
1

PERIYAR INSTITUTE OF DISTANCE EDUCATION

(PRIDE)

PERIYAR UNIVERSITY

SALEM - 636 011.

B.Sc. COMPUTER SCIENCE

FIRST YEAR

PAPER - II : PROGRAMMING LANGUAGE C AND DATA

STRUCTURE

2

Prepared by :

Mrs. M.Kaladevi

Lecturer in Computer Science

 Vivekanandha College of Arts and Sciencs for (Women),

Elayampalayam, Tiruchengode,

Namakkal(Dt.).

3

B.Sc. COMPUTER SCIENCE

FIRST YEAR

PAPER - II : PROGRAMMING LANGUAGE C AND DATA

STRUCTURE

Unit – I

 Overview Of C: History Of C – Importance Of C – Basic Structure Of

C Programs. Constants, Variables and Data Types. Operators and Expression.

Managing Input And Output Operations: Reading And Writing A Character

–Formatted Input And Output. Decision Making And Branching: Simple If,

If-Else, Nesting Of If-Else, Else-If Ladder, Switch Statements – Goto

Statements. Decision Making And Looping: While Statement - Do Statement-

For Statement.

Unit – II

 Structure And Unions. Arrays: Definition – One Dimensional Arrays

– Declaration Of One-Dimensional Arrays – Initialization Of One-Dimensional

Arrays – Two-Dimensional Arrays- Initializing Two Dimensional Arrays –

Multidimensional Arrays – Dynamic Arrays.

Unit – III

 Character Arrays And Strings: Introduction – Declaring And

Initializing String Variables – Reading Strings From Terminal – Writing

Strings To Screen – String Handling Functions – Pointers – Files –

Opening/Closing Files – Files – Input/Output – Error Handling During I/O

Operations – Random Access To Files – Command Line Arguments.

Unit IV

Data Structure: Definition – Categories Of Data Structures. Arrays:

Array Operations – Merging Of Two Arrays – Two Dimensional Arrays.

Stacks: Definition – Operations On Stack – Representation Of A Stack

As An Array – Representation Of A Stack As An Linked List – Evaluation Of

Expression: Infix To Prefix Conversion – Infix To Postfix Conversion.

Queues: Definition – Operations On Queue – Representation Of Queue

As An Array – Representation Of Queue As A Linked List – Circular Queues.

Linked List: Definition – Operation On Linked List – Circular List – Doubly

Linked List – Operations On Doubly Linked List – Polynomial Addition.

Unit V

 Trees: Definition & Terminology – Binary Tree – Reversal Of A

Binary Tree: In-Order, Pre-Order And Post-Order. Representation Of A Binary

Trees In Memory – Linked Representation Of Binary Trees – Array

Representation Of Binary Trees – Operations On A Binary Search Tree:

4

Searching Operation – Insertion Operation And Deletion Operation. Forest

Tree: Conversion Of Forest Tree To Binary Tree.

 Graphs: Definition & Terminology – Graph Representations – Graph

Travels: Depth First Search & Breadth First Search. Shortest Path Algorithm

(Using Dijikstra’s Algorithm).

TEXT BOOKS:

1.“Programming In ANSI C” By E. Balagurusamy

 TMH, New Delhi, 2nd Edition

2. “Data Structure through C” Yashavant Kanethkar.

5

INTRODUCTION

Dear Students

This package consists of five units dealing with concepts of

Programming Language C and Data Structure. The first unit deals with the

fundamental concepts of C programming language and the history of C

language.

The second unit deals with the derived data types like structure &

union, arrays and functions in details with the necessary sample programs.

The third unit explores the derived data type as pointer. You can discuss

about the different pointer concept and its usage. You can also learn about

character arrays & string handling functions. In this unit also deals file

different file concepts and related file handling functions.

The fourth unit describes the need for studying data structures and also

describes the linear data structures like arrays, stacks, queues and linked list in

detail with algorithms and sample programs.

The fifth unit, describes the non–linear data structure like trees and

graphs in details with algorithms and sample program.

 PRIDE would be happy if you make use of this learning material to

enrich your knowledge and skills.

6

UNIT – I

UNIT STRUCTURE

1.1.Introduction

1.2.Objectives

1.3.Overview Of C

1.3.1. History Of C

1.3.2. Importance Of C

1.3.3. Basic Structure Of C Programs

1.3.4. Self Assessment Questions

1.4.Constants, Variables and Data Types

1.4.1. Constants

1.4.2. Variables

1.4.3. Data Types

1.4.4. Self Assessment Questions

1.5.Operators and Expression

1.5.1. Introduction

1.5.2. Arithmetic Operators

1.5.3. Relational Operators

1.5.4. Logical Operators

1.5.5. Assignment Operators

1.5.6. Increment And Decrement Operators

1.5.7. Conditional Operators

1.5.8. Bit Wise Operators

1.5.9. Special Operators

1.5.10. Arithmetic Expressions

1.5.11. Evaluation Of Expressions

1.5.12. Precedence of Arithmetic Operators

1.5.13. Type Conversions In Expressions

1.5.14. Operator Precedence And Associativity

1.5.15. Mathematical Functions

1.5.16. Self Assessment Questions

1.6.Managing Input And Output Operations

1.6.1. Introduction

1.6.2. Reading And Writing A Character

7

1.6.3. Formatted Input And Output

1.6.4. Self Assessment Questions

1.7.Decision Making with Branching and looping

1.7.1. Branching

1.7.1.1. Introduction

1.7.1.2. Decision making with IF statement

1.7.1.3. Simple If Statement

1.7.1.4. The If-Else Statement

1.7.1.5. Nesting Of If-Else

1.7.1.6. The Else-If Ladder Statement

1.7.1.7. The Switch Statements

1.7.1.8. Goto Statements

1.7.2. Looping

1.7.2.1. Introduction

1.7.2.2. The While Statement

1.7.2.3. The Do-While Statement

1.7.2.4. The For Statement.

1.7.2.5. Jumps in Loop

1.7.3. Self Assessment Questions

1.8.Summary

1.9.Unit questions

1.10. Answers for Self Assessment Questions

8

UNIT – II

UNIT STRUCTURE

2.1. Introduction

2.2. Objectives

2.3. Structure And Unions

2.3.1. Introduction

2.3.2. Structure Definition or Template Declaration

2.3.3. Declaration of Structure Variable

2.3.4. Giving Values To Members

2.3.5. Structure Initialization

2.3.6. Comparison Of Structure Variable

2.3.7. Arrays Of Structures

2.3.8. Arrays Within Structures

2.3.9. Structures Within Structures

2.3.10. Structures an Functions

2.3.11. Size Of Structure

2.3.12. Unions

2.3.13. Self Assessment Questions

2.4. Arrays

2.4.1. Definition

2.4.2. One Dimensional Arrays

2.4.3. Declaration Of One Dimensional Arrays

2.4.4. Initialization Of One-Dimensional Arrays

2.4.5. Two-Dimensional Arrays

2.4.6. Initializing Two Dimensional Arrays

2.4.7. Multidimensional Arrays

2.4.8. Dynamic Arrays

2.4.9. Self Assessment Questions

2.5. Functions

2.5.1. Introduction

2.5.2. Need for user defined functions

2.5.3. The form of C functions

2.5.4. Return values and their types

2.5.5. Calling a function

9

2.5.6. Category of functions

2.5.7. Nesting of function

2.5.8. Recursion

2.5.9. Functions with arrays

2.5.10. Self Assessment Questions

2.6. Summary

2.7. Unit Questions

2.8. Answers for Self Assessment Questions

UNIT – III

UNIT STRUCTURE

Introduction

Objectives

 Character Arrays & Strings

 Introduction

 Declaring And Initializing String

Variables

 Reading Strings From Terminal

 Writing Strings To Screen

 String Handling Functions

 Self Assessment Questions

Pointers

o Introduction

o Understanding pointers

o Accessing the address of a variable

o Declaring and initializing pointer

o Accessing a variable through its pointer

o Pointer expressions

o Pointers and array

o Pointers and character strings

o Pointer and functions

o Pointer and structures.

o Self Assessment Questions

10

Files

o Introduction

o Opening/Closing Files

o Input/Output files

o Error Handling During I/O Operations

o Random Access To Files

o Command Line Arguments

o Self Assessment Questions

Summary

Unit Questions

Answers for Self Assessment Questions

UNIT – IV

UNIT STRUCTURE

4.1.Introduction

4.2.Objectives

4.3.Data Structure

4.3.1. Definition

4.3.2. Categories Of Data Structures

4.3.3. Self Assessment Questions

4.4.Arrays

4.4.1. Introduction

4.4.2. Array Operations

4.4.3. Merging Of Two Arrays

4.4.4. Two Dimensional Arrays.

4.4.5. Self Assessment Questions

4.5.Stacks

4.5.1. Definition

4.5.2. Operations On Stack

4.5.3. Representation Of A Stack As An Array

4.5.4. Representation Of A Stack As An Linked List

4.5.5. Evaluation Of Expression

4.5.5.1.Introduction

4.5.5.2.Infix To Prefix Conversion

4.5.5.3.Infix To Postfix Conversion

11

4.5.6. Self Assessment Questions

4.6.Queues

4.6.1. Definition

4.6.2. Operations On Queue

4.6.3. Representation Of Queue As An Array

4.6.4. Representation Of Queue As A Linked List

4.6.5. Circular Queues

4.6.6. Self Assessment Questions

4.7.Linked List

4.7.1. Definition

4.7.2. Operation On Singly Linked List

4.7.3. Circular Linked List

4.7.4. Doubly Linked List

4.7.5. Operations On Doubly Linked List

4.7.6. Polynomial Addition

4.7.7. Self Assessment Questions

4.8.Summary

4.9.Unit questions

4.10. Answers for Self Assessment Questions

UNIT – V

UNIT STRUCTURE

5.1 Introduction

5.2 Objectives

5.3 Trees

5.3.1 Definition A & Terminology

5.3.2 Binary Tree

5.3.3 Reversal Of A Binary Tree

5.3.3.1.Introduction

5.3.3.2.In-Order Traversal

5.3.3.3.Pre-Order Traversal

5.3.3.4.Post-Order Traversal

5.3.4 Application Of Binary Tree

5.3.5 Representation Of A Binary Trees In Memory

5.3.5.1.Linked Representation Of Binary Tree

12

5.3.5.2.Array Representation Of Binary Trees

5.3.6 Operations On A Binary Search Tree

5.3.6.1.Introduction

5.3.6.2.Searching Operation

5.3.6.3.Insertion Operation And Deletion Operation

5.3.7 Forest Tree

5.3.8 Self Assessment Questions

5.4 Graphs

5.4.1 Definition & Terminology

5.4.2 Graph Representations

5.4.3 Graph Traversals

5.4.3.1.Depth First Search

5.4.3.2.Breadth First Search

5.4.4 Shortest Path Algorithm (Using Dijikstra’s Algorithm)

5.4.5 Self Assessment Questions

5.5 Summary

5.6 Unit questions

5.7 Answers for Self Assessment Questions

13

UNIT – I

1.1. Introduction

This unit provides you with fundamental concepts of C language and its

programming structures that will be used throughout this chapter. It also deals

with process of the various data types, constants, variables, operators,

expressions, and decision making with branching and looping in C

programming. It assures you to understand general C programming concepts.

1.2. Objectives

After studying this unit, you should be able to:

 Understand the framework of a C program.

 Understand the various data types available in C and qualifiers that can

be applied to each.

 Understand to create variables of each type, define constant and the

typedef statement.

 Understand and employ the control sequences used in formatted I/O and

utilize the various escape sequences provides by C.

 Understand about operators and expression concepts.

 Understand about, how to making the decision with branching and

looping statement.

1.3. Overview Of C

1.3.1. History Of C

‘C’ is one of the most popular programming languages; it was

developed by Dennis Ritchie at AT & T’s Bell Laboratories at USA in 1972.

It is an upgraded version of two earlier languages, called ‘Basic Combined

Programming Language’ (BCPL) and B, which were also developed at Bell

Laboratories. ‘C’ was developed along with the UNIX operating system. This

operating system, which was also developed at Bell Laboratories. C is running

under a number of operating systems including MS-DOS.

The root map for all modern computer languages are started through the

ALGOL language, in early 1960’s after the COBOL was being used for

commercial applications, FORTRAN was being developed for scientific

applications. At this stage, people started thinking about the single language,

which can perform all possible applications. A committee was formed to

develop a new language called Combined Programming Language (CPL) at

Cambridge University.

14

It seemed to abstract too general another language called ‘Basic

Combined Programming Language’ (BCPL) was developed by Martin

Richards at Cambridge University. With some additional features than CPL.

At the same time a language called ‘B’ was developed by Ken

Thompson at AT & T’s Bell Laboratories. But like BCPL and B turned out

to be very specific. Dennis Ritchie developed a language with some additional

features of BCPL and B which is very simple, relatively good programming

efficiency and good machine efficiency called ‘C’ language.

1.3.2. Importance Of C

 ‘C’ is a general purpose, structured programming language.

 ‘C’ is powerful, efficient, compact and flexible.

 ‘C’ is highly portable (i.e. It can be run in different operating systems

environments).

 ‘C’ is robust language whose rich set of built in functions and operators

can be used to write any complex program.

 ‘C’ has the ability to extend itself. We can continuously add our own

functions to the existing library functions.

 ‘C’ is well suited for writing system software as well as application

software.

 ‘C’ program can be run on different operating systems of the different

computers with little or no alteration.

 ‘C’ is a middle level language, i.e. it supports both the low-level

language and high level language features.

 ‘C’ language allows reference to a memory allocation with the help of

pointers, which holds the address of the memory location.

 ‘C’ language allows dynamic memory allocation i.e. a program can

request the operating system to allocate or release memory at runtime.

 ‘C’ language allows manipulation of data at the lowest level i.e. bit

level manipulation. This feature is extensively useful in writing system

software program.

 ‘C’ is widely available, commercial ‘C’ compilers are available on most

PC’s.

 ‘C’ program are fast and efficient.

 ‘C’ has rich set of operators.

 ‘C’ can be applied in systems programming areas like Compilers,

Interpreters and Assemblers etc.

15

1.3.3. Basic Structure Of C Programs

A ‘C’ program may contain one or more sections given in Fig. 1.3.1.

 Documentation Section: It consists a set of comment lines used to

specify the name of program, the author and other details etc.

 Comments: Comments are very helpful in identifying the program

features and underlying logic of the program. The lines begins with ‘/*’

and ending with ‘*’ are known as comment lines. These are not

executable, the compiler is ignored anything in between /* and */.

 Preprocessor Section: It is used to link system library files, for defining

the macros and for defining the conditional inclusion.

Example:

 #include<stdio.h>, #define A 10, #if def, #endif…etc.

 Global Declaration Section: The variables that are used in more than

one function throughout the program are called global variables and

declared outside of all the function i.e., before main ().

 Every ‘C’ program must have one main () function, which specify the

starting of ‘C’ program. It contains the following two parts.

 Declaration part: This part is used to declare all the variables that are

used in the executable part of the program and these are called local

variables.

 Executable part: It contains at least one valid ‘C’ statement. The

execution of a program begins with opening brace ‘{‘ and ends with

closing brace ‘}’. The closing brace of the main function is logical end of

the program.

16

Fig. 1.3.1 Overview of a C program

Programming Rules:

 The following rules should follow while writing a ‘C’ program.

 All statements in ‘C’ program should be written in lower case letters.

Upper case letters are only used for symbolic constants

 Blank spaces may be inserted between the words. It is not used while

declaring a variable, keyword, constant and function.

 The program statement can write anywhere between the two braces

following the declaration part.

 The user can also write one or more statements in one line separating

them with a semicolon (;)

main() Function Section

{

}

SubProgram Section

 .

 .

 .

Documentation Section

Preprocessor Section

Definition Section

Global Declaration Section

Declaration Part

Executable Part

Function 1

Function 2

Function n

17

1.3.4. Self Assessment Questions

Fill in the blank

1. C language was developed by ___________________.

2. C language is ______________________programming language.

True / False

1. All statements in ‘C’ program should be written in upper case letters.

2. In C language, each line of program ends with semicolon.

Multiple Choice

1. C language was developed at AT & T’s Bell Laboratories at USA in

 a) 1976 b) 1972

 c) 1975 d) 1973

Short Answer

1. Define local variable.

--

--

1.4. Constants, Variables and Data Types

1.4.1. Constants

Constants in C refer to fixed values that do not change during the

execution of a program. Types of constant are as shown in Fig.1.4.1.

 Constants

 Numeric constants Non-Numeric constants

 Integer Constants Real constants Character constants String constants

 Fig.1.4.1 C Constants

Numeric Constants

Integer Constants

A whole number is called integer constants. An integer constant refers

to a sequence of digits. There are three types of integers, namely, decimal, octal

and hexadecimal integer.

Decimal integers consist of a set of digits, 0 through 9, preceded by

optional minus sign. Valid examples are:

18

123 -231 0 253444

Embedded spaces, commas, and non-digit characters are not permitted between

digits. For example

36 5689 20.000 $777456 are invalid numbers

An octal integer constant consists of any combination of digit from the

set 0 through 7, with leading 0.

Valid examples are:

046 123 0 0675

A hexadecimal integer constant consists of any combination of digit

from the set 0 through 9 and A through F and preceded by 0x or 0X

Valid examples are:

 0x3Bf7 0X27 0x

Real Constants

Number containing with decimal point is called real constants. There

are two types of notation, namely, decimal notation and Exponential (or

scientific) notation.

In decimal notation a whole number followed by a decimal point and the

fractional part, which is an integer.

Valid examples are:

0.376 .57 -.46 23.68

The general form of an Exponential notation is:

mantissa e exponent

The mantissa is either a real number expressed in decimal notation or an

integer. The exponent is an integer with an optional plus or minus sign. The

letter e separating the mantissa and the exponent can be written in either

lowercase or uppercase.

Valid examples are:

0.47E2 12e-7 1.8e+3 7.3E2 -6.0e-2

Non-Numeric Constants:

Character constants

A single character constant contains a single character enclosed within

a pair of single quote marks. Valid examples are:

 ‘6’ ‘s’ ‘W’ ‘;’ ‘ ’

19

String constants

A string constant is a sequence of characters enclosed between double

quotes. The characters may be alphabets, digits special characters and blank

spaces.

Valid examples are:

“Hello” “3566” “%---$” “22-7”

Backslash character constants

C supports some special backslash character constants that are used in

output methods. The characters combinations are known as escape sequences.

 Table 2.6.3 Backslash character constants

Constants Meaning

 ‘ \ b’ back space

 ‘ \ f ’ form feed

 ‘ \ n’ new line

 ‘ \r’ carriage return

 ‘ \ t’ horizontal tab

 ‘ \ ‘’ single quote

 ‘ \ “’ double quote

 ‘ \ \’ back slash

Symbolic constants

We often use certain unique constants in a program. These constants

may appear repeatedly in a number of places in the program. For example of

such a constant is 3.142 representing the value of the mathematical constant

“pi”. We face two problems in the subsequent use of program. They are:

1. Problem in modification of the program.

2. Problem in understanding the program.

Modifiability

 We may like to change the value of “pi” from 3.142 to 3.14159 to

improve the accuracy of calculation. In this case, we will have to search

throughout the program and explicitly change the value of the constant

wherever it has been used. If any value is left unchanged, the program may

produce incorrect outputs.

Understandability

 Assignment of a symbolic name to numeric constants frees us problems

like same value means different things in different places. For example, the

number 40 may mean the number of students at one place and the “pass marks”

20

at another place of the same program. We may use the name STRENGTH to

denote the number of students and PASS_MARK to denote the pass marks

required in subject. Constant values are assigned to these names at the

beginning of the program.

A constant is declared as follows:

 #define symbolic-name value of constant;

Valid examples are:

#define STRENGTH = 40;

#define PASS_MARK = 40;

#define PI = 3.1459;

Rules for forming the symbolic constants are:

 Symbolic names take the same form as variable names. But, they are

written in CAPITALS.

 No blank space between the pound sign ‘#’ and word define is

permitted.

 ‘#’ must be the first character in the line.

 A blank space required between #define and symbolic name and

between the symbolic name and the constant.

 #define statement must not end with a semicolon.

 After declaration of symbolic constants, they should not be assigned

any other value within a program.

 Symbolic names are NOT declared for data types.

 #define may appear anywhere in the program but before it referenced in

the program.

1.4.2. Variables

 A variable is an identifier that denotes a storage location used to

store a data value. A variable may take different values at different times during

the execution of the program.

Rules for naming the variables

1. Variable names may consist of alphabets, digits, the underscore (_) and

dollar characters.

2. They must not begin with a digit.

3. Uppercase and lowercase are distinct. This means that the variable Total

is not the same as total or TOTAL.

4. It should not be a keyword.

5. White space is not allowed.

21

6. The length of the variable names cannot exceed 8 characters and some of

the ‘C’ compilers can be recognized up to 31 characters.

7. No commas or blank spaces are allowed within a variable name

Declaration Of Variables

 Variables are the names of the storage locations. A variable must be

declared before it is used in the program. A variable can be used to

store a value of any data type. After designing the variable names,

we must declare them to the complier. Declaration does three things:

1. It tells the compiler what the variable name is

2. It specifies what type of data the variable will hold.

3. The place of declaration decides the scope of the variables.

Primary Type Declaration:

The general form of declaration of a variable is:

data_type variable1, variable2,……, variableN;

where

data_type – is the type of the data.

variable1, variable2,….. variableN – are the list of variables.

 Variables are separated by commas. A declaration statement must end

with a semicolon. Some valid declarations are:

 int rollno;

 float average;

 double pi;

 byte b;

 char c1, c2;

User-Defined Type Declaration:

‘C’ language provides a feature to declare a variable of the type of user-

defined type declaration. Which allows users to define an identifier that would

represents an existing data type and this can later be used to declare variables.

typedef cannot create a new data type. The general form is

 typedef data_type identifier;

where

 typedef – is the user defined type declaration.

data_type – is the existing data type.

identifier – refers to the ‘new’ name given to the data type.

 Some valid declarations are:

22

 typedef int marks;

 marks m1, m2, m3;

Another user-defined data type is defined as

enum identifier{value1, value2,…….valueN};

where

enum - is the key word.

identifier - is a enumerated data type which can be used to declare

variables that can have one of the values enclosed within the braces

(known as enumeration constants).

After this definition, we can declare variables to be in this ‘new’ type as

 enum identifier variable1, variable2……;

The enumerated variables variable1, variable2……. can only have one of the

values value1, value2………….

Example:

enum day {Monday, Tuesday,…….., Sunday}; // enum definition

enum day week_st, week_end; // enum declaration

week_st = Monday; // valid

week_st = May; // invalid

Declaring a Variable as Constant:

The value of certain variables to remain constant during the execution

of a program. We can achieve this by declaring the variable with the qualifier

const at the time of initialization.

Example:

 const int class_strength = 40;

Giving Values To Variables

 A variable must be given a value after it has been declared that before

it is used in an expression. This can be achieved in two ways:

 1. By using an assignment statement

 2. By using a read statement

Assignment Statement

A simple method of giving value to a variable is through the assignment

statement as

 variableName = value;

For Example:

 rollno = 1;

23

 c1 = ‘ x ‘;

Another method to assign a value to a variable at the time of its declaration as

 data_type variableName = value;

For Example:

 int rollno = 1;

 float average = 68.66;

The process of giving initial values to variables is known as the

initialization. The following are valid C statements:

 float x, y, z; // declares three float variables

 int m = 3, n = 6; // declares and initializes two int variables

Reading data from Keyboard

 We may also give values to variables through the keyboard using the

scanf function. The general form of scanf is:

scanf(“control string”, &variable1, variable2…..);

The control string contains the format of data being received. The ampersand

symbol & before each variable name is an operator that specifies the variable

name’s address.

Example:

scanf (“%d”, &number);

When this statement is encountered by the computer, the execution

stops and waits for the value of the variable number to be typed in. Since

control string “%d” specifies that an integer value is to be read from the

terminal. Once the number is typed in and the ‘Return’ key is pressed, the

computer then proceeds to the next statement.

Scope Of Variables

‘C’ variables are classified into two kinds:

 Global/ External variables

 Local variables

The global/ external variables are declared before the function main().

These are available for all the functions inside the program.

Example:

int a, b =2; fun()

main() {

{ int sum;

24

 ……. Sum = a +b;

 fun(); }

}

The integer variables a, b are global/external variables, as they are

declared before the function main(). These variables are later used in the

function fun().

Variables declared and used inside functions are called local variables.

They are not available for use outside the functions definition. Local variables

can also be declared inside program blocks that are defined between an opening

brace { and a closing brace }. These variables are visible to the program only

from the beginning of its program block to the end of the program block. When

the program control leaves a block, all the variables in the block will cease to

exist. The area of the program where the variable is accessible (ie. Usable) is

called its scope.

Example:

fun()

{

 int i, j;

………

}

1.4.3. Data Types

 The size and type of values that can be stored in variable is called as

Data type. Data types in C under various categories are shown in Fig.1.4.2.

 The user-defined types, derived types such as arrays, functions,

structures and pointers are discussed in concern chapters.

 Integer

 Primary Floating Point

 Character

 User defined

 Functions

 Data types Derived Arrays

 Structures

 Pointers

 Empty data set

 Fig 1.4.2. Data types in C under various categories

25

Primary Data Types:

 The primary data types otherwise is called as fundamental data types.

It can be classified into three types are

 Integer data type

 Float type

 Character type

Integer Types

 Integer types can hold whole numbers. C supports three types of

integers are short int, int and long int, in both signed and unsigned forms as

in Fig.2.6.2.

 Integer types

 Signed Unsigned

 short int int long int short int int long int

 Fig.2.6.3 Integer data types

 The integer occupies one word of storage typically 16 or 32 bits.

The size of the integer depends upon the system. If we use 16 bit word length,

the size of integer value is limited to the range –32768 to + 32767.

Floating Point Types

 Integer types can hold only whole numbers and therefore we use

another type known as floating point or real type to hold numbers containing

fractional parts such as 27.59 and -1.375. There are two kinds of floating point

storage in C as shown in Fig.2.6.3

 Floating Point

 float double long double

 Fig.2.6.3 Floating-point data types

 The float type values are single-precision numbers while the double

types represent double-precision numbers. To extend the precision further, we

may use long double. Table 2.6.2 gives the size of these two types.

26

 Table 2.6.2 Type And Size Of Floating Point

 Type Size

 float 4 bytes

 double 8 bytes

Example:

 1.23 7.56923e5

 Double-precision types are used when we need greater precision in

storage of floating point numbers. All mathematical functions such as sin, cos

and sqrt return double type values.

Character Type

 In order to store character constants in memory, C provided a character

data type called char. The char type assumes a size of 1 byte so it can hold only

a single character. The qualifier signed or unsigned may be explicitly applied

to char. While unsigned char have values between 0 and 255, signed char

have values from –128 to 127.

Empty Data Set

 The void is the empty data type in C language. This is generally

specified with the function, which has no arguments.

1.4.4. Self Assessment Questions

Fill in the blank

1. ___________ function is used to read data through keyboard.

2. The global / external variables are declared before the ____________

function.

True / False

1. The scanf() is used to display the values on the screen.

2. The void data type represents empty.

Multiple Choice

1. Which of the following is not a valid identifier

 a) averave b) sum_S

 c) Total d) 2ABC

Short Answer

1. What is meant by variable?

--

--

27

2. Define Data type.

--

--

1.5.Operators and Expression

1.5.1. Introduction

 C supports a rich set of operators. An operator is a symbol that tells the

computer to perform certain mathematical or logical manipulations. Operators

are used in programs to manipulate data and variables.

 C operators can be classified into a number of types are:

 Arithmetic operators

 Relational operators

 Logical operators

 Assignment operators

 Increment and decrement operators

 Conditional operators

 Bitwise operators

 Special operators

 Special operators

1.5.2. Arithmetic Operators

 C provides all the basic arithmetic operators are listed in Table1.51. The

operators + , - , * , and / all work the same way as they do in other languages.

These can operate on any built-in numeric data type of C. We cannot use these

operators on Boolean type. The unary minus operator, in effect, multiplies its

single operand by -1. Therefore, a number preceded by a minus sign changes its

sign.

 Table1.5.1 Arithmetic Operators

 Operator Meaning

 + Addition or unary plus

 - Subtraction or unary minus

 * Multiplication

 / Division

 % Modulo division (Remainder)

Integer division truncates any fractional part. The modulo division

produce the remainder of an integer division. Arithmetic operators are used as

 a - b a + b

28

 a * b a / b

 a % b - a + b

Integer Arithmetic

 When both the operands in single arithmetic expression such as a + b

are integers, the expressions is called an integer expression, and the operation

is called integer arithmetic. Integer arithmetic yields an integer value. In above

examples if a and b are integers the a =2 and b = 2 we have the following

results:

 a – b = 0

 a + b = 4

 a * b = 4

 a / b = 1 (decimal part truncated)

 a % b = 0 (remainder of integer division)

For modulo division (%), the sign of the result is always the sign of the first

operand.

Real arithmetic

 An arithmetic operation involving only real operands is called real

arithmetic. A real operand may assume values either in decimal or exponential

notation. The floating- point modulus operator returns the floating-point

equivalent of an integer division. What this means is that the division is carried

out with both floating-point operands, but the resulting divisor is treated as an

integer, resulting in a floating-point remainder. The operator % cannot be used

with real operands.

Example Program: Program for Arithmetic operator works on Floating

values

 #include <stdio.h>

void main()

{

int a = 10, b= 3;

printf(" a + b = % d\n", (a + b));

printf(" a - b = % d\n " , (a - b));

printf(" a * b = % d\n " , (a * b));

printf(" a / b = % d\n" , (a / b));

printf(" a modulo b = % d\n" , (a % b));

}

29

Output Of Program

 a + b = 13

a - b = 7

a * b = 30

a / b = 3

a modulo b = 1

Mixed-mode Arithmetic

 When one of the operand is real and the other is integer, the expression

is called a mixed-mode arithmetic expression. If either operand is of the real

type, then the other operand is converted to real and the real arithmetic is

performed. The result will be a real. Thus

 16 / 5 produce the result 3.1

Whereas

 16 / 5 produce the result 1

1.5.3. Relational Operators

We often compare two quantities, and depending on their relation, take

certain decisions. For example, we may compare the age of two persons, or the

price of two items, and so on. These comparisons can be done with the help of

relational operators. C supports six relational operators as shown in Table

1.5.2.

Table 1.5.2 Arithmetic Operators

 Operator Meaning

 < is less than

 <= is less than equal

 > is greater than

 >= is greater than equal

 = = is equal to

 ! = is not equal to

A simple relational expression contains only one relational operator and is of

the following form:

 ae -1 relational operator ae – 2

 When arithmetic expressions are used on either side of a relational

operator, the arithmetic expressions will be evaluated first and then the results

compared. That is, arithmetic operators have a higher priority over relational

operators.

30

Example Program: Program to use various relational operators and display

their return values.

#include<stdio.h>

void main()

{

int a = 5 , b = 5, c = 50;

printf(“\n Condition : Return values ”);

printf(“\n a != b : %d”, a != b);

printf(“\n a = = b : %d”, a == b);

printf(“\n a >= c : %d”, a >= c);

printf(“\n a <= c : %d”, a <= c);

getch();

}

Output Of Program

Condition : Return values

 a != b : 0

 a = = b : 1

 a >= c : 0

 a <= c : 1

In the above program, the condition is true it return 1and the condition false it

returns 0.

1.5.4. Logical Operators

C has three logical operators as shown in Table 1.5.3. The logical

operators && and || are used when we want to form compound conditions by

combining two or more relations.

Example:

 a > b && x = = 10

An expression combines two or more relational expression is called as

logical expression or compound relational expression. Logical expression also

yields a value of true or false.

Table 1.5.3. Logical Operators

 Operator Meaning

 && is logical AND

 || is logical OR

 ! is logical NOT

31

Example Program: Program to demonstrate logical operator.

#include<stdio.h>

#include<conio.h>

void main()

{

int c1, c2, c3;

clrscr();

printf(“ Enter values of c1, c2 & c3: “);

scanf(“%d%d%d”, &c1, &c2, &c3);

if((c1 < c2) && (c1 < c3))

printf(“\c1 is less than c2 & c3”);

if(! (c1 < c2))

printf(“\n c1 is greater than c2”);

if((c1 < c2) | | (c1 < c3))

printf(“\nc1 is less than c2 or c3 or both”);

getch();

}

Output Of Program

 Enter values of c1, c2 & c3: 45 32 98

c1 is greater than

c1 is less than c2 or c3 or both

1.5.5. Assignment Operators

Assignment operators are used to assign the value of an expression to a

variable. The form

 v op= exp;

Where v is a variable, exp is an expression and op is a C binary

operator. The operator op=is known as the shorthand assignment operator.

 The shorthand assignment operators are illustrated in Table 1.5.4.

32

 Table 1.5.4. Shorthand Assignment Operators

 Statement with simple Statement with

 Assignment operator Shorthand operator

a = a + 1 a + = 1

a = a - 1 a - = 1

a = a * (n + 1) a * = n + 1

a = a % b a % = b

a = a / (n + 1) a / = n + 1

 The use of shorthand assignment operators has three advantages:

1. What appears on the left-hand side need not be repeated and therefore it

becomes easier to write.

