number of transactions must be reliably and efficiently processed.

Such online transaction processing (OLTP) applications have driven the growth

of the DBMS industry in the past three decades and will continue to be

important. carrying the motivation for pre computed views one step further,

organizations can consolidate information from several databases into a data

warehouse by copying tables from many sources into one location or

materializing a view defined over many specialized products are now available

to create and manage warehouse of data from multiple databases.

10.1 Introduction to Decision Support

Organizational decision making requires a comprehensive view of all

aspects of enterprise, so many organizations created consolidated data

warehouses that contain data drawn from several database maintained by

different business units together with historical and summary information.

Three broad classes of analysis tools are available.

 Some systems support a class of stylized. First, some systems support a

class of stylized queries that typically involve group-by and aggregation

operators and provide excellent support for complex Boolean

conditions, statistical functions, and features for time-seies analysis.

Applications dominated by such queries are called Online Analytic

Processing (OLAP).

 Second, some DBMS support traditional SQL-style queries but are

designed to also support OLAP queries efficiently. Such systems can be

regarded as relational DBMS optimized for decision support

applications.

 The third class of analysis tools is motivated by the desire to find

interesting or unexpected trends and patterns in large data sets rather

than the complex query characteristics just listed. In exploratory data

analysis, although an analyst can recognize an interesting pattern when

shown with the pattern, it is very difficult to formulate a query that

capture the essence of an interesting pattern.

 The amount of data in many applications is too large to permit manual

analysis or even traditional statistical analysis, and the goal of data mining is to

support exploratory analysis over very large data sets.

OLAP : Multidimensional Data Model

In multi dimensional data model, the focus is on a collection of numeric

measures. Each measure depends on a set of dimensions. We use a running

example based on sales data. The measure attribute in our example is sales. The

dimensions are product, location, and time.

 115

This view of data as a multidimensional array is readily generalized to

more than three dimensions. In OLAP applications, the bulk of data can be

represented in such a multidimensional array. Indeed some OLAP systems

actually store data in a multidimensional array. OLAP systems that use arrays

to store Multidimensional OLAP (MOLAP) systems.

The data in a multidimensional array can also be represented as a

relation as illustrated in the following figure.

Locid City State Country

1 Madison WI USA

2 Fresno CA USA

5 chenni TN India

 Location

pid pname Category Price

11 Lee james Apparel 25

12 Zord Toys 18

13 Biro pen stationary 2

 Products

pid timeid locid Sales

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

13 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

11 2 2 22

11 3 2 10

12 1 2 26

12 2 2 45

12 3 2 20

13 1 2 20

13 2 2 40

13 3 2 5

 Salse

Fig. 10.1 Locations, Products and Sales Represented as Relations

 116

Information about dimensions can also be represented as a collection of

relations:

Locations(locid: integer, city: string \, state: string, country: string)

Products(pid: integer, pname: string, category: string, price: real)

Times(timeid: integer, date: string, week: integer, month: integer,

 Quarter: inteer, year: integer, holiday_flag: Boolean)

 These relations are much smaller than the fact table in a typical OLAP

applications; they are called the dimension tables. OLAP systems that store all

information, including fact tables, as relations are called relational OLAP

(ROLAP) systems.

10.3 Multidimensional Aggregation Queries

 The operations supported by this model are strongly influenced by end

user tools such as spreadsheets. A very common operation is aggregating a

measure over one or more dimensions. The following queries are typical:

 Find the total sales.

 Find total sales for each city.

 Find total sales for each state.

 These queries can be expressed as SQL queries over the fact and

dimensions tables. When we aggregate a measure on one or more dimensions,

the aggregated measure depends on fewer dimensions than the original

measure.

 Another use of aggregation is to summarize at different levels of a

dimension hierarchy. If we a re given total sales per city, we can aggregate on

the location dimension to obtain sales per state. This operation is called roll-up

in the OLAP literature. The inverse of roll-up is drill-down: given total sales by

state, we can ask for a more detailed presentation by drilling down on location.

 Another common operation is pivoting. Consider a tabular presentation

of the sales table. If we pivot it on the location and time dimensions, we obtain

a table of total sales for each location for each time value. This information can

be presented as two-dimensional chart in which the axes are labeled sales for

that location and time. Therefore, values that appear in columns of the original

presentation become labels of exes in the result presentation. The result of

pivoting, called a cross-tabulation.

Fig: Cross-tabulation of sales by year and state

 WI CA Total

1995 63 81 144

1996 38 107 145

1997 75 35 110

Total 176 223 399

 117

 The OLAP framework makes it convenient to pose a broad class of

queries. It also gives catchy names to some familiar operations: Slicing a

dataset amounts to an equality selection on one or more dimensions, possibly

also with some dimensions projected out. Dicing a dataset amounts to a range a

cube or cross-tabulated representation of the data.

A note on Statistical Database

 Many OLAP concepts are present in earlier work on statistical

databases (SDBs), which are database systems designed to support statistical

applications, although this connection has not been sufficiently recognized

because a differences in application domains and terminology. The multi

dimensional data model, with the notions of a measure associated with

dimensions and classification hierarchies for dimension values, is also used in

SDBs. OLAP operations such as roll-up and drill-down have counter parts in

SDBs.

