
 1

PERIYAR INSTITUTE OF DISTANCE EDUCATION

(PRIDE)

PERIYAR UNIVERSITY

SALEM - 636 011.

B.Sc. COMPUTER SCIENCE

FIRST YEAR

PAPER – I : DIGITAL COMPUTER FUNDAMENTALS

 2

Prepared by :

N.RAJENDRAN M.C.A.,M.Phil.,

HOD, Department of Computer Science,

Vivekanandha College of Arts and Sciencs for Women,

Elayampalayam,Tiruchengode(Tk.),

Namakkal(Dt.),Tamilnadu.

 3

INTRODUCTION

Dear Students

 A digital computer is an electronic computing machine that uses the

binary digits (bits) 0 and 1 to represent all forms of information internally in

digital form. The term digital computer or simply computer embraces

calculators, computer workstations, control computers for application such as

domestic appliances, industrial processes and data processing systems.

 Totally this book covers five units. The first unit deals with types of

computers, characteristics of computers, generations of computers, and number

system.

 The second unit deals with concepts of Boolean algebra, gates, laws of

Boolean algebra, De Morgan’s theorems, derivation of Boolean expression,

sum of products and products of sums, map method for simplifying expressions

and subcubes and covering.

The third unit deals with anatomy of digital computers, memory units,

input devices, output devices, and auxiliary storage devices.

 The fourth unit deals with combinational logic, adders, subtractors,

decoders, encoders, multiplexer, demultiplexer , flip-flops-register, shift

register and counters.

The fifth unit deals with computer design, system configuration,

computer instructions, design of computer registers, design control and

computer console.

PRIDE would be happy in you could make use of this learning material

to enrich your knowledge and skills to serve the society.

 4

B.Sc. COMPUTER SCIENCE

FIRST YEAR

PAPER – I : DIGITAL COMPUTER FUNDAMENTALS

 UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V

 5

Digital Computer Fundamentals

UNIT – I

Introduction to computers: Introduction–Types of Computers-Characteristics

of Computers-Word Length-speed-Storage-Accuracy-Versatility-Automation-

Diligence. Five generations of modern Computers: First Generation

Computers-Second Generation Computers-Third Generation Computers-Fourth

Generation Computers- Fifth Generation Computers. Classifications of digital

computer system: Introduction- Microcomputers-Personal Computers-

Workstations - Portable Computers – Minicomputers – Mainframes -

Supercomputers - Network Computers. Number system: Introduction-Decimal

Number System-Binary number System-Binary to decimal Conversion-

Decimal to Binary Conversion-Binary Addition-Binary Subtraction -

Complements - 9’s Complement - 10’s Complement - 1’s Complement-2’s

Complement Octal Number System-Hexadecimal Number System.

UNIT – II

Boolean Algebra and Gate Networks: Fundamental concepts of Boolean

Algebra-Logical Multiplication –AND Gates and OR Gates-Complementation

and Inverters – Evaluation of Logical Expressions – Evaluation of an

Expression containing parentheses – Basic Laws of Boolean Algebra –

Simplification of expressions – De Morgan’s theorems – Basic Duality of

Boolean Algebra – Derivation of a Boolean Expression – Interconnecting

Gates-Sum of products and products of sums – Derivation of products of sums

expressions – Derivation of three Input variable expression – NAND gates and

NOR gates – The Map method for simplifying expressions – Sub cubes and

covering – Product of sums. Expressions – Don’t care.

UNIT – III

 Anatomy of a Digital: Functions and Components of a Computer

Central Processing Unit-Control Unit – Arithmetic Logic Unit-Memory –

Registers Addresses – How the CPU and Memory Work. Memory units :

Introduction – RAM – ROM – EPROM – EEPROM – Flash memory. Input

Devices: Introduction-Keyboard-Mouse-Types of Mice-Connections-Mouse

Pad-Trackball – Joystick – Digitizing Tablet – Scanners – Digital Camera –

MICR-OCR-OMR- Barcode Reader – speech input Devices-continuous

speech- Discrete Word-Touch Screen – Touch Pad-Light Pen. Output Devices:

Introduction-Monitor – Classification of Monitors – Based on Color –

Classification of Monitors Based on signals – characteristics of a Monitor –

Video Standards-Printer-Plotter-Sound Cards and Speakers – Auxiliary storage

Devices : Introduction – Magnetic Tape – Hard disk – Floppy Disk – CD-

ROM-CD-R Drive-CD-RW Disks.

UNIT-IV

 Combinational logic, adders, subtractors, decoders, encoders,

multiplexer, demultiplexer – Flip-flops-Register – Shift register – Counters

 6

UNIT-V

 Computer design – System configuration – Computer instructions –

Design of computer registers – Design control – Computer console.

TEXTBOOKS:

1. “Fundamentals of Computer Science and Communication Engineering”

Alexis Leon, Mathews Leon,

Vikas Publishing House,

New Delhi, 1998

(Unit 1 , III & IV)

2. “ Digital Computer Fundamentals”

Thomas C.Bartee,

T.M.H, New Delhi,

6th Edition 1991 (Unit-II)

3. “Digital logic and Computer Design”

 M. Morris Mano

 7

UNIT-I

INTRODUCTION TO COMPUTERS

1.0 Introduction

1.1 Types of Computers

1.2 Characteristics of Computers

1.3 Five Generations of Modern Computers

1.4 Classification of Digital Computer Systems

1.4.1 Introduction

1.4.2 Microcomputers

1.4.3 Minicomputers

1.4.4 Mainframes

1.4.5 Supercomputers

1.4.6 Network computers

1.5 Number System

1.5.1 Introduction

1.5.2 Decimal Number System

1.5.3 Binary Number System

1.5.3.1 Binary –Decimal Conversion

 1.5.3.2 Decimal – Binary Conversion

 1.5.3.3 Binary Addition

 1.5.3.4 Binary Subtraction

 1.5.4 Complements

 1.5.4.1 1’s Complement

 1.5.4.2 2’s Complement

 1.5.5 Octal Number System

1.5.6 Hexadecimal Number System

 Self-Assessment Questions

 Self Assessment Answers

 8

UNIT-I

INTRODUCTION TO COMPUTERS

1.0 INTRODUCTION

 A computer is a programmable machine. The two principal

characteristics of a computer are:

 It responds to a specific set of instructions in a well-defined

manner.

 It can execute a prerecorded list of instructions (a program)

 Modern computers are electronic and digital. The actual machinery –

wires, transistors, and circuits – is called hardware; the instructions and data are

called software.

 All general – purpose computers require the following hardware

components:

 Central processing unit (CPU) The “heart” of the computer, the

component that actually executes instructions.

 Memory Enables a computer to store, at least temporarily, data and

programs.

 Input device Usually a keyboard or mouse, the input device is the

conduit through which data and instructions enter a computer.

 Output device A display screen, printer, or other such devices that lets

you see what the computer has accomplished.

 Mass storage device Allows a computer to permanently retain large

amounts of data. Common mass storage devices include disk drives and

tape drives.

 In addition to these components, many others make it possible for the

basic components of a computer to work together efficiently. For example,

every computer requires a bus that transmits data from one part of the

computer to another.

 9

1.1 TYPES OF COMPUTERS

 Computers can be classified by their size and power as follows:

 Personal computer A small, single – user computer based on a

microprocessor. In addition to the microprocessor, a personal computer

has a keyboard for entering data, a monitor for displaying information,

and a storage device for saving data.

 Workstation A powerful, single-user computer. A workstation is like a

personal computer, but it has a more powerful microprocessor and a

higher-quality monitor.

 Minicomputer A multi-user computer capable of supporting 10 to

hundreds of users simultaneously.

 Mainframe A powerful multi-user computer capable of supporting

many hundreds of users simultaneously.

 Supercomputer An extremely fast computer that can perform hundreds

of millions of instructions per second.

1.2 CHARACTERISTICS OF COMPUTERS

 All computers have certain common characteristics irrespective of their

type and size.

Word Length

 A digital computer operates on binary digits – 0 and 1. It can understand

information only in terms of 0s and 1s. A binary digit is called a bit. A group of

8 bits is called a byte. The number of bits that a computer can process at a time

in parallel is called its word length. Commonly used word lengths are 8, 16, 32

or 64 bits. Word length is the measure of the computing power of a computer.

Speed

 Computers can calculate at very high speeds. A microcomputer, for

example, can execute millions of instructions per second over and over again

without any mistake. As the power of the computer increases, the speed also

increases. For example, supercomputers can operate at speeds measured in

nanoseconds and even in picoseconds – one thousand to one million times

faster than microcomputers.

Storage

 Computers have their main memory and auxiliary memory systems. A

computer can store a large amount of data. With more and more auxiliary

storage devices, which are capable of storing huge amounts of data, the storage

capacity of a computer is virtually unlimited. The factor that makes computer

storage unique is not that it can store vast amount of data, but the fact that it can

retrieve the information that the user wants in a few seconds.

 10

Accuracy

 The accuracy of a computer system is very high. Errors in hardware can

occur, but error detecting and correcting techniques will prevent false results. In

most cases, the errors are due to the human factor rather than the technological

flaws. For example, if a program is wrongly coded, if the data is corrupted, or if

the program logic is flawed, then irrespective on which computer you run it,

you will always get wrong results. Another area where mistakes can creep in is

during data entry. People often make mistakes when data is keyed-in and the

computer accepts whatever that is keyed-in. So if a wrong input is given, the

output also will be wrong – GIGO (Garbage In Garbage Out).

Versatility

 Computers are very versatile machines. They can perform activities

ranging from simple calculations to performing complex CAD modeling and

simulation to navigating missiles and satellites. In other words, they are capable

of performing almost any task, provided the task can be reduced to a series of

logical steps. Computers can communicate with other computers and can

receive and send data in various forms like text, sound, video, graphics, etc.

This ability of computer to communicate to one another has led to the

development of computer networks, Internet, WWW and so on.

 11

Automation

 The level of automation achieved in a computer is phenomenal. It is not

a simple calculator where you have to punch in the numbers and press the

‘equal to’ sign to get the result. Once a task is initiated, computers can proceed

on its own till its completion. Computers can be programmed to perform a

series of complex tasks involving multiple programs. Computers will perform

these things flawlessly. They will execute the programs in the correct sequence,

they will switch on/off the machines at the appropriate time, they will monitor

the operational parameters, they will send warning signals or take corrective

actions if the parameters exceed the control level, and so on. Computers are

capable of theses levels of automation, provided they are programmed

correctly.

Diligence

 Diligence means being constant and earnest in effort and application.

Human beings suffer fro weakness like tiredness, lack of concentration, etc.

Humans have feelings, they become sad, depressed, bored, and negligent and it

will reflect on the work they do. Moreover, human beings cannot perform the

same or similar tasks over and over again with the same precision, accuracy

and enthusiasm as the first time. After some time, people will become bored

and tedium will set in. This will affect the performance. Being a machine, a

computer does not have any of these human weaknesses. They won’t get tired

or bored. They will not go into depression or loose concentration. They will

perform the tasks that are given to them, irrespective of whether it is

interesting, creative, monotonous or boring, irrespective of whether it is the

first time or the millionth time, with exactly the same accuracy and speed.

1.3 FIVE GENERATIONS OF MODERN COMPUTERS

 The computers are classified into different generations – from first

generation to fifth generation computers. The classification and the time period

is given bellow:

1. First Generation (1945-1956)

2. Second Generation (1956-1963)

3. Third Generation (1964-1971)

4. Fourth Generation (1971 – Present)

5. Fifth Generation (Present and Beyond)

FIRST GENERATION (1945-1956)

 John Presper Eckert (1919-1995) and John W.Mauchly(1907-1980),

built the first digital computer using parts called vacuum tubes. They named

their new invention ENIAC. Consisting of 18,000 vacuum tubes, 70,000

resistors and 5 million soldered joints.

 Von Neumann designed the Electronic Discrete Variable Automatic

Computer (EDVAC) in 1947 with a memory to hold both a stored program as

 12

well as data. This “stored memory” technique as well as the “conditional

control transfer”, that allowed the computer to be stopped at any point and then

resumed, allowed for greater versatility in computer programming. The key

element to the Von Neumann architecture was the central processing unit,

which allowed all computer functions to be coordinated through a single

source. In 1951, UNIVSC I (Universal Automatic Computer), built by

Remington Rand, became one of the first commercially available computer.

SECOND GENERATION COMPUTERS (1956-1963)

 Second – generation computers replaced machine language with

assembly language, allowing abbreviated programming codes to replace long,

difficult binary codes. There were a number of commercially successful

second-generation computers used in businesses, universities, and government.

These second-generation computers were also of solid state design, and

contained transistors in place of vacuum tubes.

 It was the stored program and programming language that gave

computers the flexibility to finally be cost effective and productive for business

use. The stored program concept meant that instructions to run a computer for a

specific function (known as a program) were held inside the computer’s

memory, and could quickly be replaced by a different set of instructions for a

different function. A computer could print customer invoices and minutes later

design products or calculate pay cheques. More sophisticated high-level

languages such as COBOL (Common Business-Oriented Language) and

FORTRAN (Formula Translator) came into common use during this time, and

have expanded to the current day. These languages replaced cryptic binary

machine code with words, sentences, and mathematical formulae, making it

much easier to program a computer. New types of careers (programmer,

analyst, and computer system expert) and the entire software industry began

with second generation computers. Paralleling the development of second-

generation system was the creation of a new industry, built around the idea of

integrating transistors and other components into circuits that could be placed

on small chips of silicon.

THIRD GENERATION COMPUTERS (1964-1971)

 Though transistors were clearly an improvement over the vacuum tube,

they still generated a great deal of heat, which damaged the computer’s

sensitive internal parts. The quartz rock eliminated this problem. The IC

combined three electronic components onto a small silicon disc, which was

made from quartz. Scientists later managed to fit even more components on a

single chip, called a semiconductor. Third generation development included the

use of an operating system that allowed machines to run many different

programs at once with a central program that monitored and coordinated the

computer’s memory.

 13

FOURTH GENERATION COMPUTERS (1971-PRESENT)

 After the integrated circuits, the only place to go was down – in size,

that is. Large – scale integration (LSI) could fit hundreds of components onto

one chip. Very large scale integration (VLSI) squeezed hundreds of thousands

of components onto a chip. Ultra – Large-scale integration (ULSI) increased

that number into the millions. The ability to fit so much onto an area about half

the size of one-rupee coin helped diminish the size and price of computers. It

also increased their power, efficiency and reliability. One microprocessor could

be manufactured and then programmed to meet any number of demands. Soon

everyday household items such as microwave ovens, television sets and

automobiles incorporated microprocessors.

 There minicomputers came complete with user-friendly software

packages that offered even non-technical users an array of applications, most

popularly word processing and spreadsheet programs.

FIFTH GENRATION (PRESENT AND BEYOND)

 Many advances in the science of computer design and technology are

coming together to enable the creation of fifth-generation computers. Another

advance is superconductor technology, which allows the flow of electricity with

little or no resistance, greatly improving the speed of information flow.

Computers today have some attributes of fifth generation computers. For

example, expert systems assist doctors in making diagnoses by applying the

problem-solving steps a doctor might use in assessing a patient’s needs.

Schematic diagram of a 5th generation computer

Fifth generation computers aim to be able to solve highly complex

problems, ones, which require reasoning, intelligence and expertise when

solved by people. They are intended to be able to cope with large subsets of

natural languages, and draw on very large knowledge basis. Fifth generation

computers are being designed to use by people who are not necessarily

computer experts. In order to achieve these very ambitious aims, fifth

generation computers will not have a single processor, or a small number of

tightly coupled processors as computers do today. As said before they are being

 14

designed to contain a large number of processors, grouped into three major

subsystems: a knowledge base system, an inference mechanism and an

intelligent user interface.

 The knowledge base system has a very large store of knowledge with a

set of processors, which access and update it. It is likely that knowledge bases

will evolve from current work in relational databases.

 Operations on knowledge bases require the manipulation of large

numbers of individual elements: this manipulation will be done in parallel by

the arrays of knowledge processing elements.

 The inference mechanism draws reasoned conclusions from the

knowledge base. Much of its processing will be drawing logical inferences of

the :

 If <condition> then <action>

variety. Accordingly, the processing power of fifth generation computers is

expressed in logical inferences per second (lips). The target is in the range 50 to

1000 million lips (compared with a current performance of 10 to 100 thousand

lips). Most of this improved performance is planned to achieve via highly

parallel architectures, such as the data-flow and graph reduction architectures.

 The intelligent user interface is the point of contact between a fifth

generation computer and its user. Many of these will be based on

communication in a large subset of a natural language. Others will make

extensive use of advanced graphics, including image processing. The intention

is to build a user interface, which is close to the natural way of thinking of the

user, rather than close to the way of working of the computer.

1.4 CLASSIFICATION OF DIGITAL COMPUTER SYSTEMS

1.4.1 INTRODUCTION

 Computer systems are classified as Microcomputers, Minicomputers,

Mainframes and Supercomputers.

1.4.2 MICROCOMPUTERS

 The most familiar kind of computer is the microcomputer. In the past,

microcomputers have been considered to be of two types – Personal Computers

and Workstations.

Personal Computers (PCs)

 PCs were desktop or portable machines. These machines ran

comparatively easy – to – use applications software such as the word

processors, spreadsheets, etc. They were usually easier to use and more

affordable than workstations. However, they had less sophisticated video

display screens, operating systems and networking capabilities. They did not

have the processing power that workstations did. Examples of personal

computers are Acer’s Aspire, Compaq Presario, etc.

 15

Workstations

 Workstations expensive, powerful machines used by engineers,

scientists, and other professionals who processed a lot of data. Workstations use

high-resolution colour graphics and operating systems such as UNIX that

permitted multitasking. Workstations also use powerful networking links to

other computers. The most significant distinguishing factor, however, is the

powerful processor, which could churn out results much faster than the PCs.

The more powerful workstations are called supermicros. Examples of well-

known workstations are those made by Sun, Apollo, Hewlett-Packard, NeXT

and IBM.

 PCs are now as powerful as many of those used in workstations. More

powerful microprocessors and increased graphics and communications

capabilities now let end users run software that previously ran only on more

powerful machines.

Portable Computers

 Personal computing market is seeing the miniaturization phenomena.

Computers are becoming smaller yet more powerful. There are three categories

of portable computers: Laptops or Notebook PCs, Subnotebooks and Personal

Digital Assistants.