2. The statement is more concise and easier to read

Use of shorthand operator results in a more efficient code.

Example Program: Program to demonstrate assignment operator.

#include<stdio.h>

void main()

{

int i, j, k;

k = (i = 4, j = 5);

printf(“ k = %d”, k);

getch();

}

Output Of Program

 k = 5

The above program prints the value of variable that it contains but that

variable in terms assigned by two assignment variables. Such as k = (i= 4, j= 5

) means first i value is assigned to k, then j value assigned and replaced the

value of i. so the latest assignment value only contains the variable k.

1.5.6. Increment And Decrement Operators

 The increment and decrement operators:

 ++ and - -

 The operator ++ adds 1 to the operand while -- subtracts 1. Both are

unary operators and are used in the following form:

 ++m; or m++;

 --m; or m--;

33

We use the increment and decrement operators extensively in for and while

loops.

Example:

 m = 5; y = ++m;

In this case, the value of y and m would be 6. Suppose, if we rewrite the above

statements

 m = 5;

 y = m++; Then, the value of y would be 5 and m would be 6. Prefix

operator adds 1 to the operand and then the result is assigned to the variable on

left. Postfix operator first assigns the value to the variable on left and then

increments the operand.

Similar is the case, when we use ++(or --) in subscripted variables. That is the

statement a[i++] = 10 is equivalent to

 a[i] = 10

 i = i + 1

Example Program: Program for using increment and decrement operators.

#include<stdio.h>

void main()

{

int a = 10;

printf(“a++ = %d\n”, a++);

printf(“++a = %d\n”, ++a);

printf(“--a = %d\n”, --a);

printf(“a-- = %d\n”, a--);

getch();

}

Output Of Program

 a++ = 10

 ++a = 12

 --a = 11

 a-- = 11

where

 a + + - post increment, first do the operation and then increment.

 + + a - pre increment, first increment and then do the operation.

 - - a - pre decrement , first decrement and then do the operation.

34

 a - - - post decrement , first do the operation and then decrement.

Note : Do not use increment and decrement operator on floating point

variables.

1.5.7. Conditional Operators

The conditional pair ? : is a ternary operator available in C. This

operator is used to construct conditional expressions of the form

 exp1 ? exp2 : exp3

Where exp1,exp2, exp3 are expressions.

 The operator ? : works as follows : exp1 is evaluated first. If it is

nonzero (true), then the expression exp2 is evaluated and becomes the value of

the conditional expressions. If exp1 is false, exp3 is evaluated and is value

becomes the value of the conditional expression.

For Example:

 a = 10;

 b = 15;

 x = (a > b) ? a : b

In this example, the value of x is the value of b.

Example Program:

#include<stdio.h>

void main()

{

int a, b, c, d;

a = 5; b = 2; c = 3;

d = (a > b) ? a : b + c;

printf(“Output is : %d”, d);

getch();

}

Output Of Program

 Output is : 5

1.5.8. Bit Wise Operators

C has a special operators is known as bitwise operators or manipulation

of data at values of bit level. These operators are used for testing the bits, or

shifting them to the right or left as shown in Table 1.5.5.

35

 Table 1.5.5. Bitwise Operators

 Operator Meaning

 & bitwise AND

 ! bitwise OR

 ^ bitwise Exclusive OR

 ~ one’s Complement

 << shift left

 >> shift right

1.5.9. Special Operators

C supports some special operators of interest such as comma operator, sizeof

operator, pointer operators (& and *) and member selection operators (.

and ->). The pointer and member selection operators are discussed in the

pointers concepts.

The comma Operator

 The comma operator can be used to separate the statement elements

such as variables, constants or expression etc., and this operator is used to link

the related expressions together, such expressions can be evaluated from left to

right and the value of right most expressions is the value combined expression.

Example:

 value = (x = 10, y= 5, x + y);

first assigns the value 10 to x, then assigns 5 to y, and finally assigns 15 to

value.

The sizeof operator

 The sizeof is a compile time operator and, when used with an operand,

it returns the number of bytes the operand occupies. The operand may be a

variable, a constant or a data type qualifier.

Examples:

 m= sizeof(sum);

 n = sizeof(long int);

 k = sizeof(123L);

1.5.10. Arithmetic Expressions

An arithmetic expression is a combination of variables, constants, and

operators. Example of C expression is shown in Table 1.5.6.

36

 Table 1.5.6. Expressions

 Algebraic Expression C Expression

 a b - c a * b - c

 ab a * b / c

 c

1.5.11. Evaluation Of Expressions

Expressions are evaluated using assignment statement of the form

 variable = expression;

variable is any valid C variable name. When the statement is encountered, the

expression is evaluated first and the result then replaces the previous value of

the variable on the left-hand side.

Examples of evaluation statements are

 l = x*y-z ;

 m = y/z*x ;

The blank space around an operator is optional.

1.5.12. Precedence of Arithmetic Operators

An arithmetic expression without any parentheses will be evaluated

from left to right using the rules of precedence of operators. There are two

distinct priority levels in C:

 High priority * / %

 Low priority + -

The basic evaluation procedure includes two left-to-right passes through

the expression. During the first pass, the high priority operators are applied and

second pass; the low priority operators are applied.

Consider the following evaluation statement:

 x = a - b / 3

When a = 9 and b = 6, the statement becomes

 x = 9 – 6 / 3

and evaluated as

First pass

 x = 9 – 2 (6 / 3 evaluated)

Second pass

 x = 7 (9 - 2 evaluated)

Introducing parentheses into expression can change the order of

evaluation. Parentheses may be nested, and in such cases, the expression will

37

proceed out from innermost set of parentheses. Every opening parenthesis has a

matching closing one. Parentheses allow us to change the order of priority.

1.5.13. Type Conversions In Expressions

Automatic Type Conversion

C permits mixing of constants and variables of different types in an

expression, but during evaluation it adheres to very strict rules of type

conversion. If the operands are of different types, the ‘lower’ type is

automatically converted to the higher type before the operation proceeds. The

result is of the higher type. Table 1.5.7. provides a reference chart for type

conversion.

 Table 1.5.7. Automatic Type Conversion Chart

 char byte short int long float double

char int int int int long float double

byte int int int int long float double

short int int int int long float double

int int int int int long float double

long long long long long long float double

float float float float float float float double

double double double double double double double double

The final result of an expression is converted to the type of the variable

on the left of the assignment sign before assigning the value to it. The

following changes are occurs in final assignment.

1. float to int causes truncation of the fractional part.

2. double to float causes rounding of digits.

3. long to int causes dropping of the excess higher order bits.

Casting a Value

We need to store a value of one type into a variable of another type. In

such situation, we must cast the value to be stored by proceed it with the type

name in parentheses. The general form of a cast is:

 (type_name) expression

Where type_name is one of the standard C data types. The expression may be

constant, variable or an expression.

Examples of casts and their actions are

X = (int) 7.5 7.5 is converted to integer by truncation

38

A = (int) 21.3 / (int)4.5 Evaluated as 21/4 and the result would be 5

1.5.14. Operator Precedence And Associativity

Each operator in C has precedence associated with it. The operator at

the higher level of precedence is evaluated first. The operator of the same level

of precedence is evaluated from left to right or from right to left, depending on

level. This is known as the associativity property of an operator. Table 1.5.8

provides a complete lists of operators, their precedence levels, and their rules of

association.

 Table 1.5.8. C Operators precedence and associativity

 Operator Meaning Associativity

 Rank

 () Function call Left to Right 1

 [] Array element reference

 - Unary minus Right to left 2

 ++ Increment

 -- Decrement

 ! Logical Negation

 ~ One’s complement

 * Pointer reference (indirection)

 & Address

 sizeof Size of an object

 (type) Casting

 * Multiplication Left to Right 3

 / Division

 % Modulus

 + Addition Left to Right 4

 - Subtraction

 << Left shift Left to Right 5

 >> Right shift

 < Less than Left to Right 6

 < = Less than or equal to

 > Greater than

 >= Greater than or equal to

 = = Equality Left to Right 7

 ! = Inequality

39

 & Bitwise AND Left to Right 8

 ^ Bitwise XOR Left to Right 9

 | Bitwise Or Left to Right 10

 && Logical AND Left to Right 11

 || Logical OR Left to Right 12

 ?: Conditional operator Right to Left 13

 = Assignment operator Right to Left 14

 *= /= %=

 += -= &=

 ^= |=

 <<= >>=

 , Comma operator Left to right 15

1.5.15. Mathematical Functions

C support basic math function through #include <math.h>. Table 1.5.9

lists the math functions defined math.h .

Example:

 int a = mod(10,15);

 Table 2.7.9 Math Function

Function Action

 Trigonometric

sin(x) Returns the sine value of the angle x in radians

cos(x) Returns the cosine value of the angle x in radians

tan(x) Returns the tangent value of the angle x in radians

asin(y) Returns the angle whose sine is y

acos(y) Returns the angle whose cosine is y

atan(y) Returns the angle whose tangent is y

atan2(x,y) Returns the angle whose tangent is x/y

Hyperbolic

sinh(x) Returns the Hyperbolic sine value of the angle x in radians

cosh(x) Returns the Hyperbolic cosine value of the angle x in radians

tanh(x) Returns the Hyperbolic tangent value of the angle x in radians

Other Functions

pow(x,y) Returns x raised to y(xy)

exp(x) Returns e raised to x(ex)

40

 log(x) Returns the natural logarithm of x

 sqrt(x) Returns the square root of x

ceil(x) Returns the smallest whole number greater than or

 equal to x (rounding up)

floor(x) Returns the largest whole number less than or equal to x

(Rounded down)

mod(x,y) Returns the remainder of x/y

abs(x) Returns the absolute value of x.

Note: x and y are double type parameters.

1.5.16. Self Assessment Questions

Fill in the blank

1. _____________ are used in programs to manipulate data and variables.

2. _____________ mathematical function return the smallest whole number

greater than or equal to parameter x.

True / False

1. The logical operators do not return true and false value.

Multiple Choices

1. Suppose m=5,y=m++, what is value of m and y?

a) 5 & 6 b) 6 & 5 c) 5 & 5 d) 6 & 6

2. What is value of 5%2?

a) 2 b) 3 c) 0 d) 1

Short Answer

1. Define integer arithmetic.

--

--

2. What is called arithmetic expression?

--

--

1.6. Managing Input And Output Operations

1.6.1. Introduction

Most computer program that take some data as input and display the

processed data, often known as information or results. In ‘C’ language, two

types of Input/Output statements are available. All input/output operations are

carried out through function calls such as scanf and printf. These functions are

41

collectively known as the standard I/O library. Each program that uses a

standard input/output function must contain the statement

 #include <stdio.h>

at the beginning. The file name stdio.h is an abbreviation for standard input-

output header file. #include <stdio.h> tells the compiler to search for a file

named stdio.h and place its content at this point in the program. The contents

of the header file become part of the source code when it is compiled.

1.6.2. Reading And Writing A Character

Reading a Character using getchar() or getc()function

Reading a single character can be done by using the function getchar()

or getc(). The general form of getchar() or getc() function is

 variable_name = getchar(); variable_name = getc();

 or or

char variable_name = getchar(); char variable_name = getc();

where

 variable_name is a valid C name that has been declared as char type.

When this statement is executed, the computer waits until a key is

pressed and then assigns this character as a value to getchar() function or getc(

) function. The character value of getchar() or getc() is in turn assigned to the

variable_name on the left.

For Example

 char name; char name;

 name = getchar(); name = getc();

or or

char name = getchar(); char name = getc();

will assign the character ‘D’ to the variable name when we press the key D on

the keyboard.

Writing a Character using putchar() or putc():

 Function putchar() or putc() for writing characters one at a time to the

screen. The general form of putchar() or putc() function is

putchar(variable_name);

or

 putc(variable_name);

42

where

 variable_name is a valid C name that has been declared as char type

variable containing a character. This statement displays the character contained

in the variable_name at the screen.

For Example

 putchar(name);

or

putc(name);

will display the character ‘D’ contained in the name at the screen.

Example Program1: Program for converting a character from lower to upper

and vice versa.

 #include<stdio.h>

 #include<ctype.h>

 void main()

 {

 char ch;

printf(“ Enter any alphabet either in lower or upper case….”);

ch = getchar();

if (islower(ch))

 putchar(toupper(ch));

else

 putchar(tolower(ch));

getch();

 }

Output Of Program:

 Enter any alphabet either in lower or upper case….s

 S

The gets() and puts() function

The gets() is used to read the string (is a group of characters) from the

standard input device(keyboard). The general form of gets() function is

 gets(array_variable);

where

array_variable is a valid C variable declared as one dimension char

type.

For Example

43

 gets(s);

 The puts() is used to display/write the string to the standard output

device (monitor). The general form of puts() function is

 puts(array_variable);

where

array_variable is a valid C variable declared as one dimension char

type.

For Example

 s = ‘Harsh’;

 puts(s);

Example Program2: Program for illustrating gets() and puts().

 #include<stdio.h>

 #include<ctype.h>

 void main()

 {

 char name[20];

printf(“ Enter the name:”);

gets(name);

puts(“ \n Name is :”);

puts(name);

getch();

 }

Output Of Program:

 Enter the name: Harshini

 Name is : Harshini

Character Test Functions

 C language many of character test functions (See Table 1.6.1) that are

used to test the character taken from the input. These character functions are

contained in the file ctype.h and therefore the statement

 #include < ctype.h >

must be included in the program.

44

 Table 1.6.1 Character test function

 Function Test

 isalnum (c) is c an alphanumeric character?

isalpha (c) is c an alphabetic character?

isdigit (c) is c a digit?

islower (c) is c a lower case letter?

isprint (c) is c a printable character?

ispunct (c) is c a punctuation mark?

isspace (c) is c a white space character?

isupper(c) is c an upper case letter?

tolower (c) convert c to lower case letter?

toupper (c) convert c to upper case letter?

1.6.3. Formatted Input And Output

Formatted Input:

Formatted input refers to input data that has been arranged in a

particular format. For example, consider the following data:

 14.67 345 Harsh

This contains three pieces of data, that is arranged in a format, such data

can be read to the format of its appearance, as the first data should be read into

a variable float, the second into int, and the third into char. This is possible in

C using the formatted input (scanf()) statement. The scanf() function is used

to read information from the standard input device(keyboard). The general

form of scanf() is

scanf(“control string”, &variable1, variable2…..);

The control string contains the format of data being received. The

ampersand symbol & before each variable name is an operator that specifies

the variable name’s address where the data is stored.

The control string contains the field or format specification, which

direct the interpretation of input data. It may include

 Field or format specification, consisting of the conversion

character %, a data type character (or type specifier), and an

optional number, specifying the field width.

 Blanks, tabs, or new lines.

45

The data type character indicates the type of data that is to be assigned

to the variable associated with corresponding variable. The field width specifier

is optional.

Inputting Integer Numbers

The field specification for reading an integer number is:

 % w d

The % indicates that a conversion specification follows. w is an integer

number that specifies the field width of the number to be read and d, known as

data type character, indicates that the number to be read is in integer mode.

Example 1:

scanf(“%2d %5d, &n1, &n2);

Data line:

 40 45323

 The value 40 is assigned to n1 and 45323 to n2. Suppose the input data is

as

 45323 40

The variable n1 will be assigned 45 (because of %2d) and n2 will be

assigned 323. The value 40 that is unread will be assigned to the first variable

in the next scanf call.

 This error may be eliminated if we use field specification without the

field width specifications. That is, the statement

scanf(“%d %d, &n1, &n2);

will read the data

 45323 40

correctly and assign 45323 to n1 and 40 to n2.

Example 2:

The scanf may skip reading further input. An input field may be

skipped by specifying * in the place of field width.

scanf(“%d %*d %d”, &a, &b);

will assign the data

 10 20 30

as follows:

 10 to a

 20 skipped (because of *)

 30 to b

46

The data type character d may be preceded by ‘l’ to read long integers.

What happened if enter a floating-point number instead of an integer? The

fractional part may be omitted away. Spaces, tabs or new lines must separate

input data items. Punctuation marks do not count as separators.

Inputting Real Numbers

The field width of real numbers is not to be specified and therefore

scanf reads real numbers using the simple specification %f for both the

notations, namely, Decimal point notation and exponential notation.

Example:

 scanf(“%f %f %f”, &x, &y , &z);

With the input data

 456.56 24.56E-2 789

will assign the value 456.56 to x, 0.245 to y and 789.0 to z.

 The number to be read is of double type, then the specification should

be %lf instead of simple %f. a number may be skipped using %*f specification.

Inputting Character strings

A scanf function can input strings containing more than one character.

The specification for reading character string is

 %ws or %wc

The corresponding argument should be a pointer to a character array.

However, %c may be used to read a single character when argument is a

pointer to a char variable. When we use %wc for reading a string, the system

will wait until the wth character is keyed in. The specification %s terminates

reading at the encounter of a blank space.

Reading Mixed data types:

The scanf statement to input a data line containing mixed mode data.

For example

 scanf(“%d %c %f %s”, &n, &ch, &fl, &str);

will read the data

 10 k 4.64 hai

and assign the values to the variables in the order in which they appear.

Rules for writing the scanf statement:

 The control string must be preceded with % sign and must be given

within double quotation.

 All function arguments, except the control string, must be pointers to

variables.

47

 If there is a number of input data items must be separated by commas

and must be preceded with & sign except for string input.

 The control string and the variables going to input should match with

each other.

 It must be terminate with semicolon.

 The scanf reads the data values until the blank space in numeric input or

maximum number of character have been read, or an error is detected.

Formatted Output:

The printf statement provides certain features to effectively control the

alignment and spacing of print outs on the screen. The general form of printf

statement is

 printf(“control string” , variable1, variable2…..);

Control string consists of the three types of items:

 Characters that will be printed on the screen as they appear.

 Format specifications that define the output format for display of each

item.

 Escape sequence characters such as \n, \t, and \b.

where

control string - indicates how many arguments follow and what their types.

Arguments variable1, variable2….. are the variables whose values are

formatted andprinted according to the specifications of the control string. The

arguments should match in number, order and type with the format

specification

A simple format specification has the following form:

 % w.p type-specifier

where

 w – is an integer number that specifies the total number of columns for

the output value

p – is another integer number that specifies the number of digits to the

right of the decimal point or the number of characters to be printed

from string.

Both w and p are optional.

Output of Integer Numbers

 The format specification for printing an integer number is

 % w d

where

48

w - specifies the minimum field width for the output

d - specifies that the value to be printed to an integer

If the field width is not specified, it will be printed in full, without blank space

in the right side.

Example:

 printf(“%d”, 1234);

If the number is greater than specified field width, it will be printed in full.

Example:

printf(“%2d”, 1234);

If the number is less than specified field width, the number will be printed with

right justified.

Example:

 printf(“%6d”, 1234);

The number can be left justified using the hyphen (-) after % character in the

field width specification.

Example:

printf(“%-6d”, 1234);

To pad with zeros the leading blanks by placing a 0 (zero) before the field

width specifier.

Example:

printf(“%06d”, 1234);

Long integers may be printed by specifying ld in the place of d in the format

specification.

Output of Real Numbers

 The format specification for printing a real number in decimal notation

is

 % w.p f

where

 w – is an integer number that specifies the total number of columns for

 the output value

1 2 3 4

 1 2 3 4

 1 2 3 4

0 0 1 2 3 4

 1 2 3 4

49

 p – is another integer number that specifies the number of digits to be

 displayed after the decimal point .

 The value, when displayed, is rounded to p decimal places and printed

right justified in the field of w columns.

Example:

 The value x = 39.6755

printf(“%7.4f”, x);

 The precision is 6 decimal places. Leading blanks and trailing zeros

will appear as necessary. The negative numbers will be printed with the minus

sign.

Example:

 The value x = 39.6755

printf(“%7.3f”, -x);

Padding the leading blanks with zeros and printing with left-justification is also

possible by introducing 0 or – before the field width specification.

Example:

 The value x = 39.6755

printf(“%07.2f”, x);

Example:

 The value x = 39.6755

printf(“%-7.2f”, x);

If the field width and precision is not specified, it will be printed in full,

without blank space in the right side.

Example:

 The value x = 39.6755

printf(“%f”, x);

The format specification for printing a real number in exponential notation is

 % w.p e

3 9 . 6 7 5 5

- 3 9 . 6 7 6

 0 0 3 9 . 6 8

 3 9 . 6 8

 3 9 . 6 7 5 5

50

Examples:

The value x = 39.6755

printf(“%9.2e”, x);

The value x = 39.6755

printf(“%10.4e”, x);

Printing of a Single Character

The format specification for printing a single character in a desired

position is

 % w c

The character will be displayed right-justified in the field of w columns. We

can make display left justified by placing a – before the integer w. the default

value for w is 1.

Example:

The value x = ‘A’

printf(“%5c”, x);

The value x = ‘A’

printf(“%-5c”, x);

Printing of String

The format specification for printing strings to that of real numbers is

 % w.p s

where

 w specifies the field width for display

p instructs that only the first p characters of string are to be displayed.

The display is right justified. The character will be displayed right

justified in the field of w columns. We can make display left justified by

placing a – before the integer w. the default value for w is 1.

 3 . 9 7 e + 0 1

3 . 9 6 7 6 e + 0 1

 A

 A

51

Examples:

The value x = ‘ Good Luck’

printf(“%s”, x);

printf(“%10s”, x);

printf(“%-10s”, x);

printf(“%.6s”, x);

printf(“%5”, x);

printf(“%10.6s”, x);

Mixed Data Output

It is permitted to mix data types in one print statement.

Example:

printf(“%d %f %s %c”, a, b, c , d);

is valid.

The printf uses its control string to decide how many variables to be

printed and what their types are. Therefore, the format specifications should

match the variables in number, order, and type. If there are not enough

variables or if they are of the wrong type, incorrect results will be output.

Commonly use printf format are

Code Meaning

%c print a single character

%d print a decimal integer

%e print a floating point value in exponent form

%f print a floating point value without exponent

%g print a floating point value either exponent type

 or floating point type depending on value

G o o d L

G o o d L u c k

 G o o d L

G o o d L u c k

 G o o d L u c k

G o o d L u c k

52

%i print a signed decimal integer

%o print an octal integer without leading zero

%s print a string

%u print a unsigned decimal integer

%x print an hexadecimal integer without leading 0x

Enhancing the readability of output

If we print the variables always with the field width and format

specification the output will be unambiguous and can be difficult to identify

and read. The clarity and correctness of output is all most important, so follow

the given steps to enhance the readability of output.

 Specify the blank spaces in between the data items whenever necessary

and applicable.

 Specify the appropriate headings and names for variables.

 Give the blank lines as and when required.

 Specify new line character whenever necessary.

 Print special text messages depending on necessary.

1.6.4. Self Assessment Questions

Fill in the blank

1.All input and output functions are collectively known as the

______________.

2. We can make display _________ justified by placing a – before the integer

w.

True / False

1. The puts() function is used to read the string from the standard input device.

2. The function getc() and getchar() both are used read a single character.

Multiple Choice

1. Which format specification is used to print double type data?

 a) %f b) %d c) %lf d) %df

Short Answer

1. What is the purpose using control string in scanf function?.

--

--

53

1.7. Decision Making with Branching and looping

1.7.1. Branching

1.7.1.1. Introduction

 We have a number of situations, where we may have to change the

order of execution of statements based on certain conditions, or repeat a group

of statements until certain specified conditions are met. This involves a kind of

decision making to see whether a particular condition has occurred or not and

then direct the computer to execute certain statements accordingly.

 Control or decision making statements are

 1. if statements

 2. switch statement

 3. Conditional operator statement

1.7.1.2. Decision Making with IF statement

The if statement is a decision making statement and is used to control

the flow of execution of statements. The general form is

 if (test expression)

It allows the computer to evaluate the expression first and then, based

on the value of expression is ‘true’ or ‘false’, it transfers the control to a

particular statement (See Fig 1.7.1.1)

 Entry

 False

 True

 Fig. 1.7.1.1. Two-way branching

The if statement may be implemented in different forms based on condition to

be tested.

Test
expression?

54

1. Simple if statement

2. if …else statement

3. Nested if…else statement

4. else if ladder.

1.7.1.3. Simple If Statement

The general form is

 if (test expression)

 {

 statement-block;

}

statement-x;

The ‘statement-block’ may be single or group of statements. If the test

expression is true, the statement-block will be executed; otherwise the

execution will to the statement-x. (See Fig 1.7.1.2)

 Entry

 True

 False

 Fig.1.7.1.2.Flowchart of simple if control

Example Program: To find a smallest value among two numbers

/*

Smallest Among Two numbers Using if statement

 */

#include<stdio.h>

void main()

 {

Test

expression

?

Statement- Block

Statement- X

55

 int a = 0,b=0;

 int small = 0;

 printf("\nEnter the two values");

 scanf(“%d”, &a);

 scanf(“%d”, &b);

 small = a;

 if (small > b)

 small = b;

 printf("\nSmallest Among Two No.is : %d" , small);

 getch();

}

Output Of Program

Enter the two values

23

17

Smallest Among Two No.is : 17

1.7.1.4. The If-Else Statement

The general form is

 if (test expression)

 {

 statement-block1;

}

else

{

statement-block2;

}

statement-x;

If the test expression is true, the statement-block1 will be executed;

otherwise, the statement-block2 will be executed, not both. In both the cases,

the control is transferred to the statement-x. (See Fig.1.7.1.3)

56

 Entry

 True False

 Fig.1.7.1.3. Flowchart of if….else control

Example Program: To Find a smallest value among three numbers.

/*

 Smallest Among Three numbers Using if – else statement

*/

#include<stdio.h>

void main()

 {

 int a = 0,b=0,c=0;

 int small = 0;

 printf("\n Enter the three values");

 scanf(“%d”, &a);

 scanf(“%d”, &b);

 scanf(“%d”, &c);

 small = a;

 if (small > b)

 small = b;

 else

 small = c;

 printf("\n Smallest Among Three No.is : %d " , small);

 getch();

}

Test
expression

 ?

True-block

Statements

False-block

Statements

Statement -x

57

Output Of Program

Enter the three values

23 17 56

Smallest Among Three No.is : 17

1.7.1.5. Nesting Of If-Else Statement

The general form is

 if (test expression1)

 {

 if (test expression2)

 {

 statement-block1;

}

else

{

statement-block2;

}

 }

else

{

statement-block3;

}

statement-x;

If the test expression1 is false, the statement-block3 will be executed;

otherwise it continues to perform the second test. If test expression2 is true, the

statement-block1 will be executed; other wise the statement-block2 will be

executed and then control is transferred to the statement-x. (See Fig.1.7.1.4)

58

 False True

 False True

Fig.1.7.1.4. Flowchart of Nesting Of If…Else Statement

Example Program: To Find a largest value among three numbers

/*

 Largest Among Three numbers Using nested if-else statement

*/

#include<stdio.h>

void main()

 {

 int a = 0,b=0,c=0;

 int large = 0;

 printf("\nEnter the three values");

 scanf(“%d”, &a);

 scanf(“%d”, &b);

 scanf(“%d”, &c);

 if (a > b)

{

Test

condition 1

?

Test

condition 2

?

Statement 2 Statement 1 Statement 3

Statement x

59

 if (a > c)

{

 large = a;

 }

 else

 {

 large = c;

 }

 }

 else

{

if (c > b)

{

 large = c;

 }

 else

 {

 large = b;

 }

}

 printf("\nLargest Among Three Number is : %d", large);

 getch();

}

Output Of Program

Enter the three values

23 17 56

Largest Among Three Number is : 56

1.7.1.6. The Else-If Ladder

This construct is known as the else if ladder. The test conditions are

evaluated from the top, downwards. As soon as true test-condition is found, the

statement associated with it is executed and control is transferred to the

statement-x. When all test n conditions become false, then the else containing

default-statement will be executed. (See Fig.1.7.1.5)

60

The general form is

if (test expression1)

 statement-block1;

 else if (test expression2)

 statement-block2;

else if (test expression n)

statement-block-n;

 else

default -statement;

statement-x;

 True False

 True False

 True False

 Next Statement Fig.1.7.1.5 Flowchart of Else – if Ladder Statement

Test
condition 1

?

Test

Condition 2

?

Statement 2

Statement 1
Test

Condition n

?

Statement n Default

Statement

Statement x

61

Example Program: To Find a largest value among three numbers

/*

 Largest Among Three numbers Using else - if ladder statement

*/

#include<stdio.h>

void main()

 {

 int a = 0,b=0,c=0;

 int large = 0;

 printf("\nEnter the three values");

 scanf(“%d”, &a);

 scanf(“%d”, &b);

 scanf(“%d”, &c);

 large = a;

 if (large < b)

 large = b;

 else if (large < c)

 large = c;

 printf("\nLargest Among Three No.is : %d" ,large);

getch();

 }

Output Of Program

Enter the three values

23 17 56

Largest Among Three No.is : 56

62

1.7.1.7. The Switch Statements

The general form of the switch statement is

switch (expression)

{

case value-1:

 block-1

 break;

case value-2:

 block-1

 break;

 default:

 default-block

 break;

}

statement-x;

The expression is an integer expression or characters. value-1, value-2--

-- are constants or constant expressions and are known as case labels. Each of

these values should be unique within a switch statement. block-1, block-2, -----

- are statement lists and may contain zero or more statement. There is no need

to put braces around these blocks, case labels end with a colon (:).

 When the switch is executed, the value of expression is compared with

the values value-1, value-2,………if a case is found then the block of

statements that follows the case are executed.

 The break statement at the end of each block signals the end of the

particular block and control is transferred to the statement-x.

The default is an optional case. When the values of expression not match with

any of the case, the default case will be executed. If default statement not

present, no action takes place when all matches fail and the control goes to the

statement-x. (See Fig.1.7.1.6)

63

 Expression = value1

 Expression = value2

 (No match) Default

 Fig.1.7.1.6 Flowchart of Switch statement

Example Program1: To demonstrate switch-case statement

/*

 Demonstration of switch-case statement

*/

#include<stdio.h>

#include<conio.h>

void main()

{

 int choice = 0;

 printf("\nEnter the choice value");

 scanf(“%d”, &choice);

 switch(choice)

 {

 case 1:

 printf("I am in case 1\n");

 break;

 case 2:

Switch

Expression

Block1

Block2

Default

block

Statement -x

64

 printf("I am in case 2\n");

 break;

 case 3:

 printf("I am in case 3\n");

 break;

 default:

 printf("I am in default case\n");

 }

 getch();

 }

Output Of Program

Enter the choice value

2

I am in case 2

Enter the choice value

5

I am in default case

Example Program 2: To find whether the given number is even or odd using

 switch-case statement

/*

 Program for Even or Odd number using switch-case statement

 */

#include<stdio.h>

#include<conio.h>

void main()

{

 int n = 0;

 printf("\nEnter the number n");

 scanf(“%d”, &n);

 switch(n % 2)

 {

 case 0:

 printf("The given number %d is even", n);

65

 break;

 case 1:

 printf("The given number %d is odd", n);

 break;

 }

 getch();

 }

Output Of Program

Enter the number n

35

The given number 35 is odd

1.7.1.8.The Goto Statements

C supports the goto statement to branch unconditionally from one place

to another in the program. The goto requires a label in order to identify the

place where the branch is to be made. A label is any valid variable name, and

must be followed by a colon. The label is placed immediately before the

statement where the control is to be transferred. The general forms of goto and

label statements are

 goto label; label:

 -------- statement;

 -------- ----------

label: ----------

 statement; goto label;

The label: can be anywhere in the program either before or after the

goto label; statement. If the label: is before the statement goto label; a loop will

be formed and some statements will be executed repeatedly. Such a jump is

called as a backward jump. On the other hand, if the label: is placed after the

goto label; some statement s will be skipped and jump is called as forward

jump.

Example Program: To find the sum of positive numbers using goto statement

/* Program for sum of positive number using goto statement

*/

 #include<stdio.h>

66

 #include<conio.h>

 void main()

 {

 int n = 0,sum =0, i;

 printf("\nEnter the 5 numbers ");

 for(i=1;i<=5;i++)

 {

 scanf(“%d”, &n);

 if (n < 0)

 goto endsum ;

 else

 sum = sum + n;

 }

 endsum: printf("\nSum of positive numbers is : %d" ,sum);

 getch();

 }

Output Of Program

Enter the 5 numbers

12

34

56

-78

Sum of positive numbers is :102

1.7.2. Looping

1.7.2.1. Introduction

The process of repeatedly executing a block of statements is known as

looping. The statements in block may be executed any number of times, from

zero to infinite number is called an infinite loop. The program loop consists of

two segments are

 Body of the loop

 Control statement (tests certain conditions and then directs the repeated

execution of the statements in the body of the loop)

A Control structure may be classified either into two types are

67

 Entry-controlled loop: The control conditions are tested before the start

of the loop execution. If conditions are not satisfied, the body of the

loop will not be executed. (See Fig.1.7.2.1)

 Exit-controlled loop: The test is performed at the end of the body of the

loop and therefore body is executed unconditionally for the first time.