ROLLUP and CUBE in SQL:1999

 A single OLAP operation leads to several closely related SQL queries

with aggregation and grouping. For example, from the cross-tabulation table ,

we obtain by pivoting the sales table. To obtain same information, we would

issue the following query:

SELECT T.year, L.state, SUM(S.sales)

FROM Sales S, Times T, Location L

WHERE S.timeid=T.timeid AND S.locid=L.locid

GROUP BY T.year, L.state

This query generates the entries in the body of the chart. The summary column

on the right is generated by the query:

SELECT T.year, L.state, SUM(S.sales)

FROM Sales S, Times T,

WHERE S.timeid=T.timeid

GROUP BY T.year

The summary row at the bottom is generated by the query:

SELECT L.state, SUM(S.sales)

FROM Sales S, Location L

WHERE S.locid=L.locid

GROUP BY L.state

The cumulative sum in the bottom-right corner of the chart is produced by the

query:

SELECT SUM(S.sales)

FROM Sales S, Location L

WHERE S.locid=L.locid

10.4 WINDOW Queries in SQL:1999

 118

 The time dimension is very important in decision support and queries

involving trend analysis have traditionally been difficult to express in SQL. To

address this, SQL:1999 introduced a fundamental extension called query

window. Examples of queries that can be written using this extension, but are

either difficult or impossible to write in SLQ without it, include,

1. Find total sales by month.

2. Find total sales by month for each city.

3. Find the percentage change in the total monthly sales for each product.

4. Find the top five products ranked by total sales.

5. Find the trailing n day moving average of sales.

6. Find the top five products ranked by cumulative sales, for every

monthover the past year.

7. Rank all products by total sales over the past year, and for each product,

print the difference in total sales relative to the product ranked behind it.

 There is some similarities from GROUP BY and CUBE clauses, there

are important differences as well. For example, like the window operator,

GROUP BY allows us to create partitions of rows and apply aggregate

functions such as SUM to the rows in the partitions. However unlike windows

there is a single output row for partition rather than one output row for each

row and each partition is a unordered collection of rows.

We now illustrate the window concept through an example:

SELECT L.state, T.month, AVG(S.sales) OVER AS movavg

FROM Sales S, Times T, Location L

WHERE S.timeid=T.timeid AND S.locid=L.locid

WINDOW W AS (PARTITION BY L.state ORDER BY T.month

RANGE BETWEEN INTERVAL ‘1’ MONTH PRECEDING

AND INTERVAL ‘1’ MONTH FOLLOWING)

 The FROM and WHERE clauses are processed as usual to generate an

intermediate table, which we refer o as temp. windows are created over the

temp relation.

 There are three steps in defining window, first we define partitions of

the table, using the PARTITION BY clause, in the example, partitions are

based on the L.state column. Partitions are similar to groups created with

GROUP BY, but there is a very important difference in how they are

processed. To understand the difference observe that the SELECT clause

contains a column, T.month , which is not ued to define the partition, different

rows in a given partition could have different values in this column. Such a

column cannot appear in a SELECT clause in conjunction with grouping, but it

is allowed for partitions.

 The second step in defining a window is to specify the ordering of rows

within a partition. We do this using the ORDERED BY clause, in the example,

the rows within each partition are ORDERED BY T.month.

 119

 The third step in window definition is to frame windows , that is to

establish the boundaries of window associated with each row in terms of the

ordering of rows within partition.

Framing a window

 There are two distinct ways to framing a window in SQL:1999. the

example query illustrated the RANGE construct, which defines a window

based on the values in some column. The ordering column has to be a numeric

type, a date time type, or an interval type since these are the only types for

which addition and subtraction are defined.

 The second approach is based on using the ordering directly and

specifying how many rows before and after the given row are in its window.

Thus we could say

SELECT L.state, T.month, AVG(S.sales) OVER AS movavg

FROM Sales S, Times T, Location L

WHERE S.timeid=T.timeid AND S.locid=L.locid

WINDOW W AS (PARTITION BY L.state ORDER BY T.month

ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)

 If there is exactly one row in temp for each months, it is equivalent to the

previous query. However, if a given month has no rows or multiple rows, the

two queries produced different results. In this case, the result of the second

query is hard to understand because the windows for different rows do not align

in a natural way.

New Aggregate functions

 While the standard aggregate functions that apply to multi sets of value

can be used in conjunction with windowing, there is a need for a new class of

function that operate on a list of values.

 The RANK function returns the position of a row within its partitions. If

a partition has 15 rows, the first row has RANK1 and the last row has rank15.

The rank of intermediate rows depends on whether there are multiple rows for a

given value of the ordering column.

10.5 Finding Answers Quickly

 A recent trend, fueled in part by a popularity of the internet, is an

emphasis on queries for which a user wants only the first few, or the best few,

answers quickly. When users pose queries to a search engine such as Alta-

Vista, they rarely look beyond the first or second page of results. If they do not

find what they are looking for, they refined their query and resubmit it. The

same phenomenon occurs in decisions support application and some DBMS

products already support extended SQL construct to specify such queries. A

related trend is that, for complex queries users would like to see an

approximate answers quickly and they have it be continually refined, rather

than wait until the exact answer is available. We now discuss these two trends

briefly.

 120

Top N Queries

 An analyst often wants to identify top selling handful of products, for

example. We can sort by sales for each product and return answers in this

order. If we have a million product and analysts is interested only in top 10. this

straight forward evaluation strategy is clearly wasteful. It is desirable for users

to be able to explicitly indicate how many answers they want, making it

possible for the DBMS to optimize execution. The following example query

asks for the top 10 products ordered by sales in the given location and time.

SELECT P.pid, P.pname, S.sales

FROM Sales S, Products P

WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3

ORDER BY S.sales DESC

OPTIMIZE FOR 10 ROWS

 The OPTIMIZE FOR N ROWS construct is not in SQL92, but is

supported in IBM’s DB2 products, and other products have similar products

have similar construct. In the absence of a cue such as OPTIMIZE FOR 10

ROWS, the DBMS computes sales for all products and returns them in

descending order by the sales. The application can close the result curser after

consuming 10 rows, but considerable effort has already been expended in

computing sales for all products and sorting them.

Online Aggregation

Consider the following query, which asks for the average sales amount by state.

SELECT L.state, AVGS.sales)

FROM Sales S, Location L

WHERE S.locid=L.locid

GROUP BY L.state

 This can be an expensive query, if sales and locations are large

relations. W cannot achieve fast response times with traditional approach of

computing the answer in its entirety when the query is presented. One

alternative, as we have seen, is to use pre computation. Another alternative is to

compute the answer to the query when the query is presented but return an

approximate answer to the user as soon as possible. As the computation

progresses the answer quality is continually refined. This approach is called

Online Aggregation. It is very attractive for queries involving aggregation,

because efficient technique for computing and refining approximate answers

are available.