Laptops / Notebooks Laptops may be either AC-powered, battery-powered, or

both. These computers are ideal for users who have to work away from their

offices.

 The user of these computers might be an executive on the move, a

student, a journalist, a salesperson, etc.

Subnotebooks Subnotebooks are for frequent flyers and life–on-the-road

professionals. Subnotebook users give up a full display screen and keyboard in

exchange for less weight.

 These computers fit easily into any briefcase. They typically have an

external floppy disk drive and monochrome monitor, although of late colour

models are available. An example of a colour sub notebooks is Toshiba

Protégé.

Personal Digital Assistants (PDAs) PDAs are much smaller than the sub

notebooks. They combine pen input, writing recognition, personal organization

tools, and communication capabilities in a very small package.

 Typical users are executives, businessmen, etc. who use these machines

for their day-to-day activities – scheduling, organization, etc. An example PDA

is Apple’s Newton.

1.4.3 MINICOMPUTERS

 Minicomputers, also known as mid range computers. They were used

to control machines in a manufacturing unit. They are widely used as general –

purpose computers. The more powerful minicomputer models are called

superminis. The increasing power of microcomputer gives minutes. One of the

 16

popular minicomputer systems is the VAX made by Digital Equipment

Corporation.

 Minicomputers work well in what are known as Distributed Data

Processing (DDP). That is, a company’s processing power is decentralized, or

distributed across different computers.

 An example of such computer architecture is the Client/Server model, in

which end users can process at their own microcomputers. End users can also

access and share the resources of the server, which usually is a minicomputer.

For example, an executive could use the server to search the company’s

centralized database and retrieve selected data. He / she could then use a

spreadsheet on his/her microcomputer to analyze the data.

1.4.4 MAINFRAMES

 Mainframe computers can process several million – program

instructions per second. Large organizations rely on these room-size systems to

handle large programs with lots of data.

 Mainframes are mainly used by insurance companies, banks, airline and

railway reservation systems, etc. An advanced mainframe made by IBM is

S/390.

1.4.5 SUPERCOMPUTERS

 Supercomputers are the fastest calculating devices. A desktop

microcomputer processes data and instructions in millionths of a second, or

microseconds. A supercomputer, by contrast, can operate at speeds measured in

nanoseconds and even in picoseconds. One thousand to one million times as

fast as microcomputers.

 Most supercomputers are used by government agencies. These

machines are for applications requiring very large programs and huge amounts

of data that must be processed quickly. Examples of such task are weather

forecasting, oil exploration, weapons research, and large-scale simulation. The

chief difference between a supercomputer and a mainframe is that a

supercomputer channels all its power into executing a few programs as fast as

possible, whereas a mainframe uses its power to execute many programs

concurrently. Supercomputers use a technology called massively parallel

processing. These supercomputers consist of thousands of integrated

microprocessors. One massively parallel computer built by Intel Corporation is

capable of performing 8.6 billion mathematical calculations per second.

1.4.6 NETWORK COMPUTERS

 Network computers are computers with minimal memory, disk storage

and processor power designed to connect to a network, especially the Internet.

Network computers is that many users who are connected to a network.

Network computers designed to connect to the Internet are sometimes called

Internet boxes, Net PCs and Internet appliances.

 17

1.5 NUMBER SYSTEM

1.5.1 INTRODUCTION

 We use the decimal numbers or the decimal number system for our day-

to-day activities. In the decimal number system there are ten digits – 0 through

9. But computers understand only 0s and 1s – the machine language. We can

use the decimal numbers, the alphabets and special characters like +,-,*,?,/, etc.

for programming the computer. Inside the computer, these decimal numbers,

alphabets and the special characters are converted into 0s and 1s. So, that the

computer can understand what we are instructing it to do.

1.5.2 DECIMAL NUMBER SYSTEM

 The base or radix of a number system is defined as the number of digits

it uses to represent the numbers in the system. Since decimal number system

uses 10 digits – 0 through 9 – its base or radix is 10. The decimal number

system is also called base 10 number system. The weight of each digit of a

decimal number system depends on its relative position within the number. For

example, consider the number 3256.

 3256 = 3000 + 200 + 50 + 6

or, in other words,

 3256 = 3 x 103 + 2 x 102 + 5 x 101 + 6 x 100

 From the above example, we can see that the weight of the nth digit of

the number from the right hand side is equal to nth digit x 10n-1 which is again

equal to nth digit x (base)n-1.

1.5.3 BINARY NUMBER SYSTEM

 The base or radix of the binary number system is 2. It uses only two

digits – 0 and 1. Data is represented in a computer system by either the

presence or absence of electronic or magnetic signals in its circuitry or the

media it uses. This is called a binary, or two-state representation of data since

the computer is indicating only two possible states or conditions.

For example, consider the binary number 10100.

 10100 = 1 x 24 + 0 x 23 + 1 x 22 + 0 x 21 + 0 x 20 = 16 + 0 + 4 + 0 + 0 = 20

 18

Binary –decimal Conversion

 To convert a binary number to its decimal equivalent we use the

following expression:

 The weight of the nth bit of a number from the right hand side = nth bit x 2n-

1

 After calculating the weight of each bit, they are added to get the

decimal value as shown in the following examples:

 101 = 1 x 22 + 0 x 21 + 1 x 20 = 4 + 0 + 1 = 5

 1010 = 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20 = 8 + 0 + 2 + 0 = 10

 1111 = 1 x 23 + 1 x 22 + 1 x 21 + 1 x 20 = 8 + 4 + 2 + 1 = 15

 1.001 = 1 x 20 + 0 x 2-1 + 0 x 2-2 + 1 x 2-3 = 1 + 0 + 0 + .125 = 1. 125

Decimal – binary Conversion

 Decimal numbers are converted into binary by a method called Double

Dabble Method. In this method, the mantissa part of the number is repeatedly

divided by two and noting the reminders, which will be either 0 or 1. This

division is continued till the mantissa becomes zero. The reminders, which are

noted down during the division is read in the reverse order to get the binary

equivalent. This can be better illustrated using the following example.

 19

The number is written from below, that is 1110. So the binary equivalent of 14

is 1110.

 If the decimal number has a fractional part, then the fractional part is

converted into binary by multiplying it with 2. Only the integer of the result is

noted and the fraction is repeatedly multiplied by 2 until the fractional part

becomes 0. This can be explained using the following example.

 Here the number is written from top - .001. So the binary equivalent of

0.125 is .001

 Therefore, from the above two examples, we can conclude that the

binary equivalent of the decimal number 14.125 is 1110.001.

Binary Addition

 The addition of numbers in the binary system is shown in the table 5.2

and is illustrated by the examples.

The addition of 101101 and 1111 (which are 45 and 15 in the decimal system)

is done as follows:

Similarly, the addition of 1111011 and 11011 (which are 123 and 27 in the

decimal system) is :

 20

The subtraction of Binary Numbers is given the table.

Binary Subtraction

The subtraction of 1111 from 101101 (which are 15 and 45 in the decimal

system) is done as follows:

Similarly the subtraction of 11011 from 1111011(which are 27 and 123 in the

decimal system) is:

When you are subtraction a larger number from a smaller number, the result

obtained will be the 2’s complement. If we subtract 45 (101101) from 15

(1111), we should get – 30. But when we do the binary subtraction, instead of

getting - 11110 (-30) we will get the 2’s complement of 11110 which is 10.

1.5.4 COMPLEMENTS

 Computers use complemented numbers or complements to perform

subtraction. In the binary number system there are two types of complements –

 21

1’s complement and 2’s complement. Similarly, in the decimal number system

also their two types of complements-9’s complement and the 10’s complement.

9’s Complement

 The 9’s complement of a decimal number is obtained by subtracting each digit

of the number from 9.

Example 9’s complement of 2 is 9-2=7

 9’s complement of 123 is 999-123=876

10’s Complement

 The 10’s complement of decimal number is obtained by adding 1 to 9’s

complement of that number.

Example 10’s complement of 2 is 9-2=7+1=8

 10’s complement of 123 is 999-123=876+1=877

1’s Complement

 To get the 1’s complement at a number replace 0 by 1 & 1 by 0. For

example, the 1’s complement of 1010 is 0101, that of 1111 is 0000 and so on.

2’s Complement

 To get the 2’s complement of a number, add 1 to the 1’s complement of

the number. For example, the 2’s complement of 1010 is 0110, that of 1111 is

0001, etc.

 Just as adding a number to the 10’s complement of another number is

equivalent to subtraction the second number from the first in the decimal

system, adding a number to the 2’s complement of another number is

equivalent to subtracting the second number from the first in the binary

system. For example, if you want to subtract 101 from 1111, you add the 2’s

complement of 101 to 1111 as shown below :

1.5.5 SIGNED AND UNSIGNED NUMBER REPRESENTATIONS

 We put a plus (+) or minus (-) sign before the number to represent its

sign. In computers such notations cannot be employed and therefore, a

different method is used. To represent a positive number a 0 is placed before

the binary number. Similarly, to represent a negative number, a 1 is placed

before the binary number. For example +15 and -15 are represented by 01111

 22

and 11111 respectively. There is only one way to represent a positive number,

but there are different ways to represent a negative number. These are:

 Signed – magnitude representation

 Signed – 1’s complement representation

 Signed – 2’s complement representation

The number 15 can be represented in the above three ways as 11111, 10000

and 10001 respectively. Since 15 is represented by 4 bits and a separate bit is

used to represent sign, in a computer, the most significant bit (MSB) can be

used to represent the sign of the number.

For example, 8-bit computers will represent- 15 as 10001111, 10000000

and 10000001 for signed- magnitude, signed -1’s complement and signed-2’s

complement respectively. 7 bits are used to represent the number and the MSB

is used to represent the sign of the number.

When all the bits of the computer word (in an 8-bit computer, the length of

a word is 8 bits) are used to represent the number and no bit is used for sign

representation, it is called unsigned representation of numbers.

1.5.6 FIXED – POINT REPRESENTATION OF NUMBERS

In the fixed – point number representation system, all numbers are

represented as integers or fractions. Signed integer or BCD numbers are

referred to as fixed-point numbers because they contain no information

regarding the location of the decimal point or the binary point. The binary or

decimal point is assumed to be at the extreme right or left of the number.

If the binary or decimal point is at the extreme right of the computer word,

then all numbers are positive or negative integers. If the radix point is assumed

to be at the extreme left, then all numbers are positive or negative fractions.

 Consider that you have to multiply 23.15 and 33.45. This will be

represented as 2315 x 3345. The result will be 7743675. The decimal point

has to be placed by the user to get the correct result, which is 774.3675. So in

the fixed-point representation system, the user has to keep track of the radix

point, which can be a tedious job.

1.5.7 FLOATING – POINT REPRESENTATION OF NUMBERS

 In most computing applications, fractions are used very used frequently.

So a system of number representation, which automatically keeps track of the

position of the binary or decimal point, is better than the fixed-point

representation. Such a system is the floating-point representation of numbers.

 A number, which has both an integer part and a fractional part, is called

a real number or a floating-point number. These numbers can be dither positive

or negative. Examples of real numbers (decimal) are 123.23, -56.899, 0.008,

etc. The real number 123.23 can be written as 1.2323 x 102 or 0.12323 x 103.

Similarly the numbers 0.008 and 1345.66 can be represented as 0.8 x 10-2 and

1.34566 x 103 respectively. This of representation is called the scientific

 23

representation. Using this scientific form, any number can be expressed as a

combination of a mantissa and an exponent, or in other words, the number ‘n’

can be expressed as ‘n=mre’ where ‘m’ is the mantissa, ‘r’ is the radix of the

number system and ‘e’ is the exponent.

 In a computer also the real or floating – point number is represented by

two parts – mantissa and exponent. Mantissa is a signed fixed point number and

the exponent indicates the position of the binary or decimal point. For

example, the number 123.23 is represented in the floating-point system as:

 The zero in the left most position of the mantissa and exponent indicates

the plus sign. The mantissa can be either a fraction or an integer, which is

dependent on the computer manufacturer. Most computers use the fractional

system of representation for mantissa. The decimal point shown above is an

assumed decimal point and is not stored in the register.

 The exponent of the above example, +3, indicates that the actual

decimal point is three digits to the right of the assumed one. In the above

example, the mantissa is shown as a fraction. As mentioned , we can use an

integer as the mantissa. The following example shows how it is done.

 In the above representation, the sign of the exponent is negative and it

indicates that the actual decimal point lies two decimal positions to the left of

the assumed point (in this case, the assumed decimal point is placed at the

extreme right of the integer or 12323).

 24

A negative number say-123.23 can be expressed as follows

A negative fraction, say-0.0012323 can be represented as follows

1.5.8 BINARY CODED DECIMAL (BCD)

 The BCD is the simplest binary code that is used to represent a decimal

number. In the BCD code, 4 bits represent a decimal number. For example, 2

is represented as 0010. If a decimal number consists of more than 1 digit, each

decimal digit is represented individually by its 4-bit binary equivalent for

example, 123 is represented as 0001 0010 0011. There is a difference between

the equivalent of a decimal number and its BCD code. For example, the binary

equivalent of 45 is 101101 and its BCD code is 0100 0101. Computers perform

subtraction-using complements and there is difficulty in forming complements

when numbers are representing in BCD. For example 1’s complement of 2

(0010) is 1101, which is 13 in the decimal system and is not an acceptable BCD

code. To overcome this difficulty, other BCD codes such as Excess -3 are

used.

1.5.9 GRAY CODE

 The Gray code is binary code. It is used in shift encoder, which

indicates the angular position of a shift in digital form. The bits of arranged in

such a way that only one bit changes at a time when we make a change from

one number to the next. Its use reduces the error in reading shift position. The

largest possible errors will be one least significant digit. The gray code is often

used in computer controlled machines such as lathes, etc,. Photoelectric coders

or shift position encoders are used as sensors.

 25

 The table 5.3 shows the Gray codes for the decimal numbers 0 through

15.

1.5.10 EXCESS-3 CODE

 As mentioned above, to overcome the disadvantages of BCD in forming

complements, other systems like Excess-3 are used. Adding 3 to the decimal

number and forming the binary coded number form this code. For instance, to

form the Excess-3 representation of 5, first 3 is added to 5 yielding 8, and

normal BCD is used, which is 1000. Similarly, the decimal number 123 coded

in Excess-3 will be 0011 0100 0101. The table 5.4 shows the BCD and Excess-

3 codes for decimal number 0 through 9.

 26

1.5.11 ASCII CODE

 ASCII stands for American Standard Code for Information Interchange.

ASCII code is used extensively in small computers, peripherals, instruments

and communications devices. It is a seven-bit code. Microcomputers using 8-bit

word length use 7 bits to represent the basic code. The 8th bit is used for parity

or it may be permanently 1 or 0.

 With 7 bits, up to 128 characters can be coded. A letter, digit or special

symbol is called a character. It includes upper and lower case alphabets,

numbers, punctuation mark and special and control characters.

ASCII-8 Code

 A newer version of ASCII is the ASCII-8 code, which is an 8-bit code.

With 8 bits, the code capacity is extended to 256 characters.

1.5.12 EBCDIC CODE

 EBCDIC stands for Extended BCD Interchange Code. It is the standard

character code for large computers. It is an 8-bit code without parity. A 9th bit

can be used for parity. With 8 bits up to 256 characters can be coded.

 In ASCII-8 and EBCDIC, the first 4 bits are known as zone bits and the

remaining 4 bits represent digit values. In ASCII, the first 3 bits are zone bits

and the remaining 4 bits represent digit values.

1.5.13 BITS, BYTES AND WORDS

 A byte is a basic grouping of bits (binary digits) that the computer

operates on as a single unit. It consists of 8 bits and is used to represent a

character by the ASCII and EBCDIC coding systems. For example, each

storage location of computers using EBCDIC or ASCII-8 codes consist of

electronic circuit elements or magnetic or optical media positions that can

represent at least 8 bits. Thus each storage location can hold one character. The

capacity of a computer’s primary storage and its secondary storage devices is

usually expressed in terms of bytes.

 A word is a grouping of bits (usually larger than a byte) that is

transferred as a unit between primary storage and the registers of the ALU and

 27

control unit. Thus, a computer with a 32-bit word length might have registers

with a capacity of 32 bits, and transfer data and instructions within the CPU in

groupings of 32 bits. It should process data faster than computers with a 16-bit

or 8-bit word length.

1.5.14 OCTAL NUMBER SYSTEM

 Refers to the base-8 number system, which uses just eight unique

symbols (0,1,2,3,4,5,6, and 7).

 In octal format, each digit represents three binary digits, as shown in the

table 5.6.

 With this table, it is easy to translate between octal and binary. For

example, the octal number 3456 is 011 100 101 110 in binary. To convert an

octal number to decimal, the same method used for binary- decimal conversion

is used, the only difference is that, instead of 2 the base is 8. For example, the

octal number 24.25 is 20.328125 in decimal as shown below.

24.25 = 2 x 81 + 4 x 80 + 2 x 8-1 + 5 x 8-2 = 16 + 4 + 0.25 + 0.078125 =

20.328125

To convert a decimal number to octal system, it is repeatedly divided by

8 as illustrated in the following example, where the number 888 is converted to

octal system (1570).

Here the number is written from top – .04. So the binary equivalent of

0.0625 is .04.

 28

Therefore, from the above two examples, we can conclude that the

binary equivalent of the decimal number 888.0625 is 1570.04.

1.5.15 HEXADECIMAL NUMBER SYSTEM

 Hexadecimal number system uses 16 as the base or radix. This base -16

number system consists of 16 unique symbols: the numbers 0 to 9 and the

letters A to F. For example, the decimal number 15 is represented as F in the

hexadecimal numbering system as shown in the table 5.7.

The hexadecimal system is useful because it can represent every byte

(8bits) as two consecutive hexadecimal digits. Compared to binary numbers,

hexadecimal numbers are easier for humans to read.

To convert a value from hexadecimal to binary, you merely translate

each hexadecimal digit into 4-bit binary equivalent. For example, the

hexadecimal number 3F7A translates to the following binary number: 0011

1111 0111 1010.

To convert a hexadecimal number to decimal the same method used for

binary-decimal conversion is used, the only difference is that instead of 2 the

base is 16. for example, the hexadecimal number 24.25is 36.14453125 in

decimal as shown below:

24.25 = 2x161+4x160+2x16-1+5x16-2 = 32+4+0.125+0.01953125

 = 36.14453125

To convert a decimal number to hexadecimal system, it is repeatedly divided by

16 as illustrated in the following example. To convert 888 to hexadecimal

system.