(See Fig.1.7.2.2) Entry Entry

 False

 True

 False

 True

 Fig.1.7.2.1 Entry control Fig.1.7.2.2 Exit control

A looping process will follow four steps:

1. Setting and initialization of a counter.

2. Execution of the statements in the loop.

3. Test for a specified condition for execution of the loop.

4. Incrementing the counter.

They are three types looping construct are:

1. while construct

2. do construct

3. for construct

Text

Expression

?

Body of the

loop

Text

Expression

?

Body of the

loop

68

1.7.2.2. The While Statement

The general form is

Initialization;

while (test condition)

{

 Body of the loop

}

The while is an entry-controlled loop statement. The test condition is evaluated

and if the condition is true, then the body of the loop is executed. After

execution of the body, the test condition is once again evaluated and if it is true,

the body is executed once again. These processes of repeated execution of the

body continue until the test condition finally becomes false and the control is

transferred out of the loop. On exit, the program continues with the statement

immediately after the body of the loop.

Example Program: To reverse the given number using while loop

 /*

 Reverse of the given number using while loop statement

*/

#include<stdio.h>

#include<conio.h>

void main()

{

 int number= 0, digit = 0 , rev =0;

 printf("\nEnter the number");

 scanf(“%d”, &number);

 while (number != 0)

 {

 digit = number %10;

 rev = rev*10+digit;

 number = number / 10;

 }

printf("\nReverse of the given number is: %d " , rev);

getch();

 }

69

Output of Program

Enter the number

1234

Reverse of the given number: 4321

1.7.2.3. The do – while Statement

The general form is

Initialization;

do

{

 Body of the loop

}

while (test condition)

 The do-while is an exit-controlled loop statement. On do statement; the

body of the loop will be executed first. At the end of the loop, the test

conditions in the while statement is evaluated. If condition it true, the program

proceed to continues to evaluate the body of the loop once again. This process

continues as long as condition is true. When the condition become false, the

loop will be terminated and control goes to statement after the while statement.

Example Program: To find the summation of ‘n’ numbers using do–while

statement

/*

 Summation of ‘n’ numbers using do–while statement

*/

 #include<stdio.h>

#include<conio.h>

viod main()

 {

 int n = 0, i = 1, sum = 0;;

 printf("\nEnter the value of n");

 scanf(“ %d”, &n);

 do

 {

70

 sum = sum + i;

 i = i + 1;

 }

 while (i <= n);

 printf("\nSummation of n numbers is : %d" ,sum);

 getch();

}

Output Of Program

Enter the value of n

11

Summation of n numbers is: 66

1.7.2.4. The For Statement.

The for loop is an entry-controlled loop. The general form is

 for (initialization ; test condition ; increment)

 {

 Body of the loop

 }

The execution of the for statement is as

1. Initialization of the control variables is done using assignment statements.

2. The value of the control variable is tested using the test condition.

3. When the body of the loop is executed, the control is transferred back to

the for statement after evaluating the last statement in the loop. Now, the

control variable is incremented using an assignment statement.

Example Program: To find the summation of ‘n’ numbers using for

statement

/*

 Summation of n numbers using for statement

*/

 #include<stdio.h>

#include<conio.h>

void main()

 {

 int n = 0, i = 1, sum = 0;;

71

 printf("\nEnter the value of n");

 scanf(“ %d”, &n);

 for(i = 1 ; i <= n ; i++)

 {

 sum = sum + i;

 }

 printf("\nSummation of n numbers is : %d" ,sum);

 getch();

}

Output Of Program

Enter the value of n

10

Summation of n numbers is: 55

Additional features of for loop

The for loop has several capabilities that are not found in other loop constructs.

For example more than one variable can be initialized at a time in the for

statement.

 p = 1;

 for (n = 0 ; n<17; ++n)

can be rewritten as

 for (p =1, n = 0 ; n<17; ++n)

Increment section may also have more than one part. For example

for (n = 0, m = 50 ; n<17; ++n, --m)

The test condition may have any compound relation and testing need not be

limited only to the control variable.

Nesting of for loops

Nesting of loops, that is one for statement within another for statement, is

allowed in C. For example

72

 for (n = 1 ; n<17; ++n)

 {

 for (m = 1 ; m< 10; ++m)

 {

 } Inner Loop

 } Outer Loop

1.7.2.5. Jumps in loops

C permits a jump from one statement to the end or beginning of a loop

as well as jump out of a loop.

Jumping Out of a Loop

An early exit from a loop can be accomplished by using break

statement. The general form is

 break ;

 The break statement can be used within while, do, for loops. When the

break statement is encountered inside a loop, the loop is immediately exited.

When the loops are nested, the break would exit from containing it. The use of

the break statement in loops is illustrated in Fig 1.7. 2.3.

A goto statement can transfer the control to any place in a program; it is

useful to provide branching within a loop is illustrated in Fig.1.7.2.4.

73

while (test-condition) do

{ {

 ------------ ------------

 if (------------) if (------------)

 break; break;

 ------------ ------------

} } while (test-condition);

 ------------ ------------

 for(initialization; test condition; increment)

{

 if (------------)

 break; // Exit from loop

}

for(initialization; test condition; increment)

{

 for(initialization; test condition; increment)

 {

 if (------------)

 break; // Exit from inner loop

}

74

}

 Fig 1.7. 2.3 Bypassing and continuing in loops

while (test-condition)

 {

 if (------------)

 goto stop; // Exit from loop

 if (------------)

 goto abc; // Jump within loop

 abc:

 }

 stop:

Fig 1.7.2.4 Jumping within and exiting from the loops with goto

statement

Example Program: To find the sum of positive numbers using break

statement

/*

 Program for sum of positive number using break statement

*/

 #include< stdio.h>

 #include<conio.h>

 void main()

 {

75

 int n = 0,sum =0, i;

 printf("\nEnter the 5 numbers ");

 for(i=1;i<=5;i++)

 {

 scanf(“%d”, &n);

 if (n < 0)

 break;

 else

 sum = sum + n;

 }

 printf("\nSum of positive numbers is : %d", sum);

 getch();

 }

Output Of Program

Enter the 5 numbers

12

34

56

-78

Sum of positive numbers is :102

Skipping a Part of a Loop

During the loop operations, it may be necessary to skip a part of the body of the

loop under certain conditions by using continue statement. The general form is

 continue;

The use of the continue statement in loops is illustrated in Fig 1.7.2.5.

In while and do loops, continue causes the control go to directly test condition

and then to continue the iteration process. In the case of for loop, the increment

section of the loop is executed before the test condition is evaluated.

76

while (test-condition) do

{ {

 ------------ if (------------)

 if (------------) continue;

 continue; ------------

} } while (test-

condition);

for(initialization; test condition; increment)

{

 if (------------)

 continue;

}

 Fig 1.7.2.5 Bypassing and continuing in loops

Example Program: To find the sum of positive numbers using continue

statement

/*

 Program for sum of positive number using continue statement

*/

 #include< stdio.h>

 #include<conio.h>

 void main()

 {

 int n = 0,sum =0, i;

 printf("\nEnter the 5 numbers ");

 for(i=1;i<=5;i++)

 {

 scanf(“%d”, &n);

 if (n < 0)

 continue;

77

 else

 sum = sum + n;

 }

 printf("\nSum of positive numbers is : %d" sum);

 getch();

 }

Output Of Program

Enter the 5 numbers

12 34 56 -78 10

Sum of positive numbers is :112

1.7.3. Self Assessment Questions

1. if statements returns either_________ or _________.

2.One loop within a loop is called ________________.

True / False

1. When the break statement is encountered inside a loop, the loop is

immediately exited

2. for loop is an exit controlled loop statement.

Multiple Choices

1. Which is one of exit controlled loop?

a) do-while b) while loop

c) for loop d) none of the above

2. The segment of a program is

x=1; sum=0;

while (x<=5)

{

 sum=sum+x;

 x++;

}

 what is the value of sum?

a) 13 b) 14 c) 10 d) 15

78

Short Answer

1. List out branching control statement.

--

--

2. Define infinite loop

--

--

1.8. Summary

In this unit we have introduced some of the most fundamental parts of

C language and the framework of C program. You have also discussed about

how to use variable, expression, and operators. You have also learnt how the

precedence rules work with arithmetic statements and how the integer and

floating point conversions take place.

Among input/output statements you have learnt to use scanf() and

printf(), and how to handle input/output of different types of variables using

these.

You have learnt how to create and use decisions making looping and

branching statements in variety of situations

1.9. Unit questions

1. Explain the structure of C program.

1. Define data types. Explain its types with example.

2. Discuss various types constant with example.

3. Explain in detail about

 a) Formatted Input /Output statements b) Unformatted Input / Output

statement

4. Distinguish between if-else and switch-case statement.

5. Briefly explain conditional or decision making statement.

6. Find the output of the following expressions.

a) 4 + 8/2 * 7 + 4 b) 4%3 * 5/2 + (5*5)

7. Write a program to find the sum of digits of an integer using while-loop.

8. Write a program to print a name using gets() and puts() function.

9. Briefly explain different types operator in C.

79

1.10. Answers for Self Assessment Questions

Answer 1.3.4

Fill in the blank

1. Dennis Ritchie 2. Structured programming language

True / False

1. False 2. True

Multiple Choice

1. b

Short Answer

1. Variables declared and used inside functions are called local variables.

Answer 1.4.4

Fill in the blank

1. scanf () function 2. main() function

True / False

1. False 2. True

Multiple Choice

1. d

Short Answer

1. A variable is an identifier that denotes a storage location used to store a data

value.

2. The size and type of values that can be stored in variable is called as Data

type.

Answer 1.5.16

Fill in the blank

1. Operators. 2. ceil() function

True / False

1. False

Multiple Choice

1. a 2. d

Short Answer

1. When both the operands in single arithmetic expression such as a + b are

integers, the expressions is called an integer expression, and the operation is

called integer arithmetic.

2. An arithmetic expression is a combination of variables, constants, and

operators

80

Answer 1.6.4

Fill in the blank

1. standard I/O library 2. left

True / False

1. False 2. True

Multiple Choice

1. %lf

Short Answer

1. The type of data that the user going to accept via scanf function. This can be

formatted and always preceded with a ‘%’ sign.

Answer 1.7.3

Fill in the blank

1. true or false 2. Nested loop

True / False

1. True 2. False

Multiple Choice

1. a 2. d

Short Answer

1. if statements, switch statement, Conditional operator statement

2. The statements in block may be executed any number of times, from zero to

infinite number is called an infinite loop.

81

NOTES

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

82

UNIT – II

2.1 Introduction

Structure and union, which is method for placing data of different

types. A structure is convenient tool for handling a group of logically related

data items. But arrays can be used to represent a group of data items that

belong to the same type.

In this unit we shall introduce three different derived data types such as

structure & union, arrays and functions. We discuss how structure & union,

arrays and functions can be defined and used in C.

2.2 Objectives

After studying this unit, you should be able to

 Create a structure & union and reference each of its members.

 Create and manipulate various types of array.

 Create and manipulate function in C.

 Understand the term scope, local and global and how each will affects

variables within functions.

2.3 Structure And Unions

2.3.1 Introduction

C provides a constructed data type known as structure, which is a

method for packing data of different types. A structure contains one or more

data items of different data type in which the individual elements can differ in

type. The individual element in structure is called members.

Example:

 You might want to process information on students, in the category of

names and marks. Here we can declare the structure ‘student’ with the

fields, names and marks and we can assign their appropriate data types.

These fields are called members of the structure.

2.3.2 Structure Definition or Template Declaration

The structure creates a format that may be used to declare structure

variables. The general form for defining the structure as

83

 struct structure_name

{

 type structure_element 1;

 type structure_element 2;

type structure_element n;

};

where

struct – is the keyword that declares a structure.

struct_name – is the name of the structure and is called the structure tag.

type – specifies the data type of the structure elements.

structure_element 1,structure_element 2… - are the structure elements or

members. Each element may be belonging to a different type of data.

Example:

struct student

{

 char student_name;

 int student_rno;

 int student_mark1;

 int student_mark2;

};

Rules for defining a structure

 A structure must be end with semicolon (;).

 A structure appears at the top of the source program.

 While entire declaration is considered as a statement, each member is

declared independently for its name and type in separate statement

inside the structure.

 The tag name, such as struct_name can be used to declare the structure

variables of its type.

 The structure elements or members must be accessed with structure

variable with dot (.) operator.

84

2.3.3 Declaration of Structure Variable

We can declare structure variables using the tag name any where in the

program. The general form of structure variable declaration is

struct struct_name struct_var1, struct_var2…….struct_varn;

where

 struct – is the keyword

 struct_name - is the name of the structure

struct_var1, struct_var2…..- are the structure variables

Example:

 struct student s1, s2 …. sn;

C also supports to combine both the template declaration and variables

declaration in one statement. The general form is

struct structure_name

{

 type structure_element 1;

 type structure_element 2;

type structure_element n;

} struct_var1, struct_var2…….struct_varn;

Example:

struct student

{

int student_rno;

char student_name;

int student_mark1;

int student_mark2;

}s1, s2 …. sn;

2.3.4 Giving Values To Members

We can assign values to the members of a structure in a number of ways. The

link between a member and a variable is established using the member operator

‘.’ Which is also known as dot operator.

85

Example

s1.student_rno;

is the variable representing the roll number of student and it treated like

ordinary variable.

We assign values to the members of student:

s1.student_rno = 1000;

strcpy(s1.student_name, ‘Harsh’);

s1.student_mark1 = 100;

s1.student_mark2 = 99;

we can also use scanf to give the values through the keyboard.

scanf(“%d\n”, s1.student_rno);

scanf(“%s\n”, s1.student_name);

are valid input statements.

2.3.5 Structure Initialization

Like any other data type, a structure variable can be initialized, but this

initialization can be made at the compile time. This type of initialization can be

done in two ways.

Example1:

struct student

{

int student_rno;

char student_name;

int student_mark1;

int student_mark2;

} s1 = {1000, ‘Harsh’,100, 99};

There is one-to-one correspondence between the members and their initializing

values.

Example2:

struct student

{

int student_rno;

char student_name;

int student_mark1;

int student_mark2;

86

 };

 main()

 {

struct student s1 ={1000, ‘Harsh’,100, 99};

 }

2.3.6 Comparison Of Structure Variable

Two variables of the same structure type can be compared the same

way as ordinary variables. If student1 and student2 belong to the same

structure, then the following operations are valid:

Operation Meaning

student1 = student2 Assign student2 to student1.

student1 = = student2 Compare all members of student1 and student2 and

 return 1 if they are equal, 0 otherwise.

student1 ! = student2 Return 1 if all the members are not equal, 0

otherwise.

2.3.7 Arrays Of Structures

We may declare an array of structures, each element of the array representing a

structure variable. For example

struct class student[100];

defines an array called student, that consists of 100 elements. Each element is

defined to be of the type struct class.

struct student

{

int student_rno;

char student_name;

int student_mark1;

int student_mark2;

 };

 main()

 {

struct student s1[2]= {{1000, ‘Harsh’,100, 99},{1001, ‘Raj’,78, 97}};

}

This declares the s1 as an array of two elements s1[0] and s1[1] and initializes

their members as

87

 s1[0] .rno = 1000;

 s1[0].name = ‘Harsh’;

 .

 .

 s1[1].mark2= 97;

2.3.8 Arrays Within Structures

C permits the use of arrays as structure members. We have already used arrays

of characters inside a structure. Similarly, we can use single or multi

dimensional arrays of type int or float. For example

struct student

{

int student_rno;

char student_name[20];

int student_mark[2];

 } s1[2];

Here, the member mark contains two elements, mark[0] and mark[1].These

elements can be accessed using appropriate subscripts.

For example

 s1[1].mark[1];

would refer to the marks obtained in the second subject by the second student.

Example Program: Program to illustrate structure with arrays

#include<stdio.h>

main()

{

struct student

{

int student_rno;

char student_name[10];

int student_mark[2];

} s1[2];

int i, j;

printf("\nEnter roll no, name and marks");

for(i = 0; i < 2; i++)

{

88

scanf("%d%s", &s1[i].student_rno,

s1[i].student_name);

for(j = 0; j<2; j++)

{

scanf("%d",

&s1[i].student_mark[j]);

}

}

printf("R.No Name Mark1 Mark2");

for(i = 0; i < 2; i++)

{

printf("\n%d\t%s", s1[i].student_rno,

s1[i].student_name);

for(j = 0; j<2; j++)

{

printf("\t%d",s1[i].student_mark[j

]);

}

}

getch();

}

Output Of the Program

Enter roll no, name and marks

1000

Ramu

100

90

2000

Gopi

89

78

R.No Name Mark1 Mark2

1000 Ramu 100 90

2000 Gopi 89 78

89

2.3.9 Structures Within Structures

Structure within a structure means nesting of structures. For example

struct salary

 {

char name[20];

 char dept[10];

struct

 {

 int dearness;

 int house_rent;

 } allowance;

} employee;

 The salary structure contains a member named allowance which itself is

a structure with two members. The members contained in the inner structure

namely dearness and house_rent can be referred to as

 employee.allowance.dearness

 employee.allowance.house_rent

An inner-most member in a nested structure can be accessed by

chaining all the concerned structure variables (from outer-most to inner-most)

with the member using dot operator.

 An inner structure can have more than one variable. For example

struct salary

{

struct

{

int dearness;

int house_rent;

}

allowance;

arrears;

}employee;

The inner structure has two variables, allowance and arrears. We can

also use tag names to define inner structures. For example

srtuct pay

90

{

int dearness;

int house_rent;

};

struct salary

{

char name[20];

char dept[10];

struct pay allowance;

struct pay arrears;

};

struct salary employee[100];

pay template is defined outside the salary template and is used to define the

structure of allowance and arrears inside the salary structure.

2.3.10 Structures and Functions

 C supports the passing of structure values as arguments to functions.

There are three methods by which the values of a structure can be transferred

from one function to another.

 The first method is to pass each member of the structure as an actual

argument of the function call. The actual arguments are then treated

independently like ordinary variables.

 The second method involves passing of a copy of the entire structure to

the called function.

 The third approach employs a concept called pointers to pass the

structure as an argument. In this case, the address location of the

structure is passed to the called function.

 In this section, we discuss about the second method, while the third

approach using pointers is discussed in the pointer chapter.

The general form of sending a copy of a structure to the called function is

 function_name (structure_variable_ name)

91

the called function takes the following form:

 data_type function_name(structure_name)

 struct_type st_name;

 {

 return(expression);

 }

Example Program:

 #include<stdio.h>

 struct std

 {

 int a;

 char b;

 };

 void fun(struct std s);

 void main()

 {

 struct std a1;

 a1.a = 10;

 a1.b = ‘H’;

 fun(a1);

 getch();

 }

 void fun(struct std s);

 {

 printf(“The value of a is :%d\n”, s.a);

 printf(“The value of b is :%c\n”, s.b);

 }

Output Of Program:

 The value of a is :10

 The value of b is :H

92

2.3.11 Size Of Structure

We may use the unary operator sizeof to tell us the size of a structure

(or any variable). The expression

 Sizeof (struct a)

will evaluate the number of bytes required to hold all the members of the

structure a.

2.3.12 Unions

Unions are a same concept of structures and therefore follow the same

syntax as structures. However, there is major distinction between them in terms

of storage. In structures each member has its own storage location, whereas all

the members of a union use the same location. This implies that, although a

union may contain many members of different types, it can handle only one

member at a time. Like structures a union can be declared using the keyword

union as

 union item

{

int a;

float b;

char c;

} code;

This declares a variable code of type union item. The union contains

three members, each with a different data type. However, we can use only one

of them at a time. Fig.2.3.1 shows how all three variables share the same

address. The compiler allocates a piece of storage that is large enough to hold

the largest variable type in the union.

To access a union member, we can use same syntax that we use for structure

members. That is,

 code.a

code.b

code.c

Unions may be used in all places where a structure is allowed.

93

 Fig.2.3.1 Sharing of storage location by union members

Example Program 1: Program for summation of three numbers using Union.

#include <stdio.h>

union sum

{

int a;

int b[2];

};

main()

{

union sum s;

int s1;

s.a = 10;

s.b[0] = 20; s.b[1] = 30;

s1 = s.a + s.b[0] + s.b[1];

printf(“The sum of three numbers is : % d\n”, s1);

getch();

}

Output Of Program:

The sum of three numbers is : 70

Example Program 2: Program to find number bytes reserved for union and

structure.

#include <stdio.h>

main()

{

Storage of 4 bytes

 1000 1001 1002 1003

 a

 b

 c

94

union result

{

int mark;

char grade;

};

 struct res

 {

 char name[15];

int age;

char sex;

union result perf;

 }res1;

printf(“Size of Union : %d\n”, sizeof(res1.perf));

printf(“Size of Structure : %d\n”, sizeof(res1));

getch();

}

Output Of Program:

Size of Union : 2

Size of Structure : 20

2.3.13 Self Assessment Questions

Fill in the blank

1._______________ keyword is used to declare the structure.

2. The link between a member and a variable of structure is established using

the _______________member operator.

True / False

1. All structure elements are stored in contiguous memory locations.

2. An array should be used to store dissimilar elements and a structure to store

similar element.

Multiple Choice

1. Given the statement

 student.result.mark = 60;

a) structure mark is nested within structure result

b) structure result is nested within structure student

c) structure student is nested within structure result

95

d) structure student is nested within structure mark

Short Answer

1. How structure elements can be accessed?

2. Define union.

2.4 Arrays

2.4.1 Definition

An array is a group of related data items that share a common name.

An array of value can be accessed by index or subscript enclosed in square

brackets after array name. For example, a[5] represents the 5th element in an

array.

The subscript can begin with number 0. The value of each subscript can

be expressed as an integer constant or integer variable or an integer expression.

Arrays can be classified into

 One-Dimensional arrays

 Two-Dimensional arrays

 Multi-Dimensional arrays

Features of arrays:

 An array is derived data type. It is used to represent a collection of

elements of the same type.

 The elements can be accessed with base address (index) and the

subscripts define the position of the element.

 In array the elements are stored in continues memory location. The

starting memory location is represented by the array name and it is

known as the base address of the array.

 It is easier to refer the array elements by simply incrementing the

value of the subscript.

 Any reference to the arrays outside the declared limits would not

necessarily cause an error. Rather, it might result in unpredictable

program results.

2.4.2 One Dimensional Arrays

A list of data items can be stored under a one variable name using only

one subscript and such a variable is called a single-subscripted variable or one-

96

dimensional array. For example, if we want to represent a set of four numbers,

by array variable a then we may declare the variable a as

 int a [4];

and computer reserves four memory locations as

a[0]

a[1]

a[2]

a[3]

The values to the array elements can be assigned as

a[0] = 10 ;

a[1] = 20 ;

a[2] = 30 ;

a[3] = 40 ;

This would cause the array a to store the values as

a[0] 10

a[1] 20

a[2] 30

a[3] 40

This element may be used in programs just like any other C variable.

For example, the following are valid statements:

 b = a[0] + 10;

 a[3] = a[0] + a[2];

2.4.3 Declaration Of One Dimensional Arrays

Declaration of arrays

The general form of array declaration is:

type arrayname[size];

97

The type specifies the type of element that will be contained in the

array, such as int, float, or char and the size indicates the maximum number of

elements that can be stored inside the array.

Examples:

 int a[10];

declares the a to be an array containing 10 integer elements. Any subscript 0 to

9 are valid.

 float b[5];

declares the b to be an array containing 5 real elements. Any subscript 0 to 4

are valid.

 char c[8];

declares the c as a character array containing 7 character elements. Any

subscript 0 to 6 are valid. Suppose we read the following string constant into

the string variable c.

 “WELCOME”

Each character of the string is treated as an element of the array c and is stored

in the memory as follows:

‘W’

‘E’

‘L’

‘C’

‘O’

‘M’

‘E’

‘\0’

98

When the compiler sees a character string, it terminates it with an

additional null character. Thus, the element c[8] holds the null character ‘\0’ at

the end.

2.4.4 Initialization Of One-Dimensional Arrays

Initialization of arrays

To put values into array created is known as initialization. This is done

using array subscripts as

 arrayname[subscript] = value;

Example:

 a[0] = 28;

a[3] = 57;

C creates arrays starting with subscript of 0 and ends with a value one

less than the size specified.

We can also initialize arrays automatically when they are declared, as

 type arrayname[] = { list of values };

The array initializer is a list of values separated by commas and surrounded by

curly braces.

Example:

 int a[] = { 10, 20,30,40};

char c[] = {‘W’,’E’,’L’,’C’,’O’,’M’,’E’};

Loops may be used to initialize large size arrays.

Example:

 for(int i = 0; i<10; i++)

 {

99

 a[i] = i;

 }

Example Program

/* Sorting the n given number in Descending order */

#include<stdio.h>

 void main()

{

 int a[] = {10 , 45 , 100, 37, 25};

 int i, j, t;

 for (i=0; i<5; i++)

 {

 for (j=i+1; j<5; j++)

 {

 if (a[i] <= a[j])

 {

 t = a[i];

 a[i] = a[j];

 a[j] = t;

 }

 }

}

printf(“Descending Order\n”);

for (i=0;i<5;i++)

{

printf(“%d\n”,a[i]);

100

}

getch();

}

Output Of Program

Descending Order

100

45

37

25

10

2.4.5 Two-Dimensional Arrays

We may create a two-dimensional array as

 type array_name [row_size][column_size];

The type specifies the data type of element that will be contained in the

array, such as int, float, or char and C place each size in its own set of brackets.

Each dimension of the array is indexed from zero to its maximum size minus

one:

 The first index selects the row and

 The second index selects the column within that row.

Example:

 int table[3] [3];

This creates a table that can store 9 integer values, three across (row)

and three down (column).

 C1 C2 C3

 R1

 R2

 R3

101

 The individual elements are identified by index or subscript of an array

from the above example.

 table[0][0] table[0][1] table[0][2]

 table[1][0] table[1][1] table[1][2]

 table[2][0] table[2][1] table[2][2]

2.4.6 Initializing Two Dimensional Arrays

A two-dimensional array may be initialized by following their

declaration with a list of initial values enclosed in braces.

For example,

 int table[2] [3] = {0,0,0,1,1,1}; //initialize the elements row by

row

 or

 int table[2] [3] = {{0,0,0},{1,1,1}}; //separate the element of each row

by braces

 or

 int table[2] [3] = {

{0,0,0},

{1,1,1}

};

If the values are missing in an initializer, they are automatically

set to zero. For example:

 int table[2] [3] = {

{1,1},

{2}

};

will initialize the first two elements of the row to one, the first element of the

second row to two, and all other elements to zero.

102

Example Program: Program for Addition of Two Matrix using Two-

 Dimensional Array

 /* Matrix Addition Using Two Dimensional Array */

 #include<stdio.h>

 void main()

 {

 int a[5][5] , b[5][5] ,c[5][5] ;

 int n = 0, i = 0, j = 0;

 printf("Enter the order of matrix");

 scanf(“%d”, &n);

 printf("\nEnter the A matrix");

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 scanf(“%d”, &a[i][j]);

 }

 }

 printf("\nEnter the B matrix");

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 scanf(“%d”, &b[i][j]);

 }

 }

 printf("\nThe A matrix\n");

103

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 printf(“%d\t”, a[i][j]);

 }

 printf(“\n”);

 }

 printf("\nThe B matrix\n");

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 printf(“%d\t”, b[i][j]);

 }

 printf(“\n”);

 }

 for(i=0;i<n;i++)

 {

 for(j=0;j<n;j++)

 {

 c[i][j] = a[i][j] + b[i][j];

 }

 }

 printf("\nThe Resultant Matrix is\n");

 for(i=0; i<n; i++)

104

 {

 for(j=0; j<n; j++)

 {

 printf(“%d\t”, c[i][j]);

 }

 printf(“\n”);

 }

getch();

 }

Output Of Program

Enter the order of matrix

2

Enter the A matrix

2

2

2

2

Enter the B matrix

2

2

2

2

The A matrix

2 2

2 2

The B matrix

2 2

105

2 2

The Resultant Matrix is

4 4

4 4

2.4.7 Multidimensional Arrays

C allows arrays of three or more dimensions. The compiler determines

the exact limit. The general form of a multidimensional array is

type array_name [s1][s2]-------[sn];

where

 sn is the size of the nth dimension.

Example:

 int d[3][5][12];

where

 d is a three dimensional array declared to contain 180 integer type

elements.

2.4.8 Dynamic Arrays

C language requires the number of elements in an array to be specifies

at compile time. But we may not be able to do so always. Our initial judgement

of size, if it is wrong, may cause failure of the program or wastage of memory

space.

Many languages permit a programmer to specify an array’s size at run

time. The process of allocating memory at run time is known as dynamic

memory allocation or it is called as dynamic arrays.

Although C does not inherently have this facility, there are four library

routines known as memory management functions that can be used for

allocating and freeing memory during program execution. They are listed in

Table 2.4.1.

106

 Table 2.4.1 Memory Allocation Functions

Function Task

malloc Allocates requested size of bytes and returns a pointer to

 the first byte of the allocated space.

calloc Allocates space for an array of elements, initialize them to

 zero and then returns a pointer to the memory.

free Frees previously allocated space.

realloc Modifies the size of previously allocated space.

Allocating a Block of Memory

A block of memory may be allocated using the function malloc. The

malloc function reserves a block of memory of specified size and return a

pointer of type void. This means that we can assign it to any type of pointer.

The general form is

ptr = (cast-type *) malloc(byte-size);

Where

 ptr - is a pointer of type cast-type.

malloc – returns a pointer to an area of memory with size byte-size.

Example:

 x = (int *) malloc(100 * sizeof(int));

On successful execution of this statement, a memory space equivalent to “100

times the size of an int” bytes is reserved and the address of the first byte of the

memory allocated is assigned to the pointer x of type of int.

Similarly, the statement

 cptr = (char *) malloc(5);

allocates 5 bytes of space for the pointer cptr of type char. This illustrated

below:

 cptr

107

 Address of first byte

 5 bytes of space

We may also use malloc to allocate space for complex data types such as

structure.

Example

st_var = (struct store *) malloc(sizeof(struct store));

Where st_var is a pointer of type struct store.

Example Program: Program to print values from memory address

#include<stdio.h>

#include<stdlib.h>

main()

{

int *a, *n, size;

printf(“Enter the size..”);

scanf(“%d”, &size);

n = (int *)malloc(size * sizeof(int));

printf(“Address of the first byte is %u \n“, n);

printf(“Enter the values”);

for(a = n; a < n + size; a++)

scanf(“%d”, a);

printf(“Printing the values \n”);

for(a = n; a < n + size; a++)

printf(“%d is stored in address %u\n”, *a, a);

 getch();

}

108

Output Of The Program

Enter the size..5

Address of the first byte is 2402

Enter the values 1 2 3 4 5

Printing the values

1 is stored in address 2402

2 is stored in address 2404

3 is stored in address 2406

4 is stored in address 2408

5 is stored in address 2410

Allocating Multiple Block of Memory

The calloc is another memory allocation function that is normally used

for requesting memory space at run time for storing derived data types such as

arrays and structures. calloc allocates multiple block of storage, each of the

same size, and then sets all bytes to zero. The general form of calloc is

ptr = (cast-type *) calloc(n, elem-size);

The above statement allocates contiguous space for n blocks, each of

size elem-size bytes. All bytes are initialized to zero and a pointer to the first

byte of the allocated region is returned. If there is not enough space, a NULL

pointer is returned.

Example:

struct student

{

char name[20];

float age;

long int id_num;

109

};

typedef struct student rec;

rec * st_ptr;

int class_size = 30;

st_ptr = (rec *)calloc(class_size, sizeof(rec));

rec is of type struct student having three members: name, age and id_num. the

calloc allocates memory to hold data for 30 such records. We must be sure that

the requested memory has been allocated successfully before using the st_ptr.

For example

if(st_ptr = = NULL)

{

printf(“Available memory not sufficient”);

exit(1);

}

Releasing the Used Space

Compile time storage of a variable is allocated and released by the

system in accordance with its storage class. With dynamic run time allocation,

it is our responsibility to release the space when it is not required. The release

of storage space becomes important when the storage is limited. We may

release that block of memory for future use, using the free function:

 free(ptr);

ptr is a pointer to a memory block which has already been created by malloc or

calloc.

Altering the Size of a Block

The previously allocated memory is not sufficient and we need additional

space for more elements. It is also possible that the memory allocated is much

110

larger than necessary and we want to reduce it. In both the cases, we can

change the memory size already allocated with the help of the function realloc.

This process is called as the reallocation of memory. For example

 ptr = malloc(size);

Then reallocation of space may be done by the

ptr = realloc(ptr, newsize);

This function allocates a new memory space of size newsize to the pointer

variable ptr and returns a pointer to the first byte os the new memory block.

The newsize may be larger or smaller than the size.