 To implement online aggregation a DBMS must incorporate statistical

technique to provide confidence intervals for approximate answers and use non

blocking algorithms for the relational operators. An algorithm is said to block if

it does not produce output tuples until it has consumed all its input tuples. For

example, the sort-merge join algorithm blocks because sorting requires all input

tuples before determining the first output tuple. Nested loops join and hash join

 121

are therefore preferable to sort-merge join for online aggregation. Similarly

hash based application is better than sort based aggregation.

10.6 Implementation Techniques for OLAP

 In this section we survey some implementation techniques motivated

by the OLAP environment. The goal is to provide a feel for how OLAP

systems differ from more traditional SQL system, our discussion is far from

comprehensive.

 The mostly-read environment of OLAP systems makes the CPU

overhead of maintaining indexes negligible and the requirement of interactive

response times for queries over very large data sets makes the availability of

suitable indexes very important. This combination of factors has let to the

development of new indexing techniques. We discuss several of these

techniques. We then consider file organizations and other OLAP

implementations issues briefly.

Bitmap Indexes

Consider a table that describes customer:

Customers(custid: integer, name:string, gender:Boolean, rating:integer)

 The rating value is an integer in the range 1 to 5 , and only two values

are recorded for gender. Columns with few possible values are called Sparse.

We can exploit sparsity to construct a new kind of index that greatly speeds up

queries on these columns.

 The idea is to record value for sparse column as a sequence of bit , one

for each possible value. Fro example, a gender value is either 10 or 01, a 1 in

the first position denotes male and 1 in the second position denotes female.

Similarly 10,000 denotes the rating value 1 , and 00001 denotes the rating value

5.

 If we considered the gender value for all rows in the customers table,

we can treat this as a collection of two bit vector, one of which as the

associated value M and other the associated vale F. each bit vector has one bit

per row in the customers table, indicating whether the value in that row is the

value associated with the bit vector. The collection of bit vectors for a column

is called bitmap index for that column.

 An example instance of the customers table, together with the bitmap

indexes for gender and rating is shown in the figure.

 122

 Fig. Bitmap indexes on the Customers Relation

 Bitmap indexes offer two important advantages over conventional hash

and tree indexes. First , they allow the use of efficient bit operation to answer

queries. For example, considered the query, “how many male customers have

the rating of 5?” we can take the first bit vector for gender and do a bitwise

AND with the 5th bit vector for rating to obtain a bit vector that has one for

every male customer with rating 5. we can then count the number of ones in

this bit vector to answer the query. Second, bitmap indexes can be much more

compact than a traditional B+ tree index and are very amenable to the use of

compression techniques.

 This hybrid approach, which can easily be adopted to work with hash

indexes as well as B+ tree indexes, as both advantages and disadvantages

relative to a standard list of rids approach:

1. It can be applied even to columns that are not sparse: that is , in which a

many possible values can appear. Index levels allows us to quickly find

the list of rids in a standard list or bit vector representation, for a given

key value.

2. Overall, the index is more compact because we can use a bit vector

representation for long rid lists. We can have the benefits of fast bit

vector processing.

3. On the other hand, bit vector representation of an rid list relies on a

mapping from a position in the vector to an rid. If the set of rows is

static, and we do not worry about inserts and deletes of rows, it is

straightforward to ensure this by assigning contiguous rids for rows in a

table. If inserts and deletes must be supported, additional steps are

required. For example, we can continue to assign right contiguously on

a per-table basis and simply keep track of which rid corresponds to

deleted rows. Bit vector can now be longer than the current number

M F

 1 0

 1 0

 0 1

 1 0

custid name gender Rating

112 Joe M 3

115 Ram M 5

119 Sue F 5

112 Woo M 4

1 2 3 4 5

0 0 1 0 0

0 0 0 0 1

0 0 0 0 1

0 0 0 1 0

 123

rows, and periodic organizations is required to compact the ‘holes’ in

the assignment of rids.

Join Indexes

 Computing joins with small response times is extremely hard for very

large relation. One approach to this problem is to create an index designed to

speedup specific join queries. Suppose that the customers table is to be joined

with the table called purchase on the custid field. We can create a collection of

<c,p> pairs , where p is the rid of purchases record that joins with a customers

record with custid c.

File organizations

 Since many OLAP query involves such a few columns of a large

relation, vertical partitioning becomes attractive. However, storing a relation

column-wise can degrade performance for queries that involves several

columns. An alternative in a mostly read environment is to store the relation

row-wise, but also store each column separately.

10.7 Data Warehousing

 Data warehouses contain consolidated data from many sources,

augmented with summary information and recovering a long time period.

Warehouses are much larger than other kind of databases; sizes ranging from

several giga bytes to tera bytes are common. Typical workloads involves ad

hoc, fairly complex queries and fast response are important. These

characteristics differentiate warehouse application from OLTP application, and

different DBMS design and implementation techniques must be used to achieve

satisfactory results. A distributed DBMs with good scalability and high

availability is required for very large warehouses.

 Query and analysis tools

 Data sources

 Data Warehouse

Figure 5.4.a Data Warehouse architecture

Data

loaders

DBMS

 124

 A typical data warehousing architecture is illustrated in the above

figure. An organizations daily operations access and modify operational

database. Data from these operational databases and other external sources are

extracted by using interface such as JDBC.

Creating and Maintaining A Warehouse

 Many challenges must be met in creating and maintaining a large data

warehouse. A good database scheme must be designed to hold and integrated

collection of data copied form diverse sources.

 Data is extracted from operational database and external sources,

cleaned to minimize errors and fill in missing information when possible, and

transformed to reconcile semantic mismatches. Transforming data is typically

accomplished by defining a relational views over the table in the data sources.

Loading data consist of materializing such views and storing them in the

warehouse. Unlike a standard view in a relational DBMS therefore, the view is

stored on a database that is different from the database containing the table it is

defined over.