 29

 The number is written from below, that is 378. So the hexadecimal

equivalent of 888 is 378.

 If the decimal number has a fractional part, then the fractional part is

converted into hexadecimal by multiplying it with 16. Only the integer of the

result is noted and the fraction is repeatedly multiplied by 16 until the

fractional part has become 0.

This can be explained using the following example.

 Therefore, from the above two examples, we can conclude that the

hexadecimal equivalent of the decimal number 888.62 is 378.9EB

approximately.

 30

UNIT – I

Self Assessment Questions

Fill in the blank

1. ____________ is a programmable instructions.

2. The Actual machinery in a computer is called __________ and the

instructions and data are called _____________.

3. The number of bits that a computer can process at a time in parallel is

called its ____________.

4. The name of the first digital computer is ___________ and built the first

digital computer using parts called____________.

5. The second generation computers contained __________ in place of

vacuum tubes.

6. The use of operating systems in computer was introduced in the

_______ generation computers.

7. ___________ Computers aim to solve highly complex problems, ones

which require reasoning, intelligence and expertise when solved by

people.

8. The Three categories of digital computers are ___________,

______________, and ______________.

9. The base of the octal number system is ___________.

10. BCD stands for _______________ _______ ______________.

11. Binary number system uses only two digital ______ and ________.

12. The 9’s complement of a decimal number is obtained by subtracting

each digit from _________.

True or False

1. Main frame is a powerful multi user computer capable of supporting

many hundreds of users simultaneously.

2. GIGO stands for Garbage In Garbage out

 3. PDA stands for portable digital assistant.

 4. Second generation computers replaced machine language with

assembly language.

 5. Third generation computers replaced transistors with vacuum tubes.

 6. The radix of the hexadecimal number system is 8.

 7. When add 1 to the 9’s complement you will get the 10’s

complement.

 31

Multiple Choice

1. A set of prerecorded instructions executed by a computer is

called the

a). Action b) Hardware c) Program d) None of the

above

2. Which is the part that transmits data from one part of the

computer to another?

a). Bus b) CPU c) Hard disk d) none of the

above

 3. LSI stands for

 a) Light sensitive Instrument b) Large scale Integration

c) Logical sample Integration d) none of the above

4. The BCD of 123 is

a)0001 010 0011 b) 0001 0011 0010 c)0011 0010 0001

 d)none of the above

 5. The Binary equivalent of 20 is

a) 1111 b). 10100 c) 10101 d) 10011

Unit Questions

1. What are the different types of Computers?

2. What are major components of a computer?

3. What are the characteristics of computer?

4. What are the different generations of computers?

5. What are the features of the third generation computers?

6. What are the different categories of digital computers?

7. What are the different types of portable computers?

8. What is the difference between a minicomputer and a

microcomputer?

9. Explain the decimal number system and the binary number

system?

10. Explain 1. 1’s complement 2. 2’s complement

 3. 9’s complement 4. 10’s complement

with Examples.

11. Explain (i). Hexadecimal (ii). Octal number system

 (iii). BCD with Examples.

12. What is the Excess-3 and Gray codes?

 32

Self Assessment Answers

Fill in the blanks

1. Computer

2. Hardware, Software

3. Word Length

4. ENIAC, Vacuum

5. Transistors

6. III

7. V Generation

8. Mini, Mainframe & Super computers

9. 8

10. Binary Coded Decimal

11. 0

12. 9

True / False

1. True

2. True

3. False

4. True

5. False

6. False

7. True

Multiple Choice

1. C

2. A

3. B

4. A

5. B

 33

NOTES

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

 34

UNIT –II

2.0 Boolean Algebra and Gate Networks

2.1 Fundamental Concepts of Boolean Algaebra

2.2 logical Multiplication

2.3 And Gates and OR Gates

2.4 Complementation and Inverters

2.5 Evaluation of Logical Expressions

2.6 Evaluation of an Expression Containing Parentheses

2.7 Simplifications of Expressions

2.8 De Morgan’s Theorems

2.9 Basic Duality of Boolean Algebra

2.10 Derivation of a Boolean Expression

2.11 Interconnecting Gates

2.12 Sum of Products and Product Of Sums

2.13 Derivation of Product-of-Sums Expression

2.14 Derivation of a Three-Input-Variable Expression

2.15 NAND Gates and NOR Gates

2.16 Map Method for Simplyfying Expressions

2.17 Subcubes and Covring

2.18 Product-Of-Sums Expressions- Don’t-Care

Self Assessment Questions

Self Assessment Answers

 35

UNIT-II

2.0 BOOLEAN ALGEBRA AND GATE NETWORKS

Modern digital computers are designed and maintained, and their

operation is analyzed, by using techniques and symbology from a field of

mathematics called modern algebra. Algebraists have studied for over a

hundred years mathematical systems called boolean algebras.

2.1 FUNDAMENTAL CONCEPTS OF BOOLEAN ALGAEBRA

When a variable is used in an algebraic formula, it is generally assumed that the

variable may take any numerical value. For instance, in the formula 2X - 5Y =

Z, we assume that X, Y, and Z may range through the entire field of real

numbers.

 The variable used in boolean equations have a unique characteristic,

however; they may assume only one of two possible values. These two values

may be represented by the symbols 0 and 1. If an equation describing logical

circuitry has several variables, it is still understood that each of the variables

can assume only the value 0 or 1. For instance, in the equation X + Y = Z, each

of the variables X, Y, and Z may have only the values 0 or 1.

 This concept will become clearer if a symbol is defined, the + symbol.

When the + symbol is placed between two variables, say X and Y , since both

X and Y can take only the role 0 or 1, we can define the + symbol by listing all

possible combinations for X and Y and the resulting values of X + Y.

 The possible input and output combinations may be arranged as

follows:

 This is a logical addition table and could represent a standard binary

addition table except the last entry. When both X and Y represent 1s, the value

of X + Y is 1. The + symbol therefore, does not have “normal” meaning, but is

a logical addition or logical OR symbol. The equation X + Y = Z can be read

“X or Y equals Z” or “X plus Y equals Z”. This concept may be extended to

any number of variables. For instance, in the equation A + B + C + D = E, even

if A, B, C, and D all had the value of 1, E would represent only a 1.

 To avoid ambiguity, a number of other symbols have been

recommended as replacement for the + sign. Some of these3 are U, v and V.

computer people still use the + sign, however, which was the symbol originally

proposed by Boole.

 36

2.2 LOGICAL MULTIPLICATION

A second important operation in Boolean algebra we call logical multiplication

or the logical AND operation4. The rules of this operation can be given by

simply listing all values that might occur:

Thus, for instance, if we write Z = X . Y and find X = 0 and Y = 1, then Z = 0.

Only when X and Y are both 1s would Z be a 1.

 Both + and. Obey a mathematical rule called the associative law. This

law says, for +, that (X + Y)+Z = X + (Y + Z) and for . , that X.(Y.Z) =

(X.Y).Z. This means that we can write X + Y + Z without ambiguity, for no

matter in what order the operation is performed, the result is the same.

2.3 AND GATES and OR GATES

The + and . operations are physically realized by two types of electronic

circuits, called OR gates and AND gates.

 A gate is simply an electronic circuit which operates on one or more

input signals to produce an output signal. One of the simplest and most

frequently used gates is called the OR gate, and the block diagram symbol for

the OR gate is shown figure 1, as is the table of combinations for the inputs and

outputs for the OR gate.

 Similarly, the AND gate in figure 2 ANDs or logically multiplies input

values, yielding an output Z with value X . Y, so that Z is a 1 only when both X

and Y are 1s.

Figure 1.

 37

Figure 2.

AND gate

2.4 COMPLEMENTATION AND INVERTERS

 The two operations defined so far have been what algebraists would call

binary operations in that they define an operation on two variables. There are

also singular or unary, operations, which define an operation on a single

variable. A familiar example of unary operation is -, for we can write -5 or -10

or –X, meaning that we are to take the negative of these values.

 In Boolean algebra we have an operation called complementation, and

the symbol we use is ¯¯. Thus we write X, meaning “take the complement of

X,” or (X+Y), meaning “take the complement of X + Y.” the complement

operation can be defined quite simply:

 The complement of a value can be taken repeatedly. For instance, we

can find X: For X = 0 it is 0 = 1 = 0 = 1, and for X = 1 it is 1 = 0 = 1 = 0.

 The complementation operation is physically realized by a gate or circuit

called an inverter. Figure 3 shows an inverter and the table of combinations for

its input and output.

Figure 3.

 38

2.5 EVALUATION OF LOGICAL EXPRESSION

 The tables of values for the three operations just explained are

sometimes called truth tables, or tables of combinations. To study a logical

expression, it is very useful to construct a table of values for the variables and

then to evaluate the expression for each of the possible combinations of

variables in turn. Consider the expression X + YZ. There are three variables in

this expression : X, Y and Z, each of which can assume the value 0 or 1. The

possible combinations of values may be arranged in ascending order,5, as in

Table 1.

 One of the variables, Z, is complemented in the expression X + YZ. So a

column is now added to the table listing values of Z (see Table 2).

 A column is now added listing the values that YZ assumes for each value

of the X, Y, and Z. This column will contain the value 1 only when both Y is a

1and Z is a 1 (see Table 3)

 Now the ORing, or logical addition, of the values of X to the values

which have been calculated for YZ is performed in a final column (see Table

4).

 The final column contains the value of X +YZ for each set of inputs

values which X, Y, and Z may take. For instance, when X = 1, Y = 0, and Z =

1, the expression has the value of 1.

 39

 Table 4

2.6EVALUATION OF AN EXPRESSION CONTAINING

PARENTHESES

The following example illustrations the procedure for constructing a

truth table for the expression X + Y(X + Y). There are only two variables in the

expression, X and Y. First a table of the values which X and Y may assume is

constructed.(see table 5)

 Now, since the expression contains both X and Y, two columns are added

listing complements of the original values of the variables (see table 6).

 The various values of X + Y are now calculated (see table 7).

 The values for X + Y are now multiplied (ANDed) by the values of Y in

the table, forming another column representing Y(X + Y)(see table 8).

 Finally the values for Y(X + Y) are added (ORed) to the values for X

which are listed, forming the final column and completing the table(see table

9).

 Inspection of the final column of the table indicates that the values taken

by the function X + Y(X + Y) are identical with the values found in the table

 40

for ORing X and Y. This indicates that the function X + Y(X + Y) is equivalent

to the function X + Y. This equivalence has been established by trying each

possible combination of values in the variables and noting that both expressions

then have the same value. This is called a proof by perfect induction. If a logic

circuit were constructed for each of the two expressions, both circuits would

perform the same function, yielding identical outputs for each combination of

inputs.

 41

 Some fundamental relations of Boolean algebra have been presented. A

complete set of the basic operations is listed below.

 42

 Table 10

A list of useful relations is presented in table 10. Most of the basic rules by

which Boolean algebra expressions may be manipulated are contained in this

table. Each rule may be proved by using the proof by perfect induction. An

example of this proof for rule 3 in table 10 is as follows: the variable X can

have only the value 0 or 1. If X has the value 0, then 0 + 0 = 0; if X has the

value 1, then 1 + 1 = 1. Therefore X + X = X.

 The same basic technique may be used to prove the remainder of the rules.

Rule 9 states that double complementation of a variable results in the original

variable. If X equals 0, then the first complement is 1 and the second will be

0, the original value.If the original value for X is 1, then the first complement

will be 0 and the second 1, the original value. Therefore X = X

 Rules 10 and 11, which are known as the commutative laws, express the

fact that the order in which a combination of terms is performed does not affect

the result of the combination. Rule 10 is the commutative law of addition,

which states that the order of addition or ORing does not affect the sum (X + Y

= Y + X). Rule 11 is the commutative law of multiplication (XY = YX), which

states that the order of multiplication or ANDing does not affect the product.

 43

 Rules 12 and 13 are the associative laws. Rule 12 states that in the logical

addition of several terms, the sum which will be obtained if the firs term is

added to the second and then the third term is added will be the same as the

sum obtained if the second term is added to the third and then the first term is

added [X. + (Y + Z) = (X+Y)+Z]. Rule 13 is the associative law of logical

multiplication, stating that in a product with three factors, any two may be

multiplied, followed by the third [X(YZ) = (XY)Z].

 Rule 14, the distributive law, states that the product of a variable (X)

times a sum (Y + Z) is equal to the sum of the products of the variable

multiplied by each term of the sum [X(Y + Z) = XY + XZ]

2.7 SIMPLIFICATIONS OF EXPRESSIONS

The rules given may be used to simplify boolean expressions, just as the rules

of normal algebra may be used to simplify expressions. Consider the expression

 (X + Y)(X + Y)(X + Z)

The first terms consist of X + Y and X + Y; these terms may be multiplied and,

since X + XY + XY = X and YY = 0, reduced to X.

 The expression has been reduced now to X(X + Z), which may be

expressed as XX + XZ(rule 14). And since XX is equal to 0, the entire

expression (X + Y)(X + Y)(X + Z) may be reduced to XZ.

 Another expression that may be simplified is XYZ + XYZ + XYZ. First

the three terms XYZ + XYZ + XYZ may be written X(YZ + YZ + YZ), by rule

14. Then, by using rule 14 again, X[Y(Z + Z) + YZ]; and since Z + Z equals 1,

we have X(Y + YZ).

 The expression X(Y + YZ) may be further reduced to X(Y + Z) by using

rule 18. The final expression can be written in two ways: X(Y + Z) or XY +

XZ. The first expression is generally preferable if the equation is to be

constructed as an electronic circuit, because it requires only one AND circuit

and one OR circuit.

2.8 DE MORGAN’S THEOREMS

The following two rules are known as De Morgan’s theorems:

 (X + Y) = X . Y

 (X . Y) = X + Y

The complement of any boolean expression, or a part of any expression, may be

found by means of these theorems. In these rules, two steps are used to form a

complement:

1 The + symbols are replaced with · symbol and · symbols with +

symbols.

2 Each of the terms in the expression is complemented.

 44

 The use of De Morgan’s theorem may be demonstrated by finding the

complement of the expression X + YZ. First, note that a multiplication sign has

been omitted and the expression could be written X + (Y.Z). To complement

this, the addition symbol is replaced with a multiplication symbol and the two

terms are complemented, giving X. (Y.Z); then the remaining term is

complemented X(Y + Z). The following equivalence has been found: (X + YZ)

= X(Y + Z).

 The complement of WX + YZ may be formed by two steps:

1 The addition symbol is changed

2 The complement of each term is formed:

 (W . X)(Y . Z)

This becomes (W + X)(Y + Z).

 Since W and Z were already complemented, they become

uncomplemented

by the theorem X = X.

 It is sometimes necessary to complement both sides of an equation. This

may be done in the same way as before:

 WX + YZ = 0

Complementing both sides gives

 (WX + YZ) = 0

 (W + X)(Y + Z) = 1

2.9 BASIC DUALITY OF BOOLEAN ALGEBRA

 De Morgan’s theorem expresses a basic duality which underlies all

boolean algebra. The postulates and theorems which have been presented can

all be divided into pairs. For example, (X + Y) + Z = X + (Y + Z) is the dual of

(XY)Z = X(YZ), and X + 0 = X is the dual of X . 1 = X.

 Often the rules or theorems are listed in an order which illustrates the

duality of the algebra. In proving the theorems or rules of the algebra, it is then

necessary to prove only one theorem, and the dual of the theorem follows

necessarily. For instance, if you prove that X +XY = X, you can immediately

add the theorem X(X + Y) = X to the list of theorems as the dual of the first

expression.8 In effect all boolean algebra is predicated on this two-for-one

basis.

2.10 DERIVATION OF A BOOLEAN EXPRESSION

 When designing a logical circuit, the logical designer works from two sets

of known values: (1) the various which the inputs to the logical network can

take and (2) the desired outputs for each input condition. The logical expression

is derived from these sets of values.

 45

 Consider a specific problem. A logical network has two inputs X and Y

and an output Z. The relationship between inputs and outputs is to be as

follows:

1. When both X and Y are 0s, the output Z is to be 1.

2. when X is 0 and Y is 1, the output Z is to be 0.

3. when X is 1 and Y is 0, the output Z is to be 1.

4. when X is 1 and Y is 1, the output Z is to be 1.

These relations may be expressed in tabular form, as shown in table 11

 Table 11

 It is now necessary to add another column to the table. This column will

consist of a list of product terms obtained from the values of the input

variables. The new column will contain each of the input variables listed in

each row of the table, with the letter representing the respective input

complemented when the input value for this variable is 0 and not

complemented when the input value is 1. The terms obtained in this manner are

designated as product terms. With two input variables X and Y, each row of the

table will contain a product term consisting of X and Y, with X or Y

complemented or not, depending on the input values for that row (see table 12)

 Whenever Z is equal to 1, the X and Y product term from the same row is

removed and formed into a sum-of-products expression. Therefore, the product

terms from the first, third, and fourth rows are selected. These are XY, XY, and

XY.

 46

 Table 12

There are now three items, each the product of two variables. The logical sum

of these products is equal to the expression desired. This type of expression is

often referred to as a canonical expansion for the function. The complete

expression in normal form is

The truth table may be constructed to check the function that has been derived

(see table 13). The last column of this table agrees with the last column of the

truth table of the desired function, showing that the expressions are equivalent.

2.11 INTERCONNECTING GATES

The OR gates, AND gates, and inverters described can be interconnected to

form gating, or logic, networks. The Boolean algebra expression corresponding

to a given gating network can be derived by systematically progressing from

input to output on the gates. The below figure 4(a) shows a gating network with

three inputs X, Y, and z and an output expression (X.Y) + Z. A network that

forms (X.Y) + (X.Y) and another network that forms (X + Y).(X + Y) are

shown in figure 4 (b) and (c).

 47

Figure 4

Three gating networks.

.

2.12 SUM OF PRODUCTS AND PRODUCT OF SUMS

An important consideration in dealing with gating circuits and their algebraic

counterparts is the form of the boolean algebra expression and the resulting

form of the gating network. Certain types of Boolean algebra expressions lead

to gating networks, which are more desirable from most implementation

viewpoints.

We now define the two most used and usable forms for Boolean expressions.