Example Program: Program to altering the allocated memory

#include<stdio.h>

#include<stdlib.h>

main()

{

char *p;

p = (char *)malloc(6);

strcpy(p, “MADRAS”);

printf(“Memory contains: %s\n”, p);

p =(char *)realloc(p, 7);

strcpy(p, “CHENNAI”);

printf(“Memory now contains: %s\n”, p);

free(p);

getch();

}

Output Of The Program

Memory contains: MADRAS

Memory now contains:CHENNAI

111

2.4.9 Self Assessment Questions

Fill in the blank

1. To put values into array created is known as _______________.

2. In two dimensional array the second index refers ________________.

True / False

1. Index value of arrays can begin with the number 1.

2. An array should be used to store dissimilar elements .

Multiple Choice

1. Dimension of the array is indexed from

a) zero to its maximum size b) one to its maximum size minus one

 c) one to its maximum size d) zero to its maximum

size minus one

Short Answer

1. Define arrays.

2.5 Functions

2.5.1 Introduction

C functions can be classified into two types.

 Library functions:

 Library functions are not required to be written by us. For example

printf and scanf and other library functions are sqrt, cos, strcat etc.,

 User-defined functions:

A user-defined function has to be developed by user at the time of

writing a program. For example main is a user-defined function.

112

2.5.2 Need for user defined functions

Every program must have a main function to indicate where the

program has to begin its execution.

While it is possible to write any complex program under the main()

function and it leads to a number of problems, such as

 The program becomes too large and complex

 The users can’t go through at a glance.

 The task of debugging, testing and maintenance becomes

difficult.

 If a program is divided into functional parts, then each part may be

independently coded and later combined into a single unit. These subprogram is

called ‘functions’ are much easier to understand, debug, and test.

The advantages of using subprograms are

 The length of the source program can be reduced by dividing it into the

smaller functions.

 By using functions it is very easy to locate and debug an error.

 The user defined functions can be used in many other source programs

whenever necessary.

 Functions avoid coding of repeated programming of the similar

instructions.

 Functions facilitate top-down programming approach.

How functions works?

 Once a function is called, it takes some data from the calling function and

return back some value to the called function.

 Whenever function is called control passes to the called function and

working of the calling function is temporarily stopped, when the execution

of the called function is completed then control returns back to the calling

function and execute the next statement.

113

 The function operates on formal and actual arguments and sends back the

result to the calling function using return statement.

2.5.3 The form of C functions

The general form of functions is

 datatype function_name(argument list)

argument declaration;

{

local variable declarations;

 ----------- // body of the function

 return(expressions);

 }

where

datatype – is the type of data that the function is going to return to its

 main program.

function_name – is the name of the function.

argument list - is the list of arguments that are transferred to the function

from the main program.

The argument list must be separated by commas and has no termination

(semi colon) after the parenthesis. The argument list and its associated

argument declaration parts are optional.

 The declaration of local variables is required only when any local

variable are used in the function.

 The function can have any number of executable statements. The

function that does nothing may not include any executable statement at all.

114

For example

 do_nothing()

{ }

The return statement is used to for returning a value to the calling

function. This is optional, when no value is being transferred to the calling

function.

2.5.4 Return values and their types

A function may or may not send back any value to the calling function.

If it does, it is done through the return statement. While it is possible to pass to

the called function any number of values, the called function can only return

one value per call at the most.

The general form of return statement is

return;

or

return(expression);

The first form does not return any value; it acts much as the closing

brace of the function. When return is encountered, the control is immediately

passed back to the calling function.

For example

 if(error)

 return;

The second form of return with an expression returns the value of the

expression. For example

 add(x,y) add(x,y)

int x,y; int x,y;

{ {

int z; or return(x + y) ;

 z = x + y; }

115

return(z) ;

}

A function may have more than one return statement. For example

 if x < y

 retrun(x);

 else

 return(y);

2.5.5 Calling a function

A function can be called by using the function name in a statement. For

example

 main()

 {

 int a;

 a = add(10, 20);

 printf(“%d\n”, a);

 }

When the compiler encounters a function call, the control is transferred

to the function add(x, y). This function is then executed line by line and a value

is returned when a return statement is encountered. This value is assigned to a.

A function that does not return any value may not be used in

expressions; but can be called to perform certain tasks specified in the function.

2.5.6 Category of functions

A function, depending on whether arguments are present or not and

whether a value is returned or not, it can be classified into four types are

 Functions with no arguments and no return values

 Functions with arguments and no return values

 Functions with arguments and return values

 Functions with no arguments and return values

116

Functions with no arguments and no return values

In this type, no data transfer takes place between the calling function

and called function. That is the called function does not receive any data from

the calling function and does not send back any value to the calling function.

The general form is

 main() fun1()

 { {

 --------- -----------

 --------- -----------

 fun1(); -----------

 --------- -----------

 --------- -----------

 } }

Note:

The dotted line indicates that, there is only transfer of control but no data

transfer. The solid line or continuous indicates that, there is transfer of data.

Example Program: Function call without parameter

#include<stdio.h>

main()

{

message();

printf(“Main Message”);

}

message()

{

printf(“Function Message\n”);

117

}

Output Of The Program

 Function Message

 Main Message

Functions with arguments and no return values

In this type, data is transferred from calling function to called function.

That is the called function does receive some data from the calling function and

does not send back any values to the calling function.(one way communication)

The general form is

 main() fun1(x,y)

 { {

 --------- -----------

 --------- -----------

 fun1(a,b); -----------

 --------- -----------

 --------- -----------

 } }

Example Program: Function with arguments and no return values

#include<stdio.h>

main()

{

 add(10, 20);

 getch();

}

add(int a, int b)

{

int c;

118

c = a + b;

printf(“\nAddition of two number is :%d”, c);

}

Output Of The Program

 Addition of two numbers is :30

Functions with arguments and return values

In this type, data is transferred between calling function and called

function. That is the called function does receive some data from the calling

function and send back a value to the calling function.(one way

communication)

The general form is

 main() data_type fun1(x,y)

 { {

 --------- -----------

 --------- -----------

 c = fun1(a,b); -----------

 --------- -----------

 --------- return(z);

 } }

Example Program: Function with arguments and return values

#include<stdio.h>

main()

{

 int x;

 x = add(10, 20);

 printf(“\nAddition of two number is :%d”, x);

119

 getch();

}

int add(int a, int b)

{

int c;

c = a + b;

return(c);

}

Output Of The Program

 Addition of two numbers is :30

Functions with no arguments and return values

In this type, calling function cannot pass any data to the called function

but the called function may send some value to the calling function.(one way

communication)

The general form is

 main() data_type fun1()

 { {

 --------- -----------

 --------- -----------

 c = fun1(); -----------

 --------- -----------

 --------- return(z);

 } }

Example Program: Function with no arguments and return values

#include<stdio.h>

main()

{

120

 int x;

 x = add();

 printf(“\nAddition of two number is :%d”, x);

 getch();

}

int add()

{

int a, b, c;

a = 10;

b = 20;

c = a + b;

return(c);

}

Output Of The Program

 Addition of two numbers is :30

2.5.7 Nesting of function

C permits to write one function within another function is called

nesting of functions. main() function can call function1, which calls

function2, ……… and so on. The general form is

121

 main() fun1() fun2()

 { { {

 --------- ----------- -----------

 --------- ----------- -----------

 fun1(); fun2(); -----------

 --------- ----------- -----------

 --------- ----------- -----------

 } } }

2.5.8 Recursion

A function calls itself is called as recursion. In order to write a recursive

program, the user must satisfy the following.

 The problem must be analyzed and written in recursive form.

 The problem must have stopping condition.

The general form is

 function1()

 {

 function1();

 }

The above function the function1() is called itself continuously, so the above

function is in recursive manner.

Example Program: Program to find the factorial of a given number.

#include<stdio.h>

void main()

{

int a;

122

printf(“\nEnter the number:”);

scanf(“%d”, &a);

printf(“The factorial of %d is : %d”, a, recur(a));

getch();

}

recur(int x)

{

int fact;

if(x = = 1)

 fact = 1;

else

 fact = x * recur(x – 1);

return(fact);

}

Output Of Program:

Enter the number 5

The factorial of 5 is : 120

In the above program the variable a is read through the keyboard. The

user defined function recur() is called from the main() function. Here the

condition checked x = 1, if condition satisfied then control transfer to the main

program and prints the value. Otherwise else part is executed and calculated

the factorial value it returns the value to the main program. The function recur(

) is called as a recursive function.

2.5.9 Functions with arrays

In C, it is possible to pass the values of an array to a function. To pass

an array to a called function, it is sufficient to list the name of the array without

any subscripts and the size of the array as arguments. For example, the call

 smallest(a , n);

123

will pass all elements contained in the array a of size n. the called function

expecting this call must be appropriately defined. The smallest function header

might look like

 float smallest(array, size)

 float array[];

int size;

The function smallest is defined to take two arguments, the array name

and the size of the array to specify the number of elements in the array.

Example Program: Program to find smallest among n numbers

#include<stdio.h>

main()

{

int i, n, s, a[10];

printf(“\nEnter the value of n”);

scanf(“%d”, &n);

printf(“Enter the %d numbers of values”, n);

for(i = 0; i <n; i++)

scanf(“%d”, &a[i]);

s = smallest(n, a);

printf(“Smallest among %d number is :%d”, n , s);

getch();

}

int smallest(int n , int x[])

{

int i, small = x[0];

for(i = 1; i < n; i++)

{

124

if(small > x[i])

 small = x[i];

}

return(small);

}

Output Of The Program

Enter the value of n

5

Enter the 5 numbers of values

45

37

28

68

40

Smallest among 5 number is : 28

2.5.10 Self Assessment Questions

Fill in the blank

1. Every called function must contain a _____________ statement.

2. A function calls itself is called as ________________.

True / False

1. The same variable names ca used in different functions without any conflict.

Multiple Choice

1. Each function must contain return statement, which returns

a) only one value b) three values

c) more than one value d) none of the above

125

Short Answer

1.What is meant by functions with no arguments and no return values?

2.6 Summary

The first lesson of this unit you have learnt the use of structures, which

allow us to combine several variables of different types into a single entity. We

have also examined the features of structures, which lead to programming

convenience.

The second lesson of this unit you have learned how to handle arrays in

a variety of forms. We have learnt how to declare arrays, how to initialize them

and how to access array elements using subscript.

The third lesson of this unit you have learnt how to use function, how

to write them, how to functions interact with one another how to send them

information using arguments and how to use them to return values. You also

learnt how recursive functions work.

2.7 Unit Questions

1. Write a program to print student name and marks using structure.

2. Compare structure and union in C.

3. Explain structure concept in C with suitable example.

4. Define array. Explain different types of arrays with example.

5. Write a program to multiple two matrices using two-dimensional array.

6. Write a program to sort the given n numbers in descending order using

array.

7. Discuss the categories of functions used in C.

8. What is called recursion? Explain it needs.

9. Write a program to generate fibonacci series upto n numbers using

recursion.

126

10.Write a program, which performs the following tasks:

 a) initialize an integer array of 10 elements in main()

 b) pass the entire array to a function modify()

 c) in modify() multiply each element of array by 2

 d) return the control to main() and print the new array elements in main(

)

2.8 Answers for Self Assessment Questions

Answer 2.3.13

Fill in the blank

1. struct keyword 2. dot (.) operator

True / False

1. True 2. False

Multiple Choice

1. True 2. False

Short Answer

1. After declaring the structure type, variables and members, the member of the

structure can be accessed by using the structure variable along with the dot(.)

operator.

2. Unions are a same concept of structures and therefore follow the same

syntax as structures. However, there is major distinction between them in

terms of storage. In structures each member has its own storage location,

whereas all the members of a union use the same location

Answer 2.4.9

Fill in the blank

1.initialization 2. column

True / False

1. False 2. False

127

Multiple Choice

1. d)

Short Answer

1.An array is a group of related data items that share a common name. An

array of value can be accessed by index or subscript enclosed in square

brackets after array name.

Answer 2.5.9

Fill in the blank

1. return statement 2. recursion

True / False

1. True

Multiple Choice

1. a)

Short Answer

1. No data transfer takes place between the calling function and called

function.

128

NOTES

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

129

UNIT – III

3.1. Introduction

In this unit we introduce character arrays & string, pointers and file

concepts in C language. An array of character is called character array or

string. Character strings are often used to build meaningful and readable

programs. We shall discuss about the common operation performed on

character strings.

Pointer is a important feature of C language. In the second lesson of

this unit, we examine the pointers in details and learn how to use them in

program.

In the last lesson of this unit, we shall discuss about file concept in

detail.

3.2. Objectives

After studying this unit, you should be able to:

 Understand string variables and the utilization of the NULL character

(\0)

 Understand the various string handling functions.

 Understand the concept of a pointer and create pointers to each type of

variable, to character strings, to functions and to structures.

 Open files in three modes (read, write and append), understand where

each mode places the file pointer and appreciate how each affects the

data previously contained in the file.

 Understand the various file handling functions and command line

arguments concept in C.

3.3. Character Arrays & Strings

3.3.1 Introduction

 A string is an array of characters. Any group of characters defined

between double quotation marks (“ “) is a string constant.

130

Example

 “welcome”

If we want to include a double quote in the string, then we may use it with a

back slash. For example

 printf(“\”welcome !\” ”);

will output the string

 ”welcome !”

The common operations performed on character strings are:

 Reading and Writing strings.

 Combining strings together.

 Copying one string to another.

 Comparing strings for equality.

 Extracting a portion of a string.

3.3.2 Declaring And Initializing String Variables

 A string variable is any valid C variable name and is always declared

as an array. The general form of declaration of a string variable is

 char string_name[size];

The size determines the number of characters in the string_name.

Example

 char name[20];

 char dept[10];

 When the compiler assigns a character string to a character array, it

automatically supplies a null character (‘\0’) at the end of the string. Therefore,

the size should be equal to the maximum number of characters in the string plus

one.

 Character arrays may be initialized when they are declared. C permits

a character array to be initialized in either of the two forms:

 char name[5] = ”Raja”;

131

 char name[5] = {‘R’,’a’,’j,’a’,’\0’}

 C also permits us to initialize a character array without specifying the

number of elements. In such cases, the size of the array will be determined

automatically, based on the number of elements initialized.

Example

 char string [] = {‘R’,’a’,’j,’a’,’\0’}

Defines the array string as a five elements array.

3.3.3 Reading Strings From Terminal

Reading words

 The input function scanf can be used with %s format specification to

read in a string of characters. Example:

 char address[15];

 scanf(“%s”, address);

 The problem with the scanf function is that it terminates its input on

the first white space it finds (A white space includes blanks, tabs, carriage

returns, form feeds and new lines). Therefore, if the following line of text is

typed in at the terminal,

 NEW YORK

 Then only the string “NEW” will be read into the array address, since

the blank space after the word “NEW” will terminate the string.

Example Program: Program for reading words from terminal.

 #include<stdio.h>

 void main()

 {

 char address[50];

 printf(“Enter the address\n”);

 scanf(“%s”, address);

 printf(“The address is %s”, address);

132

getch();

 }

Output Of Program

 Enter the address

 NEW YORK

 The address is NEW

Reading a line of text

 We can use getchar function repeatedly to successive single

characters from input and place them into a character array. Thus, an entire line

of text can be red and stored in an array. The reading is terminated when the

new line character (‘\n’) is entered and the null character is then inserted at the

end of the string.

Example Program: Program for reading words from terminal.

 #include<stdio.h>

 void main()

 {

 char address[50], ch;

 int n = 0;

 printf(“Enter the address\n”);

 do

 {

 ch = getchar();

 address[n] = ch;

 n++;

 } while (ch ! = ‘\n’);

 n = n – 1;

 address[n] = ‘\0’;

133

 printf(“The address is %s”, address);

getch();

 }

Output Of Program

 Enter the address

 NEW YORK

 The address is NEW YORK

3.3.4 Writing Strings To Screen

 The printf function with %s format is used to print strings to the

screen. The format %s can be used to display an array of characters that is

terminated by null character.

For example

 printf(“%s”, name);

can be used to display the entire contents of the array name.

 We can also specify the precision with which the array is displayed.

For example, the specification

 %10.4

indicates that the first four characters are to be printed in a field width of 10

columns.

Example Program: Program for display the string under various format

specifications.

 #include<stdio.h>

 void main()

 {

 char address[] = “NEW YORK”;

 printf(“\nThe address is\n “);

 printf(“ %10s\n”, address);

 printf(“ %4s\n”, address);

134

 printf(“ %10.5s\n”, address);

getch();

 }

Output Of Program

 Enter the address

 NEW YORK

 The address is

 NEW YORK

 NEW YORK

 NEW Y

3.3.5 String Handling Functions

 The C library supports a large number of string handling functions

that can be used to manipulate the strings.

strlen () Function

 The strlen () function is used to count and return the number of

characters in the string. The general form is

 var = strlen(string);

where

 var - is the integer variable, which accept the length of the string.

string - is the string constant or string variable in which the length is

going to be found. The counting ends with first null (‘\0’) character.

strcpy () Function

 The strcpy () function is used to copy the contents of one string to

another and almost works like string assignment operator. The general form is

 strcpy(string1, string2);

where

135

 string1 and string2 are character array variable or string constant. It

will assign the contents of string2 to string1.

For example

 strcpy(name, “Harsh”);

will assign the string “Harsh” to the string variable name.

 strcpy(name1, name2);

will assign the contents of the string variable name2 to the string variable

name1. The size of the array name1 should be large enough to receive the

contents of name2.

strcmp () Function

The strcmp () function is used to compares two strings identified by the

arguments and has a value 0 if they are equal. If they are not, it has the numeric

difference between the first non matching characters in the strings.. The

general form is

 strcmp(string1, string2);

where

 string1 and string2 are character array variable or string constant.

For example

 strcmp(name1, name2);

 strcmp(name1, “John”);

 strcmp(“Raja”, “raja”);

strcat () Function

The strcat () function is used to combine or join or concatenate two strings

together. The general form is

 strcat(string1, string2);

where

 string1 and string2 are character array variable or string constant.

When the function strcat is executed, string2 is appended to string1.

136

For example

strrev () Function

The strrev () function is used to reverse a strings . The general form is

 strrev(string1);

where

 string1 is character array variable or string constant.

3.3.6 Self Assessment Questions

Fill in the blank

1. A string is an ____________ of characters.

2. The __________function is used to copy the contents of one string to

another.

True / False

1. The length() function is used to find the string length.

2. When the compiler assigns a character string to a character array, it

automatically supplies a null character (‘\0’) at the end of the string.

Multiple Choice

1.Which is more appropriate for reading in a multi-word string?

a) gets() b) printf() c) scanf() d) puts()

2. The array char name[10] can consist of maximum of

a) 10 characters b) 9 characters

c) 11 characters d) none of the above

Short Answer

1. What is the purpose of strrev() function?

137

Pointers

o Introduction

Generally, computer uses memories for storing instruction and values of

the variables with in the program, but the pointers have memory address as

their values. The memory address is the location where program instructions

and data are stored, pointers can be used to access and manipulate data stored

in the memory.

The computer’s memory is a sequential collection of storage cells as

shown in Fig. In, computer’s memory each cell is one byte, and it has a number

called address, this address is numbered consecutively starting from zero to last

address (depends on the memory size).

While declaring variable, the computer allocates appropriate memory to

hold the value of the variable. Since every memory has a unique address, this

address location will have its own address number somewhere in the memory

area.

o Understanding pointers

The computer’s memory is a sequential collection of storage cells as

shown in Fig.3.4.1. Each cell, commonly known as a byte, has a number called

address associated with it. The addresses are numbered consecutively starting

from zero. The last address depends on memory size. For example 64K

memory will have its last address as 65535.

Whenever declare variable the system allocates, somewhere in the

memory, an appropriate location to hold the value of the variable. Consider

following statement

int x = 100;

This statement instructs the system to find a location for integer

variable x and puts the value 100 in that location.(See Fig 3.4.2)

138

Fig. 3.4.1 Memory Organization Fig. 3.4.2 Representation of a

variable

Memory addresses are simply numbers; they can be assigned to some

variables, which can be stored in memory, like any other variable. Such

variable that hold memory addresses are called pointers.

Suppose, we assign the address of x to a variable p. the link between

the variable p and x can be visualized as shown in Fig.3.4.3.

 Fig. 3.4.3 Pointer as a variable

o Accessing the address of a variable

The operator & immediately preceding a variable returns the address of

the variable associated with it. For example, the statement

 p = &q;

would assign the address 4000(the location of q) to the variable p. the &

operator can remembered as ‘address of’.

The & operator can be used only with a simple variable or an array

element. The following are illegal use of address operator:

1. & 450 (pointing at constant)

2. int x[10];

 Memory cell Address

0

 1

 2

 .

 .

 .

 65535

 .

 .

 X Variable

 Value

 5000 Address

100

Variable Value Address

 X 5000

 P 5048

100

5000

139

& x (pointing at array names)

3.&(x+y) (pointing at expressions)

Example Program: Program for accessing addresses of variables

#include<stdio.h>

main()

{

int a;

char c;

float f;

a = 100;

c = ‘A’;

f = 20.56;

printf(“%d is stored at address %u\n”, a, &a);

printf(“%c is stored at address %u\n”, c, &c);

printf(“%f is stored at address %u\n”, f, &f);

getch();

}

Output Of The Program

 100 is stored at address 65494

A is stored at address 65497

20.559999 is stored at address 65498

o Declaring and initializing pointer

Declaration

The general form for declaration of a pointer variable is

 data_type *pointer_name;

where

140

 data_type – is specifies the type of data to which the

pointer points

 asterisk (*) – that tells the variable pointer_name is a pointer variable

 pointer_name- is specifies the name of the pointer.

For example

int *p; //declares the variable p as a pointer variable that points to an

 integer data type.

float *f //declares x as a pointer to a floating point variable.

char *c //declares c as a pointer to a character variable

Initialization:

Once a pointer variable has been declared, it can be made to point to a

variable using an assignment statement such as

 p = &q;

which causes p point to q. That is, p now contains the address of q. This is

known as pointer initialization. Before a pointer is initialized, it should not be

used.

The pointer variable can be initialized in its declaration itself. For

example

 int x, *p = &x; //valid initialization

It declares x as an integer variable and p as a pointer variable and then

initializes p to the address of x.

o Accessing a variable through its pointer

 Once the pointer is declared and assigned to the address of another

variable, the variable can be accessed through its pointers. This is done by

using another unary operator *(asterisk), usually known as the indirection

operator. Another name for the indirection operator is the de-referencing

operator.

141

For example

int *p , x, a; // declares two integer variable x & a and one pointer

 variable p

x = 15; // assigns the value 15 to variable x

p = &x; // assigns the address of x to the pointer variable p

a = *p; // it returns the value of the variable x, because p

contains the address of the variable x

Another example

The statement p = &x assigns the address of x to p and y = *p assigns

the value pointed to by the pointer p to y.

 *p = 25;

This statement puts the value 25 at the memory location whose address

is the value of p. we know that the value of p is the address of x and therefore

the old value of x is replaced by 25.

Example Program: Program for accessing variables using pointers

#include<stdio.h>

main()

{

int a, b;

int *ptr;

a = 30; ptr = &a;

b = *ptr;

printf(“Value of a is %d\n”, a);

printf(“%d is stored at address %u\n”, a , &a);

printf(“%d is stored at address %u\n”, *&a , &a);

printf(“%d is stored at address %u\n”, *ptr , ptr);

printf(“%d is stored at address %u\n”, b , &*ptr);

getch();

142

}

Output Of The Program

Value of a is 30

30 is stored at address 65502

30 is stored at address 65502

30 is stored at address 65502

30 is stored at address 65502

o Pointer expressions

Pointer variables can be used in expressions. Here, the pointers are

preceded by the * (indirection operator) symbol.

Example

 c = *a + * b; can be written as c = (*a) + (*b);

 s = s + *a/ * b; can be written as s = s + (*a) / (*b);

 *p = *a**b; can be written as *p = (*a) * (*b);

Note that there is a blank space between / and * in above expression. The

following is wrong.

 s = s + *a/* b;

The symbol /* is considered as the beginning of a comment and therefore the

statement fails. So we leave the space between / and * operator.

 C allows us to add or subtract integers from one pointer to another. In

addition to that the pointer can also be compared using relational operators. But

comparisons can be used mainly in handling arrays and strings.

Example

 p1 + 4 p2 - 2 and p1 – p2 are valid

 p1 > p2 p1 = = p2 and p1 ! = p2 are valid

We may also use shorthand operators with pointers.

Example

 p1 + +;

143

 - - p2;

s += *p2;

We may not use pointers in division and multiplication.

Example

 p1 / p2 p1 * p2 p1 / 3 p2*6 are invalid

Similarly, two pointers cannot be added. That is, p1 + p2 is illegal.

Example Program: Program for pointer expression

#include<stdio.h>

main()

{

int a, b , x, y;

int *ptr1, *ptr2;

a = 10; b = 3;

ptr1 = &a;

ptr2 = &b;

x = *ptr1 + *ptr2 – 2;

y = *ptr1 * *ptr2 + 1;

printf(“Address of a is %u\n”, ptr1);

printf(“Address of b is %u\n”, ptr2);

printf(“a = %d, b = %d\n”, a, b);

printf(“x = %d, y = %d\n”, x, y);

*ptr2 = *ptr2 + 3;

*ptr1 = *ptr2 * 2;

printf(“a = %d, b = %d\n”, a, b);

printf(“x = %d, y = %d\n”, x, y);

getch();

}

144

Output Of The Program

Address of a is 65496

Address of b is 65498

a = 10, b = 3

x = 11, y = 31

a = 12, b = 6

x = 11, y = 31

o Pointers and array

Array is a collection of similar data items, which is stored under

common name. When an array is declared, the compiler allocates a base address

and sufficient amount of storage locations for all elements of an array. The base

address is the location of the first element (index 0) of the array.

The compiler also defines the array names as a constant pointer to the

first element.

For example

 int x[5] ={1, 2, 3, 4, 5};

Suppose the base address of x is 2000 and assuming that each integer requires 2

bytes, the five elements will be stored as

The name x is defined as a constant pointer pointing to the first element, x[0]

and therefore the value of x is 2000, the location where x[0] is stored. That is

 x = &x[0] = 2000

If we declare p as integer pointer, then we can make the pointer p to point to the

array x by the assignment

 p = x;

This is equivalent to

 p = &x[0];

Now, we can access every value of x using p++ to move from one element to

another. The relationship between p and x is

145

 p = &x[0] (=2000)

p+1 = &x[1] (=2002)

p +2= &x[2] (=2004)

p +3= &x[3] (=2006)

p +4= &x[4] (=2008)

The address of an element is calculated by using its index and the scale

factor of the data type. For example

Address of x[2] = base address + (2 x scale factor of int)

 = 2000 + (2 x 2)

 = 2004

When handling arrays, instead of using array indexing, we can use pointers to

access array elements.

For example

 *(p + 2) gives the value of x[3].

This is much faster than array indexing.

Example Program: Program to print the array values and address of the array

 elements using pointer

#include<stdio.h>

main()

{

int arr[5] = { 10, 20, 30, 40, 50};

int i, *ptr_arr;

ptr_arr = arr;

for(i = 0; i < 5; i++)

{

printf(“Address = %u\t”, &arr[i]);

printf(“Element = %d\t”, arr[i]);

146

printf(%d\t”, *(arr+i));

printf(“%d\t”, ptr_arr[i]);

printf(“%d\t\n”, *(ptr_arr+i));

}

getch();

}

Output Of The Program

Address = 65494 Element = 10 10 10 10

Address = 65496 Element = 20 20 20 20

Address = 65498 Element = 30 30 30 30

Address = 65500 Element = 40 40 40 40

Address = 65502 Element = 50 50 50 50

In the above program, the variable arr[] is declared as integer array, the

elements are displayed using different syntax. 1. arr[i], 2. *(arr + i), 3.

ptr_arr[i] , 4. *(ptr_arr + i)

Pointers can be used to manipulate two-dimensional arrays. An element

in a two-dimensional array can be represented by the pointer expression as

 ((a+i)+j) or *(*(p+i)+j)

The base address of the array a is &a[i][j] and starting at this address,

the compiler allocates contiguous space for all the elements, row-wise. That is,

the first element of the second row is placed immediately after the last element

of the first row, and so on.

o Pointers and character strings

A string is an array of characters, terminated with a null character. Like

one-dimensional arrays, we can use a pointer to access the individual characters

in a string.

Example Program:

#include<stdio.h>

147

main()

{

char *s1 = “abc”; char s2[] = “xyz”;

printf(“%s %16lu \n”, s1, s1);

printf(“%s %16lu \n”, s2, s2);

s1 = s2;

printf(“%s %16lu \n”, s1, s1);

printf(“%s %16lu \n”, s2, s2);

getch();

}

Output Of The Program

abc 12976536

xyz 13041628

xyz 13041628

xyz 13041628

In C, a constant character string always represents a pointer to that

string. And therefore the following statements are valid:

char *city;

city = “Salem”;

These statements will declare city as a pointer to character and assign to

city the constant character string “Salem”.

One important use of pointers is in handling of a table of strings. For

example array of strings:

 char name[3][20];

This array that the name is a table containing three names, each with a

maximum length of 20 characters (including null character). Total storage

requirements for the name table are 60.

148

Instead of making each row with fixed number of characters, we can

make it a pointer to a string of varying length. For Example

char *city[3] = { “Chennai”

 “Covai”

 “Salem”

 };

declares city to be an array of three pointers to characters, each pointer pointing

to a particular city as shown below:

 city[0] -> Chennai

 city[1] -> Covai

city[2] -> Salem

The following statement would print out all three cities:

for(i = 0; i< 3; i++)

printf(“%s\n”, city[i]);

To access the jth character in the ith name, we may write as

*(city[i] + j)

o Pointer and functions

When we pass addresses to a function using pointers to pass the

addresses of variable is known as call by reference. The function, which is

called by reference can change the value of the variable used in the call.

Example Program: Program for pointer and function

 main()

{

 int x;

 x = 20;

 change(&x);

 printf(“%d\n”, x);

149

getch();

}

change(p)

int *p;

{

 *p = *p +10;

}

Output Of The Program

 30

When the function change() is called, the address of the variable x, not

its value, is passed into the function change(). Inside change(), the variable p

is declared as a pointer and therefore p is the address of the variable x. The

statement

 *p = *p +10;

means ‘add 10 to the value stored at the address p’. Since p represents the

address of x, the value of x is changed from 20 to 30.

Pointer to Functions

 A function, like variable, has an address location in the memory. To

declare a pointer to a function, which can be used as an argument in another

function. The pointer to a function is declared as

 type (*fprt) ();

This tells the compiler that fprt is a pointer to a function, which returns type

value.

We can make a function pointer to point to a specific function by

simply assigning the name of the function to the pointer.

For example

 double (*p1) (), mul();

p1 = mul;

150

declare p1 as a pointer to a function and mul as a function and then make p1 to

point to the function mul.

To call function mul, we may use the pointer p1 with the list of

parameters. That is

 (*p1) (x, y)

is equivalent to

 mul(x, y)

o Pointer and structures

The general form is

struct structure_name

{

type structure_element 1;

 type structure_element 2;

type structure_element n;

} struct_var , *ptr;

where struct_var is the structure type variable and ptr as a pointer to data

objects of the type struct structure_name.

For example

struct student

{

int student_rno;

char student_name;

int student_mark1;

int student_mark2;

 } s1[2] , *s2 ;

151

 This statement declares s1 as an array of two elements, each of the type

struct student and s2 as a pointer to data objects of the type struct student.

The assignment

 s2 = s1;

would assign the address of the zeroth element of s1 to s2. That is pointer s2

will now point to s1[0]. Its members can be accessed using the following

notation

 s2 - > student_name

 s2 - > student_rno

 s2 - > student_mark1

 s2 - > student_mark2

The symbol -> is called the arrow operator and is made up of a minus sign and

a greater than sign.

We also use the notation

 (*s2).rno

to access the member rno. The parentheses around *s2 are necessary because

the member operator “. “ has a higher precedence than the operator *.

While using structure pointers, we should take care of the precedence of

operators.

For example

 ++ p -> c;

increments c, not p. however,

 (++p) -> c;

increments p first, and then links c.

Example Program: Program for pointers to structure variables

#include<stdio.h>

main()

{

152

struct student

{

int rno;

char *name[20];

int mark;

 } *s2 ;

 printf(“Enter student Roll no., Name, Mark\n”);

scanf(“%d%s%d”, &s2->rno, s2->name, &s2->mark);

printf(“Student Roll no.:%d”, &s2->rno);

printf(“Student Name:%s”, s2->name);

printf(“Student Mark:%d”, &s2->mark);

getch();

}

Output Of The Program

Enter student Roll no., Name, Mark

2000

Harshinni

100

Student Roll no.:2000

Student Name:Harshinni

Student Mark:100

o Self Assessment Questions

Fill in the blank

1. The address of an element is calculated by using its ______________ and the

scale factor of the _______________.

2.When we pass addresses to a function using pointers to pass the addresses of

variable is known as ___________________.

153

True / False

1. Address of a floating-point variable is always a whole number.

Multiple Choice

1.Which of the following is the correct way of declaring a float pointer

a) float ptr; b) float *ptr;

c) *float ptr; d) none of the above

2. If int s[5] is a one dimensional array of integers, which of the following

refers to the third element in the array?

a) *(s+2) b) *(s+3) c) s+ 3 d) s+2

Short Answer

1. What is mean by pointer expression?

2. What is the purpose of using & operator in pointers?

3.4. Files

3.4.1 Introduction

 A file is a collection of related information, that is permanently stored

on the disk and allows us to access and alter the information whenever

necessary. We can perform the following basic operations on files.