 The cleaned and transformed data is finally loaded into the warehouse.

Additional preprocessing such as sorting and generation if summary

information is carried out at this stage. Data is partitioned and indexes are built

for efficiency. Due to the large volume of data loading is a slow processor.

Loading a terabyte of data sequentially can take weeks, and loading even a

gigabytes can take house. Parallelism is therefore important for loading

warehousing.

 After data is loaded into a warehouse additional measures must be taken

to ensure that the data in the warehouse is periodically refreshed to reflect

updates to the data sources and periodically purge old data. Observed the

connection between the problem of refreshing warehousing table and

asynchronously maintaining replicas of tables in a distributed DBMS.

 The system catalogs associated with the warehouse are very large and

often stored and managed in a separate databases called meta data repository.

The size and complexity of the catalog is in part due to the size and

complexity of warehouse itself and in part because a lot of administrative

information must be maintained.

10.8 Views and Decision Support

 Views are widely used in decision support application. Different

groups of analysts with in an organization are typically concerned with

different aspects of the business and it is convenient to define views that give

each group insight into the business detail that concern it.

Views, OLAP, and Warehousing

 Views are closely related to OLAP and data warehousing. Analysts

wants fast answers to these queries over a very large data sets, and it is natural

to consider pre computing views.

 125

Queries over views

 Consider the following views, regional sales , which computes sales

of products by category and sales.

CREATE VIEW Regionalsales (category, sales, state)

As SELECT P.category, L.state, S.sales

FROM Sales S, Products P, Location L

WHERE P.pid=S.pid AND S.locid=L.locid

The following query computes the total sales for each category by state.

SELECT R.category, R.state, SUM(R.sales)

FROM Regionalsales R

GROUP BY R.category, R.state

 While the sQL standard does not specify how to evaluate queries on

views, it is useful to think interms of a process called query modification. The

idea is to replace the occurrence of regional sales in the query by the view

definition. The result on the query is:

SELECT R.category, R.state, SUM(R.sales)

FROM (SELECT P.category, L.state, S.sales

 FROM Sales S, Products P, Location L

 WHERE P.pid=S.pid AND S.locid=L.locid) AS R

GROUP BY R.category, R.state

10.9 View materialization

 We can answer a query on a view by using the query modification

technique just describe. Often however queries against complex view

definitions must be answered very fast because users encaged in decision

support activities required interactive response time. Even with sophisticated

optimization and evaluation techniques, there is a limit to how fast we can

answer such queries also if the underlining table or in a remote database, the

query modification approach may not even be feasible because of issues like

connectivity and availability.

 An alternative to query modification is to pre compute the view

definition and store the result. When a query is posed on the view, the query is

executed directly on the pre computed result. This approach called view

materialization, is likely to be much faster than the query modification

approach because the complex view need not be evaluated when the query is

computed. Materialized views can be used during query processing in the same

way as regular relation; for example, we can create indexes on materialized

views to further speed up query processing. The drawback, of course, is that we

must maintain the consistency of the pre computed view whenever the

underlying tables are updated.

10.10 Maintaining Materialized Views

 A materialized view is said to be refreshed when we make it consistent

with changes to its underlying table. The process of refreshing a view to keep it

 126

consistent with changes to the underlying table is often referred to as view

maintenance.

Incremental View Maintenance

 A straightforward approach to refreshing a view is to simplify re

compute the view when an underlying table is modified. This may, in fact, be a

reasonable strategy in some cases. Fro example, in the underlying table are in a

remote database, the view can be periodically recomputed and send to data

warehouse where the view is materialized. This has the advantage that the

underlying table need not be replicated at the warehouse.

 Whenever possible, however, algorithms for refreshing a view should

be incremental, in that the cost is proportional to the extend of the change

rather than the cost of re computing the view from scratch.

Join Views

 Consider a view V defined as a join of two tables R S. suppose we

modify R by inserting a collection of Rows Ri and deleting the collection of

rows Rd. we compute Ri S and add the result to V. we also compute Rd S and

subtract the result form V. observe that if r appears in Rd S with count c, it

must also appear in V with the higher count.

Maintaining Warehouse Views

 The views materialized in a data warehouse can be based on source table

in remote databases. The synchronous replication techniques were discussed

previously and it allows us to communicate changes at the source to the

warehouse, but refreshing views incrementally in a distributed setting presents

some unique challenges. To illustrate this, we consider a simple view that

identifies supplier of Toys:

CREATE VIEW ToySupplier(sid)

AS SELECT S.sid

FROM Suppliers S, Products P

WHERE S.pid=P.pid AND P.category=’Toys’

 Suppliers is new table introduced for this example; Let us assume that

it has just two fields, sid and pid, indicating that supplier sid, supplies part pid.

The location of the tables products and suppliers and the view Toysuppliers

influences how we maintain the view.

We could try to maintain the view incrementally as follows:

1. The warehouse site sends this updates to the source site.

2. To refresh the view, we need to check the suppliers table to find

suppliers of the item, and so the warehouse site asks the source site for

this information.

3. The source site returns the set of suppliers for the sold item, and

warehouse site incrementally refreshes the view.

 Suppose that products is empty and supplies contains just the row

<s1,5> initially an consider the following sequences of events:

 127

1. Product pid=5 is inserted with category=’toys’; source notifies

warehouse.

2. Warehouse asks source for suppliers of product pid=5.

3. The row <s2,5> is inserted into suppliers, source notifies warehouse.

4. To decide whether s2 should be added to the view, we need to know the

category of the product pid=5, and warehouse asks source.

5. Source now processes the first query from warehouse, finds two

suppliers for part 5, and returns this information to the warehouse.

6. Warehouse gets the answer to its first question: suppliers S1 and S2 ,

and add these to the view each with count 1.

7. Source processes the second query from warehouse and response with

the information that part 5 is a toy.

8. Warehouse gets the answer to its second question an accordingly

increments the count for suppliers S2 in view.