 First let us define terms

1. Product term A product term is a single variable or the logical product

of several variables. The variables may or may not be complemented.

 48

2. Sum term A sum term is a single variable or the sum of several

variables. The variables may or may not be complemented.

For example, the term X.Y.Z is a product term ; X + Y is a sum term; X is both

a product term and a sum term; X + Y . Z is neither a product term nor a sum

term; X + Y is a sum term; X.Y.Z is a product term; Y is a both a sum term and

a product term.

We now define two most important types of expressions.

1. sum of product expressions A sum-of-products expression is a product

term or several product terms logically added.

2. product-of-sums expressions A product-of-sums expression is a sum

term or several sum terms logically multiplied.

For example, the expression X.Y + X.Y is a sum-of-products

expression; (X + Y)(X + Y) is a product-of-sums expression. The

following are all sum-of-product expressions:

 One prime reason for liking sum-of-products or product-of-sums

expressions is their straightforward conversion to very nice gating networks.

 Figure 3.7 shows several gating networks. Figure 3.7(a) shows sum-of-

product networks, and figure 3.7(b) shows product-of-sums networks.

 49

Figure3.7

2.13 DERIVATION OF RPODUCT-OF-SUMS EXPRESSION

 The method for arriving at the desired expression is as follows:

1 Construct a table of the input and output values.

2 Construct an additional column of sum terms containing

complemented and uncomplemented variables (depending on the

values in the input columns) for each row of the table. In each row

of the table, a sum term is formed. However, in this case, if the input

value for a given variable is 1, the variable will be complemented;

and if 0, not complemented.

3 The desired expression is the

product of the sum terms from the

rows in which the output is 0.

The use of these rules is illustrated by

working examples in this and the following

sections.

 Table 16 contains the input and output

values which describe a function to be

 50

realized by a logical network.

A column containing the input variables in sum-term form is now added in each

row. A given variable is complemented if the input value for the variable is 1 in

the same row and is not complemented if the value is 0(see table 17). Each sum

term is, therefore, simply the complement of the product term which occurs in

the same row in the previous table for sum-of-products expressions. Notice that

the sum term X + Y in the third row of Table 3.20 is the complement of the

product term XY used in the sum-of-products derivation.

 A product-of-sum expression is now formed by selecting those sum

terms for which the output is 0 and multiplying them. In this case, 0s appear in

the second and third rows, showing that the desired expression is (X + Y)(X +

Y). A sum-of-products expression may be found by multiplying the two terms

of this expression, yielding XY + XY. I this case the same number of gates

would be required to construct circuits corresponding to both the sum-of-

products and the product-of-sum expressions.

2.14 DERIVATION OF A THREE-INPUT-VARIABLE EXPRESSION

 Consider Table 18, expressing an input-to-output relationship for which

expression is to be derived. Two columns will be added this time, one

containing the sum-of-products terms and the other the product-of-sums

terms(see table 19). The two expressions may be written in the following way:

Sum-of-products:

 51

Product-of-sums:

The two expressions may be simplified as shown:

 The two final expressions clearly can be seen to be equivalent, Notice,

however, that the shortest sum-of-products expression, which is XY + YZ,

requires two AND gates and an OR gate(fig 3.8), while the shortest product-of-

sums expression,

Y(X + Z) , requires only a single AND gate and a single OR gate.

Figure 3.8

 52

2.15 NAND GATES AND NOR GATES

Two other types of gates, NAND gates and NOR gates, are often used in

computers.

 A NAND gate is shown in figure3.9. The inputs are A, B and C, and the

output from the gate is written A + B +C. the output will be a 1 if A is a 0 or B

is a 0 or C is a 0, and the output will be a 0 only is A and B and C are all 1s.

 The operation of the gate can be analyzed using the equivalent block

diagram circuit shown fig 3.9, which has an AND gate followed by an inverter.

If the inputs are A, B and C, the output of the AND gate will be A.B.C, and the

complement of this is (A.B.C) = A + B +C, as shown in the figure.

Figure 3.9

 53

NAND gate

Figure 3.10.

NOR gate

 The NOR gate can be analyzed in a similar manner. Figure3.10 shows

the NOR gate block diagram symbol with inputs, A, B, C and output A B C.

This shows the NOR gate’s output will be 1 only when all three inputs are 0s. If

any input represents a 1, the output of a NOR gate will be a 0.

 Below the NOR gate block diagram symbol in fig 3.10 is an equivalent

circuit showing an OR gate and an inverter.9 The inputs A, B and C are ORed

by the OR gate, giving A + B + C, which is complemented by he inverter,

yielding

(A + B + C) = A B C.

2.16 MAP METHOD FOR SIMPLYFYING EXPRESSIONS

There are several other ways to represent or list function values, and the use of

certain kinds of maps, also permits minimization of the expression

 The particular type of map we use is called karnaugh map figure 3.15

shows the layouts for Karnaugh maps of two to four variables. The diagram in

each case lists the 2n different product terms which can be formed in exactly n

variables, each in a different square. For a function of n variables, a product

term in exactly these n variables is called a minterm.Thus for are three variables

X, Y and Z there are 23, or 8, different minterms, which are X Y Z, XYZ, XYZ,

XYZ, XYZ, XYZ, XYZ, and XYZ. For four variables there are 24, or 16, terms;

 54

for five variables there are 32 terms; etc. As a result, a map of n variables will

have 2n squares, each representing a single minterm. The minterm in each box,

or cell, of the map is the product of the variables listed at the abscissa and

ordinate of the cell. Thus XYZ is at the intersection of XY and Z.

 Given a Karnaugh map form, the map is filled in by placing 1s in the

squares, or cells, for each term which leads to a 1 output.

 As an example, consider a function of three variables for which the

following input values are to be 1:

This function is shown in fig3.16(a) in both table-of-combinations and

Karnaugh map form.

 55

 Figure 3.15.

Figure 3.16. MAP METHOD FOR SIMPLIFYING EXPRESSIONS

2.17 SUBCUBES AND COVRING

A subcube is a set of exactly 2m adjacent cells containing 1s. for m = 0 the

subcube consists of a single cell. For m = 1 a subcube consists of two

adjacent cells;for instance,the cells containing XYZ and XYZ form a

subcube, as shown kin fig 3.17(a), as do XYZ and XYZ (since the map is

rolled).

 56

 For m = 2 a subcube has four adjacent cells, and several such subcubes

are shown in fig 3.17 (c). Notice that here we have omitted 0s for clarity and

filled in only the 1s for the function. This policy will be continued.

 Finally, subcubes containing eight cells (for m=3) are shown in

figure3.17(d).

 To demonstrate the use of map and subcubes in minimizing Boolean

algebra expressions, we need to examine a rule of Boolean algebra:

 57

There are four terms here, each with two variables WX constant while the

other Two variables Y and Z take all possible values. The term WX is equal

to the sum of the other terms, for

 58

 Thus WX could be substituted for the other four terms in an expression

 The set of minters in an expression does not necessarily form a

single subscale, however, and there are two cases to be dealt with. Call a

maximal subcube the largest subcube that can be found around a given

minterm. Then the two cases are as follows:

1 All maximal subcubes are nonintersecting: that is no cell in a maximal

 subcube is a part of another maximal subcube. Several examples are shown

in

 Fig.3.18

2.The maximal sub cubes intersect; that is , cells in one maximal subcube

are also in other maximal subcubes. Figure 3.19 shows examples of this.

 Case 1 is the more easily dealt with. In this case, the product terms

corresponding to the maximal subcubes are selected, and the sum of these

forms a minimal sum-of-products expression. (In switching theory, the product

term corresponding to a maximal subcube is called a prime implicant.)

 Figure 3.18(a) shows an example of this in four variables. There is a

subcube of two cells containing WXYZ and WXYZ which can be covered by

the product term WXZ. There is also a sub cube of four cells containing

WXYZ, WXYZ, WXYZ, and WXYZ, which can be covered by WX. The

minimal expression is, therefore, WX + WXZ.

 Two other examples are shown in figure 3.18(b) and (c).In each case the

subcubes do not intersect or share cells and so the product term(prime

implicant)which corresponds to a given maximal subcube can be readily

derived and the sum of these for a given map forms the minimal expression.

 59

 When the subcubes intersect, the situation can be more complicated.

The first principle to note is this: Each cell containing a 1 (that is, each 1 cell)

must be contained in some subcube which is selected.

 Figure 3.19(a) shows a map with an intersecting pair of subcubes plus

another subcube. The minimal expression is, in this case, formed by simply

adding the three product terms associated with the three maximal subcubes.

Notice that a

Figure 3.19

\

 Single term, WXYZ, is shared between two subcubes and, because of

this, is effectively in the minimal expression twice. This is permissible because

of the idempotent rule of Boolean algebra, A + A = A, which states that

repetition of terms does not change functional equivalence.

 As long as the maximal subcubes can be readily found and there are no

options in subcube selection, the minimization problem is straightforward. In

some case the problem is more complicated. Figure 3.20 shows an expression

with a subcube of four cells in the center of the map, which is maximal. The

selection of this maximal subcube does not lead to a minimal expression,

however, because the four cells with

 60

1s around this subcube must be covered also .In each case these 1 cells can be

found to have a single adjacent cell and so to be part of maximal subcubes

consisting of 2 cells. In fig.3.20 (a), WXYZ is in a cell adjacent to only WXYZ

and so forms part of a 2 cell. Figure 3.20(b shows another way to form subcues

for the map, and this leads to the minimal expression WXY + WYZ + WXY +

WYZ.

 The finding of minimal expressions for such maps is not direct, but follow

these rules:

1 Begin with cells that are adjacent to no other cell. The minters in these

cells cannot be shortened and must be used as they are.

2 Find all cells that are adjacent to only one other cell. These form

subcubes of two cells each.

3 Find those cells that lead to maximal subcubes of four cells. Then find

Subcubes of eight cells, ect.

4 the minimal expression is formed from a collection of as few cubes as

possible, each of which is as possible, that is, each of which is a

maximal subcube.

2.18 PRODUCT-OF-SUMS EXPRESSIONS-DON’T-CARES

 The technique for product-of-sums expressions is almost identical with the

design procedure using sum-of-products. The basic rule can be stated quite

simple:

Solve for 0s, and then complement the resulting expression.

 Let us take example.figure 3.22(a) shows a table of combinations and a

karnaugh map for a four-variable problem. In fig. 3.22(a) the sum-of-products

expression is derived and in minimal form is found to be XY + YZ + WY.

 In fig .3.22(b) the same problem is solved for the 0s,which gives

XY+WYZ.Since we have solved for 0s,we have solved for the complement of

the

desired problem. If the output is called F, then we have solved for F .we then

write F =XY+ WYZ.

 61

Now, what is wanted is F: so both sides of this expression are complemented,

And we have

 F = (X + Y)(W + Y +Z)

 This expression is in product-of-sums form and is somewhat simpler then the

sum-of-products expression.

 62

 If sum-of-products and product-of-sums expression are equally easy to

Implement, then a given problem must be solved in both forms and the simpler

solution chosen. There is no way to determine which will be simpler other

 than by a complete working of the problem.

 There is another frequently encountered situation in which certain outputs

are not specified in a problem .such outputs are called don’t -care outputs,for

 the designer does not care what the outputs are for these particular inputs.

 Figure 3.23(a) shows such a problem with 6 of the possible 16 output values

Listed as d’s (don’t cares). This is a part of a BCD translator, and so these

particular six input combinations are never used.

 Since don’t care output values are of no importance, they may be filled in

with 1s and 0s in any way that is advantageous .figure 3.23(a) shows a

karnaugh map of the table of combinations in the figure, with d’s in the

appropriate places. In solving this table, a d may be used as either a 1 or a 0; so

the d‘s are used to enlarge or complete a subcube whenever possible, but

otherwise are ignored (that is, made 0). The d’s need not be covered by

subcubes selected, but are used only to enlarge subcubes containing 1s, which

must be covered.

 In fig.3.23(a) ,the vertical string of four d’s in the WX column is of use

twice, once in filling out, or completing, the row of 1s and once in competing

the third row. These subcubes give the terms YZ and YZ; so the minimal

 sum-of-products expression is Y Z + YZ. Notice that if all the d’s were made

os, the solution would require more terms.

 Another problem is worked in fig.3.23 (b). for this problem the solution is

WZ +WY.Notice that two of the d’s are made 0s.In effect, the d’s are chosen so

that they lead to the best solution.

 63

UNIT – II

Self Assessment Questions

Fill in the blank

1. The + and . operations are physically realized by two types of

electronic circuits called ___________ and ______________.

2. The complementation operation is physically realized by a gate or

circuit called an __________.

3. NAND gate is a combination of _________ and __________ gates.

4. The _____________ on the Output of the NAND and NOR gates

represents complementation.

True or False

1. In the derivation of Boolean expression when both X and Y are Os,

the output Z is to be 1.

2. The symbol is not used to indicate complementation .

3. A subcube is a set of exactly 2m adjacent cells containing 1s.

Multiple Choice

1. Gating networks can now be made with many gates in a single

contains by using the manufacturing technique.

a). MSI b) LSI c) CSI d) SSI

2.

 This Logical diagram is for the gate.

 a)AND b) OR c) NOT d) NOR

3. According to Boolean Algebra rules X + XZ = ?

 a) X b)Y c) XZ d) XY.

Unit Questions

1. Prepare a truth Table for the following Boolean expressions

a) A(B C + B C)

b) ABC(ABC + ABC)

2. Simplify the following expressions

a). AB+ AB + AC + AC

b). XY(XYZ + XYZ + XYZ)

 64

3. Prove the two basic De Morgan theorems, using the proof by

perfect induction.

4. Explain the AND and OR gates with neat diagram.

5. Explain Sum of Products and Products of Sums.

6. What is NAND gate.

7. Explain NOR gate with neat diagram.

8. Draw the Logical diagram for the following.

 a). ABC + AB

 b). (X + Y) (X + Y + Z)

 c). (A+B+C) (D+E+F)

 65

Self Assessment Answers

Fill in the blanks

1. OR, AND

2. Inverter

3. AND,NOR

4. Bubble

True / False

1. True

2. False

3. True

Multiple Choice

1. B

2. D

3. A

4.

 66

UNIT-III

Anatomy of a Digital Computer

3.0 Functions and Components of a Computer

 3.0.1 Central Processing Unit

3.0.1.1 Control Unit

 3.0.1.2 Arithmetic - Logic Unit

3.0.2 Memory

 3.0.2.1 Registers

 3.0.2.2 Addresses

3.0.3 How the CPU and Memory Work

3.1 Memory Units

3.1.1 Introduction

3.1.2 RAM

3.1.3 ROM

3.1.4 PROM

3.1.5 EPROM

3.1.6 EEPROM

3.1.7 Flash Memory

3.2 Input Devices

3.2.1 Introduction

3.2.2 Keyboard

3.2.3 Mouse

3.2.3.1 Types of Mice

3.2.3.2 Connections

3.2.3.3 Mouse Pad

3.2.4 Trackball

3.2.5 Joystick

3.2.6 Digitizing Tablet

3.2.7 Scanners

3.2.8 Digital Camera

3.2.9 Magnetic Ink Character Recognition

3.2.10 Optical Character Recognition

3.2.11 Optical Mark Recognition

 67

3.2.12 Bar Code Reader

3.2.13 Speech Input Devices

3.2.14 Touch Screen

3.2.15 Touch Pad

3.2.16 Light Pen

3.3 Output Devices

3.3.1 Introduction

3.3.2 Monitor

3.3.2.1 Classification of Monitors-Based on Color

3.3.2.2 Classification Monitors-Based on Signals

3.3.2.3 Characteristics of a Monitor

3.3.3 Video Standards

3.3.4 Printer

 3.3.5 Plotter

3.3.6 Sound Cards & Speakers

3.4 Auxiliary Storage Devices

3.4.1 Introduction

3.4.2 Magnetic Tape

3.4.3 Winchester Disk

3.4.4 Hard Disk

3.4.5 Floppy Disk

3.4.6 Zip Disk

3.4.7 Jaz Disk

3.4.8 Super Disk

3.4.9 Optical Disk

3.4.10 CD – ROM

3.4.11 CD – R Drive

3.4.12 CD – RW Disks

 Self-Assessment Questions

 Self Assessment Answers

 68

 UNIT-III

ANATOMY OF A DIGITAL COMPUTER

3.0 FUNCTIONS AND COMPONENTS OF A COMPUTER

 To function properly, the computer needs both hardware and software.

Hardware consists of the mechanical and electronic devices. The software

consists of programs, the operating systems and the data that reside in the

memory and storage devices. A computer does mainly the following four

functions:

 Receive input – Accept information from outside through various input

devices like the keyboard, mouse, etc.

 Process information – perform arithmetic or logical operations on the

information.

 Produce output – Communicate information to the outside world

through output devices like monitor, printer, etc.

 Store information – Store the information in storage devices like hard

disk, floppy disks, etc.

 Computer hardware falls into two categories: processing hardware, which

consists of the central processing unit (CPU), and the peripheral devices.

 69

3.0.1 CENTRAL PROCESSING UNIT (CPU)

 The part of the computer that executes program instructions is known as

the processor or central processing unit (CPU). The CPU has two parts – the

control unit and the arithmetic – logic unit (ALU).

3.0.1.1 Control unit

 The control unit tells the rest of the computer system how to carry out a

program’s instructions. It directs the movement of electronic signals between

memory – which temporarily holds data, instructions and processed

information – and the ALU. It also directs these control signals between the

CPU and input/ output devices.

3.0.1.2 Arithmetic – Logic Unit (ALU)

Arithmetic Logic Unit, usually called the ALU, performs two types of

operations – arithmetic and logical. Arithmetic operations are the fundamental

mathematical operations consisting of addition, subtraction, multiplication and

division. Logical operations consist of comparisons. That is, two pieces of

data are compared to see whether one is equal to., less than, or greater than the

other.

3.0.2 MEMORY

 Memory – also known as the primary storage or main memory – is a

part of the microcomputer that holds data for processing, instructions for

processing the data (the program) and information. Part of the contents of the

memory is held only temporarily, that is, it is stored only as long as the

microcomputer is turned on. When you turn the machine off, the contents are

lost. The capacity of the memory to hold data and program instructions varies

in different computers hold approximately 6,40,000 characters of data or

instructions only. But modern microcomputers can hold millions, even billions

of characters in their memory.