 Naming a file

 Opening a file

 Reading data from a file

 Writing data to a file

 Closing a file

There are large numbers of standard library functions available for performing

disk files.

154

 High level file I/O functions

 Low level file I/O functions

High-level file I/O functions do their own buffer management, whereas

in low level file I/O functions buffer management has to be done by the

programmer. Some of the high level file I/O functions listed in Table.

3.4.2 Opening/Closing Files

Defining a file

 We want to store data in a file in the secondary memory; we must

specify the following things about file, to the operating system. They include

 File name

 Filename is a string of characters that make up a valid filename

for the operating system. It may contain two parts, a primary name and

optional period with the extension. For example

 Input.data

 store

 stud.c

 Empl.out

 Data structure

 Data structure of a file is defined as FILE in the library of

standard I/O function definitions. Therefore, all files should be declared

as type FILE before they are used. FILE is a defined data type.

 Purpose

 When we open a file, we must specify what we want to do with

the file. For example, we may write data to the file or read the already

exiting data.

155

Opening a file

 The general form for declaring and opening a file is

 FILE *fp;

 fp = fopen(“filename, “mode”);

 The first statement declares the variable fp as a “pointer to the data

type FILE”. The second statement opens the file named filename and assigns

an identifier to the FILE type pointer fp. This pointer, which contains all

information about the file and it, is used as a communication link between the

system and the program.

 The second statement also specifies the purpose of opening this file.

The mode does this job. Mode can be one of the following

 r open the file for reading only.

 w open the file for writing only.

 a open the file for appending or adding data to it.

The filename and mode is treated as string, so it should be enclosed in double

quotation marks (“ “).

When trying to open a file, one of the following things may happen.

 When the mode is ‘writing’, a file with specified name is created if the

file does not exist. The contents are deleted, if the file already exists.

 When the purpose is ‘appending’, the file is opened with current contents

safe. A file with specified name is created if the file does not exist.

 If the purpose is ‘reading’ and if it exists, then the file opened with

current contents safe; otherwise an error occurs.

Example

 FILE *p1, *p2;

 p1 = fopen(“stud.out”, “r”);

 p2 =fopen(“results”, “w”);

156

The file stud.out is opened for reading and a result is opened for writing. In

case, the results file already exists, its contents are deleted and the file is

opened as a new file. If stud.out file does not exist, an error will occur.

Closing a file

 A file must be closed after all the operation of the file has been

completed. The general form for closing a file is

 fclose(file_pointer);

This would close the file associated with the FILE pointer file_pointer.

Example

 FILE *p1;

 p1 = fopen(“input”, “w”);

 fclose(p1);

 This program opens a file and closes a file after all operations on the

files are completed. Once a file is closed, its file pointer can be reused for

another file. All files are closed automatically whenever a program terminates.

3.4.3 Input/Output files

Once a file is opened, reading out of or writing to it is accomplished using the

standard I/O routines that are listed in Table.

The getc and putc functions

The function getc is used to read a character from a file that has opened

with read mode r.

Example

 c = getc(fp1)

157

would read a character from the file whose file pointer is fp1.

The function putc is used to write the character contained in the

character variable to the file associated with FILE pointer that has been opened

with write mode w.

Example

 putc(c, fp2);

would write a character contained in the variable c to the file associated with

FILE pointer fp2.

The file pointer moves by one character position for every operation of

getc or putc. The getc will return an end-of-file marker EOF, when end of the

file has been reached. Therefore the reading should be terminated when EOF is

encountered

Example Program: Program for writing to and reading from a file.

#include<stdio.h>

main()

{

FILE *f1;

char c;

printf(“Data input\n”);

f1 = fopen(“Test”, “w”); /* Open the file Test*/

while((c = getchar()) != EOF) /* Get a character from keyboard */

putc(c, f1); /* Write a character to Test file */

fclose(f1); /* Close the file Test*/

printf(“Data Output\n”);

f1 = fopen(“Test”, “r”);

while((c = getc(f1)) != EOF) /* Read a character from Test file

*/

printf(“%c”, c); /* Display a character on screen */

158

fclose(f1);

getch();

}

Output Of The Program

Data Input

Dog

Cat

Rat

^Z

Data Output

Dog

Cat

Rat

We enter the input data via keyboard and the program writes it, character

by character, to the file Test. Entering an EOF character, which is control-Z,

indicates the end of the data. The file Test is closed at this signal.

The file Test is reopened for reading. The program then reads its content

character by character, and displays it on the screen. Reading is terminated

when getc() encounters the end-of-file mark EOF.

The getw and putw functions

The getw and putw are integer-oriented functions. They are similar to

the getc and putc functions and are used to read and write integer values. The

general forms of getw and putw are

 putw(integer, fp);

 getw(fp);

Example Program: Program to illustrate the use of putw and getw functions.

#include<stdio.h>

main()

159

{

FILE *f1, *f2, *f3;

int number, i;

printf(“Contents of Data file \n”);

f1 = fopen(“DATA”, “w”);

for(i = 1; i <=20; i++)

{

scanf(“%d”, &number);

if(number = = -1) break;

putw(number, f1);

}

fclose(f1);

f1 = fopen(“DATA”, “r”);

f2 = fopen(“ODD”, “w”);

f3 = fopen(“EVEN”, “w”);

while((number = getw(f1)) != EOF)

{

if (number % 2 == 0)

putw(number, f3);

else

putw(number, f2);

}

fclose(f1);

fclose(f2);

fclose(f3);

f2 = fopen(“ODD”, “r”);

f3 = fopen(“EVEN”, “r”);

pintf(“\nContents of ODD file\n”);

while((number = getw(f2) != EOF)

printf(“%4d”, number);

pintf(“\nContents of EVEN file\n”);

while((number = getw(f3) != EOF)

printf(“%4d”, number);

fclose(f2);

160

fclose(f3);

getch();

}

Output Of The Program

Contents of Data file

1 2 3 4 5 6 7 8 9 10 -1

Contents of ODD file

 1 3 5 7 9

Contents of EVEN file

 2 4 6 8 10

The fprintf and fscanf functions

These functions are used to handle a group of mixed data

simultaneously. The functions fprintf and fscanf perform I/O operations those

are identical to the familiar printf and scanf functions except that they work on

files. The general form of fprintf is

 fprintf(fp, “control string”, list);

where

 fp - is a file pointer associated with a file that has been opened for

writing.

control string - contains output format specifications for items in the list.

 list - may include variables, constants and strings.

Example

 fprintf(fp1, “%s%d”, name, age);

Here, name is an array variable of type char and age is an int variable.

The general form of fscanf is

 fscanf(fp, “control string”, list);

would cause the reading of the items in the list from file specified by fp,

according to the specifications contained in the control string.

Example

 fscanf(fp2, “%s%d”, name, &age);

161

fscanf returns the number of items that are successfully read. When the end of

file is reached, it returns the value EOF.

Example Program: Program to Handling of files with mixed data types

#include<stdio.h>

main()

{

FILE *f1;

int rno, i;

char name[20];

f1 = fopen(“STUDENT”, “w”);

printf(“Input Student data\n\n”);

printf(“Roll No. Name\n”);

for(i = 0; i < 3; i++)

{

fscanf(stdin, “%d%s”, &rno, name);

fprintf(f1, “%d%s\n”, rno, name);

}

fclose(f1);

fprintf(stdout, “\n\n”);

f1 = fopen(“STUDENT”, “r”);

printf(“Output Student data\n\n”);

printf(“Roll No. Name\n”);

for(i = 0; i < 3; i++)

{

fscanf(f1, “%d%s”, &rno, name);

fprintf(stdout, “%d\t\t%s\n”, rno, name);

}

fclose(f1);

getch();

}

Output Of The Program

Input Student data

Roll No. Name

1000 aaa

162

2000 bbb

3000 ccc

Output Student data

Roll No. Name

1000 aaa

2000 bbb

3000 ccc

In the above program the data is read using function fscanf from the file

stdin, which refers to the terminal and it is then written to the file that is being

pointed to by file pointer f1.

After closing the file STUDENT, it again reopened for reading. The

data from the file, along with the item values are written to the stdout, which

refers to the screen. While reading from a file, care should be taken to use the

same format specifications with which the contents have been written to the

file.

3.4.4 Error Handling During I/O Operations

 It is possible that an error may occur during I/O operations on a file.

Typical error situations are

 Trying to read beyond the end-of-file mark.

 Device overflow.

 Trying to use a file that has not been opened.

 Trying to perform an operation on a file, when the file is opened for

another type of operation.

 Opening a file with an invalid filename.

 Attempting to write to a write-protected file.

 If we fail to check such read and write errors, a program may behave

abnormally when an error occurs. An unchecked error may result in a

premature termination of the program or incorrect output.

 C library has two functions, feof and ferror that can help us to detect

I/O errors in the files.

feof function

 The feof function can be used to test for an end of file condition. It takes

a FILE pointer as its only argument and return a nonzero integer value if all of

the data from the specified file has been read, and returns zero otherwise. If fp

is a file pointer to file that has just been opened for reading, then the statement

163

 if(feof(fp))

 printf(“end of data”);

would display the message “end of data” on reading the end of file condition.

ferror function

 The ferror function reports the status of the file indicated. It also takes

a FILE pointer as it’s argument and returns a nonzero integer if an error has

been detected up to that point, during processing. It returns zero otherwise. The

statement

 if(ferror(fp))

 printf(“an error has occurred”);

would print the error message, if reading is not successful.

 We know that whenever a file is opened using fopen function, afile

pointer is returned. If the file cannot be opened for some reason, then the

function returns a null pointer.

Example

 if(fp = NULL)

 printf(“file could not be opened”);

Example Program: Program to illustrate error handling in file operations.

#include<stdio.h>

main()

{

char filename[20];

FILE *f1, *f2;

int i, number;

f1 = fopen(“TEST”, “w”);

for(i = 10; i<= 100; i +=10)

 putw(i, f1);

fclose(f1);

printf(“\nInput File name\n”);

open_file: scanf(“%s”, filename);

if((f2 = fopen(filename, “r”)) == NULL)

164

{

printf(“Cannot open the file \n”);

printf(“Type filename again\n”);

goto open_file;

}

 else

 for(i = 1; i <= 20; i++)

 {

 number = getw(f2);

 if(feof(f2))

 {

 printf(“Ran out of data\n”);

 break;

 }

 else

 printf(“%d\n”, number);

 }

 fclose(f2);

 }

Output Of The Program

Input File name

TETS

Cannot open the file

Type filename again

TEST

10

20

30

40

50

60

70

80

90

165

100

Ran out of data

3.4.5 Random Access To Files

 In case of random access to file, we can access only a particular part of

a file and not in reading the other parts. This is achieved with the help of the

fseek, ftell, and rewind functions available in the I/O library.

ftell function:

 The ftell function is used to specify the current position of a file. It takes

the file pointer and returns a number of types long, that corresponding to the

current position. The general form is

 n = ftell(fp);

where n would give the relative offset (in bytes) of the current position.

rewind function:

 The rewind takes the file pointer and resets the position to the start of the

file. For example

 rewind(fp);

 n = ftell(fp);

would assign 0 to n because the file position has been set to the start of the file

by rewind. The first byte in the file is numbered as 0, second as 1, and so on.

This function helps us in reading a file more than once, without having to close

and open the file.

fseek function:

 The fseek function is used to move the file position to a desired location

within the file. The general form is

 fseek(file_pointer, offset, position);

where

 file_ pointer is a pointer to the file

 offset is a number or variable of type long, and

 position is an integer number

166

 The offset specifies the number of positions to be moved from the

location specified by position. The position can take one of the following three

values.

 Value Meaning

0 Beginning of file

1 Current position

 2 End of file

 The offset may be positive, it moves forwards or negative, it moves

backwards. The following examples illustrate the operation of the fseek

function:

Statement Meaning

fseek(fp, 0L, 0); Go to beginning .

fseek(fp, 0L, 1); Stay at the current position

fseek(fp, 0L, 2); Go to end of the file, past the last character of the file.

fseek(fp, m, 0); Move to (m+1) th byte in the file.

fseek(fp, m, 1); Go forward by m bytes.

fseek(fp, -m, 1); Go backward by m bytes from the current position.

fseek(fp, -m, 2); Go backward by m bytes from the end.

 When the operation is successful, fseek returns a zero. If we attempt to

move the file pointer beyond the file boundaries, an error occurs and fseek

returns –1.

Example Program: Program to illustrate of fseek & ftell functions

#include<stdio.h>

main()

{

FILE *f1;

int n;

char c;

f1 = fopen(“RANDOM”,”w”);

while((c = getchar()) != EOF)

 putc(c, f1);

printf(“No. of characters entered = %d\n”,ftell(f1));

fclose(f1);

f1 = fopen(“RANDOM”,”r”);

n = 0;

167

while(feof(f1) == 0)

{

fseek(f1, n, 0); /* Position to (n+1) th character */

printf(“Position of %c is %d\n”, getc(f1), ftell(f1));

n = n + 5;

}

putchar(‘\n’);

fseek(f1, -1, 2); /* Position to the last character */

do

{

putchar(getc(f1));

}

while(fseek(f1, -2, 1));

fclose(f1);

}

Output Of The Program

ABCDEFGHIJKLMNOPQRSTUVWXYZ^Z

No. of characters entered = 26

Position of A is 0

Position of F is 5

Position of K is 10

Position of P is 15

Position of U is 20

Position of Z is 25

Position of is 30

3.4.6 Command Line Arguments

 Command line argument is a parameter supplied to a program when

the program invoked. This parameter may represent a filename the program

should process. For example if we want to execute a program to copy the

contents of a file named xfile to another file name yfile, then we may use

command line like

 c>program xfile yfile

program is the filename where the executable code of the program is stored.

168

 In C program should have one main function and that it marks the

beginning of the program. The main function take two arguments called argc

and argv and the information contained in the command line is passed on to the

program through these arguments, when main is called up by the system.

 The variable argc is an argument counter that counts the number of

arguments on the command line. The argv is an argument vector and

represents an array of character pointers that point to the command line

arguments. The size of the array will be equal to the value of argc. For the

above example, argc is three and argv is an array of three pointers to strings

as

 argv[0] -------> program

 argv[1] ------->xfile

 argv[2] ------->yfile

 In order to access the command line arguments, we must declare the

main function and its parameters as

 main(argc, argv)

 int argc;

 char *argv[];

 {

 }

the first parameter in the command line is always the program name and

therefore argv[0] always represents the program name.

Example Program: Program to illustrate command line arguments

#include<stdio.h>

main(int argc, char argv[]) /* Main with arguments */

{

FILE *f1;

int i;

char word[15];

f1 = fopen(argv[1], “w”); /* Open the file with name argv[1] */

printf(“ \nNo. Of argument in command line = %d\n”, argc);

for(i = 2; i < argc; i++)

 fprintf(f1, “%s”,argv[i]);

169

fclose(f1);

/* Writing content of the file to screen */

printf(“content of %s file \n”, argv[1]);

f1 = fopen(argv[1], “r”);

for(i = 2; i <argc; i++);

{

fscanf(f1, “%s”, word);

printf(“%s”, word);

}

fclose(f1);

printf(“\n”);

/* Writing argument from memory */

for(i = 0; i < argc; i++)

 printf(“%*s\n”, i*5, argv[i]);

}

Output Of The Program

C:\TC>file6 TEST aaa bbb ccc

No. Of argument in command line = 5

content of TEST file

aaabbbccc

C:\TC\FILE6.EXE

 TEST

 aaa

 bbb

 ccc

3.4.7 Self Assessment Questions

Fill in the blank

1. The __________________is used to move the file position to a desired

location within the file.

2. Command line argument is a _______________supplied to a program when

the program invoked.

True / False

1. If a file is opened for writing already exists its contents would be

overwritten.

170

2. The getw and putw are integer-oriented functions

Multiple Choice

1. fscanf() function is used to reading of the items from

a) file b) keyboard

c) monitor d) All of the above

Short Answer

1. What is mean by file?

3.5.Summary

 In the first lesson of this unit we have examined strings, which are nothing

but arrays of characters. We have seen how the strings are stored in memory,

how initialize strings, and how to access elements of a string using subscript.

We learnt two new functions to input and output strings: gets() and puts();

more functions strlen(), strcpy(), strcat() and strcmp() which can

manipulate strings. We also explored topic of two-dimensional array of

characters.

 In the second lesson of this unit we have examined pointers, which is the

variable contains address. We have seen how the pointers can be processed,

and how to use the pointer arithmetic.

 In the third lesson of this unit we have examined files, which is the

collection related information. We have seen how the files accessed in

sequential and random access method with the help various file handling

functions.

3.6.Unit Questions

1.List out various string handling functions. Explain each function with

example.

2. How to reading and writing strings in C language? Explain.

3. Define pointers. Explain how are pointers accessed, declared and initialized?

4. Write a program for arrays with pointers.

5. Discuss the structures & pointers with example program.

6. What are the advantages while using pointers?

7. Explain command line arguments.

8. Discuss random access file with related functions.

9. How the error will be handled during input / output operation? Explain.

171

10. Discuss reading out of or writing to it is accomplished using the standard

I/O routines.

3.7.Answers for Self Assessment Questions

Answer 3.3.6

Fill in the blank

1. array of characters 2. strcpy ()

True / False

1. False 2. True

Multiple Choice

1. c) 2. b)

Short Answer

1. The strrev() function is used to reverse a string.

Answer 3.4.12

Fill in the blank

1. index, data type

2. call by reference

True / False

1. True

Multiple Choice

1. b) 2. d)

Short Answer

1. Pointer variables can be used in expressions is called as pointer expression.

2. The operator & immediately preceding a variable returns the address of the

variable associated with it.

Answer 3.5.6

Fill in the blank

1. fseek function 2. parameter

True / False

1. True 2. True

Multiple Choice

1. a)

Short Answer

1. A file is a collection of related information, that is permanently stored on the

disk and allows us to access and alter the information whenever necessary.

172

NOTES

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

173

UNIT – IV

4.1. Introduction

This unit provides you with fundamental concepts of Data structure. It

deals with various linear data structure like array, stack, queue, and linked list.

And also deals the applications of data structure and its implementation. It

assures you to understand general data structure concepts.

4.2. Objectives

After studying this unit, you should be able to:

 Understand the data structure and its types..

 Understand the array operations and its types

 Understand the various operation on stack and its application.

 Understand the various operation on stack and its application.

 Understand the various operation on queue and its application.

 Understand the various operation on linked list and its usage.

4.3. Data Structure

4.3.1. Definition

A collection of data elements, whose arrangement is characterized by

accessing functions that are used to store and retrieve individual data elements

are called data structure.

4.3.2. Categories Of Data Structures

The data structure can be classified into two types as

 Data Structures

 Linear Data Structure Non-Linear Data Structure

 Arrays Linked List Stacks Queues Trees Graph

174

Linear Data Structure

In linear data structure, all elements are formed in a sequence or

maintain in a linear ordering. Linear data structures are

 Arrays

 Array is the sequential organization, and using only index can access

the elements of an array, but the size of an array must be previously specified

at the array definition. The elements of array can be stored in consecutive

memory location

 Linked list

 A linked list is a collection of n number of data items of same type on

nodes; each node contains two fields as one is element or item and another is

address of the next node.

 Stacks

 Stack is an ordered collection of homogeneous data elements, where the

insertion and deletion operations take place at one end called top of the stack.

That is, in stack the last inserted element can be deleted first. It operates last

in first out (LIFO) fashion.

 Queues

Queue is an ordered collection of homogeneous data elements, in which

the element insertion and deletion operations takes place at two end called

front and rear end. It operates first in first out (FIFO) fashion.

Non-Linear Data Structure

In non-linear data structure, all the elements are distributed on a plane

that is these have no such sequence of element as in case of linear data

structure.

 Trees: A tree is a non-linear data structure in which the data items are

arranged.

 Graphs: A graph G consists of a set of vertices V and a set of edges

(links) E. then G can be written as,

 G = (V, E)

where

 V = { v1, v2, …….. vn}

E = {e1, e2, …….. en}

4.3.3. Self Assessment Questions

Fill in the blank

175

1. A data structure is said to be _____________ if its elements form a

sequence.

2. Tree is a ___________________ data structure.

True / False

1. An array is a non-linear data structure.

Multiple Choice

1. The stack structure is

a) Last In First Out b) First In First Out

c) Last In Last Out d) None of the above

Short Answer

1. Define data structure.

--

--

4.4. Arrays

4.4.1. Introduction

An array is a group of related data items that share a common name.

An array of value can be accessed by index or subscript enclosed in square

brackets after array name. For example, a[5] represents the 5th element in an

array. An array may contain all integers or all characters but not both.

An array may containing n number of elements is referenced using an

index that varies from 0 to n-1. The subscript can begin with number 0. The

value of each subscript can be expressed as an integer constant or integer

variable or an integer expression. For example, the elements of an array arr[n]

containing n elements are denoted by arr[0], arr[1], . . . arr[n-1], where 0 is the

lower bound and n-1 is the upper bound of the array.

In general, the lowest index of an array is called its lower bound and

the highest index is called its upper bound. The number of elements in the

array is called its range.

Arrays can be classified into

 One-Dimensional arrays

 Two-Dimensional arrays

 Multi-Dimensional arrays

One Dimensional Array

A list of data items can be stored under a one variable name using only

one subscript and such a variable is called a single-subscripted variable or one-

176

dimensional array. For example, if we want to represent a set of four numbers,

by array variable a then we may declare the variable a as

 int a [4];

and computer reserves four memory locations as

a[0]

a[1]

a[2]

a[3]

The values to the array elements can be assigned as

a[0] = 10 ;

a[1] = 20 ;

a[2] = 30 ;

a[3] = 40 ;

This would cause the array a to store the values as

a[0] 10

a[1] 20

a[2] 30

a[3] 40

This element may be used in programs just like any other C variable.

For example, the following are valid statements:

 b = a[0] + 10;

 a[3] = a[0] + a[2];

4.4.2. Array Operations

There are several operations that can be performed on an array. These

operations are

 Traversal - Processing each element in the array.

 Search – Finding the location of an element with a given value.

 Insertion – Adding a new element to an array

 Deletion – Removing an element from an array

 Sorting – Organizing the elements in some order

177

 Merging – Combining two arrays into a single array

 Reversing – Reversing the elements of an array

Example Program: Program for array operations

#include<stdio.h>

#define MAX 5

void insert(int *, int pos, int num);

void delete(int *, int pos);

void reverse(int *);

void display(int *);

void search(int *, int num);

void main()

{

int arr[5], i, value;

printf(“\nEnter the array elements”);

for(i = 1; i <= 5; i++)

{

scanf(“%d”, &value);

insert(arr, i, value);

}

printf(“\nElements of Array”);

display(arr);

delete(arr, 5);

delete(arr, 2);

printf(“\nAfter Deletion”);

display(arr);

insert(arr, 2, 20);

insert(arr, 5, 50);

printf(“\nAfter Insertion”);

display(arr);

reverse(arr);

printf(“\nAfter Reversing”);

display(arr);

search(arr, 20);

search(arr, 60);

178

getch();

}

/* Insert an element num at given position pos into an array arr*/

void insert(int *arr, int pos, int num)

{

/* shift elements to right */

int i;

for(i = MAX – 1 ; i >= pos; i--)

 arr[i] = arr[i-1];

arr[i] = num;

}

/* Delete an element num from the given position pos */

void delete(int *arr, int pos)

{

/* skip to the desired position */

int i;

for(i = pos; i < MAX ; i++)

 arr[i - 1] = arr[i];

arr[i - 1] = 0;

}

/* Reverse the entire array */

void reverse(int *arr)

{

int temp, i;

for(i = 0; i < MAX / 2 ; i++)

{

 temp = arr[i];

arr[i] = arr[MAX – 1- i];

arr[MAX – 1- i] = temp;

}

}

/*Searches array for a given element num */

void search(int *arr, int num)

{

179

/* Traverse the array */

int i;

for(i = 0; i < MAX ; i++)

{

 if(arr[i] = = num)

 {

 printf(“\nThe element %d is present at %dth position”,

 num, i +1);

return;

}

}

if(i = = MAX)

printf(“\n The element %d is not present in the array”, num);

}

/* Display the contents of a array */

void display(int *arr)

{

int i;

printf(“\n”);

for(i = 0; i < MAX ; i++)

 printf(“%d\”, arr[i]);

}

Output Of The Program

Enter the array elements

11

12

13

14

15

Elements of Array

11 12 13 14 15

After Deletion

11 13 14 0 0

180

After Insertion

11 20 13 14 50

After Reversing

50 14 13 20 11

The element 20 is present at 4th position

The element 60 is not present in the array

In the above program we created an array with 5 integer elements.

Then the base address of this array is passed to functions like insert(), delete(

), reverse() and search() to perform different array operations.

 The insert() function takes two arguments, the position pos at which

the new number has to be inserted and the number num that has to be inserted.

In this function, first through a loop, we have shifted the numbers, from the

specified position, one place to the right of their existing position. Then we

have placed the number num at the vacant place.

 The delete() function deletes the element present at the given position

pos. While deleting, we have shifted the numbers placed after the position from

where the number is to be deleted, one place to the left of their existing

positions. The place that is vacant after deletion of an element is filled with 0.

 The reverse() functions, we have reversed the entire array by

swapping the elements like arr[0] with arr[4], arr[1] with arr[3] and so on.

Swapping should continue for MAX / 2 times only.

 The search() function searches the array for the specified number. In

this function, the 0th element has been compared with the given number num. If

the element compared to be same then the function displays the position at

which the number if found. Otherwise the comparison is carried out until either

the list is exhausted or a match is found. If match is not found then the function

displays the relevant message.

 In the display() function, the entire array is traversed. As the list

traversed the function displays the elements of the array.

4.4.3. Merging Of Two Arrays

Merging of arrays involves two steps are sorting the array that are to

be merged, and adding the sorted elements of both the arrays to a new array in

a sorted order.

Example Program: Program to demonstrate merging of two arrays into a third

 array

#include<stdio.h>

#include<alloc.h>

181

#define MAX1 5

#define MAX2 6

int * arr;

int *create(int);

void sort(int*, int);

void display(int* , int);

int* merge(int *, int *);

void main()

{

int *a, *b, *c;

printf("\nEnter elements for first array:\n");

a = create(MAX1);

printf("\nEnter elements for second array:\n");

b = create(MAX2);

sort(a, MAX1);

sort(b, MAX2);

printf("\nFirst array:");

display(a, MAX1);

printf("\nSecond array:");

display(b, MAX2);

printf("\n After Merging:");

c = merge(a, b);

display(c, MAX1+MAX2);

getch();

}

/* Create array of given size, dynamically */

int* create(int size)

{

int *arr, i;

arr = (int *)malloc(sizeof(int) * size);

for(i = 0; i < size; i++)

{

printf("Enter the element %d ", i +1);

scanf("%d", &arr[i]);

182

}

return arr;

}

/* Sorts array in ascending order */

void sort(int *arr, int size)

{

int temp, j, i;

for(i = 0; i < size; i++)

{

for(j = i+1; j < size; j++)

{

if(arr[i] >arr[j])

{

temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

}

}

}

/* Display the contents of array */

void display(int *arr, int size)

{

int i;

for(i = 0; i < size; i++)

printf("\t%d", arr[i]);

}

/* Merge two arrays of different size */

int* merge(int *a, int *b)

{

int *arr;

int i, j, k;

int size = MAX1 + MAX2 ;

arr = (int *)malloc(sizeof(int) * size);

183

k = 0; j = 0;

for(i = 0; i <= size;i++)

{

if(a[k] < b[j])

{

arr[i] = a[k];

k++;

if(k >= MAX1)

{

for(i++; j < MAX2; j++, i++)

 arr[i] = b[j];

}

}

else

{

arr[i] = b[j];

j++;

if(j >= MAX2)

{

for(i++ ; k <MAX1; k++, i++)

 arr[i] = b[k];

}

}

}

return arr;

}

Output Of The Program

Enter elements for first array:

Enter the element 1 56

Enter the element 2 36

Enter the element 3 76

Enter the element 4 46

Enter the element 5 96

184

Enter elements for second array:

Enter the element 1 37

Enter the element 2 27

Enter the element 3 97

Enter the element 4 57

Enter the element 5 47

Enter the element 6 87

First array: 36 46 56 76 96

Second array: 27 37 47 57 87 97

After Merging: 27 36 37 46 47 56 57 76

87 96 97

The above program the create() function is used to create an array of

integers, function sort() is used to sort the elements of an array in ascending

order, function merge() is used to add elements of two arrays to the new array

and function display() is used to display the contents of an array.

All arrays created dynamically because of the size of each array is

different from the other.

Inside the function merge(), a for loop is executed for size number of

times. Here size is the sum of the number of element presents in the arrays that

are pointed by a and b respectively. Before placing the element in the new

array arr that is pointed by we have sequentially compared the elements of two

arrays which are pointed by a and b respectively. The element that is found to

be smaller is added first to the array that is pointed by arr.

4.4.4. Two Dimensional Arrays

A two dimensional array is a collection of elements placed in m rows

and n columns. The syntax used to declare a 2-D array includes two subscripts,

of which one specifies the number of rows and the other specifies the number

of columns of an array. Each dimension of the array is indexed from zero to its

maximum size minus one:

 The first index selects the row and

 The second index selects the column within that row.

Example:

 int table[3] [3];

This creates a table that can store 9 integer values, three across (row)

and three down (column).

185

 Columns

 C1 C2 C3

 R1

 Rows R2

 R3

 The individual elements are identified by index or subscript of an array

from the above example.

 table[0][0] table[0][1] table[0][2]

 table[1][0] table[1][1] table[1][2]

 table[2][0] table[2][1] table[2][2]

Initializing Two Dimensional Arrays

A two-dimensional array may be initialized by following their

declaration with a list of initial values enclosed in braces.

For example,

 int table[2] [3] = {0,0,0,1,1,1}; //initialize the elements row by

row

 or

int table[2] [3] = {{0,0,0},{1,1,1}}; //separate the element of each row

by braces

 or

 int table[2] [3] = {

{0,0,0},

{1,1,1}

};

If the values are missing in an initializer, they are automatically set to zero. For

example:

 int table[2] [3] = {

{1,1},

{2}

};

will initialize the first two elements of the row to one, the first element of the

second row to two, and all other elements to zero.

Row major and Column major arrangement

186

 In memory all elements are stored in consecutive units of memory. This

leads to two possible arrangements of elements in memory are

 Row major arrangement

 Column major arrangement

Fig 4.4.1 illustrates these two arrangements for a 2-D array. For example

int a[2][3] = {

 {1, 2, 3},

 {4, 5, 6}

 };

Row major arrangement

 0th row 1st row

 100 102 104 106 108 110

Column major arrangement

0th col 1st col 2nd col

100 102 104 106 108 110

Note: Each integer occupies two bytes

 Fig 4.4.1 Possible arrangements of 2-D array

Since the array elements are stored in adjacent memory locations we

can access any element of the array once we know the base address (starting

address) of the array and number of rows and columns present in the array.

Example Program: Program for Addition of Two Matrix using Two-

 Dimensional Array

 /* Matrix Addition Using Two Dimensional Array */

 #include<stdio.h>

 void main()

 {

1 2 3 4 5 6

1 4 2 5 3 6

187

 int a[5][5] , b[5][5] ,c[5][5] ;

 int n = 0, i = 0, j = 0;

 printf("Enter the order of matrix");

 scanf(“%d”, &n);

 printf("\nEnter the A matrix");

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 scanf(“%d”, &a[i][j]);

 }

 }

 printf("\nEnter the B matrix");

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 scanf(“%d”, &b[i][j]);

 }

 }

 printf("\nThe A matrix\n");

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 printf(“%d\t”, a[i][j]);

 }

 printf(“\n”);

 }

 printf("\nThe B matrix\n");

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

188

 printf(“%d\t”, b[i][j]);

 }

 printf(“\n”);

 }

 for(i=0;i<n;i++)

 {

 for(j=0;j<n;j++)

 {

 c[i][j] = a[i][j] + b[i][j];

 }

 }

 printf("\nThe Resultant Matrix is\n");

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 printf(“%d\t”, c[i][j]);

 }

 printf(“\n”);

 }

getch();

 }

Output Of Program

Enter the order of matrix

2

Enter the A matrix

2

2

2

2

Enter the B matrix

2

2

189

2

2

The A matrix

2 2

2 2

The B matrix

2 2

2 2

The Resultant Matrix is

4 4

4 4

4.4.5. Self Assessment Questions

Fill in the blank

1. An array is a collection of ______________ elements stored in

 memory location.

2. Index of an array containing n elements varies from _______ to

___________.

True / False

1. Merging refers to processing elements of an array.

2. Each dimension of the array is indexed from 0 to its maximum size minus

one.