9. Product pid=5 is now deleted; source notifies warehouse.

10. Since the deleted part is a toy, ware house increments the counts of

matching view tuples; S1 has count 0 and is removed but S2 has count 1

and is retained.

When Should be Synchronous Views?

 A view maintenance policy is a decision about when a view is refreshed,

independent of whether the refresh is incremental or not a view can be

refreshed with in the same transaction that updates underlying table. This is

called immediate view maintenance. The update transaction is slowed by the

refresh step, and impact of refresh increases with the number of materialized

view that depends on the update table.

 Alternatively we can differ refreshing the view. Updates and captured in

a log and applied subsequently to the materialized view. There are several

deferred view maintenance policies:

Lazy: the materialized View V is refreshed at the tie of query is evaluated

using V, if V is not already consistent with its underlying base table. This

approach slows down queries rather than updates, in construct to immediate

view maintenance.

Periodic: The materialized view is refreshed periodically, say once a day. The

discussion of the capture and applied steps in asynchronous replication should

be reviewed at this point. Since it is very relevant periodic view maintenance.

In fact many vendors and extending their asynchronous replication features to

support materialized views. Materialized views that are refreshed periodically

are also called snapshots.

Forced: The materialized view is refreshed after a certain number of changes

have been made to the underlying table.

 128

Self-Assesment Questions – X

1. Data warehouse is used to _____________________________.

2. Decision support system will _____________________________.

3. Expansion of OLAP is _____________________________.

4. Meta data is _____________________________.

Sample questions

5. Write notes about Decision support system.

6. Write down the concept of finding answers quickly.

7. Explain multidimensional aggregation queries?

8. Explain Data warehousing with block diagram?

9. Explain view materialization?

10. How to maintain materialized views?

11. Explain views and decision support?

Answers for Self-Assesment Questions – X

1. Maintain organization’s information

2. Make decisions automatically

3. Online Analytical Processing

4. Data about data

 129

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

 130

11. Data Mining

Data mining consists of finding interesting trends or patterns in large data sets

to guide decisions about future activities.

Introduction to Data Mining

 Data mining is related to the sub area of statistics called exploratory data

analysis, which has similar goals and relies on statistical measures. It is also

closely related to the sub area of artificial intelligence called knowledge

discovery and machine learning. The important distinguishing characteristic of

data mining is that the volume of data is very large; although ideas from these

related areas of study are applicable to data mining problems, scalability with

respect to data size is an important new criterion.

 Finding useful trends in datasets is a rather loose definition of data

mining: in a certain sense, all database queries can be thought of as doing just

this. Indeed, we have a continuum of analysis and exploration tools with SQL

queries at one end, OLAP queries in the middle, and data mining techniques at

the other end.

The Knowledge Discovery Process

 The Knowledge discovery and data mining (KDD) process can roughly

be separated into four steps.

Data Selection: The target subset of data and the attributes of interest are

identified by examining the entire raw dataset.

Data Cleaning: Noise and outliers are removed, field values are transformed to

common units and some new fields are created by combining existing fields to

facilitate analysis. The data is typically put into a relational format, and several

tables might be combined in a de normalization step.

Data Mining: We apply data mining algorithms to extract interesting patterns.

Evaluation: The patterns are presented to end –users in an understandable

form, for example, through visualization.

The result of any step in the KDD process might lead us back to an earlier step

to read the process with the new knowledge gained.

11.2 Counting Co-occurrences

 We begin by considering the problem of counting co-occurring items,

which is motivated by problems such as market basket analysis. A market

basket is a collection of items purchased by a customer in a single customer

transaction. A customer transaction consists of a single visit to store, a single

order through a mail order catalog, or an order at a store on the web. A

common goal for retailers id to identify items that are purchased together. This

information can be used to improve the layout of goods in a store or the layout

of catalog pages.

 131

Transid Custid Date Item Qty

111 201 5/1/99 Pen 2

111 201 5/1/99 Ink 1

111 201 5/1/99 Milk 3

111 201 5/1/99 Juice 6

112 105 6/3/99 Pen 1

112 105 6/3/99 Ink 1

112 105 6/3/99 Milk 1

113 106 5/10/99 Pen 1

113 106 5/10/99 Milk 1

114 201 6/1/99 Pen 2

114 201 6/1/99 Ink 2

114 201 6/1/99 Juice 4

114 201 6/1/99 water 1

 Fig. the purchase relation

Frequent Item sets

 We use purchases relation shown in the above figure to illustrate frequent

item sets. The records are shown sorted into groups by transaction. All tuples in

a group have the same transid, and together they describe a customer

transaction, which involves purchases of one or more items. A transaction

occurs on a given data, and the name of each purchased item is recorded, along

with the purchased quantity. Observe that there is redundancy in purchase: it

can be decomposed by storing transid-custid-date triples in a separate table and

dropping custid and date from purchase: this may be how the data is actually

stored. However, it is convenient to consider the purchase relation, as shown in

the above figure, to compute frequent itemsets. Creating such a denormalized

tables for ease of data mining is commonly done in the data cleaning step of the

KDD process.

 Extrapolation to future transactions should be done with caution, as

discussed in the previous section. Let us begin by introducing the terminology

of market basket analysis. An itemset is a set of items. The support of an

itemset is the fraction of transactions in the database that contain all the items

in the item set. We are interested in all itemsets whose support is higher than a

user-specified minimum support called minsup; we call such itemsets frequent

itemsets.

 We show an algorithm for identifying frequent itemsets in the below

figure. This algorithm relies on a simple yet property of frequent itemsets.

 132

Foreach item,

 Check if it is frequent itemset //appears in > minsup transaction

K=1

Repeat // iterative, level-wise identification of frequent itemsets

 Foreach new frequent itemset Ik with k items, Ik < Ik+1

 Scan all transactions once and check if the generated

 K+1 itemsets are frequent

 K=k+1

Until no new frequent itemsets are identified

Fig. an algorihm itemsets are identified

The a priori property: Every subset of a frequent itemset is also a frequent

itemset.