3.0.2.1 Registers

 Computers also have several additional storage locations called

registers. These appear in the control unit and ALU and make processing more

efficient. Registers areas hold data and instructions temporarily during

processing. They are parts of the control unit and ALU rather than the

memory.

3.0.2.2 Addresses

 To locate the characters of data or instructions in the main memory, the

computer stores them in locations known as addresses. A unique number

designates each address. Addresses can be compared to post office mailboxes.

Their numbers stay the same, but contents continuously change.

3.0.3 HOW THE CPU AND MEMORY WORK

 The various steps involved for multiplying two numbers is explained

below:

 70

1. The control unit recognizes that the programs has been loaded into

memory. It begins to execute the first step in the program.

2. The program tells the user, “Enter 1st Number.”

3. The user types the number 10 on the keyboard. An electronic signal is

sent to the CPU.

4. The control unit recognizes this signal and routes the signal to an

address in memory – address 7.

5. After completing the above instruction, the next instruction tells user,

“Enter 2nd Number.”

6. The user types the number 4 on the keyboard. An electronic signal is

sent to the CPU.

7. The control unit recognizes this signal and routes it to memory address

8.

8. The next program instruction is executed – “Multiply 1st and 2nd

Numbers.”

9. To execute this instruction, the control unit informs the ALU that two

numbers are coming and the ALU is to multiply them. The control unit

next sends to the ALU a copy of the contents of address 7(10) and

address 8 (4).

10. ALU performs the multiplication: 10 X 4 = 40.

11. The control unit sends a copy of the multiplied result (40) back to

memory, to address 9.

 71

12. The next program instruction is executed: “Print the Result.’

13. To execute this instruction, the control unit sends the contents of the

address 9(40) to the monitor.

14. Monitor displays the value 40.

15. Final instruction is executed: “End.” The program is complete.

 72

3.1 MEMORY UNITS

3.1.1 INTRODUCTION

 Memory units are the internal storage areas in a computer. The term

“memory”: identifies data storage that comes in the form of chips, and the word

“storage” is used for memory that exists on tapes or disks. Every computer

comes with a certain amount of physical memory, usually referred to as the

main memory or the RAM. The main memory can hold a single byte of

information in each location. A computer that has 1 megabyte of memory,

therefore, can hold about 1 million bytes (or characters)of information.

There are several different types of memory.

3.1.2 RAM

 Pronounced ramm, acronym for random access memory, a type of

computer memory that can be accessed randomly; that is, any byte memory can

be accessed without touching the preceding bytes. RAM is the most type of

memory found in computers and other devices, such as printers. RAM refers to

read and write memory.

Most Ram is volatile when the power is turned off, whatever data was in Ram

is lost.

There are two types of RAM:

 Dynamic RAM->It needs to be refreshed thousands of times per second.

 Static RAM->It needs to be refreshed less often, which makes it faster;

but it is also more expensive than dynamic RAM.

3.1.3 ROM

 Pronounced ROM, acronym for read-only memory, a computer memory

on which data has been prerecorded. Once data has been written onto a ROM

chip, it cannot be removed and can only be read. Unlike the main memory

(RAM), ROM retains its contents even when the computer is turned off. ROM

is referred to as being nonvolatile, whereas RAM is volatile.

 Most personal computers contain a small amount of ROM that stores

critical programs such as the program that boots the computer. In addition,

ROMs are used extensively in calculators and peripheral devices such as laser

printers, whose fonts are often stored in ROMs. A variation of a ROM is the

PROM (programmable read-only memory). PROMs are manufactured as blank

chips on which data can be written.

3.1.4 PROM

 Pronounced prom, an acronym for programmable read-only memory. A

PROM is a memory chip on which data can be written only once. Once a

program has been written onto a PROM, it remains there forever. Unlike the

main memory, PROMs retain their contents when the computer is turned off.

 The difference between a PROM and a ROM (read-only memory) is

that a PROM is manufactured as blank memory, whereas a ROM is

 73

programmed during the manufacturing process. To write data onto a PROM

chip, you need a special device called a PROM programmer or a PROM burner.

The process of programming a PROM is sometimes called burning the PROM.

3.1.5 EPROM

 Acronym for Erasable Programmable Read –Only Memory, and

pronounced ee-prom, EPROM is a special type of memory that retains its

contents until it is exposed to ultraviolet light. The ultraviolet light clears its

contents, making it possible to reprogram the memory.

 An EPROM differs from a PROM in that a PROM can be written to

only once and cannot be erased. EPROM are used widely in personal

computers because they enable the manufacture to change the contents of the

PROM before the computer is actually shipped. This means that bugs can be

removed and new versions installed shortly before delivery.

3.1.6 EEPROM

 Acronym for electrically erasable programmable read-only memory.

Pronounced double-ee-prom, an EEPROM is a special type of PROM that can

be erased by exposing it to an electrical charge. Like other types of PROM,

EEPROM retains its contents even when the power is turned off. Also like all

other types of ROM, EEPROM is not as fast as RAM.

 EEPROM is similar to flash memory (sometimes called flash

EEPROM). The principle difference is that EEPROM requires data to be

written or erased one byte at a time whereas flash memory allows data to be

written or erased in blocks. This makes flash memory faster.

3.1.7 FLASH MEMORY

 Flash memory is a special type of EEPROM that can be erased and

reprogrammed in blocks instead of one byte at a time. Many modern PCs have

their BIOS (Basic Input Output System) stored on a flash memory ship so that

it can easily be updated if necessary. Such a BIOS is sometimes called a flash

BIOS. Flash memory is also popular in moderns because it enables the modern

manufacturer to support new protocols as they become standardized.

3.2 INPUT DEVICES

3.2.1 INTRODUCTION

 An input device is any machine that feeds data into a computer. For

example, a keyboard is an input device, whereas a display monitor is an output

device. Input devices other than the keyboard are sometimes called alternate

input devices. Mice, trackballs, and light pens are all alternate input devices.

3.2.2 KEYBOARD

 Keyboard is an input device consisting of a set typewriter-like keys that

enable you to enter data into a computer. Computer keyboards are similar to

electric-typewriter keyboards but contain additional keys. The keys on

computer keyboards are often classified as follows:

 74

 Alphanumeric keys – letters and numbers

 Punctuation keys – comma, period, semicolon, and so on.

 Special keys – function keys, control keys, arrow keys, caps Lock key,

and so on.

There are actually three different PC keyboards: the original PC keyboard,

with 84 keys; the AT keyboard, also with 84 keys; and the enhanced

keyboard, with 101 keys.

 In addition to these keys, IBM keyboards contain the following keys:

Page UP, Page Down, Home, End, Insert, Pause, Num Lock, Scroll Lock,

Break, Caps Lock, Print Screen.

3.2.3 MOUSE

 Mouse is a device that controls the movement of the cursor or pointer on

a display screen. A mouse is a small object you can roll along a hard, flat

surface. As you move the mouse, the pointer on the display screen moves in

the same direction. Mice contain at least one button and sometimes as many as

three, which have different functions depending on what program is running.

 In particular, the mouse is important for graphical user interfaces

because you can simply point to options and objects and click a mouse button.

Such applications are often called point- and – click programs. The mouse is

also useful for graphics programs that allow you to draw pictures by using the

mouse like a pen, pencil, or paintbrush.

3.2.3.1 Types of Mice

There are three basic of Mice.

Mechanical Has a rubber or metal ball on its underside that can roll in all

directions. Mechanical sensors within the mouse detect the direction the ball is

rolling and move the screen pointer accordingly.

Optomechanical Same as a mechanical mouse, but uses optical sensors to

detect motion of the ball.

Optical Uses a laser to detect the mouse’s movement. You must move the

mouse along a special mat with a grid so that the optical mechanism has a

frame of reference. Optical mice have no mechanical moving parts. They

respond more quickly and precisely than mechanical and optomechanical mice,

but they are also more expensive.

3.2.3.2 Connections

 Mice connect to PCs in one of three ways:

 Serial mice connect directly to an RS-232C serial port or a PS/2 port.

This is the simplest type of connection.

 Bus mice connect to the bus through an interface card. This is

somewhat more complicated because you need to configure and install

an expansion board.

 75

 Cordless mice aren’t physically connected at all. Instead they rely on

infrared or radio waves to communicate with the computer.

3.2.3.3 Mouse pad

 Mouse pad is a pad over which you can move a mouse.

3.2.4 TRACKBALL

 Trackball is another pointing device. Essentially, a trackball is a mouse

lying on its back. To move the pointer, you rotate the ball with your thumb,

your fingers, or the palm of your hand. There are usually one to three buttons

next to the ball, which you use just like mouse buttons.

 The advantage of trackballs over mice is that the trackball is stationary

so it does not require much space to use it. In addition, you can place a

trackball on any type of surface, including your lap. For both these reasons,

trackballs are popular pointing devices for portable computers.

3.2.5 JOYSTICK

A lever that moves in all directions and controls the movement of a

pointer or some other display symbols. A joystick is similar to a mouse, except

that with a mouse cursor stops moving as soon as you stop moving the mouse.

 With a joystick, the pointer continues moving in the direction the

joystick is pointing. To stop the pointer, you must return the joystick to its

upright position. Joystick are used mostly for computer games, but they are

also used occasionally for CAD/CAM systems and other applications.

3.2.6 DIGITIZING TABLET

This is an input device that enables you to enter drawings and sketches

into a computer. A digitizing tablet consists of an electronic tablet and a cursor

or pen.

A cursor (also called a puck) is similar to a mouse, except that it has

window with crosshairs for pinpoint placement and it can have as any as 16

buttons

A pen (also called a stylus), which looks like a simple ballpoint pen but

uses an electronic head instead of ink. The tablet contains electronic that

enable it to detect movement of the cursor or pen and translate the movements

into digital signals that it sends to the computer.

Digitizing tablet are also called digitizers, graphics tablets, touch

tablets, or simply tablets.

3.2.7 SCANNERS

Scanner is an input device that can read text or illustrations printed on

paper and translate the information into a form that the computer can use. A

scanner works by digitizing an image – dividing it into a grid of boxes and

representing each box with either a zero or a one, depending on whether the

box is filled in. The resulting matrix of bits, called a bit map, can then be

stored in a file, displayed on a screen, and manipulated by programs.

 76

Optical scanners do not distinguish text from illustrations; they

represent all images as bit maps. Therefore, you cannot directly edit text that

has been scanned. To edit text read by an optical scanner, you need an optical

character recognition (OCR) system to translate the image into ASCII

characters. Most optical scanners sold today come with OCR packages.

Scanners differ from one another in the following respects:

Scanning technology Most scanners use charge – coupled device (CCD)

arrays, which consists of tightly packed rows of light receptors that can detect

variations in light intensity and frequency. The quality of the CCD array is

probably the single most important factor affecting the quality of the scanner.

Industry – strength drum scanners use a different technology that relies on a

photomultiplier tube (PMT) but this type of scanner is much more expensive

than the more common CCD – based scanners.

Resolution The denser the bit map, the higher the resolution. Typically,

scanners support resolutions from 72 to 600 dots per inch (dpi).

Bit depth The number of bits used to represent each pixel. The greater the bit

depth, the more colors or grayscales can be represented. For example, a 24-bit

color scanner can represent 2 to the 24th power (16.7 million) colors. Note,

however, that a large color range is useless if the CCD arrays are capable of

detecting only a small number of distinct colors.

Size and shape Some scanners are small hand-held devices that you move

across the paper. This hand- held scanners are often called half-page scanners,

which are adequate for small pictures and photos, but they are difficult to use if

you need to scan an entire page of text or graphics. Larger scanners include

machines into which you can feed sheets of paper. These are called sheet-fed

scanners. Sheet-fed scanners are excellent for loose sheets of paper, but they

are unable to handle bound documents. A second type of large scanner, called

a flatbed scanner, is like a photocopy machine. It consist of a board on which

you lay books, magazines, and other documents that you want to scan.

3.2.8 DIGITAL CAMERA

 Images can be input into a computer using a digital camera. These

images can then be manipulated in many ways using the various imaging tools

available. The digital camera takes a still photograph, stores it, and then sends it

as digital input into the computer. The images are then stored as digital files.

3.2.9 MAGNETIC INK CHARATER RECOGNITION (MICR)

 Magnetic Ink Character Recognition (MICR) allows the computer to

recognize characters printed using magnetic ink. MICR is a direct-entry

method used in banks. This technology is used to automatically read those

frustrating – looking numbers on the bottom of the cheque. A special –purpose

machine known as a reader/sorter reads characters made of ink containing

magnetized particles. A related technology is the magnetic strip, used on the

back of credit cards and bank debit cards, that allows readers such as

Automated Teller Machines (ATMs) to read account information and facilitate

 77

monetary transactions. Another example of magnetic strip technology is in ID

cards, which can be used for a variety of functions from attendance monitoring

to restricting access to specific locations.

3.2.10 OPTICAL CHARACTER RECOGNITION (OCR)

 Often abbreviated OCR, optical character recognition refers to the

branch of computer science that involves reading text from paper and

translating the images into a form that the computer can manipulate (for

example, into ASCII codes). An OCR system enables you to take a book or a

magazine article and feed it directly into an electronic computer file.

 All OCR systems include an optical scanner for reading text, and

sophisticated software for analyzing images. Most OCR systems use a

combination of hardware (specialized circuit boards) and software to recognize

characters, although some inexpensive systems do it entirely through software.

Advanced OCR systems can read text in a large variety of fonts, but they still

have difficulty with handwritten text.

3.2.11 OPTICAL MARK RECOGNITIO0N (OMR)

 Optical Mark Recognition (OMR) also called mark sensing is a

technology where an OMR device senses the presence or absence of a mark,

such as a pencil mark. OMR is used in tests such as aptitude tests.

3.2.12 BAR CODE READER

 You are probably familiar with the bar code readers in supermarkets,

bookshops, etc. Bar code readers are photoelectric scanners that read the bar

codes, or vertical zebra striped marks, printed on product containers.

Supermarkets use a bar code system called the Universal Product Code (UPC).

 The bar code identifies the product to the supermarket’s computer,

which has a description and the latest price of the product. The computer

automatically tells the POS (Point Of Sales) terminal what the price is.

3.2.13 SPEECH INPUT DEVICES

 Speech or voice input devices convert a person’s speech into digital

form. These input devices, when combined with appropriate software, form

voice recognition systems. These systems enable users to operate

microcomputers using voice commands.

 Some of these systems must be ‘trained ’ to the particular user’s voice.

This is done by his/her spoken words to patterns previously stored in the

computer. More advanced systems that can recognize the same word spoken

by many different people have been developed. However, until recently the list

of words has been limited. A newly developed voice recognition system like

IBM Voice Type identifies more than 30,000 words and adapts to individual

voices. There are even systems that will translate from one language to

another, such as from English Japanese.

There are two types of voice recognition systems:

 78

 Continuous Speech

 Discrete – Word

Continuous Speech

 Continuous speech recognition systems are used to control a

microcomputer’s operations and to issue commands to special application

programs. For example, rather than using the keyword to save a spreadsheet

file, the user could simply say “Save the file”. Two popular systems are Apple

Computer’s Plain Talk and IBM’s continuous speech series.

Discrete – word

 A common activity in business is preparing memos and other written

documents. Discrete – word recognition systems allow users to dictate directly

into a microcomputer using a microphone. The microcomputer stores the

memo in a word processing file where it can be revised later or directly printed

out. IBM Voice Type Simply Speaking is an example.

3.2.14 TOUCH SCREEN

 Touch screen is a type of display screen that has a touch-sensitive

transparent panel covering the screen. Instead of using a pointing device such

as a mouse or light pen, you can use your finger to point directly to objects on

the screen.

 Although touch screens provide a natural interface for computer

novices, they are unsatisfactory for most applications because the finger is such

a relatively large object. It is impossible to point accurately to small areas of

the screen. In addition, most users find touch-screens tiring to the arms after

long use.

3.2.15 TOUCH PAD

A small, touch – sensitive pad used as a pointing device on some

portable computers.

 By moving a finger or other object along the pad, you can move the

pointer on the display screen.

3.2.16 LIGHT PEN

 Light pen is an device that utilizes a light – sensitive detector select

objects on a display screen.

 A light pen is similar to a mouse, expect that with a light pen you can

move the pointer and select objects on the display screen by directly pointing to

the objects with the pen.

3.3 OUTPUT DEVICES

3.3.1 INTRODUCTION

 Output is anything that comes out of a computer. An output device is

any machine capable of representing information from a computer. Output

devices include display screens, loudspeakers, printers, plotters, etc.

 79

3.3.2 MONITOR

 Monitor is another term for the display screen. The term monitor,

however, usually refers to the entire box, whereas display screen can mean just

the screen.

3.3.2.1 CLASSIFICATION OF MONITORS – BASED ON COLOUR

 There are many ways to classify monitors. The most basic is in terms

of colour capabilities, which separates monitors into three classes.

Monochrome

 Monochrome monitors actually display two colours, one for the

background and one for the foreground. The colours can be black and white,

green and black, or amber and black. and white, green and black, or amber and

black.

Gray – scale

A gray – scale monitor is a special type of monochrome monitor

capable of displaying different shades of gray.

Colour

 Colour monitors can display anywhere from 256 to over 1 million

different colours. Colour monitors are sometimes called RGB monitors

because they accept three separate signals – red, green, and blue. All colour

computer monitors are RGB monitors. An RGB monitor consists of a vacuum

tube with three electron guns – one each for red , green, and blue at one end and

the screen at the other end. The three electron guns fire electrons at the screen,

which contains a phosphorous coating. When the electron beams excite the

phosphors, they glow. Depending on which beam excites them, they glow red,

green, or blue. Ideally, the three beams should converge for each point on the

screen so that each pixel is a combination of the three colours.

 Colour and gray – scaling monitors are often classified by the number

of bits they use to represent each pixel. For example, an 8- bit monitor each

pixel with 8 bits. The more bits per pixel, the more colours and shades of gray

the monitor can display.

3.3.2.2 CLASSIFICATION MONITORS – BASED ON SIGNALS

 Another common way of classifying is in terms of the type of signal

they accept; analog or digital.

Digital Monitor

 A digital monitor accepts digital signals rather than analog signals. All

monitors (except flat- panel displays) use CRT technology, which is essentially

analog. The term digital, therefore, refers only to the type of input received

from the video adapter. A digital monitor then translates the digital signals into

analog signals that control the actual display.