Multiple Choice

1. To traverse an array means

a)To process each element in an array b) To delete an element from an

array

c)To insert an element into an array d) To combine two arrays into single

array

Short Answer

1. What is purpose of insertion operation in array?

190

4.5. Stacks

4.5.1. Definition

Stack is an ordered collection of homogeneous data elements, where

the insertion and deletion operations take place at one end called top of the

stack. That is, in stack the last inserted element can be deleted first. It operates

last in first out (LIFO) fashion. The structure of stack is as shown in Fig.4.5.1

 Example

Stack of plates: It will be placed on a table in a party where a guest

always picks up a fresh plate from the top.

Pile of coins.

 Push element into stack Pop element from stack

 Top

 Fig.4.5.1 Structure of a Stack

4.5.2. Operations On Stack

The stack has two basic operations such as

 Push: Inserting a new element into the top of stack. For every push

operation the top is incremented by 1.

 Top 20

 Top Top 10 10

 Empty stack After inserting an element 10 After inserting an

element 20

191

Algorithm:

StackPUSH(Stack , Max_size)

Step 1: [check for stack overflow]

 If Top > Max_size –1 then

 Print “Stack is full” and

 else

Step 2: [Increment Top]

 Set Top = Top +1

Step 3: [Insert new element into the Top position]

 Set Stack[Top] = item

End StackPUSH

 Pop: Deleting an element from the top of stack. After every pop

operation the top pointer is decremented by 1.

Algorithm:

StackPOP(Stack , Max_size)

Step 1: [check for stack underflow]

 If Top < 0 then

 Print “Stack is empty” and

 else

Step 2: [Delete the element from the Top position]

 Set item = Stack[Top]

Step 3: [decrement Top]

 Set Top = Top - 1

End StackPOP

192

Exceptional conditions

 Overflow: Attempt to insert an element, when the stack is full is said to

be overflow.

 Underflow: Attempt to delete an element, when the stack is empty is

said to be underflow.

Stack operations can be implemented either by using an array (static

implementation) or by using pointer (linked list or dynamic implementation)

4.5.3. Representation Of A Stack As An Array

In the array representation of stack, first allocate memory block of

required size to accommodate the capacity of the stack, then starting from first

locations. Let us see a program that implements a stack using an array.

Program: Program to implement a stack using an array.

#include<stdio.h>

#include<conio.h>

#define MAXSIZE 10

void push();

int pop();

int stack[MAXSIZE];

int top = -1;

void main()

{

int choice;

char ch;

do

{

clrscr();

printf(“\n1.Push”);

printf(“\n2.Pop”);

printf(“\n3.Exit”);

printf(“\nEnter your choice”);

scanf(“%d”, &choice);

switch(choice)

{

case 1:

 push();

193

 break;

case 2:

 printf(“\nThe deleted element is %d”, pop());

 break;

default:

 printf(“\nYou entered wrong choice”);

}

printf(“\nDo you wish to continue (Y / N)”);

fflush(stdin);

scanf(“%c”,&ch);

}

while(ch = =‘Y’ || ch = =’y’);

}

void push()

{

int item;

if (top = = MAXSIZE –1)

{

printf(“\n The Stack is Full”);

exit(0);

}

else

{

printf(“\nEnter the new element”);

scanf(“%d”, &item);

top = top + 1;

stack[top] = item;

}

}

int pop()

{

int item;

if(top = = -1)

{

194

printf(“ The Stack is Empty”);

getch();

exit(0);

}

else

{

item = stack[top];

top = top – 1;

 }

return(item);

}

Output Of The Program

1.Push

2.Pop

3.Exit

Enter your choice 1

Enter the new element 10

Do you wish to continue (Y / N) y

1.Push

2.Pop

3.Exit

Enter your choice 1

Enter the new element 20

Do you wish to continue (Y / N) y

1.Push

2.Pop

3.Exit

Enter your choice 2

The deleted element is 20

Do you wish to continue (Y / N) n

195

In this program we have defined an array called stack with the

MAXSIZE. The MAXSIZE indicates the length of the array. The push() and

pop() functions are used to add and delete items from the top of the stack. The

variable top is act as index of the array stack. In this implementation each stack

is associated with a top pointer, which is –1 for an empty stack and MAXSIZE

– 1 for a full stack.

4.5.4. Representation Of A Stack As An Linked List

The stack using array is very easy and convenient, but it allows only to

represents fixed size stacks. In several applications the size of the stack may

vary during the program execution. In such situation the linked list

representation of the stack is very useful, and the single linked list structure is

sufficient to represent stack.

Initially the list is empty, so the top pointer is NULL. The push

function takes a pointer to an exiting list as the parameter and a data value to

be pushed as the second parameter, creates a new node by using data value and

adds it to the top of the existing list.

A pop function takes a pointer to existing list as first parameter, and a

pointer to a data object in which the popped value is to be returned as a second

parameter. Thus it retrieves the value of the node pointed to by the top pointer,

takes the top point to the next node, and destroys the node that was pointed to

by the top. Let us see a program that implements a stack using an array.

Declaration for linked list implementation

struct node;

typedef struct node *stack;

int isempty(stack s);

stack createstack(void);

void make empty(stack s);

void push(int x, stack s);

int top(stack s);

void pop(stack s);

struct node

{

int element;

struct node * next;

};

196

Routine to check whether the stack is empty

int isempty(stack s)

{

if (s->next == NULL)

return(1);

}

Routine to create an empty stack

stack create()

{

stack s;

s = malloc(sizeof(struct node));

if (s == NULL)

error(“Out of space”);

makeempty(s);

return s;

}

void makeempty(stack s)

{

if (s == NULL)

error(“create stack first”);

else

while(! isempty(s))

pop(s);

}

Routine to push an element onto a stack

void push(int x, stack s)

{

struct node *tempnode;

tempnode = malloc(sizeof(struct node));

if(tempnode == NULL)

error(“ Out of space”);

else

197

{

tempnode->element = x;

tempnode->next = s->next;

s->next = tempnode;

}

}

Routine to return top element in a stack

int top(stack s)

{

if(!isempty(s))

return s->next->element;

error(“Empty stack”);

return 0;

}

Routine to pop from a stack

void pop(stack s)

{

struct node *tempnode;

if(!isempty(s))

error(“Empty stack”);

else

{

tempnode = s->next;

s->next = s->next->next;

free(tempnode);

}

}

4.5.5. Evaluation Of Expression

4.5.5.1. Introduction

Evaluation of arithmetic expression is the one of the applications of

stack. There are different types of notations to represent arithmetic expression.

They are

198

 Infix notation

 Postfix notation

 Prefix notation

 While writing arithmetic expression, the operator symbol is usually

placed between two operands. For example

A + B * C

A * B – C

A + B / C – D

This way of representing arithmetic expressions is called infix

notation. While evaluating an infix expression follows the operator precedence

is used:

 Highest Priority: Exponentiation ($)

 Next Highest priority: Multiplication (*) and division (/)

 Lowest priority: addition (+) and subtraction (-)

The expressions with in a pair of parentheses are always evaluated earlier

than other operations.

In prefix notation the operator comes before the operands. For example

+ A B

In postfix notation, the operator follows two operands. For example

A B+

4.5.5.2. Infix To Prefix Conversion

Let us now see a program that would accept an expression in infix form and

convert it to a prefix form.

Program: Program for infix to prefix conversion

#include<stdio.h>

#include<string.h>

#include<ctype.h>

#define MAX 50

struct infix

{

char target[MAX];

char stack[MAX];

char *s, *t;

int top, i;

};

199

void initinfix(struct infix *);

void setexpr(struct infix *, char *);

void push(struct infix *, char);

char pop(struct infix *);

void convert(struct infix *);

int priority(char c);

void show(struct infix);

void main()

{

struct infix q;

char expr[MAX];

initinfix(&q);

printf("\nEnter an expression in infix form");

gets(expr);

setexpr(&q, expr);

convert(&q);

printf("\nThe prefix expression is :");

show(q);

getch();

}

/* initializes elements of structure variable */

void initinfix(struct infix *pq)

{

pq->top = -1;

strcpy(pq->target, "");

strcpy(pq->stack, "");

pq->i = 0;

}

/* reverse the given expression */

void setexpr(struct infix *pq, char *str)

{

pq->s = str;

strrev(pq->s);

pq->i = strlen(pq->s);

200

*(pq->target +pq->i) ='\0';

pq->t = pq->target + (pq->i -1);

}

/* adds operator to the stack */

void push(struct infix *pq, char c)

{

if(pq->top == MAX-1)

printf("\nStack is full\n");

else

{

pq->top++;

pq->stack[pq->top] = c;

}

}

/* pos an operator from the stack */

char pop(struct infix *pq)

{

if(pq->top == -1)

{

printf("\nStack is full\n");

return -1;

}

else

{

char item = pq->stack[pq->top];

pq->top--;

return item;

}

}

 /* coverts the infix expr. Into prefix expr form */

void convert(struct infix *pq)

{

char opr;

while(*(pq->s))

201

{

if (*(pq->s) == ' ' || *(pq->s) == '\t')

{

pq->s++;

continue;

}

if(isdigit(*(pq->s)) || isalpha(*(pq->s)))

{

while(isdigit(*(pq->s)) ||

isalpha(*(pq->s)))

{

*(pq->t) = *(pq->s);

pq->s++;

pq->t--;

}

}

if(*(pq->s) == ')')

{

push(pq, *(pq->s));

pq->s++;

}

if(*(pq->s) == '*' || *(pq->s) == '+' || *(pq->s) == '/' ||

 *(pq->s) =='%' || *(pq->s) == '-' || *(pq->s) == '$')

{

if(pq->top != -1)

{

opr = pop(pq);

while(priority(opr)

>priority(*(pq->s)))

{

*(pq->t) = opr;

pq->t--;

opr = pop(pq);

}

202

push(pq, opr);

push(pq, *(pq->s));

}

else

push(pq, *(pq->s));

pq->s++;

}

if(*(pq->s) == '(')

{

opr = pop(pq);

while(opr != ')')

{

*(pq->t) = opr;

pq->t--;

opr = pop(pq);

}

pq->s++;

}

}

while(pq->top != -1)

{

opr = pop(pq);

*(pq->t) = opr;

pq->t--;

}

pq->t++;

}

/* return the priority of the operator */

int priority(char c)

{

if (c == '$')

return 3;

if (c == '*' || c == '/' || c == '%')

return 2;

203

else

{

if (c == '+' || c == '-')

return 1;

else

return 0;

}

}

/* display the prefix form of given expr */

void show(struct infix pq)

{

while(*(pq.t))

{

printf("%c", *(pq.t));

pq.t++;

}

}

Output Of The Program

Enter an expression in infix form4$2*3-3+8/4/(1+1)

The prefix expression is :_+-*$4233//84+11

4.5.5.3. Infix To Postfix Conversion

Let us now see a program that would accept an expression in infix form

and convert it to a postfix form.

Program: Program for infix to postfix conversion

#include<stdio.h>

#include<string.h>

#include<ctype.h>

#define MAX 50

struct infix

{

char target[MAX];

char stack[MAX];

char *s, *t;

int top;

204

};

void initinfix(struct infix *);

void setexpr(struct infix *, char *);

void push(struct infix *, char);

char pop(struct infix *);

void convert(struct infix *);

int priority(char);

void show(struct infix);

void main()

{

struct infix q;

char expr[MAX];

initinfix(&q);

printf("\nEnter an expression in infix form");

gets(expr);

setexpr(&q, expr);

convert(&q);

printf("\nThe prefix expression is :");

show(q);

getch();

}

/* initializes elements of structure variable */

void initinfix(struct infix *p)

{

p->top = -1;

strcpy(p->target, "");

strcpy(p->stack, "");

p->t =p->target;

p->s= "";

}

/* sets s to point to given expr*/

void setexpr(struct infix *pq, char *str)

{

pq->s = str;

205

}

/* adds operator to the stack */

void push(struct infix*pq, char c)

{

if(pq->top == MAX-1)

printf("\nStack is full\n");

else

{

pq->top++;

pq->stack[pq->top] = c;

}

}

/* pos an operator from the stack */

char pop(struct infix *p)

{

if(p->top == -1)

{

printf("\nStack is empty\n");

return -1;

}

else

{

char item = p->stack[p->top];

p->top--;

return item;

}

}

206

 /* coverts the infix expr. Into prefix expr form */

void convert(struct infix *p)

{

char opr;

while(*(p->s))

{

if (*(p->s) == ' ' || *(p->s) == '\t')

{

p->s++;

continue;

}

if(isdigit(*(p->s)) || isalpha(*(p->s)))

{

while(isdigit(*(p->s)) || isalpha(*(p->s)))

{

*(p->t) = *(p->s);

p->s++;

p->t++;

}

}

if(*(p->s) == ')')

{

push(p, *(p->s));

p->s++;

 }

if(*(p->s) == '*' || *(p->s) == '+' || *(p->s) =='/' ||

*(p->s)== '%' || *(p->s) == '-' || *(p->s) == '$')

{

if(p->top != -1)

{

opr = pop(p);

while(priority(opr) >priority(*(p->s)))

{

*(p->t) = opr;

207

p->t++;

opr = pop(p);

}

push(p, opr);

push(p, *(p->s));

}

else

push(p, *(p->s));

p->s++;

}

if(*(p->s) == '(')

{

opr = pop(p);

while(opr != ')')

{

*(p->t) = opr;

p->t++;

opr = pop(p);

}

p->s++;

}

}

while(p->top != -1)

{

char opr = pop(p);

*(p->t) = opr;

p->t++;

}

*(p->t) = '\0';

}

/* return the priority of the operator */

int priority(char c)

{

if (c == '$')

208

return 3;

if (c == '*' || c == '/' || c == '%')

return 2;

else

{

if (c == '+' || c == '-')

return 1;

else

return 0;

}

}

/* display the prefix form of given expr */

void show(struct infix p)

{

printf("%s", p.target);

}

Output Of The Program

Enter an expression in infix forma+b

The prefix expression is :ab+

4.5.6. Self Assessment Questions

Fill in the blank

1. The data structure stack is also called____________ structure.

2. In _____________ notation the operator follows the two operands.

True / False

1. In stack new element or deletion of an exiting element always takes place at

the same end.

Multiple Choice

1. Pushing an element to stack means

a) Removing an element from the stack b) Adding a new element to the

stack c) Searching a given element from the stack d) Sorting the elements in

the stack

Short Answer

1. What is mean by postfix expression?

209

4.6. Queues

4.6.1. Definition

Queue is a linear data structure that permits insertion of new element at

one end is called rear and deletion of an element at the other end is called

front. Queue has First-In-First-Out (FIFO) structure.

The structure of a queue is shown in Fig .4.6.1. The name ‘queue’

comes from the everyday use of the term.

Example

 People waiting at a ticket counter in theater.

 Ticket Counter Newcomer

 Queue

 Serviced customer

 Fig .4.6.1 Sample Structure of Queue

4.6.2. Operations On Queue

The queue has two basic operations such as

 Insertqueue

Inserting a new element into the queue.

210

 Algorithm

InsertQueue()

Step 1: [check for queue overflow]

 If rear = Maxsize – 1 then

 Print “ Queue is full” and

 else

Step 2: [Increment rear]

 Set rear = rear +1

Step 3: [Insert a new element into the queue]

 Set queue[rear] = item

End InsertQueue

 Deletequeue

Deleting an element from the queue.

 Algorithm

DeleteQueue()

Step 1: [check for queue underflow]

 If front > rear then

 Print “ Queue is empty” and

 else

Step 2: [Delete an element from the queue in front position]

 Set item = queue[front]

Step 3: [Decrement front pointer]

 Set front = front - 1

End DeleteQueue

Exceptional conditions

 Overflow: Attempt to insert an element, when the queue is full is said to

be overflow.

211

 Underflow: Attempt to delete an element from the queue, when the

queue is empty is said to be underflow

Types of Queues

 Linear Queue

 Circular Queue

 Dequeue (double ended Queue)

We have seen so far is referred to as the linear queue.

 Linear queue has front end and rear ends.

 Insertion takes place at rear end and deletion takes place at front end.

 Linear queue can be traversed in only one direction (front to rear).

 If the front pointer is in the front position and rear pointer is in the last

position, the queue is said to be full queue.

 If the rear is -1 and front is 0, then the queue is said to be empty queue.

4.6.3. Representation Of Queue As An Array

Queue being a linear data structure can be represented in various ways

such as arrays and linked lists. Representing a queue as an array would have

same problem that we discussed in case of stacks.

An array is a data structure that can store a fixed number of elements. The

size of an array should be fixed before using it

Queue, on the other hands keeps on changing as we remove elements

from the front end or add new elements at the rear end. Declaring an array with

maximum size would solve this problem. Fig.4.6.2 shows representation of a

queue as an array.

a[0] a[1] a[2] a[3] a[4] a[5] a[6]

front rear

 Fig.4.6.2. Representation of a queue as an array

Let us see a program that implements queue as an array.

Program: Program to implement queue as an array.

#include<stdio.h>

#define MAXSIZE 10

20 12 45 67 8 -6 62

212

int front = -1, rear = -1, choice;

int queue[MAXSIZE];

void main()

{

do

{

printf(“\n1. Insert\n”);

printf(“2. Delete\n”);

printf(“3. Display\n”);

printf(“4. Exit\n”);

printf(“Enter your choice\n”);

scanf(“%d”, &choice);

switch(choice)

{

case 1: insert();

 break;

case 2: delete();

 break;

case 3: display();

 break;

case 4: return;

}

}

while(choice != 4);

}

/* inserting element into queue */

insert()

{

int num;

if(rear == MAXSIZE – 1)

{

printf(“Queue is full\n”);

return;

}

213

else

{

printf(“Enter element\n”);

scanf(“%d”, &num);

rear = rear + 1;

queue[rear] = num;

if(front == -1)

front = front + 1;

}

return;

}

/* deleting element from the queue */

delete()

{

int num;

if(front == -1)

{

printf(“Queue is empty\n”);

return;

}

else

{

if(front == rear)

front = rear = -1;

else

{

num = queue[front];

printf(“Deleted element is %d”, queue[front]);

front = front +1;

}

}

return(num);

}

/* display the content of the queue */

214

display()

{

int i;

if(front == -1)

{

printf(“Queue is empty\n”);

return ;

}

else

{

printf(“\nThe status of the queue\n”);

for(i = front; i <= rear; i++)

printf(“%d\t”, queue[i]);

}

printf(“\n”);

}

Output Of The Program

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice

1

Enter element

10

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice

1

Enter element

20

1. Insert

215

2. Delete

3. Display

4. Exit

Enter your choice

2

Deleted element is 10

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice

3

The status of the queue

20

1. Insert

2. Delete

3. Display

4. Exit

Enter your choice

4

Here we have used an array queue[] to maintain the queue. We have also

declared two variables front and rear to monitor the two ends of the queue. The

initial values of front and rear are set to –1 which indicate that the queue is

empty. The functions insert() and delete() are used to perform add and delete

operations on the queue.

 While adding a new element to the queue, first it would be check whether

such addition is possible or not. Since array indexing begins with 0, the

maximum number of elements that can be stored in the queue are MAXSIZE –1.

If many elements are already present in the queue then it is reported to be full. If

the element can be added to the queue then the value of the variable rear is

incremented by 1 and the new value is stored in the array.

 While deleting elements from the queue, first it would be check whether

they are any elements available for deletion. If not then the queue is reported as

empty. Otherwise, an element is deleted from the queue[front].

4.6.4. Representation Of Queue As A Linked List

216

Queue can also be represented using linked list. Space for the elements in

a linked list is allocated dynamically; hence it can grow as long as there is

enough memory available for dynamic allocation. Fig.4.6.3 shows representation

of a queue as a linked list.

 front rear

 Fig.4.6.3. Representing of a queue as a linked list

Let us see a program that implements the queue as a linked list.

Program: Program to implements the queue as a linked list.

#include<stdio.h>

struct node

{

int element;

struct node *next;

};

struct queue

{

struct node *front;

struct node *rear;

};

void initqueue(struct queue *);

void addq(struct queue *, int);

int delq(struct queue *);

void main()

{

struct queue a;

int i, num, choice;

do

{

printf(“\n1. Insert\n”);

printf(“2. Delete\n”);

 10 20

 30

217

printf(“3. Initialize\n”);

printf(“4. Exit\n”);

printf(“Enter your choice\n”);

scanf(“%d”, &choice);

switch(choice)

{

case 1: printf(“Enter element\n”);

 scanf(“%d”, &num);

 addq(&a, num);

 break;

case 2: num = delq(&a);

 if (num == 0)

 printf(“Deleted element is %d”, num);

 break;

 case 3: initqueue(&a);

 break;

case 4: return;

}

}

while(choice != 4);

}

 /* initializes data member */

void initqueue(struct queue *q)

{

q->front = q->rear = NULL;

printf(“Queue is initialized\n”);

}

/* adds an element to the queue */

void addq(struct queue *q, int item)

{

struct node *temp;

temp = (struct node *) malloc(sizeof(struct node));

if(temp == NULL)

printf(“\nQueue is full”);

218

else

{

temp->element = item;

temp->next = NULL;

if (q->front == NULL)

{

q->rear = q->front = temp;

return;

}

else

{

q->rear->next = temp;

q->rear = q->rear->next;

}

}

}

/* removes an element an element from the queue */

int delq(struct queue *q)

{

struct node *temp;

int item;

if(q->front == NULL)

{

printf(“\nQueue is empty”);

return NULL;

}

item = q->front->element;

temp = q->front;

q->front = q->front->next;

free(temp);

return item;

}

Output Of The Program

1. Insert

219

2. Delete

3. Initialize

4. Exit

Enter your choice

3

Queue is initialized

1. Insert

2. Delete

3. Initialize

4. Exit

Enter your choice

1

Enter element

10

1. Insert

2. Delete

3. Initialize

4. Exit

Enter your choice

1

Enter element

20

1. Insert

2. Delete

3. Initialize

4. Exit

Enter your choice

2

Deleted element is 10

1. Insert

2. Delete

3. Initialize

4. Exit

220

Enter your choice

2

Deleted element is 20

1. Insert

2. Delete

3. Initialize

4. Exit

Enter your choice

2

Queue is empty

1. Insert

2. Delete

3. Initialize

4. Exit

Enter your choice

4

4.6.5. Circular Queues

The queue that we implemented using an array suffers from one

limitation. In that implementation there is a possibility that the queue is

reported as full, even though there might be empty slots at the beginning of the

queue. To overcome this limitation we can implement the queue as a circular

queue.

 Now if we go on adding elements to the queue we may reach the end of

the array. We cannot add any more elements to the queue since we have

reached the end of the array. Instead of reporting the queue is full, if some

elements are deleted then there might be empty slots at the beginning of the

queue. In such case these slots would be filled by new elements being added to

the queue. Fig.4.6.4 shows the pictorial representation of a circular queue.

221

 rear

 front

 Fig.4.6.4. Pictorial representation of a circular queue

Program: Program to implement the circular queue

#include<stdio.h>

#define MAX 10

void addq(int *, int, int *, int *);

int delq(int *, int *, int *);

void display(int *);

void main()

{

int arr[MAX];

int i, front, rear;

/* initialize data member */

front = rear = -1;

for(i = 0; i <MAX; i++)

arr[i] = 0;

addq(arr, 14, &front, &rear);

addq(arr, 22, &front, &rear);

addq(arr, 13, &front, &rear);

printf(“\nElements in the circular queue\n”);

display(arr);

i =delq(arr, &front, &rear);

printf(“item deleted: %d\t”, i);

i =delq(arr, &front, &rear);

printf(“item deleted: %d\t\n”, i);

printf(“\nElements in the circular queue after deletion\n”);

 11 14

10 22

40 13

 30 20

222

display(arr);

addq(arr, 21, &front, &rear);

addq(arr, 18, &front, &rear);

addq(arr, 9, &front, &rear);

printf(“\nElements in the circular queue after addition\n”);

display(arr);

getch();

}

/* adds an element to the queue */

void addq(int *arr, int item, int *pfront, int *prear)

{

if ((*prear == MAX – 1 && *pfront == 0) ||

(*prear + 1 == *pfront))

{

printf(“\n Queue is full”);

 return ;

}

if (*prear == MAX – 1)

*prear = 0;

else

(*prear)++;

arr[*prear] = item;

if(*pfront == -1)

*pfront = 0;

}

/* removes an element from the queue */

int delq(int *arr, int *pfront, int *prear)

{

int data;

if(*pfront == -1)

{

printf(“\n Queue is empty”);

 return NULL;

}

223

data = arr[*pfront];

arr[*pfront] = 0;

if(*pfront == *prear)

{

*pfront = -1;

*prear = -1;

}

else

{

if(*pfront == MAX -1)

*pfront = 0;

else

(*pfront)++;

}

return data;

}

/* displays element in a queue */

void display(int * arr)

{

int i;

printf(“\n”);

for(i = 0; i <MAX; i++)

printf(“%d\t”, arr[i]);

printf(“\n”);

}

Output Of The Program:

Elements in the circular queue

14 22 13 0 0 0 0 0 0 0

item deleted: 14 item deleted: 22

Elements in the circular queue after deletion

0 0 13 0 0 0 0 0 0 0

Elements in the circular queue after addition

0 0 13 21 18 9 0 0 0 0

224

Here the arr is used to stored the elements of the circular queue. The

function addq() and delq() are used to add and remove the elements from the

queue. The function display() displays the existing elements of the queue. The

initial value of front and rear are set -1, which indicates that the queue is empty.

In main(), first we have called the addq() function to insert elements

in the circular queue. In this function, following cases are considered before

adding element into the circular queue.

 First we have checked whether or not the array is full. The message “queue

is full “ gets displayed if front and rear are in adjacent locations with rear

following front.

 If the value of front -1 then indicated the queue is empty and element to be

added would be the first element in the queue. The values of front and rear

in such case are set to 0 and the new element gets placed at the 0th position.

 It may also happen that some of the position at front end of the array is

vacant. This happens if we have deleted some elements from the queue,

when the value of rear is MAX – 1 and value of front is greater than 0. in

such case the value of rear is set to 0 and element to be added at this

position.

 The element is added at rear position in case the value of front is either

equal to or greater that 0 and the value of rear is less than Max – 1.

Fig.4.6.5 shows the pictorial representation of a circular queue after adding

elements.

 front

front

 rear

 rear

Fig.4.6.5. Circular queue After additionFig.4.6.6. Circular queue After deletion

 0 0

0 0

0 13

 0 0

 0 14

0 22

0 13

 0 0

225

Next we have called delq() function twice to remove 2 elements from the

queue. The following condition is checked while deleting an element.

 First we have checked whether or not the queue is empty. The value of

front in our case is 4, hence an element at the front position would get

removed.

 Next, we have checked if the value of front has become equal to rear. If

it has, then the element we wish to remove is the only element of the

queue. On removal of this element the queue would empty and hence

the values of front and rear are set to -1.

On deleting an element from the queue the value of front is set to 0 if it

is equal to MAX – 1. Otherwise front is simple incremented by 1. Fig.4.6.6

shows the pictorial representation of circular queue after deleting two elements

from the queue.

4.6.6. Self Assessment Questions

Fill in the blank

1. Queue is a _____________ data structure.

True / False

1. The end at which a new element gets added to a queue is called rear end.

Multiple Choice

1. The end at which a new element gets removed from a queue is called

a) front b) rear c) top d) bottom

2. Queue is also called

a) Last In First Out data structure b) First In First Out data structure

c) Last In Last Out data structure a) First In Last Out data structure

Short Answer

1. What is advantage to represent queue as a linked list?

226

4.7. Linked List

4.7.1. Definition

List is an ordered set of elements the general form of the list is

L = {A1, A2, A3, ---------An}

Where

A1 - First element of the list

An - Last element of the list

N – is the size of the list

If the element at position i is Ai, then its successor is An + 1 and its

predecessor is An – 1. Linked list consists of series of nodes. Each node contains

the two fields namely data field and link field i.e. data field contains actual

element and link field is used to point the address of next element. The pointer

of the last node points to NULL. The structure of the node is given below. The

Linked list structure and sample structure is shown in Fig.4.7.1

 Actual Element Points

address of the

Next element

 Node Structure

 Null

 Head

 Null

2201 1500 2000

 Fig. 4.7.1 Linked list structure and sample structure

 E1 E2

 E3

 10 20

 30

 Data Field Link Field

227

Linked list nodes are not stored contiguously in memory, but they are

logically contiguous. The address stored in linked list is of three types as

follows.

 External address: The address of the first node, which is stored in the head

 pointer.

 Internal address : The address of the inner nodes, which is stored in the link

 field of predecessor node.

 Null address : Address stored by the Null values, which is of the last

node in the link field.

Types of Linked List

 A linked list can have a partial or full link among its nodes. The nodes

can have only single link to predecessor or can have double links to both its

predecessor and successor. Some times it can have a type of link where the last

node and first node are connected to maintain the serializability. Accordingly,

they are three different types of linked lists. They are

 Singly Linked List

 Doubly Linked List

 Circular Linked List

4.7.2. Operations On Singly Linked List

 Linked list in which each node contains only one link field pointing to

next node. It is referred as singly linked list or linear linked list. Singly

linked list structure is as shown in Fig.4.7.1. A singly linked list can be

traversed only one direction. That is head to null. The singly linked list has the

following properties.

 Referred as linear linked list

 Each node has single link to its next node.

 Traversed only one direction, from head to null

Basic operations on singly linked list

 List creation

 Node insertion

 Node deletion

 List traversal

Declaration for linked list

struct node;

typedef struct Node *List;

typedef struct Node *Position;

228

int IsLast(List L);

int IsEmpty(List L);

position Find(int x , List L);

void Delete(int x , List L);

position FindPrevious(int x , List L);

position FindNext(int x , List L);

void Insert(int x , List L , Position P);

void DeleteList(List L);

struct Node

{

int element;

Position Next;

}

Routine to Insert an Element in the List

void Insert(int x , List L , Position P)

{

Position NewNode;

NewNode = malloc(sizeof(struct Node));

if(NewNode != NULL)

{

NewNode -> element = x;

NewNode -> Next = P -> Next;

P -> Next = NewNode;

}

}

Example: Insert(25, L, P) Null

 Header L

 New Node

 10 20

 30

25

229

Routine to Check whether the List is Empty

int IsEmpty(List L) /* return 1 if L is empty */

{

 if(L -> Next = = NULL)

 return(1);

}

Routine to Check whether the Current position is Last

int IsLast(Position P , List L) /* return 1 if P is the last position in L

*/

{

if(P->Next = = NULL)

 return(1);

}

Routine to Find whether the Element in the List

Position Find(int x , List L)

{

 /* Return the position of x in L; Null if x is not found */

Position P;

P = L-> Next;

while(P != NULL && P->Element != x)

P = P->Next;

return P;

}

Routine to Find Previous

Position FindPrevious(int x, List L)

{

/* Return the position of the predecessor */

230

Position P;

P = L;

while(P->Next != NULL && P->Next->element != x)

 P = P->Next;

return P;

}

Routine to Find Next

Position FindNext(int x, List L)

{

/* Return the position of its successor */

Position P;

P = L;

while(P->Next != NULL && P->element != x)

 P = P->Next;

return P;

}

Routine to Delete an element from the List

void Delete(int x , List L)

{

/* Delete the first occurrence of x from the List */

Position P, Temp;

P = FindPrevious(x , L);

if (!IsLast(P, L))

{

 Temp = P->Next;

P->Next = Temp->Next;

free(Temp);

231

}

}

Routine to Delete the List

void DeleteList(List L)

{

Position P, Temp;

P = L->Next;

L->Next = NULL;

while (P != NULL)

{

 Temp = P->Next;

free(P);

P = Temp;

}

}

4.7.3. Circular Linked List

The linked lists that we have seen so far are often known as linear

linked lists. All elements of such a linked list can be accessed by first setting to

the first node in the list and then traversing the entire list using pointer.

Although a linear linked list is useful data structure, it has several short

comings. For example, given a pointer p to a node in a linear list, we cannot

reach any of the nodes that precede the node to which p is pointing.

This disadvantage can be overcome by making a small change to the

structure of a linear linked list such that the link field in the last node contains

a pointer back to the first node rather than a NULL. Such a list is called a

circular linked list and is illustrated in Fig.4.7.2

 Fig.4.7.2 Circular linked list

 10 20

 30

232

From any point in such a list it is possible to reach any other point in

the list. A circular linked list does not have a first or last node. We must,

therefore, establish a first and last node by convention. The circular linked list

can be used to represent a stack and queue.

The following program implements a queue as a circular linked list.

Program: Program to implements queue as a circular linked list.