 The algorithm proceeds iteratively, first identifying frequent itemsets with

just one time. In each subsequent iteration, frequent itemsets identified in the

previous iteration are extended with another item to generate larger candidate

itemsets. By considering only itemsets obtained by enlarging frequent itemsets,

we greatly reduce the number of candidate frequent itemsets; this optimization

is crucial for efficient execution. The a priori property guarantees that this

optimization is correct, that is, we do not miss any frequent itemsets. A single

scan of all transactions suffices to determine which candidate itemsets

generated in an iteration are frequent. The algorithm terminates when no new

frequent itemsets are identified in an iteration.

Iceberg Queries

 We introduce iceberg queries through an example. Consider again the

purchases relation shown in previous figure. Assume that we want to find pairs

of customers and items such that the customer has purchased the item more

than five times. We can express this query in SQL as follows:

SELECT P.custid, P.item, SUM(P.qty)

FROM Purchase P

GROUP BY P.custid, P.item

HAVING SUM(P.qty) > 5

 Think about how this query would be evaluated by a relational DBMS.

Conceptually, for each (custid, item) pair, we need to check whether the sum of

the qty field is greater than 5. one approach is to make a scan over the purchase

relation and maintain running sums for each (custid, item) pair. This is a

feasible execution strategy as long as the number of pairs is larger than main

memory, more expensive query evaluation plans, which involve either sorting

or hashing, have to be used.

 Therefore, we call such a query an iceberg query. In general, given a

relational schema R with attributes A1,A2,….Ak, and B and anaggregation

function aggr, an iceberg query has the following structure:

SELECT R.A1, R.A2,….R.Ak, aggr(R.B)

 133

FROM Relation R

GROUP BY R.A1, …R.Ak

HAVING aggr(R.B) >= constant

 Traditional query plans for this query that use sorting or hashing first

compute the value of the aggregation function for all groups and then eliminate

groups that do not satisfy the condition in the HAVING clause.

11.3 Mining for Rules

 Many algorithms have been proposed for discovering various forms of

rules that succinctly describe the data. We now look at some widely discussed

forms of rules and algorithms for discovering them.

Association Rules

 We use the purchase relation shown in the above figure to illustrate

association rules. By examining the set of transactions in purchases, we can

identify rules of the form:

 { pen} {ink}

There are two important measures for an association rule:

Support: The support for a set of items is the percentage of transactions that

contain all these items. The support for a rule LHSRHS is the support for the

set of items LHS u RHS. For example, consider the rule {pen} {ink}. The

support of this rule is the support of the item set {pen, ink}, which is 75%.

Confidence: Consider transaction s that contains all items in LHS. The

confidence for a rule LHSRHS is the percentage of such transactions that

also contain all items in RHS. More precisely, let sup(LHS) be the percentage

of transactions that contain LHS and let sup(LSH U RHS) be the percentage of

transactions that contain both LHS and RHS. Then the confidence of the rule

LHS RHS is sup(LHS U RHS) / sup(LHS).

Association rules and ISA Hierarchies

 In many cases, an ISA hierarchy or category hierarchy is imposed on

the set of items. In the presence of a hierarchy, a transaction contains, for each

if its items, implicitly all the items ancestors in the hierarchy, the purchase

relation is conceptually enlarged be the eight records shown in the following

figure.

 Stationary beverage

 / \ / \

 / \ / \

 / \ / \

 Pen Ink Juice Milk

 Fig. An ISA Category Taxonomy

 134

Transid Custid Date Item Qty

111 201 5/1/99 Stationary 3

111 201 5/1/99 Beverage 9

112 105 6/3/99 Stationary 2

112 105 6/3/99 Beverage 1

113 106 5/10/99 Stationary 1

113 106 5/10/99 Beverage 1

114 201 6/1/99 Stationary 4

114 201 6/1/99 Beverage 5

Fig. Conceptual Additions to the Purchases Relation with ISA Hierarchy

Generalized Association Rule

 Although association rules have been most widely studied in the

context of market basket analysis, or analysis of customer transactions, the

concept is more general. Consider the purchase relation as shown in the

following figure, grouped by custid. By examining the set of customer groups,

we can identify association rule such as {pen} {milk}. This rule should now

be read as follows: “if a pen is purchased by a customer, it is likely that milk is

also be purchased by that customer”. In the purchases relation shown in the

following figure, this rule has both support and confidence of 100%.

Transid Custid Date Item Qty

112 105 6/3/99 Pen 1

112 105 6/3/99 Ink 1

112 105 6/3/99 Milk 1

113 106 5/10/99 Pen 1

113 106 5/10/99 Milk 1

114 201 6/1/99 Pen 2

114 201 6/1/99 Ink 2

114 201 6/1/99 Juice 4

114 201 6/1/99 water 1

111 201 5/1/99 Pen 2

111 201 5/1/99 Ink 1

111 201 5/1/99 Milk 3

111 201 5/1/99 Juice 6

Fig. The Purchases Relation Sorted on Customer ID

 135

 Similarly, we can group tuples bt date and identify association rules that

describe behavior on the same day. As an example consider again the

purchasees relation. In this case, the rule {pen} {milk} is now interpreted as

follows: “on a day when a pen is purchased, it is likely that milk is also be

purchased;.

 If we use the date field as grouping attribute, we can consider a more

general problem called calendric market basket analysis. In calendric market

basket analysis, the user specifies a collection of calendars. A calendar is any

group of dates, such as every Sunday in the year 1999, or every first of the

month. A rule holds if it hold on every day in the calendar. Given a calendar,

we can compute association rules over the set of tuples whose date field falls

within the calendar.

Sequential Patterns

 Consider the purchase relation shown in the above figure. Each group of

tuples having the same custid value, can be thought of as a sequence of

transactions ordered by date. This allows us to identify frequently arising

buying patterns over time.

 We begin by introducing the concept of a sequence of itemsets. Each

transaction is represented by a set of tuples, and by looking at the values in the

item column, we get a set of item purchased in that transaction. Therefore, the

sequence of transactions associated with a customer corresponds naturally to a

sequence if itemsets purchased by the customer.