 Although digital monitors are fast and produce clear images, they

cannot display variable colours continuously. Consequently, only low-quality

 80

video standards such as MDA (Monochrome Display Adepter), CGA

(Colour/Graphics Adapter), and EGA (Enhanced Graphics Adapter), specify

digital signals. VGA (Video Graphics Array) and SVGA (Super VGA), on the

other hand, require an analog monitor. Some monitors are capable of accepting

either analog or digital signals.

Analog Monitor

 This is the traditional type of colour display screen that has been used

for years in televisions. In reality, all monitors based on CRT technology (that

is, all monitors except flat- panel displays) are analog. Some monitors,

however, are called digital monitors because they accept digital signals from

the video adapter. EGA monitors, for example, must be digital because the

EGA standard specifies digital signals. Digital monitors must nevertheless

translate the signals into an analog form before displaying images. Some

monitors can accept both digital and analog signals.

 Some monitors have fixed frequency, which means that they accept

input at only one frequency. Another type of monitor, called a multiscanning

monitor, automatically adjusts to the frequency of the signals being sent to it.

This means that it can accept input from different types of video adapters. Like

fixed – frequency monitors, multiscanning monitors accept TTL, analog, or

both types of input.

3.3.2.3 CHARACTERISTICS OF A MONITOR

Size

 The most important aspect of a monitor is its screen size. Like

televisions, screen sizes are measured in diagonal inches, the distance from one

corner to the opposite corner diagonally. A typical size for small VGA

monitors is 14 inches. Monitors that are 16 or more inches diagonally are often

called full- page monitors. In addition to their size, monitors can be either

portrait (height greater than width) or landscape (width greater than height).

Larger landscape monitors can display two full pages, side by side.

Resolution

 The resolution of a monitor indicates how densely the pixels are

packed. Pixel is short for Picture Element. A pixel is a single point in a

graphic image. Graphics monitors display pictures by dividing the display

screen into thousands (or millions) of pixels, arranged in rows and columns.

The number of bits used to represent each pixel determines how many colours

or shades of gray can be displayed. For example an 8- bit colour monitor uses

8 bits for each pixel, making it possible to display 2 to the 8th power (256)

different colours or shades of gray.

 On colour monitors, each pixel is actually composed of three dots – a

red, a blue, and a green one. The quality of a display monitor largely depends

on its resolution, how many pixels it can display, and how many bits are used

to represent each pixel. VGA monitors display 640 by 480, or about 300,000

pixels. In contrast, SVGA monitors display 1,024 by 768, or nearly 800,000

 81

pixels. Most modern monitors can display 1024 by 768 pixels, the SVGA

standard. Some high – end models can display 1280 by 1024, or even 1600 by

1200.

Bandwidth

 The amount of data that can be transmitted in a fixed amount of time.

For digital devices, the bandwidth is usually expressed in bits or bytes per

second (bps). For analog devices, the bandwidth is expressed in cycles per

second, or Hertz (Hz).

Refresh Rate

 Display monitors must be refreshed many times per second. The

refresh rate determines hoe many times per second the screen is to be refreshed

(redrawn). The refresh rate for a monitor is measured in hertz (Hz) and is also

called the vertical frequency or vertical refresh rate. The old standard for

monitor refresh rates was 60 Hz, but a new standard developed by VESA sets

the refresh rate at 75Hz for VGA and SVGA monitors. The faster the refresh

rate, the less the monitor flickers.

Interlaced or Non – interlaced

 Interlacing is a display technique that enables a monitor to provide more

resolution in expensively. With interlacing monitors, the electron guns draw

only half the horizontal lines with each pass (for example, all odd lines on one

pass and all even lines on the next pass). Because an interlacing monitor

refreshes only half the lines at one time, it can display twice as many lines per

refresh cycle, giving it greater resolution. Another way of looking at it is that

interlacing provides the same resolution as non-interlacing, but less

expensively. A shortcoming of interlacing is that the reaction time is slower,

so programs that depend on quick refresh rates (animation and video, for

example), may experience flickering or streaking. Given two monitors that

offer the same resolution, the non – interlacing one will generally be better.

Dot – pitch

 A measurement that indicates the vertical distance between each pixel

on a display screen. Measured in millimeters, the dot pitch is one of the

principal characteristics that determine the quality of display monitors. The dot

pitch of colour monitors for personal computers ranges from about 0.15 mm

0.30mm. Another term for dot pitch is phosphor pitch.

Convergence

 Convergence refers to how sharply an individual colour pixel on a

monitor appears. Each pixel is composed of three dots – a red, blue, and green

one. If the dots are badly misconverged, the pixel will appear blurry. All

monitors have some convergence errors, but they differ in degree.

3.3.3 VIDEO STANDARDS

 There are a variety of video standards that define resolution and colours

for displays. Support for a graphics standard is determined by both the monitor

 82

and the video adapter. The monitor must be able to show the resolution and

colours defined by the standard, and the video adapter must be capable of

transmitting the appropriate signals to the monitor.

 Listed here, in approximate order of increasing power and

sophistication, are the more popular video standards for PCs. Note that many

of these numbers represent only the minimums specified in the standards.

Many suppliers of video adapters provide greater resolution and more colours.

For more information, refer to the entries for the specific graphics systems

given in table 9.1.

VGA

 Abbreviation of video graphics array, a graphics display system for PCs

developed by IBM. VGA has become one of the de facto standards for PCs. In

text mode, VGA systems provide a resolution of 720 by 400 pixels. In graphics

mode, the resolution is either 640 by 480 (with 16 colours) or 320 by 200 (with

256 colours). The total palette of colours is 262,144.

SVGA

 Short for Super VGA, a set of graphics standards designed to offered

greater resolution than VGA. There are several varieties of SVGA, each

providing a different resolution:

 800 by 600 pixels

 1024 by 768 pixels

 1280 by 1024 pixels

 1600 by 1200 pixels

 83

All SVGA standards support a palette of 16 million colours, but the number of

colours that can be displayed simultaneously is limited by the amount of video

memory installed in a system.

8514/A

 A high – resolution video standard for PCs developed by IBM in 1987.

It was designed to extend the capabilities of VGA. The 8514/A standard

provides a resolution of 1,024 by 768 pixels, which gives it about 2.5 times the

pixels of VGA (640 by 480). Like VGA, 8514/A provides a palette of 262,000

colours, of which 256 can be displayed at one time. On monochrome displays,

8514/A provides 64 shades of gray.

XGA

 Short for extended graphics array, a high – resolution graphics standard

introduced by IBM in 1990. XGA was designed to replace the order 8514/A

video standard. It provides the same resolutions (640 by 480 or 1024 by 768

pixels), but supports more simultaneous colours (65 thousand compared to

8514/A’s 256 colours). In addition, XGA allows monitors to be non –

interlaced.

TI 34010

 TI 34010 is a video standard from Texas Instruments that supports a

resolution of 1,024 by 768. TI 34010 conforms to TI’s Graphics Architecture

(TIGA). Unlike IBM’s 8514/A, which supports the same resolution. TI 34010

is non–interlaced.

3.3.4 PRINTER

 Printer is a device that prints text or illustrations on paper and in many

cases on transparencies and other media. There are many different types of

printers. In terms of the technology utilized, printers fall into the following

categories.

Daisy – wheel Printer

 Daisy – wheel printers are a type of printer that produces letter- quality

type. A daisy – wheel printer works on the same principles as a ball – head

typewriter. The daisy wheel is a disk made of plastic or metal on which

characters stand out in relief along the outer edge. To print a character, the

printer rotates the disk until the desired letter is facing the paper. Then a

hammer strikes the disk, forcing the character to hit an ink ribbon, leaving an

impression of the character on the paper. You can change the daisy wheel to

print different fonts.

 Daisy – wheel printers cannot print graphics, and in general they are

noisy and slow, printing from 10 t about 75 characters per second.

Dot – matrix Printer

 Dot – matrix printers create characters by striking pins against an ink

ribbon. Each pin makes a dot, and combinations of dots form characters and

 84

illustrations. Dot- matrix printers are inexpensive and relatively fast, but they

do not produce high – quality output.

 Dot – matrix printers vary in two important characteristics:

 Speed – Given in characters per second (cps), the speed can vary

from about 50 to over 500 cps.

 Print quality – Determined by the number of pins (the mechanisms

that, print the dots), it can vary from 9 to 24. The best dot– matrix

printers (24 pins) can produce near letter- quality type, although you

can still see a difference if you look closely.

Ink – jet Printer

 Ink – jet printers’ work by sparing ionized ink at a sheet of paper.

Magnetized plates in the ink’s path direct the ink onto the paper in the paper in

the desired shapes. Ink – jet printers are capable of producing high quality print

approaching that produced by laser printers. A typical ink- jet printer provides

a resolution of 300 dots per inch. The price of ink – jet printers is lower than

that of laser printers. However, they are also considerably slower. Another

drawback of ink – jet printers is that they require a special type of ink that is apt

to smudge on inexpensive copier paper.

Laser Printer

 Laser printer utilizes a laser b4eam to produce an image on a drum. The

light of the laser alters the electrical charge on the drum wherever it hits. The

drum is then rolled through a reservoir of toner, which is picked up by the

charged portions of the drum. Finally, the toner is transferred to the paper

through a combination of heat and pressure.

 Because an entire page is transmitted to a drum before the toner is

applied. Laser printers are sometimes called page printers. There are two other

types of page printers that fall under the category of laser printers even though

they do not use lasers at all. One uses an array of LEDs to expose the drum,

and the other uses LCDs. Once the drum is charged, however, they both

operate like a real laser printer.

 One of the chief characteristics of laser printers is their resolution –

how many dots per inch (dpi) they lay down. The available resolutions range

from 300 dpi at the low end to 1,200 dpi at the high end. By comparison, offset

printing usually prints at 1,200 or 2,400 dpi. Some laser printers achieve higher

resolutions with special techniques known generally as resolution enhancement.

 In addition to the standard monochrome laser printer, which uses a

single toner, there also exist colour laser printers that use four toners to print in

full colour. Colour laser printers tend to be about five to ten times as expensive

as their monochrome siblings.

 Laser printers produce very high – quality print and are capable of

printing an almost unlimited variety of fonts. Most laser printers come with a

 85

basic set of fonts, called internal or resident fonts, but you can add additional

fonts in one of two ways:

 Font cartridges – Laser printers have slots in which you can insert font

cartridges, ROM boards on which fonts have been recorded. The

advantage of font cartridges is that they use none of the printer’s

memory.

 Soft fonts – All laser printers come with a certain amount of RAM

memory, and you can usually increase the amount of memory by adding

memory boards in the printer’s expansion slots. You can then copy

fonts from a disk to the printer’s RAM. This is called downloading

fonts. A font that has been downloaded is often referred to as a soft

font, to distinguish it from the hard fonts available on font cartridges.

The more RAM a printer has, more fonts that can be downloaded at one

time.

LCD & LED Printers

 Similar to a laser printer but uses liquid crystals or light – emitting

diodes rather than a laser to produce an image on the drum.

Line Printer

 Line printers are high speed printers capable of printing an entire line at

one time. A fast line printer can print as many as 3,000 lines per minute. The

disadvantages of line printers are that they can print only one font, they cannot

print graphics, the print quality is low, and they are very noisy.

Thermal printer

 Thermal printers are printers that produce images by pushing

electrically heated pins against special heat- sensitive paper. Thermal printers

are inexpensive and are used in most calculators and many fax machines. They

produce low- quality print, and the paper tends to curl and fades after a few

weeks or months.

Printers are also classified according to the following characteristics:

 Quality of type – Type output produced by printers is said to be either

letter quality (as good as a typewriter), near letter quality, or draft

quality. Only daisy - wheel, ink – jet, and laser printers produce letter-

quality type. Some dot –matrix printers claim letter – quality print, but

if you look closely, you can see the difference.

 Speed – Measured in characters per second (cps) or pages per minute

(ppm), the speed of printers varies widely. Daisy – wheel printers tend

to be the slowest, printing about 30 cps. Line printers are fastest (up to

3,000 lines per minute). Dot – matrix printers can print up to 500 cps,

and laser printers range from about 4 to 20 text pages per minute.

 Impact or non – impact – Impact printers include all printers that work

by striking an ink ribbon. Daisy – wheel, dot – matrix, and line printers

 86

are impact printers. Non – impact printers include laser printers and ink

– jet printers. The important difference between impact and non –

impact printers is that impact printers are much noisier but are useful for

making multiple copies like carbon copies.

 Graphics – Some printers (daisy – wheel and line printers) can print

only text. Other printers can print both text and graphics.

 Fonts – Some printers, notably dot –matrix printers, are limited to one

or a few fonts. In contrast, laser and ink – jet printers are capable of

printing an almost unlimited variety of fonts. Daisy – wheel printers

can also print different fonts, but you need to change the daisy wheel,

making it difficult to mix fonts in the same document.

3.3.5 PLOTTER

 Plotter is a device that draws pictures on paper based on commands

from a computer. Plotters differ from printers in that they draw lines using a

pen. As a result, they can produce continuous lines, whereas printers can only

simulate lines by printing a closely spaced series of dots. Multicolour plotters

use different – coloured pens to draw different colours.

 In general, poltters are considerably more expensive than printers. They

are used in engineering applications where precision is mandatory.

3.3.6 SOUND CARDS & SPEAKERS

 An expansion board that enables a computer to manipulate an output

sounds. Sound cards are necessary for nearly all CD-ROMs and have become

commonplace on modern personal computers. Sound cards enable the

computer to output sound through speakers connected to the board, to record

sound input from a microphone connected to the computer, and, manipulate

sound stored on a disk.

 Nearly all-sound cards support MIDI, a standard for representing music

electronically. In addition, most sound cards are Sound Blaster – compatible,

which means that they can process commands written for a Sound Blaster care,

the de facto standard for PC sound.

Sound cards use two basic methods to translate digital data into analog sounds:

 FM (Frequency Modulation) Synthesis mimics different musical

instruments according to built – in formulas.

 Wavetable Synthesis relies on recordings of actual instruments to

produce sound. Wavetable synthesis produces more accurate sound, but

is also more expensive.

3D Audio

 3D audio is a technique for giving more depth to traditional stereo

sound. Typically, 3D sound, or 3D audio, is produced by placing a device in a

room with stereo speakers. The device dynamically analyzes the sound coming

 87

from the speakers and sends feedback to the sound system so that it can

readjust the sound to give the impression that the speakers are further apart.

 3D audio devices are particularly popular for improving computer audio

where speakers tend to be small and close together. There are a number of 3D

audio devices that attach to a computer’s sound card.

3.4 AUXILIARY STORAGE DEVICES

3.4.1 INTRODUCTION

 Auxiliary storage also known as auxiliary memory or secondary

storage, is the memory that supplements the main storage. This is a long – term,

non – volatile memory. The term non –volatile means it stores and retains the

programs and data even after the computer is switched off. Unlike RAM which

looses the contents when the computer is turned off, and ROM, to which it is

not possible to add anything new, auxiliary storage devices allows the computer

to record information semi – permanently, so it can be read later by the same

computer or by another computer. Auxiliary storage devices are also useful in

transferring data or programs from one computer to another. They also

function as back – up devices which allows to back – up the valuable

information that you are working on. So even if by some accident your

computer crashes and the data in it is unrecoverable, you can restore it from

your back – ups. The most common types of auxiliary storage devices are

magnetic disks, floppy disks, hard disks, etc.

 There are two types of auxiliary storage devices. This classification is

based on the type of data access: sequential and random. Based on the type of

access they are called sequential – access media and random – media. In the

case of sequential – access media, the data stored in the media can only be read

in sequence and to get to a particular point on the media you have to go through

all the preceding points.

 Magnetic tapes are examples of sequential access media. In contrast,

disks are random access also called direct access media because a disk drive

can access any point at random without passing through intervening points.

Other examples of direct access media are magnetic disks, optical disks, zip

disks etc.

3.4.2 MAGNETIC TAPE

 Magnetic tape is a magnetically coated strip of plastic on which data

can be encoded. Tapes for computers are similar to the tapes used to store

music. Some personal computers, in fact, enable you to use normal cassette

tapes.

 Storing data on tapes is considerably cheaper than storing data on disks.

Tapes also have large storage capacities, ranging from a few hundred kilobytes

to several gigabytes.

 Accessing data on tapes, however, is much slower than accessing data

on disks. Tapes are sequential access media, which means that to get to a

 88

particular point on the tape, the tape must go through all the preceding points.

In contrast, disks are random access media because a disk drive can access any

point at random without passing through intervening points.

 Because tapes are so slow, they are generally used only for long – term

storage and backup. Data to be used regularly is almost always kept on a disk.

Tapes are also used for transporting large amounts of data.

Tapes come in a variety of sizes and formats (see table 10.1). Tapes are

sometimes called streamers or streaming tapes.

Type Capacity Description

Half – inch 60 MB – 400 MB Half – inch tapes come

both as 9 track reels and

as cartridges. These

tapes are relatively

cheap, but require

expensive tape drives.

Quarter – inch 40 MB – 5 GB Quarter – inch cartridges

(QIC tapes) are relatively

inexpensive and support

fast data transfer rates.

QIC mini cartridges are

even less expensive, but

their data capacities are

smaller and their transfer

rates are slower.

8-mm Helical – scan 1GB – 5GB 8-mm helical – scan

cartridges use the same

technology as VCR tapes

and have the greatest

capacity. But they

require expensive tape

drivers and have

relatively slow data

transfer rates.

4-mm DAT 2GB-24G B DAT (Digital Audio

Tape) cartridges have the

greatest capacity but they

require expensive tape

drivers and have

relatively slow data

transfer rates.

 89

Helical – scan Cartridge

 A type of magnetic tape that uses the same technology as VCR tapes.

The term helical scan usually refers to 8-mm tapes, although 4-mm tapes

(called DAt tapes) uses the same technology. The 8-mm helical – scan tapes

have data capacities from 2.5GB to 5GB.

DAT Cartridge

 DAT (Digital Audio Tape) is a type of magnetic tape that uses an

ingenious scheme called helical scan to record data. A DAT cartridge is

slightly larger than a credit card and contains a magnetic tape that can hold

from 2 to 24 gigabytes of data. It can support data transfer rates of about 2

MBps (Million bytes per second). Like other types of tapes, DATs are

sequential – access media. The most common format for DAT cartridge is

DDS (digital data storage) which is the industry standard for digital audio tape

(DAT) formats. The latest format, DDS-3, specifies tapes that can hold 24 GB

(the equivalent of over 40 CD-ROMs) and support data transfer rates of 2

MBps.