#include<stdio.h>

#include<alloc.h>

/*structure containing a data part and link part */

struct node

{

int data;

struct node *link;

};

void addcirq(struct node **, struct node **, int);

int delcirq(struct node **, struct node **);

void cirdisplay(struct node *);

void main()

{

struct node *front, *rear;

front = rear = NULL;

addcirq(&front, &rear, 10);

addcirq(&front, &rear, 20);

addcirq(&front, &rear, 30);

printf(“\n\nBefore deletion:”);

cirdisplay(front);

delcirq(&front, &rear);

delcirq(&front, &rear);

printf(“\n\nAfter deletion:”);

cirdisplay(front);

}

/* adds a new element at the end of the queue */

void addcirq(struct node **f, struct node **r, int item)

{

233

struct node *q;

/*create new node */

q = malloc(sizeof(struct node));

q->data = item;

/*if the queue is empty */

if(*f == NULL)

*f = q;

else

(*r)->link = q;

*r = q;

(*r)->link = *f;

}

/* removes an element from front of queue */

int delcirq(struct node **f, struct node **r)

{

struct node *q;

int item;

/* if queue is empty */

if(*f == NULL)

printf(“Queue is empty”);

else

{

if(*f == *r)

{

item = (*f)->data;

free(*f);

*f =NULL;

*r= NULL;

}

else

{

/* delete the node */

 q= *f;

item = q->data;

234

*f = (*f)->link;

(*r)->link = *f;

free(q);

}

return(item);

}

return NULL;

}

/* display whole of the queue */

void cirdisplay(struct node *f)

{

struct node *q = f, *p = NULL;

/* traverse the entire linked list */

while(q != p)

{

printf(“%d\t”, q->data);

q = q->link;

p = f;

}

}

Output Of The Program

Before deletion: 10 20 30

After deletion: 30

The pointers front and rear point to the first node and last node

respectively. To begin with both the pointers front and rear are initialized to

NULL. The functions defined in the program are discussed as follows.

Function addcirq()

 This function accepts three parameters. First parameter receives the

address of the pointer to the first node (i.e. address of front), the second

parameter receives the address of the pointer to the last node (i.e. address of

read). The third parameter is the item that holds the data that we need to add to

the list.

235

 Then memory is allotted for the new node whose address is stored in

pointer q. Then the data, which is present in item, is stored in the data part of

the new node.

 Next a condition is checked, whether the new node is being added to an

empty list. If the list is empty then the address of the node is stored in front.

This is done through the statement

 *f=q;

After this statement

 *r=q;

 is executed which stores the address of the new node into rear. Thus

both front and rear point to the same node.

 Now the statement

 (*)->link=*f;

 is executed which stores the address of the front node in the link part of

the rear node. This is done, because it is the property of a circular linked list

that the link part of the last node should contain the address of the first node.

 If the new node that is to be added is not the first node then the address

present in the link part of the last node is overwritten with the address of the

new node, which is done through the statement

 (*r)->link=q;

 Now the address of the new node is stored in the pointer rear through

the statement

 *r=q;

 and the address of the first node is stored in the link part of the new

node. This done through the statement

 (*r)->link=*f;

 Fig.4.7.3 shows how to add a new node in the circular queue

maintained as a linked list.

Function delcirq()

 This function receives two parameters. The first parameter is the

pointer to the front and the second is the pointer to the rear. Then a condition is

checked whether the list is empty or not. If the list is empty then the control

returns back to calling function.

 If the list is not empty then it is checked whether the front and rear

pointer to the same node or not. If they point to the same node then the

memory occupied by the node is released and front and rear both are assigned a

NULL value.

236

 If front and rear are pointing to different nodes then the address of the

first node is stored in a pointer q. Then the front pointer is made to point to the

next node in the list. i.e. to the node which is pointed by (*f)->link. Now the

address of the front is stored in the link part of last node. Then memory

occupied by the node being deleted is released.

 Fig.4.7.4 shows how the deletion of a node from the circular queue

maintained as a linked list happens.

1. Addition of node to empty list

front = rear = NULL q front rear

 q

 New node

 Before Addition After Addition

2. Addition of node to non-empty list

 front rear q

 New node

 Before Addition

 front rear q

 After Addition

 Fig 4.7.3 Addition of a node in circular linked list

 10 10

 10 20 30 40

 10 20 30 40

237

 front rear

 Before deletion

 front rear

 After deletion

 front rear

Fig.4.7.4 Deletion of a node from circular linked list

Function cirdisplay()

 This function receives the pointer to the first node in the list as a

parameter. Then q is also made to point to the first node in the list. This is done

because the entire list is traversed using q. Another pointer p is set to NULL

initially. Then through the loop the circular linked list is traversed till the time

we do not reach the first node again. We would make the circle and reach the

first node when q equals p.

First time through the loop p is assigned the address of the first node

after q has been moved to the next node. Had we done this before the loop then

the condition in the loop would have failed the first time itself.

4.7.4. Doubly Linked List

In the linked lists that we have used so far each node provides

information about where is the next node in the list. It has no knowledge about

where the previous node lies in memory. If we are at say the 15th node in the

 10 20 30 40

 10 20 30 40

 20 30 40

238

list, then to reach the 14th node we have to traverse the list right from the first

node.

To avoid this we can store in each node not only the address of next

node but also the address of the previous node in the linked list. This

arrangement is often known as a ‘Doubly Linked List’ and is shown in

Fig.4.7.5. the following program implements the doubly linked list.

 Node

 200 100 400

 Fig.4.7.5 Double linked list

Program: Program to implements doubly linked list

#include<stdio.h>

#include<alloc.h>

/* structure representing a node of the doubly linked list */

struct dnode

{

struct dnode *prev;

int data;

struct dnode *next;

};

void d_append(struct dnode ** , int);

void d_addatbeg(struct dnode **, int);

void d_addafter(struct dnode *, int, int);

void d_display(struct dnode *);

int d_count(struct dnode *);

void d_delete(struct dnode **, int);

void main()

{

struct dnode *p;

p = NULL;

N 11 100 200 2 400 100 14 500

prev data next

239

d_append(&p, 10);

d_append(&p, 20);

d_append(&p, 30);

d_display(p);

printf(“\nNo. Of elements in the list = %d\n”, d_count(p));

d_addatbeg(&p, 11);

d_addatbeg(&p, 22);

d_display(p);

printf(“\nNo. Of elements in the list = %d\n”, d_count(p));

d_addafter(p, 4, 66);

d_addafter(p, 2, 76);

d_display(p);

printf(“\nNo. Of elements in the list = %d\n”, d_count(p));

d_delete(&p, 20);

d_delete(&p, 66);

d_display(p);

printf(“\nNo. Of elements in the list = %d\n”, d_count(p));

}

/* add a new node at the end of the doubly linked list */

void d_append(struct dnode **s, int num)

{

struct dnode *r, *q = *s;

/* if the linked list is empty */

if(*s == NULL)

{

/* create a new node */

*s = malloc(sizeof(struct dnode));

(*s)->prev = NULL;

(*s)->data = num;

(*s)->next = NULL;

}

else

{

/* traverse the linked list till the last node is reached */

240

while(q->next != NULL)

q = q->next;

/* add a new node at the end */

r = malloc(sizeof(struct dnode));

r->data = num;

r->next = NULL;

r->prev = q;

q->next = r;

}

}

/* adds a new node at the beginning of the list */

void d_addatbeg(struct dnode **s, int num)

{

struct dnode *q ;

/* create a new node */

q = malloc(sizeof(struct dnode));

/* assign data and pointer to the new node */

q->prev = NULL;

q->data = num;

q->next= *s;

/* make new node the head node */

(*s)->prev = q;

*s = q;

}

/* adds a new node after the specified number of nodes */

void d_addafter(struct dnode *q, int loc, int num)

{

struct dnode *temp ;

int i;

/* skip to desired portion */

for(i = 0; i < loc; i++)

{

q = q->next;

/* if end of the list is encountered */

241

if (q == NULL)

{

printf(“\nThere are less than %d elements”, loc);

return;

 }

}

/* insert new node */

q = q->prev;

temp = malloc(sizeof(struct dnode));

temp->data = num;

temp->prev = q;

temp->next = q->next;

temp->next->prev = temp;

q->next = temp;

}

/*display the contents of the list */

void d_display(struct dnode *q)

{

printf(“\n”);

/* traversethe entire list */

while(q != NULL)

{

printf(“%2d\t”, q->data);

q = q->next;

}

}

/* counts the number of nodes in the list */

int d_count(struct dnode *q)

{

int c = 0;

/* traverse the entire list */

while(q != NULL)

{

q = q->next;

242

c++;

}

return c;

}

/* deletes the specified node from the list */

void d_delete(struct dnode **s, int num)

{

struct dnode *q = *s;

 /* traverse the entire list */

while(q != NULL)

{

/* if node to be deleted is found */

if(q->data == num)

{

/* if node to be deleted is the first node */

if(q == *s)

{

*s = (*s)->next;

(*s)->prev = NULL;

}

else

{

/* if node to be deleted is the last node */

if(q->next == NULL)

q->prev->next = NULL;

else

{

/* if node to be deleted is the intermediate node */

q->prev->next = q->next;

q->next->prev = q->prev;

}

free(q);

}

return; /* return back after deletion */

243

}

q = q->next; /* go to next node */

}

printf(“\n%d not found”, num);

}

Output of The Program

10 20 30

No. Of elements in the list = 3

22 11 10 20 30

No. Of elements in the list = 5

22 11 76 10 20 66 30

No. Of elements in the list = 7

22 11 76 10 30

No. Of elements in the list = 5

4.7.5. Operations On Doubly Linked List

Function d_append()

 The d_append() function adds a node at the end of the existing list. It

also checks the special case of adding the first node if the list is empty.

This function accepts two parameters. The first parameter s is of type

struct dnode** which contains the address of the pointer to the first node of the

list or a NULL value in case of empty list. The second parameter num is an

integer, which is to be added in the list.

 To begin with we initialize q which is of the type struct dnode* with

the value stored at s. This is done because using q the entire list is traversed if

it is non-empty.

 If the list is empty then the condition

 if (*s==NULL)

 Gets satisfied. Now memory is allocated for the new node whose

address is stored in *s (i.e. p). Using s a NULL value is stored in its prev and

next links and the value of num is assigned to its data part.

If the list is non-empty then through the statements

 while(q->next!=NULL)

 q=q->next;

q is made to point to the last node of the list.

 Addition of new node at the end

244

1. Addition to an empty linked list

Related function: d_append()

p = *s = NULL

 Before addition After Addition

 P p q

 New node

2. Addition to an existing linked list

Related function :d_append()

 p q

 r

 Before Appending New node

 p q

 r

 After Appending

 Fig.4.7.6 Doubly linked list addition of a node

 Then memory is allocated for the node whose address is stored in r. A

Null value is stored in the next part of this node, because this is going to be last

node. Now what remains to be done is to link this node with rest of the list.

This is done through the statements

N 11 N

 N 11 2 17 N

99

 N 11

2 17

N

99

N 11 N

245

 r->prev=q;

 q->=r;

 The statement r->prev=q makes the prev part of the new node r to

point to the previous node q. The statement q->next=r makes the next part of q

to the last node r. This is shown in Figure.

Function d_addatbeg()

 The d_addatbeg() function adds a node at the beginning of the

existing list. This function accepts two parameters. The first parameter s is of

type struct dnode** which contains the address of the pointer to the first node

and the second parameter num is an integer, which is to be added in the list.

 Memory is allocated for the new node whose address is stored in q.

Then num is stored in the data part of the new node. A NULL value is stored in

prev part of the new node as this is going to be the first node of the list. The

next part of this new node should contain the address of the first node of the

list. This is done through the statement

 q->next=*s;

 Now what remains to be done is to store the address of this new node

into the prev part of the first node and make this new node the first node in

the list. This is done through the statements

 (*s)->prev=q; *s=q;

These operations are shown in Fig.4.7.7.

 Addition of new node at the beginning

Related function: d_addatbeg()

 q p

 New node Before Addition

 p q

 After Addition

 N 11

2 17 N N 99

 11 2 17 N N 99

246

Insertion of new node after a specified node

 Related Function : d_addafter

 p q

 temp

 New node

 Before Insertion

p q

 temp

 After Insertion

Fig.4.7.7 Working of d_addatbeg() and d_addafter()

Function d-addafter()

 The d_addafter() function adds a node at the specified position of an

existing list. This operation of adding a new node in between two existing

nodes can be better understood with the help of Fig.4.7.7.

 This function accepts three parameters. The first parameter q points to

the first node of the list. The second parameter loc specifies the node number

after which the new node must be inserted. The third parameter num is an

integer, which is to be added to the list.

 A loop is executed to reach the position where the node is to be added.

This loop also checks whether the position loc that we have mentioned. Really

occurs in the list or not. When the loop ends, we reach the loc position where

 11 2 17 N N 99

N 77

 11 2 17 N N 99

 77

247

the node is to be inserted. By this time q is pointing to the node before which

the new node is to be added.

 The statement

 q = q->prev;

 Makes q to point to the node after which the new node should be

added. Then memory is allocated for the new node and its address is stored in

temp. The value of num is stored in the data part of the new node.

 The prev part of the new node should point to q. This is done through

the statement

 temp->prev = q;

 Then next part of the new node should point to the node whose address

is stored in the next part of node pointed to by q. This is achieved through the

statement

 temp->next=q->next;

 Now what remains to be done is to make prev part of the next

node(node pointed by q->next) to point to the new node. This is done through

the statement

 temp->next->prev=temp;

 At the end, we change the next part of th q to make it point to the new

node, and this is done through the statement

q->next=temp;

Function d_delete()

 The function d_delete() deletes a node from the list if the data part of

that node matches num. This function receives two parameters. The first

parameter is the address of the pointer to the first node and the second

parameter is the number that is to be deleted.

Deletion of node

1. Deletion of first node

 Related function: d_delete()

 q p

 Node to be deleted 99

 Before deletion

 N 11

2 17 N N 99

248

 p q

 After Deletion

2. Deletion of last node

 Related function: d_delete()

 p q

 Node to be deleted 17

 Before Deletion

 p

 After Deletion

 Fig.4.7.8 Working of d_delete() function

We run a loop to traverse the list. Inside the loop the data part of each node is

compared wit the num value. If num value matches the data part in the node

then we need to check the position of the node to be deleted.

 If it happens to be the first node, then the first node is to point to the

next part of the first node. This is done through the statement

 *s=(*s)->next;

 Then, a value NULL is stored in prev part of the second node, since it

is now going to become the first node. This is done through the statement

 (*s)->prev=NULL;

 If the node to be deleted happens to be the last node,then a value NULL

is stored in the next part of the second last node. This is done through the

statements

 If(a->next==NULL)

 q->prev->next=NULL;

 If the node to be deleted happens to be any intermediate node, then the

address of the next node is stored in the next part of the previous node and the

 11 2 17 N

 11 2 17 N N 99

 11 2 N N 99

249

address of the previous node is stored in the prev part of the next node. This is

done through the statement

 q->prev->next=q->next;

 q->next->prev=q->prev;

 Finally the memory occupied by the node being deleted is released by

calling the function free(). Fig4.7.8 shows the working of the d_delete()

function.

4.7.6. Polynomial Addition

Polynomials like 5x4 +2x3+7x2+10x-8 can be maintained using a linked

list. To achieve this each node should consist of three elements namely

coefficient, exponent and a link to the next term.

While maintaining the polynomial it is assumed that the exponent of

each successive term is less than that of the previous term. Once we build a

linked list to represent a polynomial we can use such lists to perform common

polynomial operations like addition and multiplication.

Program: Program to add two polynomials

#include<stdio.h>

#include<malloc.h>

struct polynode

{

float coeff;

int exp;

struct polynode *link;

};

void poly_append(struct polynode **, float, int);

void display_poly(struct polynode *);

void poly_add(struct polynode *,struct polynode *, struct polynode **);

void main()

{

struct polynode *first, *second, * total;

first = second = total = NULL;

poly_append(&first, 1.4, 5);

poly_append(&first, 1.5, 4);

poly_append(&first, 1.7, 2);

poly_append(&first, 1.8, 1);

250

poly_append(&first, 1.9, 0);

display_poly(first);

poly_append(&second, 1.5, 6);

poly_append(&second, 2.5, 5);

poly_append(&second, -3.5, 4);

poly_append(&second, 4.5, 3);

poly_append(&second, 6.5, 1);

printf(“\n\n”);

display_poly(second);

poly_add(first, second, &total);

printf(“\n\n”);

display_poly(total);

}

/* adds a term to a polynomial */

void poly_append(struct polynode **q, float x, int y)

{

struct polynode *temp;

temp = *q;

/* creates a new node if the list is empty */

if(*q == NULL)

{

*q = malloc(sizeof(struct polynode));

temp = *q;

}

else

{

/* traverse the entire list */

while(temp->link != NULL)

temp = temp->link;

/* create new nodes at intermediate */

temp->link = malloc(sizeof(struct polynode));

temp = temp->link;

}

/* assign coeffiecient and exponent */

251

temp->coeff = x;

temp->exp = y;

temp->link = NULL;

}

/* displays the contents of linked list that representing polynomial */

void display_poly(struct polynode *q)

{

/* traverse the entire list */

while(q != NULL)

{

printf(“%.1fx^%d :”,q->coeff,q->exp);

q = q->link;

}

printf(“\b\b\b”); /* erase last colon */

}

/* add two polynomials */

void poly_add(struct polynode *x, struct polynode *y, struct polynode **s)

{

struct polynode *z;

/* if both list are empty */

if(x == NULL && y == NULL)

return;

/* traverse till one of the list ends */

while(x != NULL && y != NULL)

{

/* create a new node if the list is empty */

if(*s == NULL)

{

*s = malloc(sizeof(struct polynode));

z = *s;

}

/* create a new node at intermediate */

else

{

252

z->link = malloc(sizeof(struct polynode));

z = z->link;

}

/* store a term of the larger degree polynomial */

if(x->exp < y->exp)

{

z->coeff = y->coeff;

z->exp = y->exp;

y = y->link ; /* go to next node */

}

else

{

if(x->exp > y->exp)

{

z->coeff = x->coeff;

z->exp = x->exp;

x = x->link ; /* go to next node */

}

else

{

/* add the coeffiecients, when exponents are equal */

if(x->exp == y->exp)

{

z->coeff = x->coeff +y->coeff;

z->exp = x->exp;

x = x->link ; /* go to next node */

y = y->link ;

}

 }

}

}

/* assigning remaining terms of the second polynomial to the results */

while (x != NULL)

{

253

if (*s == NULL)

{

*s = malloc(sizeof(struct polynode));

z = *s;

}

else

{

z->link = malloc(sizeof(struct polynode));

z = z->link;

}

z->coeff = x->coeff;

z->exp = x->exp;

x = x->link;

}

while (y != NULL)

{

if (*s == NULL)

{

*s = malloc(sizeof(struct polynode));

z = *s;

}

else

{

z->link = malloc(sizeof(struct polynode));

z = z->link;

}

z->coeff = y->coeff;

z->exp = y->exp;

y = y->link;

}

z->link = NULL;

}

Output Of The Program

1.4x^5 :1.5x^4 :1.7x^2 :1.8x^1 :1.9x^0 :

254

1.5x^6 :2.5x^5 :-3.5x^4 :4.5x^3 :6.5x^1 :

1.5x^6 :3.9x^5 :-2.0x^4 :4.5x^3 :1.7x^2 :8.3x^1 :1.9x^0 :

In this program the poly_append() function is called several time to

build the two polynomials which are pointer to by the first and second. The

poly_add() is called to carry out the addition of two polynomials. The

resulting polynomial are displayed by using the function display_poly().

4.7.7. Self Assessment Questions

Fill in the blank

1. All nodes in the linked list stored in ________________ memory

locations.

True / False

1. Linked list is used to store similar data item.

2. The link part of the last node in a linked list must contain NULL.

Multiple Choice

1. Doubly linked list facilitates movement from one node to another

a) from left to right b) from right to left

c) from either direction c) none of the above

Short Answer

1. What is mean by singly linked list?

4.8. Summary

In this unit we have introduced linear data structure like array , stack,

queue and linked list.

The first lesson of this unit ,you have discussed about how to make the

arrays. You have also learnt about how various operation performed an

different types of array.

The next lesson of this unit, you have learnt the stack ,queue and linked

list. You have learnt how the various operation performed on the stack, queue

and linked list. You have also learnt about representation stack and queue

using array and linked list.

4.9. Unit questions

1.Develop an algorithm to perform various operation on arrays.

2. Write down the procedure for implementing stack and its operation.

3. Discuss the application of stack.

255

4. How an infix expression is converted to postfix expression?

5. Write down an algorithm for insert and delete an element from a queue.

6. Formulate an algorithm to count number of nodes in the linked list and to

free all nodes.

7. Explain how queue can be implemented using arrays.

8. Write the procedure for implementation of polynomial addition using linked

list.

9. Explain doubly linked list with the neat diagram.

10. What is the difference between circular queue and queue ? Explain with

procedure.

4.10. Answers for Self Assessment Questions

Answer 4.3.3

Fill in the blank

1. linear 2. non-linear

True / False

1. false

Multiple Choice

1. a)

Short Answer

1. A collection of data elements, whose arrangement is characterized by

accessing functions that are used to store and retrieve individual data elements

are called data structure.

Answer 4.4.4

Fill in the blank

1. related & consecutive 2. 0 to n

True / False

1. False 2. True

Multiple Choice

1. a)

Short Answer

1. Adding a new element to an array

Answer 4.5.6

Fill in the blank

1. LIFO 2. prefix notation

True / False

256

1. True

Multiple Choice

1. b)

Short Answer

1. An operators precedes the two operands is called postfix expression

Answer 4.6.6

Fill in the blank

1. Linear data structure

True / False

1. True

Multiple Choice

1. a) 2. b)

Short Answer

1. Space for the elements in a linked list is allocated

dynamically.

Answer 4.7.7

Fill in the blank

1. non-contiguous

True / False

1. True 2. True

Multiple Choice

1. c)

Short Answer

1. A singly linked list is one type linked list , it allows traversal of the list only

one direction

257

NOTES

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

258

UNIT – V

5.1 Introduction

 The data structures that we have seen so far (such as linked lists, stacks,

queues) were linear data structures. As against this trees and graphs are non-

linear data structures. Trees are encountered frequently in every day life.

 In tree structure, each node may points to several other nodes (which may

then points to several other nodes etc.,) For example, suppose we wish to use a

data structure to represent a person and all his or her descendants. Although the

nodes in a general tree may contain any number of pointers to the other tree

nodes, a larger number data structures have at most two pointers to the other

tree nodes. This type of a tree is called a binary tree.

 Graphs are data structures which have wide ranging of applications in

real life like analysis of electrical circuits, finding shortest routes, statistical

analysis, etc.,.

5.2 Objectives

After studying this unit, you should be able to:

 Understand trees and its terminologies.

 Understand the concepts of binary tree, various way of traversal in

binary tree and representation of binary tree in memory.

 Understand about the various operation performed on binary tree.

 Discuss about the forest trees and conversion of forest trees in to binary

trees.

 Understand the graphs and its terminologies.

 Understand about the various representation of graphs in memory,

various way graph traversal.

 Understand the Shortest Path Algorithm (Using Dijikstra’s Algorithm)

with related illustrations.

5.3 Trees

5.3.1 Definition & Terminology

The data structure we so far discussed is linear data structures, since

they have a linear relationship between its adjacent elements. There are many

applications in real life situations that make use of non-linear data structures

such as graphs and trees. Trees are very flexible, versatile and powerful data

structures that can be used to represent data items possessing hierarchical

relationships. In a linear data structure, each node has a link which points to

another node, whereas in non-linear data structure, each node may point to

several other nodes.

259

Tree definition:

A tree is a finite set of one or more nodes such that there is a specially

designated node called the root, and zero or more non empty sub trees T1, T2,

T3…….Tk each of whose roots are connected by a directed edge from root R.

Fig.5.3.1 shows a simple tree structure. The tree data structure grows

downward from up (level 0) to bottom (level n).

 Root

 Level 0

Level 1

 Level 2

 Level 3

 Fig 5.3.1 Tree Structure

Tree terminology

 Root:

A node, which doesn’t have a parent. That is the root is the first and top

most node in the hierarchical arrangement of data items. In Fig.5.3.1 node A is

the root of the tree.

 Node:

Each data item in the tree is called node. It is basic data structure that

specifies the data information and has links to other data items. The data items

A, B, C, D, E, F, G, H, I, J all are nodes of tree in Fig.5.3.1.

 Leaf or Terminal node:

A node that doesn’t have children is called leaf or terminal node. In

Fig.5.3.1 D, H, F, I, J are leaf nodes.

 Siblings:

Children of the same parents are called siblings. In above Fig.5.3.1 the siblings

are

 Siblings(A) = { B, C}

A

B C

D E G F

H I J

260

Siblings(B) = { D, E}

Siblings(C) = { F, G}

Siblings(E) = { H}

Siblings(G) = { I, J}

 Path:

A path is a sequence of consecutive edges from the source node to the

destination node. There is exactly only one path from each node to root. In

Fig.5.3.1. path from A to Leafs D, H, F, I,J.

Path 1: A B D

Path 2: A B E H

Path 3: A C F

Path 4: A C G I

Path 5: A C G J

 Length:

The length is defined as the number of edges on the path.

 Degree:

The number of sub trees of a node is called its degree.

 Degree of A is 2 Degree of F is 0

Degree of B is 2 Degree of G is 2

Degree of C is 2 Degree of H is 0

Degree of D is 0 Degree of I is 0

Degree of E is 1 Degree of J is 0

 Edges:

An edge is connection lines that connect two adjacent nodes of a tree.

That is line drawn from one node to another nod is called as edge

 Level:

The entire tree structure is leveled; it starting from root node is always

at level 0. Then its immediate children are at level 1 and so on. In general, if

node is at level n, then its children will be at level n + 1.

 Depth:

For any node n, the depth of n is the length of the unique path from root

to n. The depth of the root is zero. In Fig.5.3.1 the depth of node F is 2.

 Height:

261

For any node n, the height of the node n is the length of the longest path

from n to the leaf. The height of the leaf is zero. In Fig.5.3.1 the height of node

F is 0.

Note:

 Height of the tree is equal to the height of the root.

 Depth of the tree is equal to the height of the tree.

5.3.2 Binary Tree

Binary tree is a tree in which no node can have more than two children. The

binary tree having the following features.

 The maximum degree of any node is at most two. That means the

degree of a binary node is either zero or one or two.

 All nodes to the left of the binary tree are referred as left sub tree

and all nodes to the right of a binary tree are referred as right sub

trees.

The binary tree can be representing in two ways.

 Linear Representation (Using Arrays)

 Linked Representation (Using Pointers)

Types of binary tree

Strict binary tree:

Every non-leaf node consists of non-empty left sub tree and right sub

tree. A strict binary tree is shown in Fig. 5.3.2. In this tree, all the non-terminal

nodes such as B, C and E are having non-empty left and right sub-trees namely

{D}, {F, G}, {H, I} respectively.

Strict binary trees are used to represent any expression in order to

evaluate them. A non-leaf node represents every operator, whereas every

operand is in a leaf node. The expression tree is shown in Fig.5.3.3.

 Fig 5.3.2 Strict Binary Tree

A

B C

D E G F

H I

262

 (A + B) * (C + D)

 Fig 5.3.3 Expression Tree

Full binary tree:

All leaves are at same level and every non-leaf node has exactly two

children. (See Fig.5.3.4)

 Fig 5.3.4 Full Binary Tree

Complete binary tree:

Every non-leaf node has exactly two children but all leaves are not

necessarily at same level. (See Fig. 5.3.5)

 Fig 5.3.5 Complete Binary Tree

A

B C

E

H I

D F G

A

B C

E D F G

+

B
+

A B D C

*

A

I

263

Left skewed binary tree:

A binary tree with only left sub trees (See Fig.5.3.6)

Fig.5.3.6 Left skewed binary tree Fig.5.3.7 Right skewed binary tree

Right skewed binary tree:

A binary tree with only right sub tree.(See Fig.5.3.7)

5.3.3 Traversal Of A Binary Tree:

5.3.3.1 Introduction

The traversal of a binary tree involves visiting each node in the tree

exactly once. There are many applications that require traversal of binary trees.

For example, when a tree is used to represent an arithmetic expression, it needs

to be traversed to evaluate that expression. There are three methods commonly

used for binary tree traversal. These methods are

 In-order traversal (L N R)

 Pre- order traversal (N L R)

 Post-order traversal (L R N)

 1

Here

 N - Root

 2 3 L – Left sub tree

 R – Right sub tree

B

H

D

A A

C

B

C

D

N

L R

264

5.3.3.2 In-Order Traversal

The in-order traversal of a binary tree is performed as

 Traverse the left sub-tree in in-order (L)

 Visit the root (N)

 Traverse the right sub-tree in in-order (R)

 2

 1 3

Recursive Routine for In-order Traversal

void inorder(struct rec * Tree)

{

if (tree != NULL)

{

inorder(tree -> left);

printf(“%d\n”, tree->value);

inorder(tree -> right);

}

}

Example 1

 2

 In-order Traversal: 10, 20,

30

 1 3

N

L R

20

10 30

265

Example 2

 4 Root

 In-order Traversal: D, B, E, A, F, C, G

 2 6

 1 3 5 7

5.3.3.3 Pre-Order Traversal

The pre-order traversal of a binary tree is performed as

 Visit the root (N)

 Traverse the left sub-tree in pre-order (L)

 Traverse the right sub-tree in pre-order (R)

 1

 2 3

Recursive Routine for pre-order Traversal

void preorder(struct rec * Tree)

{

if (tree != NULL)

{

printf(“%d\n”, tree->value);

preorder(tree -> left);

preorder(tree -> right);

A

I

B C

D E G F

N

L R

266

}

}

Example 1

 1

 Pre-order Traversal: 20, 10,

30

 2 3

Example 2

 1 Root

 Pre-order Traversal: A, B, D,

E, C, F, G

 2 5

 3 4 6 7

5.3.3.4 Post-Order Traversal

The post-order traversal of a binary tree is performed as

 Traverse the left sub-tree in pre-order (L)

 Traverse the right sub-tree in pre-order (R)

 Visit the root (N)

 3

 1 2

20

10 30

B C

D E G F

A

 I

N

L R

267

Recursive Routine for post-order Traversal

void postorder(struct rec * Tree)

{

if (tree != NULL)

{

postorder(tree -> left);

postorder(tree -> right);

printf(“%d\n”, tree->value);

}

}

Example 1

 3

 Post-order Traversal: 10, 30, 20

 1 2

Example 2

 7 Root

 Post-order Traversal: D, E, B, F, G, C, A

 3 6

 1 2 4 5

Example Program: Program for Binary Tree Traversal

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

typedef struct tree *node;

20

10 30

B C

D E G F

A

I

268

node insert(int, node T);

void inorder(node T);

void preorder(node T);

void postorder(node T);

struct tree

{

int data;

struct tree *right, *left;

}*root;

void main()

{

node T = NULL;

int data, ch, i =0, n;

clrscr();

printf(“\nEnter the number of elements in the tree”);

scanf(“%d”, &n);

printf(“\n The elements are:\n”);

while(i < n)

{

scanf(“%d”,&data);

T = insert(data, T);

i++;

}

printf(“1.Inorder\t. 2.Preorder\t3.Postorder\t4.Exit”);

do

{

printf(“\nEnter your choice:”);

scanf(“%d”,&ch);

switch(ch);

{

case 1: printf(“Inorder Traversal of the given tree\n”);

 inorder(T);

 break;

case 2: printf(“Preorder Traversal of the given tree\n”);

269

 preorder(T);

 break;

case 3: printf(“Postorder Traversal of the given tree\n”);

 postorder(T);

 break;

default: printf(“Exit”);

 exit(0);

}

}while(ch < 4);

getch();

}

node insert(int x, node T)

{

struct tree *newnode;

newnode = malloc(sizeof(struct tree));

if(newnode = = NULL)

 printf(“ Out of space\n”);

else

{

if (T = = NULL)

{

newnode->data = x;

newnode->left = NULL;

newnode->right = NULL;

T= newnode;

}

else

{

if (x < T->data)

T->left = insert(x, T->left);

else

T->right = insert(x, T->right);

}

}

270

return T;

}

void inorder(node T);

{

if (T!= NULL)

{

inorder(T->left);

printf(%d\t”, T->data);

inorder(T->right);

}

}

void preorder(node T);

{

if (T!= NULL)

{

printf(%d\t”, T->data);

preorder(T->left);

preorder(T->right);

}

}

void postorder(node T);

{

if (T!= NULL)

{

postorder(T->left);

postorder(T->right);

printf(%d\t”, T->data);

}

}

Output Of Program:

 Enter the number of elements in the tree

 The elements are:

30

20

271

40

25

 1.Inorder 2.Preorder 3.Postorder 4.Exit

 Enter your choice:1

 Inorder Traversal of the given tree

 20 25 30 40

 Enter your choice:2

 Preorder Traversal of the given tree

 30 20 25 40

Enter your choice:3

Postorder Traversal of the given tree

 25 20 40 30

Enter your choice:4

 Exit

5.3.4 Application Of Binary Trees:

There are many applications that require traversal of binary trees. For

example, when a tree is used to represent an arithmetic expression, it needs to

be traversed to evaluate that expression. And can also be used in binary search

tree. In this, we see about the how to evaluate arithmetic expressions by using

binary tree traversal.