 A subsequence of a sequence of itemsets is obtained by deleting one or

more itemsets, and is also a sequence of itemsets. The support for a sequence S

of itemsets is the percentage of customer sequences of which S is a

subsequence. The problem of identifying sequential patterns is to find all

sequences that have a user specified minimum support. A sequence

<a1,a2,…am> with minimum support tells us that customers often purchase the

items in set a1 in a transaction, then in some sub sequent transaction buy the

items in set a2, then the items in set a3 in the later transaction, and so on.

Bayesian Networks

 Finding causal relationship is a challenging task, as we saw in the

previous section. In general, if certain events are highly correlated, there are

many possible explanations. Fro example, suppose that pens, pencils, and ink

are purchased together frequently. It might be that the purchase of one of these

items depends casually on the purchase of another item. Or it might be that the

purchase of one of these items is strongly correlated with the purchase of

another because of some underlying phenomenon.

 One approach is to consider each possible combination of causal

relationship among the variables or events of interest to us and evaluate the

likelihood of each combination on the basis of the data available to us. If we

think of each combination of casual relationships as a model of the real world

underlying the collected data, we can assign score to each model by

considering how consistent it is with the observed data. Bayesian network is a

 136

graphs that can be used to describe a class of such models, with one node per

variable or event, and arcs between nodes to indicate causality.

Classification and Regression Rules

 Consider the following view that contains information from a mailing

compaign performed by an insurance company:

insuranceInfo(age: integer, cartype: string, highrisk: Boolean)

 the insuranceInfo view has information about current customers. Each

record contains a customer’s age and type of car as well as flag indicating

whether the person is considered a high-risk customer. If the flag is true, the

customer is considered high-risk. We would like to use this information to

identify rules that predict the insurance risk of new insurance applicants whose

age an car type are known.

 If the dependent attribute is categorical, we call such rules classification

rules.

 If the dependent attribute is numerical, we call such rules regression

rules.

 We can define support and confidence for classification and regression

rules, as for association rules:

 Support: The support for a condition C is the percentage of tuples that

satisfy C. the support for a rule C1C2 is the support for the condition

C1 n C2.

 Condition: Consider those tuples that satisfy condition C1. the

confidence for a rule C1C2 is the percentage of such tuples that also

satisfy the condition C2.

11.4 Tree structured Rules

 In this section, we discuss the problem of discovering classification and

regression rules from a relation, but we consider only rules that have a very

special structure. The type of rules we discuss can be represented by a tree, and

typically the tree itself is the output of the data mining activity. Trees that

represent classification rules are called classification trees or decision trees and

trees that represent regression rules are called regression trees.

 An example, consider the decision tree shown in the above figure. Each

path from the root node to a leaf node represents one classification rule. For

example, the path from the root to the leftmost leaf node represents the

classification rule: “if a person is 25 years or younger and drives a sedan, then

he or she is likely to have a low insurance risk”. The path from the root to the

right most leaf node represents the classification rule: “if a person is older than

25 years, then he or she is likely to have a low insurance risk”.

 Tree-structured rules are very popular since they are easy to interpret.

Ease of understanding is very important because the result of any data mining

activity need s to be comprehensible by non specialists. There exists efficient

algorithms to construct tree-structured rules from large databases.

 137

Decision Trees

 A decision tree is a graphical representation of a collection of

classification rules. Given a data record, the tree directs the record from the

root to a leaf. Each internal node of the tree is labeled with the predictor

attribute. This attribute is often called a splitting attribute, because the data is

‘split’ based on conditions over this attribute. The outgoing edges of an

internal node are labeled with predicts that involve the splitting attribute of the

node; every data record entering the node must satisfy the predicate labeling

exactly one outgoing edge. The

Combined information about the splitting attribute and the predicates on the

outgoing edges is called the splitting criterion of the node. A node with no

outgoing edges is called a leaf node. Each leaf node of the tree is labeled with

the value of the dependent attribute. W consider only binary trees where

internal nodes have two outgoing edges, although trees of higher degree are

possible.

 A decision tree is usually constructed in two phases. In phase one, the

growth phase, an overlay large tree is constructed. This tree represents the

records in the input database very accurately; for example, the tree might

contain leaf nodes for individual records from the input database. In phase two,

the purning phase, the final size of the tree is determined. The rules represented

by the tree constructed in phase one are usually overspecialized. By reducing

the size of the tree, we generate a smaller number of more general rules that are

better than a very large number of very specialized rules. Algorithms for tree

pruning are beyond our scope discussion here.

 Classification tree algorithms build the tree greedily top-down in the

following way. At the root node, the database is examined and the locally best

splitting criterion is computed. The database is then partitioned, according to

the root nodes splitting criterion, into two parts, one partition for the left child

and one partition for the right child. The algorithm then recourses on each

child. This is shown in the following figure.

Input: node n, Partition D, split selection method S

Output: decision tree for D rooted at nod n

Top-Down Decision Tree Induction Schema:

BuildTree(Noden, data partition D, split selection method S)

Apply S to D to find the splitting criterion

If (a good splitting criterion is found)

 Create two children nodes n1 and n2 of n

 Partition D into D1 and D2

 BuidTree(n1, D1,S)

 BuildTree(n2, D2, S)

Endif

 Fig. Decision Tree Induction Schema

 138

11.5 Clustering

 In this section we discuss the clustering algorithm. The goal is to

partition a set of records into groups such that records within a group are

similar to each other and records that belong to two different groups are

dissimilar. Each such group is called a cluster and each record belongs to

exactly one cluster. Similarly between records is measured computationally by

a distance function. A distance function takes two input records and returns a

vale that is a measure if their similarity. Different application have different

notions of similarly, and no one measure works for all domains.

As an example, consider the schema of the customerInfo view:

CustomerInfo(age: int, salary: real)

 There are two types of clustering algorithms. A partitional clustering

algorithm partitions the data into k groups such that some criterion that

evaluates the clustering quality is optimized. The number of clusters k is a

parameter whose value is specified by the user. A hierarchical clustering

algorithm generates a sequence of partitions of the records. Starting with a

partition in which each cluster consists of one single record, the algorithm

merges two partitions in each step only one single partition remains in the end.