3.4.3 WINCHESTER DISK

 The term Winchester comes from an early type of disk drive developed

by IBM that stored 30 MB and had a 30-millisecond access time; so its

inventors named it a Winchester in honor of the 30-caliber rifle of the same

name. Although modern disk drives are faster and hold more data, the basic

technology is the same, so Winchester has become synonymous with hard disk.

3.4.4 HARD DISK

 Hard disk is a magnetic disk on which you can store computer data. The

hard is used to distinguish it from a soft, or floppy, disk. Hard disks hold more

data and are faster than floppy disks. A hard disk, for example, can store

anywhere from 10 megabytes to several gigabytes, whereas most floppies have

a maximum storage capacity of 1.4 megabytes.

 A single hard disk usually consists of several platters. Each platter

requires two read/write heads, one for each side. All the read/write heads are

attached to a single access arm so that they cannot move independently. Each

platter has the same number of tracks, and a track location that cuts across all

platters is called a cylinder. For example, a typical 84-megabyte hard disk for a

PC might have two platters (four sides) and 1,053 cylinders

 In general, hard disks are less portable than floppies, although it is

possible to buy removable hard disks. There are two types of removable hard

disks : disk packs and removable cartridges..

3.4.5 FLOPPY DISK

 Floppy disk is a soft magnetic disk. It is called floppy because it

flops if you wave it (at least, the 5 1/4 – inch variety does). Unlike most hard

disks, floppy disks (often called floppies or diskettes) are portable, because you

can remove them from a disk drive. Disk drives for floppy disks are called

 90

floppy drives. Floppy disks are slower to access than hard disks and have less

storage capacity, but they are less expensive and are portable.

Floppies come in two basic sizes:

 5 1/4 – inch – The common size for PCs made before 1987. This

type of floppy is generally capable of storing between 100K and

1.2 MB (megabytes) of data. The most common sizes are 360 K

and 1.2MB.

 3 1/2_ inch – Floppy is something of a misnomer for these disks,

as they are encased in a rigid envelope. Despite their small size,

microfloppies have a larger storage capacity than their cousins –

from 40K to 1.4MB of data. The most common sizes for PCs

are 720K (double - density) and 1.44MB (high- density).

Macintoshes support disks of 400K, 800K, and 1.2MB.

3.4.6 ZIP DISK

 These are high – capacity floppy disk drives developed by the Iomega

Corporation. Zip disks are slightly larger than the conventional floppy disks,

and are about twice as thick. They can hold 100MB of data. Because they’re

relatively inexpensive and durable, they have become a popular media for

backing up hard disks and for transporting large files.

3.4.7 JAZ DISK

 These are removable disk drivers developed by the Iomega Corporation.

The Jaz drive has a 12-ms average seek time and a transfer rate 5.5 Mbps.

 The removable cartridges hold 1GB of data. The fast rates and large

storage capacity make it a viable alternative for backup storage as well as

everyday use.

3.4.8 SUPER DISK

 This is a new disk storage technology developed by the Imation

Corporation that supports very high-density diskettes. SuperDisk diskettes are

etched with a servo pattern at the factory. This pattern is then read by the

SuperDisk drive to precisely slign the read/write head. The result is that a

SuperDisk diskette can have 2,490 tacks, as opposed to the 135 tacks that

conventional 3.5 – inch 1.44 MB diskettes use. This density translates into

120MB capacity per diskette.

3.4.9 OPTICAL DISK

 Optical Disks are a storage medium from which data is read and to

which it is written by lasers. Optical disks can store much more data – up to 6

gigabytes (6 billion bytes)- than magnetic media, such as floppies and hard

disks. There are three basic of optical disks:

 CD-ROM - Like audio CDs, CD-ROMs come with data already

encoded onto them. The data is permanent and can be read any number

of times, but CD-ROMs cannot be modified.

 91

 WORM – This term stands for write – once, read many. With a

WORM disk drive, you can write data onto a WORM disk, but only

once. After that, the WORM disk behaves just like a CD-ROM.

 Erasable - Optical disks that can be erased and loaded with new data,

just like magnetic disks. These are often referred to as EO (erasable

optical) disks.

3.4.10 CD – ROM

 CD – ROM, which is pronounced as ‘see – dee - rom’, is the

abbreviation of Compact Disc – Read – Only Memory. CD – ROM is a type

of optical disk capable of storing large amounts of data - up to 1GB, although

the most common size is 630 MB (megabytes). A single CD – Rom has the

storage capacity of 700 floppy disks, enough memory to store about 300,000

text pages.

 CD – ROMs are recorded by the vendor, and once recorded, they cannot

be erased and filled with new data. To read a CD, you need a CD – ROM

player. Also called a CD – ROM drive, a CD – ROM player is a device that

can read information from a CD – ROM.

 There are a number of features that distinguish CD – ROM players, the

most important of which is probably their speed. CD– Rom players are

generally classified as single – speed or some multiple of single – speed. For

example, a 4X player access data at four times the speed of a single – speed

player. Within these groups, however, there is some variation. Also, you need

to be aware of whether the CD – ROM uses the CLV (Constant Linear

Velocity) or CAV (Constant Angular Velocity) technology.

 Two more precise measurements are the drives seek time and data

transfer rate. The seek time, also called the access time, measures how long, on

average; it takes the drive to access a particular piece of information. The data

transfer rate measures how much data can be read and sent to the computer in a

second.

 Most CD –ROMs connect via a SCSI bus. Other CD – ROMs connect

to an IDE or enhanced IDE interface, which is the one used by the hard disk

drive. CD – ROMs are particularly well suited to information that requires

large storage capacity. This includes color graphics, sound, and especially

video.

3.4.11 CD – R Drive

 CD – R drive which is short for Compact Disk – Recordable drive, is a

type of disk drive that can create CD- ROMs and audio CDs. This allows the

users to “master” a CD – Rom or audio CD for publishing. Until recently, CD

– R drives were quite expensive, but prices have dropped dramatically.

 A feature of many CD – R drives, called multi session recording, and

enables you to keep adding data to a CD – ROM over time. This is extremely

important if you want to use the CD – R drive to create backup CD – ROMs.

 92

 To create CD – ROMs and audio CDs, you’ll need not only a CD – R

drive, but also a CD – R software package.

 Often, it is the software package, not the drive itself that determines

how easy or difficult it is to create CD – ROMs. CD – R drives can also read

CD – ROMs and play audio CDs.

3.4.12 CD – RW Disks

 CD – RW disk is short for CD Rewritable disk and this is a new type of

CD disk that enables you to write onto it in multiple sessions. One of the

problems with CD – R disks is that you can only write to them once. With CD

– RW drives and disks, you can treat the optical disk just like a floppy or hard

disk, writing data onto it multiple times.

 The first CD – RW drives became available in mid – 1997. They can

read CD– ROMs and can write onto today’s CD – R disks, but they cannot

write on CD – ROMs. Many experts believe that they’ll be a popular storage

medium.

 93

UNIT – III

Self Assessment Questions

Fill in the blank

1. Computer hardware falls into two categories ___________ and

____________ devices.

2. Computers have several additional storage locations called

3. Every computer comes with a certain amount of physical memory,

usually referred to as _______________

4. The memory unit that holds instructions for starting up the computer

is ________________

5. _______________ is the input device consisting of a set of keys that

enables you to enter data into a computer.

6. The three basic types of mice are _______________ , ________ and

_____________.

7. SVGA stands for ___________ graphics array.

8. Colour monitors are some times called _________ monitors.

9. There are two types of auxiliary storage devices ________,

____________.

10. CD – ROM stands for ___________________.

True or False

1.Hardware is the mechanical and electronic device

2.Static RAM is slower than Dynamic RAM.

3.An EEPROM can be erased by exposing it to an electrical charge.

4.Track ball is another pointing device.

5.Light pen is not an Input device..

6.A Gray scale monitor is a special type of colour monitor capable of

displaying different shades of gray.

7. On colour monitors, each pixel is composed of 3 dots - red, blue, green.

8 Auxiliary storage is long term, volatile memory.

9 Zip disk can hold 100 MB,

10CD –R drive is short for compact disk Recordable drive.

Multiple Choice

1. The two parts of the CPU are

a). Control Unit Memory b) Addresses and registers

c). Addresses and ALU d) Control Unit and ALU

 94

2. The different types of memory units are

a). RAM b) PROM c) ROM d)All of the above

3. Which of the following loses it contents when the computer is

turned off?

 a)RAM b)ROM c) PROM d) All of the above

 4. Which is the technology used in the evaluation of aptitude tests

 a)OCR b)OMR c) MICR d)MCR

 5. The different types of printers are

a) Daisy – wheel b). Dot matrix c) Laser & Ink – jet

 d) All of the above

6. Which of the following is a sequential access device.

a). Hard disk b) Floppy disk c) Magnetic tape d) all of the

above

 7. CD – RW stands for

 a) CD – Recordable b) CD – Reusable

 c) CD – Rewritable d) None of the above

 Unit Questions

1. What are the major functions of a computer?

2. Explain how the CPU and memory work.

3. What are the different types of memory?

4. What is the difference between RAM & ROM

5. What are the different kinds of input devices.

6. Explain MICR, OCR and OMR

7. What are the major output devices for a computer?

8. What do you mean by VGA, SVGA & XGA

9. What are the major auxiliary storage devices for a computer?

10. What is the difference between random access device and

sequential access device?

11. Describe Zip disk, Jaz disk and Super disk.

12. Explain CD –ROM, CD – R Drive & CD – RW Disks.

.

 95

Self Assessment Answers

Fill in the blanks

1. CPU, Pheripheral

2. Registers

3. The Main Memory (Or) The RAM

4. ROM

5. Keyboard

6. Mechanical, Optomechanical, Optical

7. SVGA

8. RGB

9. Magnetic Tapes, Magnetic Disks

10. Compact Disc – Read Only Memory

True / False

1. True

2. False

3. True

4. True

5. False

6. True

7. True

8. False

9. True

10. True

Multiple Choices

1. D

2. D

3. A

4. B

5. D

6. C

7. C

 96

UNIT- IV

COMBINATIONAL LOGIC

4-1 INTRODUCTION:

4-2 ADDERS

4.2.1 Half-Adder

 4.2.2 Full-Adder

4-3 SUBTRACTORS

4.3.1 Half-Subtractor

4.3.2 Full-Subtractor

4.4 DECODERS

4.5 ENCODERS

4.6 MULTIPLEXERS

4.7 DEMULTIPLEXERS

4.8 FLIP-FLOPS

 4.8.1 BASIC FLIP-FLOP CIRCUIT

 4.8.2 Clocked RS Flip-Flop

 4.8.3 D FLIP- FLOP

4.8.4 JK Flip-flop

4.8.5 T Flip-flop

 4.8.6 Master-Slave Flip-Flop

4.9 REGISTERS

 4.9.1 Register with parallel load

 97

4.10 SHIFT REGISTERS

4.10.1 Serial Transfer

4.10.2 Bidirectional Shift Register with Parallel Load

4.10.3 Serial Addition

4.11 Ripple Counters

4.11.1 Binary Ripple Counter

4.11.2 BCD Ripple Counter

4.11.3 Synchronous Counters

4.11.4 Binary Counter

4.11.5 Binary Up-Down Counter

4.11.6 BCD Counter

Self-Assessment Questions

Self Assessment Answers:

 98

UNIT IV

COMBINATIONAL LOGIC

4-1 INTRODUCTION:

 A combinational circuit consists of logic gates whose outputs at any

time are determined directly from the present combination of inputs without

regard to previous inputs.

 A combinational circuit consists of input variables, logic gates, and

output variables. The logic gates accept signals from the inputs and generate

signals to the outputs.

 Figure 4-0 Block diagram of a combinational circuit

A block diagram of a combinational circuit is shown in Fig.4-0. The n

input binary variables come from an external source; the m output variables go

to an external destination.

4-2 ADDERS

 Digital computers perform a variety of information-processing tasks.

Among the basic functions encountered are the various arithmetic operations.

The most basic arithmetic operation, no doubt, is the addition of two binary

digits. This simple addition consists of four possible elementary operations,

namely, 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10. The first three

operations produce a sum whose length is one digit, but when both augend and

addend bits are equal to 1, the binary sum consists of two digits. The higher

significant bit of this result is called a carry. When the augend and addend

numbers contain more significant digits, the carry obtained from the addition of

two bits is added to the next higher-order pair of significant bits. A

combinational circuit that performs the addition of two bits is called a half-

adder. One that performs the addition of three bits (two significant bits and a

previous carry) is a full-adder. The name of the former stems from the fact that

two half-adders can be employed to implement a full-adder. The two adder

circuits are the first combinational circuits we shall design.

4.2.1 Half-Adder

 From the verbal explanation of a half-adder, we find that this circuit

needs two binary inputs and two binary outputs. The input variables designate

the augend and addend bits; the output variables produce the sum and carry. It

is necessary to specify two output variables because the result may consist of

two binary digits. We arbitrarily assign symbols x and y to the two inputs and S

(for sum) and C (for carry) to the outputs.

n input

variables

m output

variables
Combinational

Logic

Circuit

 99

 Now that we have established the number and names of the input and

output variables, we are ready to formulate a truth table to identify exactly the

function of the half-adder. This truth table is shown below:

 x y C S

0 0

0 1

1 0

1 1

 0 0

 0 1

 0 1

 1 0

The carry output is 0 unless both inputs are 1. The S output represents the least

significant bit of the sum.

The simplified Boolean functions for the two outputs can be obtained

directly from the truth table. The simplified sum of products expressions are:

 S = x’y + xy’

 C = xy

 (e) S = x y

 C = xy

Figure 4-1 : Various implementation of a half-adder

 The logic diagram for this implementation is shown in Fig. 4-1(a), as

are four other implementations for a half-adder. They all achieve the same

result as far as the input-output behavior is concerned. They illustrate the

flexibility available to the designer when implementing even a simple

combinational logic function such as this.

 100

 Fig 4-1(a), as mentioned above, is the implementation of the half-adder

in sum of products. Figure 4-1(b) shows the implementation in product of

sums:

 S = (x + y) (x’ + y’)

 C = xy

 To obtain the implementation of Fig. 4-1(c), we note that S is the

exclusive-OR of x and y. The complement of S is the equivalence of x and y:

 S’ = x y + x’ y’

but C = xy, and therefore we have:

 S = (C + x’ y’)

In Fig. 4-1(d) we use the product of sums implementation with C derived as

follows :

 C = xy = (x’+ y’)’

 The half-adder can be implemented with an exclusive-OR and an AND

gate as shown in Fig. 4-1(e). This form is used later to show that two half-adder

circuits are needed to construct full-adder circuit.

4.2.2 Full-Adder

 A full-adder is a combinational circuit that forms the arithmetic sum of

three input bits. It consists of three inputs and two outputs. Two of the input

variables, denoted by x and y, represent the two significant bits to be added.

The third input, z, represents the carry from the previous lower significant

position. Two outputs are necessary because the arithmetic sum of three binary

digits ranges in value from 0 to 3, and binary 2 or 3 needs two digits. The two

outputs are designated by the symbols S for sum and C for carry. The binary

variable S gives the value of least significant bit of the sum. The binary variable

C gives the output carry. The truth table of the full-adder is as follows:

x y z C S

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

 1 1 0

 1 1 1

 0 0

 0 1

 0 1

 1 0

 0 1

 1 0

 1 0

 1 1

 101

 The eight rows under the input variables designate all possible

combinations of 1’s and 0’s that these variables may have. The 1’s and 0’s for

the output variables are determined from the arithmetic sum of the input bits.

When all input bits are 0’s, the output is 0. The S output is equal to 1 when only

one input is equal to 1 or when all three inputs are equal to 1. The C output has

a carry of 1 if two or three inputs are equal to 1.

 The input and output bits of the combinational circuit have different

interpretations at various stages of the problem. Physically, the binary signals

of the input wires are considered binary digits added arithmetically to form a

two-digit sum at

 Yz y yz y

 00 01 11 10 00 01 11 10

 1 1 1

 x 1 1 x 1 1 1

 z z

 S = x’ y’ z + x’ y z’ + x y’ z’ + x y z C = x y +x z + y z

Figure4-2 Maps for full-adder

the output wires. On the other hand, the same binary values are considered

variables of Boolean functions when expressed in the truth table or when the

circuit is implemented with logic gates. It is important to realize that two

different interpretations are given to the values of the bits encountered in this

circuit.

 The input-output logical relationship of the full-adder circuit may be

expressed in two Boolean functions, one for each output variable. Each output

Boolean function requires a unique map for its simplification. Each map must

have eight squares, since each output is a function of three input variables. The

maps of Fig. 4-2 are used for simplifying the two output functions. The 1’s in

the squares for the maps of S and C are determined directly from the truth table.

The squares with 1’s for the S output do not combine in adjacent squares to

give a simplified expression in sum of products. The C output can be simplified

to a six-literal expression. The logic diagram for the full-adder implemented in

sum of products is shown in Fig.4-4. This implementation uses the following

Boolean expressions:

 S = x’ y’ z + x’ y z’ + x y’ z’ + x y z

 C = x y +x z + y z

 Other configurations for a full-adder may be developed. The product-of-

sums implementation requires the same number of gates as in Fig.4-4, with the

x

0

1

x

0

1

 102

number of AND and OR gates interchanged. A full-adder can be implemented

with two half-adders and one OR gate, as shown in Fig.4-5. The S output from

the second half-adder is the exclusive-OR of z and the output of the first half-

adder, giving:

 S = z (x y)

 = z’ (x y’ + x’ y) + (x y’ + x’ y)’

 = z’ (x y’ + x’ y) + z (x y + x’ y’)

 =x y’ z’ + x’ y z’ + xyz + x’ y’ z

and the carry output is:

 C = z (x y’ + x’ y) + x y = x y’ z + x’ y z + x y

4-3 SUBTRACTORS

 The subtraction of two binary numbers may be accomplished by taking

the complement of the subtrahend and adding it to the minuend (Section 1-5).