Evaluation of arithmetic expressions:

1.Arithmetic Expression: A + B Traversing Expression Trees

 Pre-order : +AB

 In-order : A+B

 Post-order: AB+

2. (A + B) * (C + D)

 Pre-order : *+AB+CD

 In-order :A+B*C+D

 Post-order:AB+CD+*

+

A B

+

B
+

A B D C

*

A

I

272

3. A – B / (C ^ D) + (E * F)

 Pre-order : +-A/B^CD*EF

 In-order : A-B/C^D+E*F

 Post-order: ABCD^/-EF*+

5.3.5 Representation Of A Binary Trees In Memory

5.3.5.1 Linked Representation Of Binary Tree

The elements are represented using pointers. Each node in linked

representation has three fields namely

 Pointer to the left sub-tree – contain address of the left child

 Data field

 Pointer to the right sub-tree – contain address of the right child

In leaf nodes, both pointer fields are assigned as NULL. Linked representation

of binary tree (in fig 5.3.8) as shown in Fig. 5.3.9.

 0

 1 2

 3 4 5 6

 Fig 5.3.8 Binary tree

+

- *

/

B ^

A

C D

E F

Left child Data Right child

A

B C

E D F G

273

 Fig 5.3.9 Linked Representation

Advantages

 Insertions and deletion involve no data movement and no movement of

nodes.

Disadvantages

 Difficult to determine the parent node of n

 More memory space is required to store pointers.

5.3.5.2 Array Representation Of Binary Trees

The elements are represented using arrays; this is otherwise called as

linear representation. For any element is in position i, the left child is in

position 2i, the right child is in position (2i + 1) and the parent is in position

(i/2). An array representation of binary tree (in Fig 5.3.8) as shown in

Fig.5.3.10.

 Fig 5.3.10 Array or Linear Representation

To identify parent and children, the following phenomenon is followed

For any node n , 0 <= n <= maxsize-1 then we have,

1. Parent(n)

 For a node n, where n>0 then

 parent(n) = floor((n - 1) / 2)

For example in Fig.5.3.8, consider a node D with index 3

Now

A

B C

F E D G

 A B C D E F G

274

Parent(D) = floor((3 – 1) / 2)

 = floor(2 / 2)

 = floor(1)

 = 1

The node index 1 that is B is the parent of D

2.left child(n)

 The left child of node numbered as n is at (2n + 1)

 For example

 Left child (A) = left child(0) = 2 x 0 + 1 = 1

 that is the node index 1 nothing but B is the left child of A.

3. Right child (n)

The right child of node n is (2n + 2)

For example

Right child (A) = Right child(0) = 2 x 0 + 2 = 2

 that is the node index 2 nothing but C is the right child of A.

5.3.6 Operations On A Binary Search Tree

5.3.6.1 Introduction

Binary Search Tree

Binary search tree is a special binary tree in which every node x in the

tree, the values of all the keys in its left sub-tree are smaller than the key value

in x and the values of all keys in its right sub-tree are larger than the key value

in x.

Characteristics

 Every node will have a value.

 No two nodes should have same value.

 The value of left sub-tree is less than the value of its parent node.

value (left) < value (parent)

275

 The value of right sub-tree is greater than the value of its parent

node.

value (right) < value (parent)

 Left and right sub-trees are it-self a binary search trees.

Comparison between binary tree and binary search tree

 Binary Tree Binary Search Tree

1.A tree is said to be a binary tree 1. A binary search tree is a binary tree in

 if it has at most two children. which the key values in the left

node is less than the root and the

key values in the right node are

greater than the root.

2. It doesn’t have any order. 2. It should have order.

3. Example 3. Example

Note:

 Every binary search is a binary tree.

 All binary trees need not be the binary search trees.

Operation Of Binary Search Tree

The operation of binary search tree are

 Searching a node

 Node Insertion

 Node Deletion

4

7 8

3

10 12

7

4 10

3

8 12

276

5.3.6.2 Searching Operation

The most important operation on binary search tree is searching a

node. While searching a node in a binary search tree take node value to the

searched start comparison from root node. If root is NULL then terminate the

search. If the root is not NULL, it means the tree is not empty so that compare

search node value with root node value if it is match then node under search is

the root node. If the value is less then root continue search on left sub-tree in

similar fashion else value is greater then the root continue search on right sub-

tree in the similar fashion

To search the node in the tree

 Check whether the root is NULL

if root is NULL then

return NULL

 Other wise, check the value x with the root node value i.e T->element

If x is equal to T->element, return T

If x is less than T->element, traverse the left of T recursively

If x is greater than T->element, traverse the right of T

recursively

Routine for Search Operation from the Binary Search Tree

int BSTsearch(int x, searchTree T)

{

if (T = = NULL)

 return NULL;

else if (x < T->element)

 BSTsearch(x, T->left);

else if (x > T->element)

BSTsearch(x, T->right);

else

 return T; // return the position of the search element

}

5.3.6.3 Insertion Operation And Deletion Operation

Insertion Operation

While inserting a new node into binary search tree, check whether the

tree is empty or not. If tree is empty insert the new node as root node and make

277

its children as NULL. If the tree is not empty, compare the new node value

with the nodes starting from root in order to find the suitable node position by

following the binary search tree characteristics.

To insert the element x into the tree

 Check with the root node T

 If it is less than the root

Traverse the left sub-tree recursively until it reaches

the T-> left equals to NULL. Then x is placed in T-> left.

 If x is greater than the root

Traverse the right sub-tree recursively until it reaches

the T-> right equals to NULL. Then x is placed in T-> right.

Routine to Insert Element into a Binary Search Tree

searchTree insert(int x, searchTree T)

{

if (T = = NULL)

{

T= malloc(size_of(struct TreeNode);

T->element = x;

T->left = NULL;

T->right = NULL;

}

else

if (x < T->element)

T->left = insert(x, T->left);

else if(x > T->element)

T->right = insert(x, T->right);

 else if (x = = T->element)

 {

 printf(“Duplicate node”);

 exit(0);

}

return T ;

}

278

Example:

 To insert 8, 5, 10, 15, 3, 6, 13 into binary search tree

 Steps Description Tree Construction

 1. Insert 8 as root.

Tree is empty, .

so that 8 is inserted as root node

The left and right child are set to NULL

2. Insert 5, Assume x = 5

x < root i.e ., 5 < 8

left sub-tree is null.

Hence insert 5 as left sub-tree

3. Insert 10 , Assume x =10

x > root i.e ., 10 > 8

 right sub-tree is NULL

 Hence insert 10 as right sub-tree

4. Insert 15, Assume x =15

 x > root i.e., 15 >8

 Traverse towards right

 Right sub-tree is not NULL

 x > right sub-tree i.e., 15 >10

 Hence Insert 15 as right sub-tree of 10

5. Insert 3, Assume x = 3

 x < root i.e., 3 < 8

 Traverse towards left

 Left sub-tree is not NULL

 X < left sub-tree i.e., 3 < 5

8

+

N N

B

8

+

5 N

B

8

+

5 10

8

+

5 10

15

8

+

5 10

15 3

279

 Hence insert 3 as left sub tree of 5

6. Similarly the rest of the elements are traversed

After insertion of 6 After insertion of 13

Deletion Operation

While deleting a node from a tree, the memory is to be released.

Deletion can be at three different places.

 Deleting a leaf node

If the node is a leaf node, it can be deleted immediately. It need the

following things

 Search the parent of the leaf node.

 Make the parent link to the leaf node as NULL.

 Release the memory from the deleted node.

Example

Deleting the leaf node 8 from a binary search tree, which has no child.

 Before deleting the leaf node 8 After deleting the leaf node 8

8

+

5 10

15 3

8

+

5 10

15 3 6 6

13

7

4 10

8

7

4 10

280

 Deleting the node with one child

If the node has one child, it can be deleted by adjusting its parent that

point to its child node. It need the following things

 Search the parent of the node to be deleted.

 Assign the parent link to the child node of the node to be

deleted.

 Release the memory from the deleted node.

Example :

Deleting the node 5 from a binary search tree, which has one child.

Before deleting the node 5 After deleting the node 8

 Deleting the node with two child

It is difficult to delete a node, which has two children. It need the

following things

 Search the parent of the node to be deleted.

 Copy the content of the in-order successor to the node to be

deleted

 Delete the in-order successor node. If the in-order successor has

only one child, follow the steps for deleting anode with one

child.

 Release the memory from the deleted node.

7

4 10

3

7

4 10

5

6

3 6

281

Example 1

Deleting the node 5 from a binary search tree, which has two children.

The minimum element at the right sub-tree of node 5 is node 6. Now the value

6 is replaced in the position of value 5. Since the position of 6 is the leaf node

delete immediately.

Before deleting the node 5

After deleting the node 5

Example 1

Deleting the node 25 from a binary search tree, which has more than

one child. The minimum element at the right sub-tree of node 25 is node 30.

Now the value 30 is replaced in the position of value 25. Since node 30 has one

child, the pointer currently pointing to this node is made to pointer to its child

node 32.

10

5 15

3

10

6 15

8

6

3 8

10

6 15

3 8

282

Before deleting the node 25 Node 30 is replaced in the position of 25

Since node 30 has one child, the pointer currently

After deleting the node 25

pointing to this node is made to pointer to its child node 32.

Routine for Deleting Node from Binary Search Tree

searchTree delete(int x, searchTree T)

{

int tempnode;

if(T = = NULL)

printf(“Tree is empty and element not found”);

else

if(x < T->element) // Traverse towards left

15

10 25

5 20

30

35

32

15

10 30

5 20

35

32

15

10 30

5 20

35

32

15

10 30

5 20

32

35

283

 T->left = delete(x, T->left);

else

if(x > T->element) // Traverse towards right

 T->right = delete(x, T->right);

else if (x = = T->element)

dealloc(sizeOf(T));

else // two children

if(T-> left && t->right)

{

// Replace with smallest element in right sub-tree

tempnode = searchMin(T->right);

T->element = tempnode->element;

t->right = delete(T->element, T->right);

}

else // one or zero child

{

 tempnode = T;

if (T->left = = NULL)

T = T->right;

else if (T->right = = NULL)

T = T->left;

Free(tempnode);

}

return T;

}

284

5.3.7 Forest Tree

Definition

 A forest is a set of n >= 0 disjoint trees. The notion of a forest is very

close to that of a tree because if we remove the root of a tree we get a forest.

For example, in Fig 5.3.11 . if we remove A we get a forest with three trees

(See Fig. 5.3.12)

 Fig. 5.3.11 A Sample Tree

 a)

b) c) d)

 Fig. 5.3.12 Forest Trees for Sample Tree in Fig. 5.3.11

Conversion Of Forest Tree To Binary Tree

Now we have the forest then these can all be transformed into a single

binary tree by first obtaining the binary tree representation of each of the trees

in the forest and then linking all the binary trees together through the sibling

field of the root nodes. For instance, the forest with the trees in Fig.5.3.12

yields the binary tree representation shown in Fig.5.3.13 .

A

B D

F

K L

I

E H

F

J

C

G

M

I

A

B

F

K L

I

E

C

G

D

H

F

J

M

I

285

Following procedure illustrates the conversion from a forest to binary trees.

Step1: Delete all the branches except the left most branch from the tree.

Step 2: Connect the nodes from left to right to make a binary tree.

Step 3:

If two or more trees in a group connect the root node of a second tree to

the root node of a first tree as a right child, connect the root node of a third tree

to the root node of a second tree as a right child and so on.

B

F

K L

I

E

C

G

D

H

F

J

M

I

A

B

F

K L

I

E

C

G

D

H

F
J

M

I

A

F

B

K L

I

E

C

G

D

H

F
J

M

I

A

286

We define this information in a formal way as follows. If T1, T2,

Tn is a forest trees, then binary tree corresponding to this forest, denoted by

B(T1, T2, Tn):

i) is empty if n = 0

ii) has root equal to root(T1); has left sub tree equal to B(T11, T12, .

. . T1m) where T11, T12, T1m are the sub trees of root(T1)

; and has right sub tree b(T2……Tn).

Finally we get the actual binary tree representation of forest trees is shown in

Fig.5.3.13.

 Fig. 5.3.13 Binary Tree for the forest trees in Fig.5.3.12

5.3.8 Self Assessment Questions

Fill in the blank

1. A tree is said to be a binary tree if it has at most ________ children.

2. Remove the root from tree it forms _____________ trees.

True / False

1. A binary tree whose non-leaf nodes have left and the right child is a

complete binary tree.

Multiple Choice

1. Traverse from left, root and right is called as

a) Preorder traversal b) Inorder traversal

c) Postorder traversal d) All of the above

A

B

D

F K

L

I

E

H

F

J

C

G

M I

287

Short Answer

1. What is the purpose of tree traversal?

--

--

2. Define binary search tree.

--

--

Graphs

5.3.9 Definition & Terminology

Definition

A graph G consists of a set of vertices V and a set of edges (links) E.

then G can be written as,

 G = (V, E)

where

 V = { v1, v2, …….. vn}

E = { e1, e2, …….. en}

The graph can be divided into two types.

 Directed Graph or Digraph

Directed graph is a graph which consist of directed edges, where each

edge in E is unidirectional. It is also called digraph. If (v, w) is a directed edge

then (v, w) # (w, v). (See Fig.5.4.1)

 (V1, V2) = (V2, V1)

Fig. 5.4.1 Directed Graph

 Undirected Graph

An undirected graph is a graph, which consists of undirected edges. If

(v, w) is an undirected edge the (v, w) = (w, v). (See Fig.5.4.2)

 (V1, V2) = (V2, V1)

Fig. 5.4.2 Undirected Graph

V1

V3

V2

V1

V3

V2

288

Terminologies

 Adjacent vertices

Vertex A is said to be adjacent to vertex B if there is an edge between A

and B. Let us consider the graph in Fig.5.4.3.

 Here

 Adjacent of A = {B, C, D}

 Adjacent of B = {A, C, E}

 Adjacent of C = {A, B, D, E}

 Adjacent of D = {A, C, F}

 Adjacent of E = {B, C, F}

 Adjacent of F = {D, E}

Fig.5.4.3 Graph G

 Path

A path from vertex w is a sequence of vertices, each adjacent to the

next. Let us consider the graph in Fig.5.4.3 the following is the paths for A to

F.

Path 1: A -> B -> E -> F

Path 2: A -> C -> E -> F

Path 3: A -> D -> F

Path 4: A -> C -> D -> F

 Cycle

A cycle is a path in which first and last vertices are the same. In graph

G in Fig.5.4.3 the following is the cycle

Cycle 1: A -> B -> E -> F ->D -> A

Cycle 2: A -> C -> E -> F -> D -> A

Cycle 3: C -> E -> F -> D -> C

Cycle 4: A -> B -> C -> A

 Degree

The number of edges incident on a vertex determines its degree. The

degree of vertex V is written as degree (V). In a directed graph, the degree is

categorized into in-degree and out-degree

 In-degree (V) = the number of edges coming into that vertex V.

A

C

B E

D

F

289

 Out- degree (V) = the number of edges going out of that vertex V.

 Fig .5.4.4 Directed Graph

In above directed graph in Fig 5.4.4

 In-degree of vertex V1 is 2

 Out-degree of vertex V1 is 1

 Length

The length of the graph is the number of edges on the path, which is

equal to n - 1, where n represents the number of vertices. The length of path A -

> B -> E -> F in Fig.5.4.3 is 3 i.e., {(A, B) , (B, E) , (E, F)}.

If there is a path from vertex to itself, then the path length is 0.

 Loop

If the graph contains an edge (v, v) from a vertex to itself then the path

is referred to as a loop.

 Simple path

A simple path is a path such that all vertices on the path, except

possibly the first and last are distinct.

 A cyclic graph

A directed graph, which has no cycles, is called as acyclic graph. It is

abbreviated as DAG (Directed Acyclic Graph). Fig. 5.4.5 shows an acyclic

graph.

 Fig. 5.4.5 Acyclic Graph

A

B C

D E

V1

V3

V2

V4

290

 Weighted graph

A graph is said to be weighted graph if every edge in the graph is

assigned a weight or value. It can be directed or undirected graph. (See

Fig.5.4.6)

 1 1

 2 1 2 1

Fig. 5.4.6 Weighted Graph

 Complete graph

A complete graph is a graph in which there is an edge between every

pair of vertices. The complete graph with n vertices will have n (n - 1) / 2

edges. (See Fig .5.4.7)

 Fig .5.4.7 Complete Graph

Number of vertices n is 4

Number of edges is = 4 (4 – 1) / 2 = (4 * 3) / 2 = 6

i.e., there is a path from every vertex to every other vertex. A complete digraph

is a strongly connected graph.

 Strongly connected graph

If there is a path from every vertex to every other vertex in a directed

graph is called strongly connected graph (See Fig.5.4.8). Otherwise it is said to

be weakly connected graph (See Fig. 5.4.9).

V1

V3

V2 V1

V3

V2

V1

V3

V2

V4

291

Fig. 5.4.8 Strongly Connected Graph Fig. 5.4.9 Weakly Connected Graph

5.3.10 Graph Representations

A graph can be represented by

 Adjacency Matrix (Using Array)

 Adjacency List (Using Pointers)

Adjacency Matrix Representation

One simple way to represents a graph is to use a two dimensional array.

This is known as adjacency matrix representation.

The adjacency matrix A for a graph G = (V, E) with n vertices is an n x n

matrix, such that

Aij= 1, if there is an edge Vi to Vj

Aij = 0, if there is no edge.

For example Fig.5.4.10 shows the directed graph and corresponding

adjacency matrix representation, and Fig.5.4.11 shows the undirected graph and

corresponding adjacency matrix representation.

Adjacency Matrix Representation for Directed Graph

 Fig .5.4.10 Directed Graph & Adjacency Matrix A for directed Graph G

V1

V2 V3

V1

V2 V3

V1

V3

V2

V4

ij V1 V2 V3 V4

V1 0 1 1 0

V2 0 0 0 1

V3 0 1 0 0

V4 0 0 1 0

292

For example

 V1,V2 = 1 since there is an edge V1 to V2

 V1,V3 = 1 , there is an edge V1 to V3

 V1,V1 & V1,V4 = 0 , there is no edge

Adjacency Matrix Representation for Undirected Graph

 Fig .5.4.11 Undirected Graph & Adjacency Matrix A for Undirected Graph G

Advantage

 Simple to implement.

Disadvantage

 Takes O(n2) space to represents the graph.

 It takes O(n2) time to solve the most of the problem.

Adjacency List Representation

In this representation, we store a graph as a linked structure. We store

all vertices in a list and then for each vertex, we have a linked list of its

adjacency vertices. The rows of the adjacency matrix are represented as n

linked lists. There is one list of each vertex in the graph. The nodes in list i

represent the vertices that are adjacent from vertex i. Each list has a head node.

The head nodes are sequential providing easy random access to the adjacency

list for any particular vertex.

V1

V3

V2

V4

ij V1 V2 V3 V4

V1 0 1 1 0

V2 1 0 1 1

V3 1 1 0 1

V4 0 1 1 0

293

Adjacency List Representation for Directed Graph

Fig .5.4.12 Directed Graph & Adjacency List for directed Graph G

Adjacency List Representation for Undirected Graph

Fig .5.4.13 Undirected Graph & Adjacency List for Undirected Graph G

Disadvantage

It takes O(n) time to determine whether there is an arc from vertex I to

vertex j. since there can O(n) vertices on the adjacency list for vertex i.

5.3.11 Graph Traversals

5.3.11.1 Introduction

Traversal means visiting all nodes exactly once. There are two ways to

traverse a graph.

 Depth First Traversal or Depth First Search

 Breadth First Traversal or Breadth First Search

5.3.11.2 Depth First Search

The algorithm for depth first search of an undirected graph is as

follows:

V1

V3

V2

V4

 V1

 V2

 V3

 V4

V2

V3 Null

V4 Null

V2 Null

V3 V1 Null

V1

V3

V2

V4

 V1

 V2

 V3

 V4

V2

V3 Null

V1

V1

V2 V3 Null

V3 V4 Null

V2 V4 Null

294

 Depth first works by selecting one vertex v of G as a start vertex; v

is marked as visited.

 Select an unvisited vertex w adjacent to v.

 Repeat steps 1 and 2 till all adjacent vertices of w are visited.

 On reaching a vertex whose all-adjacent vertices have been visited

go back to the last vertex visited which has an unvisited vertex

adjacent to it and go back to step 1.

 Terminate the search when no unvisited vertex can be reached from

any of the visited ones.

Routine for Depth First Traversal

/* give an undirected graph G = <V,E> with n vertices and an array

reachable from v. G and visited are global */

void DFT(vertex v)

{

 visited[v] = True;

for each w adjacent to v

if (visited[w] = false)

DFT(vertex v);

}

Illustration of Depth First Search or Traversal

Illustration 1:

The undirected graph in Fig.5.4.14 (a) is represented by its adjacent

matrix shown in Fig.5.4.14 (b) The process of depth first search on that graph

is described in stages is given below. Related Depth First Spanning Tree is

shown in Fig.5.4.15.

(a) (b)

 Fig .5.4.14 Undirected Graph & Adjacency Matrix A for Undirected Graph G

V1

V3

V2

V4

ij V1 V2 V3 V4

V1 0 1 1 0

V2 1 0 1 1

V3 1 1 0 1

V4 0 1 1 0

295

Implementation:

1. Let V1 be the source vertex. Mark it to be visited.

2. Find the immediate adjacent unvisited vertex V2. Mark it to be visited.

3. From V2 the next unvisited adjacent vertex is V3 mark it to be visited.

4. From V3 the next unvisited adjacent vertex is V4 mark it to be visited.

Fig.5.4.15 Depth First Spanning Tree

Illustration 2:

The undirected graph in Fig.5.4.16 (a) is represented by its adjacent

matrix shown in Fig.5.4.16(b) The process of depth first search on that graph is

described in stages is given below. First initialize all vertices to zero.

 a)

B

A

C

E
G D F

H

V1

V3

V2

V4

296

 b)

 Fig .5.4.16 Undirected Graph & Adjacency List L for Undirected Graph G

Visited(A) = 0 Visited(B) = 0 Visited(C) = 0 Visited(D) = 0

Visited(E) = 0 Visited(F) = 0 Visited(G) = 0 Visited(H) = 0

If a depth first search is initiated from vertex A then the vertices of G are

visited in the order A, B, D, H, E, F, C, G. We may easily verify that DFT(A)

visits all vertices connected to A.

Status Adjacent Vertices

Visited(A) = 1 B C - -

Visited(B) = 1 A (visited) D E -

Visited(D) = 1 B (visited) H

Visited(H) = 1 D (visited) E F G

Visited(E) = 1 B (visited) H (visited) - -

Visited(F) = 1 C H - -

Visited(C) = 1 A (visited) F (visited) G -

Visited(G) = 1 C (visited) H (visited) - -

Vertex A, then the visited vertices are A, B, D, H, E, F, C, G.

 A

 B

 C

 D

 E

 F

 G

 H

B

C Null

A

A

B H Null

D E Null

F G Null

B H Null

C H Null

C H Null

D E F G Null

297

5.3.11.3 Breadth First Search

Starting vertex V and marking as visited, breadth first search differs

from depth first search in that all visited vertices adjacent to V are visited next,

then unvisited vertices adjacent to these vertices are visited and so on. A

breadth first search beginning at vertex A, then vertex B, C next vertices D, E,

F and G and finally H.

Routine for Breadth First Traversal

/* A breadth first search of G is carried out beginning at vertex V. All

vertices are marked as visited(V) = 1. The graph G and array visited are

global and visited is initialized to zero */

void BFT(vertex v)

{

 visited[v] = True;

 Initialize Q to be empty /* Q is a queue */

 for each w adjacent to v

 {

if (visited[w] = false) then /* add w to the queue */

{

call addq(w, Q);

visited(w) = True;

}

if Q is empty then return

call deleteq(v, Q);

 }

}

 Illustration of Breadth First Search or Traversal

298

The undirected graph in Fig.5.4.17(a) is represented by its adjacent List

shown in Fig.5.4.17(b) The process of breadth first search on that graph is

described in stages is given below.

a)

b)

Fig .5.4.17 Undirected Graph & Adjacency List L for Undirected Graph G

B

A

C

E
G D F

H

 A

 B

 C

 D

 E

 F

 G

 H

B

C Null

A

A

B H Null

D E Null

F G Null

B H Null

C H Null

C H Null

D E F G Null

299

Process of Breadth First Search

Visited(A) = 0 Visited(B) = 0 Visited(C) = 0 Visited(D)=0 Visited(E) = 0

 Visited(F) = 0 Visited(G) = 0 Visited(H) = 0

 Queue

 Initialize Queue as empty

Visited(A) = 1 B C

Visited(B) = 1 add B to Queue

Visited(C) = 1 Add C to Queue

Delete B from Queue

Visited(B) = 1 A D E

Visited(D) = 1 Add D to Queue

Visited(E) = 1 Add E to Queue

Delete C from Queue

Visited(C) = 1 A F G

Visited(F) = 1 Add F to Queue

Visited(G) = 1 Add G to Queue

Delete D from Queue

Visited(D) = 1 B H

B

C B

D C

F E D

E D C

G F E D

300

Visited(H) = 1 Add H to Queue

Delete E from Queue

Delete F from Queue

Delete G from Queue

Delete H from Queue

 Empty Queue

If a breadth first search is initiated from vertex A then the vertices of

graph G are visited in the order A, B, C, D, E, F, G, H. We may easily verify

that BFT(A) visits all vertices connected to A.

5.3.12 Shortest Path Algorithm (Using Dijikstra’s

Algorithm)

The shortest vertex path algorithm determines the minimum cost of the

path from source to every other. N-1

The cost of the path V1, V2, ------ VN is ∑ Ci, i+1. This is referred as weighted

path length. I =1

The unweighted path length is merely the number of the edges on the path,

namely N – 1.

Two types of shortest path problems, exist namely,

 The single source shortest path problem

 The all pairs shortest path problem

The single source shortest path algorithm finds the minimum cost from

single source vertex to all other vertices. Dijkstra’s algorithm is used to solve

this problem, which follows the greedy technique. This is applied to weighted

graph.

All pairs shortest path problem finds the shortest distance from each

vertex to all other vertices. To solve this problem dynamic programming

technique known as Floyd’s algorithm is used.

H G F E

H G

H G F

H

301

In this topic we discuss about only a single source shortest path using

Dijkstra’s algorithm.

Dijkstra’s algorithm

The single source shortest path algorithm finds the minimum cost from

single source vertex to all other vertices. Dijkstra’s algorithm is used to solve

this problem, which follows the greedy technique. This is applied to weighted

graph.

This algorithm proceeds in stages, at each stage it selects a vertex v,

which has the smallest dv among all the unknown (unvisited) vertices, and

declares that as the shortest path from S to V and mark it to be known.

We should set dw = dv + Cvw, if the new value for dw would be an

improvement.

Where C v w is the cost of minimum shortest path between the vertices v

and w.

 For a graph G(V, E), Dijkstra’s algorithm keeps two sets of vertices.

S = {the set of vertices whose shortest path from the source have already

 determined}

U = V - S = {the set of remaining undetermined vertices}

The other data structures used for this algorithm are

 D = array of distance estimates of shortest path to each vertex

 Pi = array of predecessors for each vertex

Routine for Dijkstra’s Algorithm

302

void dijkstra(Graph G, Table T)

{

int i;

vertex v, w;

Read Graph(G, T); // Read graph from adjacency list

//Table Initialization

for(i= 0; i < Numvertex; i++)

{

T[i].known = False;

T[i].Dist = Infinity;

T[i].path = NotA vertex;

}

T[start].dist = 0;

for(; ;)

{

V = Smallest unknown distance vertex;

if(V= = NotA vertex)

break;

T[V] .known = True;

for each w adjacent to v

if (!T[w].known)

{

T[w].Dist = Min(T[w].Dist, T[v].Dist + C v w)

T[w].path = v;

}

}

}

303

Illustration of Dijkstra’s Algorithm

Consider a graph shown in Fig.5.4.18. Assume that the source node is

V1 and fix it as start. The following steps describe how the shortest path

between the source and any other node in graph G are identified.

 2

 3 1 2

 1

 Fig 5.4.18 The directed graph G

 0 ∞

 2

 3 1 2

 1

 ∞ ∞

 (a) (b)

 Fig. 5.4.19 Initial Graph & Initial table configuration of graph G

Vertex V1 is choose as source and is declared as known vertex. Then the

adjacent vertices of V1 are found and its distance are updated as follows.

T[V2] .Dist = Min[T[V2] .Dist , T[V1] .Dist + C V1 , V2]

 = Min[∞ , 0 + 2]

 = 2

T[V4] .Dist = Min[T[V4] .Dist , T[V1] .Dist + C V1 , V4]

 = Min[∞ , 0 + 1]

 = 1

V1

V3

V2

V4

V1

V3

V2

V4

 V Known dv

Pv

 V1 0 0 0

 V2 0 ∞ 0

 V3 0 ∞ 0

 V4 0 ∞ 0

304

 0 2

 2

 3 1 2

 1

 ∞ 1

 (a) (b)

 Fig. 5.4.20 After V1 is declared known

 Now S = { V1 } and U = {V2 , V3,V4 }

T[V3] .Dist = Min[T[V3] .Dist , T[V4] .Dist + C V4 , V3]

 = Min[∞ , 1 + 1]

 = 2

 0 2

 2

 3 1 2

 1

 2 1

 (a) (b)

 Fig. 5.4.21. After V4 is declared known

V1*

V3

V2

V4

 V Known dv Pv

 V1 1 0 0

 V2 0 2 V1

 V3 0 ∞ 0

 V4 0 1 V1

V1
*

V3

V2

V4
*

 V Known dv Pv

 V1 1 0 0

 V2 0 2 V1

 V3 0 2 V4

 V4 1 1 V1

305

 Now S = { V1 , V4} and U = {V2 , V3 }

The next minimum vertex is V4 and mark it as visited.

Since the adjacent vertex V4 is already visited, select next minimum vertex V2

and mark it as visited.

 0 2

 2

 3 1 2

 1

 2 1

 (a) (b)

 Fig. 5.4.22. After V2 is declared known

 Now S = { V1 , V4, V2 } and U = { V3 }

0 2

 2

 3 1 2

 1

 2 1

 (a) (b)

 Fig. 5.4.23. After V3 is declared known

Now S = { V1 , V4, V2 , V3} and U = { }

V1
*

V3

V2
*

V4
*

 V Known dv Pv

 V1 1 0 0

 V2 1 2 V1

 V3 0 2 V4

 V4 1 1 V1

V1
*

V3
*

V2
*

V4
*

 V Known dv Pv

 V1 1 0 0

 V2 1 2 V1

 V3 1 2 V4

 V4 1 1 V1

306

After V3 is declared known and algorithm terminated, because shortest distance

from the source node (root) to all vertices are found. The final table shown in

fig5.4. b) states that starting from the source vertex V1, the following paths are

known to be shortest to all other vertices.

 Shortest path to V2 : V1 V2 = distance is 2

 Shortest path to V3 : V1 V4 V3 = distance is 2

Shortest path to V4 : V1 V4 = distance is 1

This algorithm always works as long as no edge has a negative cost. If any edge

has negative cost, this algorithm could not produce right answer. The running

time of this algorithm depends on how the table is manipulated.

5.3.13 Self Assessment Questions

Fill in the blank

1. A directed graph, which has no cycles, is called as ______________.

2. Children of the same parents are called _____________

True / False

1. Dijkstra’s algorithm is used to find the shortest path of the graph.

Multiple Choice

1. The number of edges coming into the vertex V is called as

a) In-degree b) Out-degree

c) Both a) and b) d) None of the above.

Short Answer

1. Define Shortest path algorithm.

--

--

307

5.4 Summary

In this unit we have introduced some of the most fundamental

terminologies of trees and graphs.

The first lesson of this unit ,you have discussed about how to make the

binary trees from normal trees. You have learnt how the various operation

performed on the trees. You have also learnt about tree traversal and

representation trees in memory. Finally you have learnt bout concept of forest

tree, conversion of forest trees into binary tree and its related algorithms.

The second lesson of this unit, you have learnt the various

terminologies of graphs. You have learnt how the various operation performed

on the graphs. You have also learnt about graph traversal and representation

graphs in memory. Finally you have seen the shortest path algorithm.

5.5 Unit questions

1. Define binary trees. Discuss various types of binary trees with example.

2. Explain binary search tree with algorithm.

3. Write a algorithm for various binary tree traversal. Explain.

4. How the binary tree represented in memory ? Explain.

5. Define Forest tree. Discuss conversion of forest tree to binary tree with

example.

6. Define graph. Discuss terminologies of graphs.

7. How graph can be represented in memory? Explain.

8. Write a algorithm for depth first traversal. Discuss its with illustration.

9. Write a algorithm for breadth first search. Discuss its with illustration.

10. Write Dijikstra’s Algorithm for finding shortest path. Explain with

illustration.

5.6 Answers for Self Assessment Questions

Answer 5.3.8

Fill in the blank

1. two children 2. Forest tree

True / False

1. True

Multiple Choice

2. b)

308

Short Answer

1. The traversal of a binary tree involves visiting each node in the tree exactly

once.

2.Binary search tree is a special binary tree in which every node x in the tree,

the values of all the keys in its left sub-tree are smaller than the key value in x

and the values of all keys in its right sub-tree are larger than the key value in x.

Answer 5.4.5

Fill in the blank

1. acyclic graph 2. siblings

True / False

1. True

Multiple Choice

1. a)

Short Answer

1. The shortest vertex path algorithm determines the minimum cost of the path

from source to every other.

309

NOTES

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

310

NOTES

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