A Clustering Algorithm

 Clustering is a very old problem, and numerous algorithms have been

developed to cluster a collection of records. Traditionally, the number of

records in the input database was assumed to be relatively small and the

complete database was assumed to fit into main memory. In this section, we

describe a clustering algorithm called BIRCH that handles very large databases.

The design of BIRCH reflects the following two assumptions:

 The number of records is potentially very large, and therefore we want

to make only one scan over the database.

 Only a limited amount of main memory is available.

 A user can set two parameters to control the BIRCH algorithm. The first

is a threshold on the amount of main memory available. This main memory

threshold translates into a maximum number of aluster summaries k that can be

maintained in memory. The second parameter e is an initial threshold for the

radius of any cluster. The value of e is an upper bound on the radius of any

cluster and controls the number of clusters of clusters that the algorithm

discovers.

 The algorithm reads records from the database sequentially and processes

them as follows:

 Compute the distance between record r and each of the existing cluster

centers. Let I be the cluster index such that the distance between r and Ci is the

smallest.

 Compute the value of the new radius Ti of the ith cluster under the

assumption that r is inserted into it. If Ri < e , the the ith cluster remains

compact, and we assign r to the ith cluster by updating its center and setting its

 139

radius to Ri. If Ri > e then the ith cluster would no longer be compact if we

insert r into it. Therefore we start a new cluster containing only the record r.

11.6 Similarity Search Over Sequences

 A lot of information stored in databases consists of sequences. In this

section, we introduce the problem of similarity search over a collection of

sequences. Our query model is very simple: we assume that the user specifies a

query sequence and wants to retrieve all data sequences that are similar to the

query sequence. similarly search is different from normal queries in that we are

interested not only in sequences that match the query sequence exactly but also

those that differ only slightly from the query sequence.

 We begin by describing sequences and similarity between sequences. A

data sequence X is a series of numbers X=(x1,x2,…..xk). some times X is also

called time series. We call k the length of the sequence. A sub sequence

z=(z1,z2,…. ,zj) is obtained from another sequence X=(x1,x2,…..xk) by

deleting numbers from the front and back of the sequences.

Similarity queries over sequences can be classified into two types.

 Complete sequence Matching: The query sequence and the sequence s

in the database have the same length. Given a user specified threshold

parameter e, our goal is to retrieve all sequences in the database that are

within e-distance to the query sequence.

 Subsequence Matching: The query sequence is shorter than the

sequences in the database. In this case, we want to find all sub

sequences of sequences in the database such that the sub sequence is

within distance e of the query sequence. we do not discuss sub sequence

matching.

11.7 Incremental Mining and Data streams

 Real life data is not static, but is constantly evolving through addition or

deletions of records. In some applications, such as network monitoring, data

arrives in such high speed streams that it is infeasible to store the data for

offline analysis. We describe both evolving and streaming data in terms of a

framework called block evolution. In block evolution, the input dataset to the

data mining process is not static but periodically updated with the new block of

tuples.

 The goal of change detection is to quantify the difference, in terms of

their data characteristics, between two sets of data and determine whether the

change is meaningful. In particular, we must quantify the difference between

the models of the data as it existed at some timet1 and the evolved version at a

subsequent time t2; that is we must quantify the difference between M(D[1,t1])

and M(D[1,t2]).

 Incremental model maintenance has received much attention. Since the

quality of the data mining model is of utmost importance, incremental model

maintenance algorithms have concentrated on computing exactly the same

model as computed by running the basic model construction algorithm on the

 140

union of old and new data. One widely used scalability technique is localization

n of changes due to new blocks.

 When working with high-speed data streams, algorithms must be

designed to construct data mining models while looking at the relevant data

items only once and in a fixed order, with a limited amount of main memory.

Data stream computation has given rise to several recent studies of online or

one pass algorithms with bounded memory. Algorithms have been developed

for one-pass computation of qualities and order statistics, estimation of

frequency moments and join sizes, clustering and decision tree construction,

estimating correlated aggregates and computing one-dimensional histograms

and haar wavelet decompositions.

11.8 Additional Data Mining Tasks

 We focused on the problem of discovering patterns from a database, but

there are several other equally important data mining tasks. We now discuss

some of these briefly.

Dataset and Feature Selection: It is often important to select the right dataset to

mine. Dataset selection is the process of finding which data sets to mine.

Feature selection is the process of deciding which attributes to include in the

mining process.

Sampling : One way to explore a large dataset is to obtain one or more samples

and analyze them. The advantage of sampling is that we can carry out detailed

analysis on a sample that would be infeasible on the entire dataset, for very

large datasets. The disadvantage of sampling is that obtaining a representative

sample for a given task is difficult; we might miss important tends or patterns

because they are not reflected in the sample.

Visualization: Visualization techniques can significantly assist in understanding

complex datasets and detecting interesting patterns, and the importance of

visualization in data mining is widely recognized.

Self-Assesment Questions – XI

1. Data mining will --.

2. Data Cleaning---------------------------.

3. Expansion of KDD is--.

4. Clustering is--.

5. Data mining will maintain a large database

a) True

b) False

b) None

6. Expansion of PMML

a) Product Model Markup Language

b) Process Model Markup Language

c) Predictive Model Markup Language

 141

Sample questions

7. Write notes about Data mining.

8. Write down the association rules.

9. Explain different mining rules?

10. Explain Tree structured rules?

11. Explain classification regression rule?

12. Explain Clustering?

13. write down data mining additional tasks.

Answers for Self-Assesment Questions – XI

1. Extracting hidden knowledge from large dataset

2. Will enhance the data

3. Knowledge Discovery and Data mining

4. to grouping records

5. b – False

6. c – Predictive Model Markup Language

 142

NOTES

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

…………………………………………………………………….……………..