By this method, the subtraction operation operation becomes an addition

operation requiring full-adders for its machine implementation. It is possible to

implement subtraction with logic circuits in a direct manner, as done with paper

 103

and pencil. By this method, each subtrahend bit of the number is subtracted

from its corresponding significant minuend bit to form a difference bit. If the

minuend bit is smaller than the subtrahend bit, a 1 is borrowed from the next

significant position. The fact that a 1 has been borrowed must be conveyed to

the next higher pair of bits by means of a binary signal coming out (output) of a

given stage and going into (input) the next higher stage. Just as there are half-

and full-adders, there are half- and full-subtractros.

4.3.1 Half-Subtractor

 A half-subtractor is a combinational circuit that subtracts two bits and

produces their difference. It also has an output to specify if a 1 has been

borrowed. Designate the minuend bit by x and the subtrahend bit by y. To

perform x – y, we have to check the relative magnitudes of x and y. If x > y, we

have three possibilities: 0 - 0 = 0 , 1 - 0 = 1, and 1 – 1 = 0. The result is called

the difference bit. If x < y, we have 0 - 1, and it is necessary to borrow a 1 from

the next higher stage. The 1 borrowed from the next higher stage adds 2 to the

minuend bit, just as in the decimal system a borrow adds 10 to a minuend digit.

With the minuend equal to 2, the difference becomes 2-1=1. The half-

subtractor needs two outputs. One output generates the difference and will be

designated by the symbol D. The second output, designated B for borrow,

generates the binary signal that informs the next stage that a 1 has been

borrowed. The truth table for the input-output relationship of a half-subtractor

can now be derived as follows:

x y B D

0 0

0 1

1 0

1 1

0 0

1 1

0 1

0 0

The output borrow B is a 0 as long as x ≥ y. It is a 1 for x = 0 and y = 1. The D

output is the result of the arithmetic operation 2B + x – y.

 The Boolean functions for the two outputs of the half-subtractor are

derived directly from the truth table:

 D = x’ y + x y’

 B = x’ y

It is interesting to note that the logic for D is exactly the same as the logic for

output S in the half-adder.

4.3.2 Full-Subtractor

 A full-subtractor is a combinational circuit that performs a subtraction

between two bits, taking into account that a 1 may have been borrowed by a

 104

lower significant stage. This circuit has three inputs and two outputs. The three

inputs, x, y, and z, denote the minuend, subtrahend, and previous borrow,

respectively. The two outputs, D and B, represent the difference and output

borrow, respectively. The truth table for the circuit is as follows:

x y z

B D

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

 0 0

 1 1

 1 1

 1 0

 0 1

 0 0

 0 0

 1 1

 z

z

 D = x’ y’ z + x’ y z + x y’ z’ + x y z B = x’ y + x’ z + y z

Figure 4-6 Maps for Full-adder

The eight rows under the input variables designate all possible combinations of

1’s and 0’s that the binary variables may take. The 1’s and 0’s for the output

variables are determined from the subtraction of x – y – z. The combinations

having input borrow z = 0 reduce to the same four conditions of the half-adder.

For x = 0, y = 0, and z = 1, we have to borrow a 1 from the next stage, which

makes B = 1 and adds 2 to x. Since 2 – 0 – 1 = 1, D = 1. For x = 0 and y z =

11, we need to borrow again, making B = 1 and x = 2. Since 2 – 1 – 1 = 0,

D = 0. For x = 1 and y z =01, we have x – y – z = 0, which makes B = 0 and D

= 0. Finally, for x = 1, y = 1, z = 1, we have to borrow 1,making B = 1 and x =

3, and 3 – 1 – 1 = 1, making D = 1.

 The simplified Boolean functions for the two outputs of the

full-subtractor are derived in the maps of Fig. 4-5. The simplified sum of

products output functions are:

1

1

1

 1

1 1

 1 1

00 01 11

10

 00 01 11 10

y
yz

x

0

1

x

0

1 x

x

y

1

 105

 D = x’ y’ z + x’ y z’ + x y z’ + x y z

 B = x’ y + x’ z + y z

 Again we note that the logic function for output D in the full-

subtractor is exactly the same as output S in the full-adder. Moreover, the

output B resembles the function for C in the full-adder, except that the input

variable x is complemented. Because of these similarities, it is possible to

convert a full-adder into a full-subtractor by merely complementing input x

prior to its application to the gates that form the carry output.

4.4 DECODERS

 Discrete quantities of information are represented in digital

systems with binary codes. A binary code of n bits is capable of representing up

to 2n distinct elements of the coded information. A decoder is a combinational

circuit that converts binary information from n input lines to a maximum of 2n

unique output lines. If the n-bit decoded information has unused or don’t-care

combinations, the decoder output will have less than 2n outputs.

 106

 The decoders presented here are called n – to - m line

decoders where m ≤ 2n. Their purpose is to generate the 2n (or less) minterms

of n input variables. The name decoder is also used in conjunction with some

code converters such as a BCD-to-seven-segment decoder.

 As an example, consider the 3-to-8 line decoder circuit of

Fig.5.8. The three inputs are decoded into eight outputs, each output

representing one of the minterms of the 3-input variables. The three inverters

provide the complement of the inputs, and each one of the eight AND gates

generates one of the minterms. A particular application of this decoder would

be a binary-to-octal conversion. The input variables may represent a binary

number, and the outputs will then represent the eight digits in the octal number

system. However, a 3-to-8-line decoder can be used for decoding any 3-bit

code to provide eight outputs, one for each element of the code.

 The operation of the decoder may be further clarified from its

input-output relationship, listed in Table 4-8. Observe that the output variables

are mutually exclusive because only one output can be equal to 1 at any one

time. The output line whose value is equal to 1 at any one time. The output line

whose value is equal to 1 represents the minterm equivalent of the binary

number presently available in the input lines.*

Inputs

x y z

Outputs

D0 D1 D2 D3 D4 D5 D6 D7

 0 0 0

 0 0 1

 0 1 0

 0 1 1

 1 0 0

 1 0 1

 1 1 0

 1 1 1

 1 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0

 0 0 1 0 0 0 0 0

 0 0 0 1 0 0 0 0

 0 0 0 0 1 0 0 0

 0 0 0 0 0 1 0 0

 0 0 0 0 0 0 1 0

 0 0 0 0 0 0 0 1

4.5 ENCODERS

 An encoder is a digital function that produces a reverse

operation from that of a decoder. An encoder has 2n (or less) input lines and n

output lines. The output lines generate the binary code for the 2n input

variables. An example of an encoder is shown in Fig.5-15. The octal-to-binary

encoder consists of eight inputs, one for each of the eight digits, and three

outputs that generate the corresponding binary number. It is constructed with

OR gates whose inputs can be determined from the truth table given in

 107

Inputs

D0 D1 D2 D3 D4 D5 D6 D7

Outputs

 x y z

 1 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0

 0 0 1 0 0 0 0 0

 0 0 0 1 0 0 0 0

 0 0 0 0 1 0 0 0

 0 0 0 0 0 1 0 0

 0 0 0 0 0 0 1 0

 0 0 0 0 0 0 0 1

 0 0 0

 0 0 1

 0 1 0

 0 1 1

 1 0 0

 1 0 1

 1 1 0

 1 1 1

Table 5-4. The low-order output bit z is 1 if the input octal digit is odd. Output

y is 1 for octal digits 2,3,6 or 7. Output x is a 1 for octal digits 4,5,6, or 7. Note

that D0 is not connected to any Or gate; the binary output must be all 0’s in this

case. An all 0’s output is also obtained when all inputs are all 0’s. This

discrepancy can be resolved by providing one more output to indicate the fact

that all inputs are not 0’s.

 The encoder in Fig. 5-15 assumes that only one input line can be equal

to 1 at any time; otherwise the circuit has no meaning. Note that the circuit has

eight inputs and could have 28 =256 possible input combinations. Only eight of

these combinations have any meaning. The other input combinations are don’t-

care conditions.

 Encoders of this type (Fig.5-15) are not available in IC

packages, since they can be easily constructed with OR gates. The type of

encoder available in IC form is called a priority encoder.* These encoders

establish an input priority to ensure that only the highest- priority input line is

 108

encoded. Thus, in Table 5-4, if priority is given to an input with a higher

subscript number over one with a lower subscript number, then if both D2 and

D5 are logic-1 simultaneously, the output will be 101 because D5 has a higher

priority over D2. Of course, the truth table of a priority encoder is different

from the one in Table 5-4.

4.6 MULTIPLEXERS

 Multiplexing means transmitting a large number of information units

over a smaller number of channels or lines. A digital multiplexer is a

combinational circuit that selects binary information from one of many input

lines and directs it to a single output line. The selection of a particular input line

is controlled by a set of selection lines. Normally, there are 2n input lines and n

selection lines whose bit combinations determine which input is selected.

 A 4-line to 1-line multiplexer is shown in Fig.5-16. Each of the four

input lines, I0 to I3, is applied to one input of an AND gate. Selection lines s1

and s0 are decoded to select a particular AND gate. The function table in the

figure lists the input-to-output path for each possible bit combination of the

selection lines. When this MSI functions is used in the design of a digital

system, it is represented in block diagram form as shown in Fig.5-16(c). To

demonstrate the circuit operation, consider the case when s1s0 = 10. The AND

gate associated with input I2 has two of its inputs equal to 1 and the third input

equal to I2. The other three AND gates have at least one input equal to 0, which

makes their output equal to 0. The OR-gate have at least one input equal to the

value of I2, thus providing a path from the selected input to the output. A

multiplexer is also called a data selector, since it selects one of many inputs and

steers the binary information to the output line.

 The AND gates and inverters in the multiplexer resemble a decoder

circuit and, indeed, they decode the input selection lines. In general, a 2n-to-1

line multiplexer is constructed from an n-to-2n decoder by adding to it 2n input

lines, one to each AND gate. The outputs of the AND gates are applied to a

single OR gate to provide the 1-line output. The size of a multiplexer is

Output

 109

specified by the number 2n of its input lines and the single output line. It is then

implied that it also contains n selection lines. A multiplexer is often abbreviated

as MUX.

 As in decoders, multiplexer ICs may have an enable input to control the

operation of the unit. When the enable input is in a given binary state, the

outputs are disabled, and when it is in the other state (the enable state), the

circuit functions as a normal multiplexer. The enable input ICs to a digital

multiplexer with a larger number of inputs.

 In some cases two or more multiplexers are enclosed within one IC

package. The selection and enable inputs in multiple-unit ICs may be common

to all multiplexers. As an illustration, a quadruple 2-line to 1-line multiplexer

IC is shown in Fig. 5-17.* It has four multiplexers, each capable of selecting

one of two input lines. Output Y1 can be selected to be equal to either A1 or B1.

Similarly, output Y2 may have the value of A2 or B2, and so on. One input

selection line, S,

*This is similar to IC type 74157.

 Suffices to select one of two lines in all four multiplexers. The control

input E enables the multiplexers in the 0 state and disables them in the 1 state.

Although the circuit contains four multiplexers, we may think of it as a circuit

that selects one in a pair of 4-input lines. As shown in the function table, the

unit is selected when E=0. Then, if S=0, the four A inputs have a path to the

 110

outputs. On the other hand, if S=1, the four B inputs are selected. The outputs

have all 0’s when E=1, regardless of the value of S.

4.7 DEMULTIPLEXERS

 Some IC decoders are constructed with NAND gates. Since a NAND

gate produces the AND operation with an inverted output, it becomes more

economical to generate the decoder minterms in their complemented form.

Most, if not all, IC decoders include one or more enable inputs to control the

circuit operation. A 2-to-4 line decoder with an enable input constructed with

NAND gates is shown in Fig. 5-12. All outputs are equal to 1 if enable input E

is 1, regardless of the values of inputs A and B. When the enable input is 0, the

circuit operates as a decoder with complemented outputs. The truth table lists

these conditions. The X’s under A and B are don’t-care conditions. Normal

decoder operation occurs only with E = 0, and the outputs are selected when

they are in the 0 state.

 The block diagram of the decoder is shown in Fig. 5-13(a). The small

circle at input E indicates that the decoder is enabled when E = 0. The small

circles at the outputs indicate that all outputs are complemented.

 A decoder with an enable input can function as a demultiplexer. A

demultiplexer is a circuit that receives information on a single line and

transmits this information on one of 2n possible output lines. The selection of a

specific output line is controlled by the bit values of n selection lines

D3

1

1

1

1

0

 111

 The decoder of Fig. 5-12 can function as a demultiplexer if the E line is taken

as a data input line and lines A and B are taken as the selection lines. This is

shown in Fig. 5-13(b). The single input variable E has a path to all four outputs,

but the input information is directed to only one of the output lines, as specified

by the binary value of the two selection lines A and B. This can be verified from

the truth table of this circuit, shown in Fig. 5-12(b). For example, if the

selection lines AB=10, output D2 will be the same as the input value E, while

all other outputs are maintained at 1. Because decoder with an enable input that

makes the circuit a demultiplexer; the decoder itself can use AND, NAND, or

NOR gates.

 112

Decoder/ Demultiplexer circuits can be connected together to form a larger

decoder circuit. Figure. 5-14shows two 3 × 8 decoders with enable inputs

connected to form a 4 × 16 decoder. When w = 0, the top decoder is enabled

and the other is disabled. The bottom decoder outputs are all 0’s and the top

eight outputs generate minterms 0000 to 0111. When w = 1, the enable

conditions are reversed; the bottom decoder outputs generate minterms 1000 to

1111, while the outputs of the top decoder are all 0’s. This example

demonstrates the usefulness of enable inputs in ICs. In general, enable lines are

a convenient feature for connecting two or more IC packages for the purpose of

expanding the digital function into a similar function with more inputs and

outputs.

4.8 FLIP-FLOPS

 A flip-flop circuit can maintain a binary state indefinitely (as

long as power is delivered to the circuit) until directed by an input signal to

switch states. The major differences among various types of flip-flops are in the

number of inputs they posses and in the manner in which the inputs affect the

binary state. The most common types of flip-flops are discussed below.

4.8.1 BASIC FLIP-FLOP CIRCUIT

 It was mentioned in sections 4-7 and 4-8 that a flip-flop

circuit can be constructed from two NAND gates or two NOR gates. These

constructions are shown in the logic diagrams of Fig. 6.2 and 6-3. Each circuit

forms a basic flip-flop upon which other more complicated types can be built.

The cross-coupled connection from the output of one gate to the input of the

other gate constitutes a feedback path. For this reason, the circuits are classified

as asynchronous sequential circuits. Each flip-flop has two outputs, Q and Q´

 113

and two inputs, set and reset. This type of flip-flop is sometimes called a direct-

coupled RS flip-flop or SR latch. The R and S are the first letters of the two

input names.

 To analyze the operation of the circuit of Fig. 6-2, we must remember

that the output of a NOR gate is 0 if any inputs is 1, and that the output is 1

only when all inputs are 0. As a starting point, assume that the set input is 1 and

the reset input is 0. Since gate 2 has an input of 1, its output Q´ must be 0,

which puts both inputs of gate 1 at 0, so that output Q is 1. When the set input

is returned to 0, the outputs remain the same, because output Q remains a 1,

leaving one input of gate 2 at 1. That causes output Q´ to stay at 0, which levels

both inputs of gate number 1 at 0, so that output Q is a 1. In the same manner it

is possible to show that a 1 in the reset input changes output Q to 0 and Q´ to 1.

When the reset input returns in 0, the outputs do not change.

 When a 1 is applied to both the set and the reset inputs, both Q and Q´

outputs go to 0. This condition violates the fact that outputs Q and Q´ are the

complements of each other. In normal operation this condition must be avoided

by making sure that 1’s are not applied to both inputs simultaneously.

 A flip-flop has two useful states. When Q = 1 and Q´ = 0, it is in the set

state (or 1-state). When Q = 0 and Q´ = 1, it is in the clear state (or 0-state).

The outputs Q and Q´ are complements of each other and are referred to as the

normal and complement outputs, respectively. The binary state of the flip-flop

is taken to be the value of the normal output.

 114

 Under normal operation, both inputs remain at 0 unless the state of the

flip-flop has to be changed. The application of a momentary 1 to the set input

causes the flip-flop to go to the set state. The set input must go back to 0 before

a 1 is applied to the reset input. A momentary 1 applied to the reset input causes

the flip-flop to go the clear state. When both inputs are initially 0, a 1 applied to

the set input while the flip-flop is in the set state or a 1 applied to the reset input

while the flip-flop is in the clear state leaves the outputs unchanged. When a 1

is applied to both the set and the reset inputs, both outputs go to 0. This state is

undefined and is usually avoided. If both inputs now go to 0, the state of the

flip-flop is indeterminate and depends on which input remains a 1 longer before

the transition to 0.

 The NAND basic flip-flop circuit of Fig. 6-3 operates with both inputs

normally at 1 unless the state of the flip-flop has to be changed. The application

of a momentary 0 to the set input causes output Q to go to 1 and Q´ to go to 0,

thus putting the flip-flop into the set state. After the set input returns to 1, a

momentary 0 to the reset input causes a transition to the clear state. When both

inputs go to 0, both outputs go to 1–a condition avoided in normal flip-flop

operation.

4.8.2 Clocked RS Flip-Flop

 The basic flip-flop as it stands is an asynchronous sequential circuit. By

adding gates to the inputs of the basic circuit, the flip-flop can be made to

respond to input levels during the occurrence of a clock pulse. The clocked RS

flip-flop shown in Fig. 6-4(a) consists of a basic NOR flip-flop and two AND

gates. The outputs of the two AND gates remain at 0 as long as the clock pulse

(abbreviated CP) is 0, regardless of the S and R input values. When the clock

pulse goes to 1, information from the S and R inputs is allowed to reach the

basic flip-flop. The set is reached with S = 1, R =0, and CP = 1. To change to

the clear state, the inputs must be S = 0, R = 1, and CP = 1. With both S = 1

and R = 1, the occurrence of a clock pulse causes both outputs to momentarily

go to 0. When the pulse is removed, the state of the flip-flop is indeterminate,

i.e., either state may result, depending on whether the set or the reset input of

the basic flip-flop remains a 1 longer before the transition to 0 at the end of the

pulse.

 The graphic symbol for the clocked RS flip-flop is shown in Fig.6-

4(b). It has three inputs: S, R, and CP. The CP input is not written within the

box because it is recognized from the marked small triangle. The triangle is a

symbol for a dynamic indicator and denotes the fact that the flip-flop responds

to an input clock transition from a low-level (binary 0) to a high-level (binary

1) signal. The outputs of the flip-flop are marked with Q and Q´ within the box.

The flip-flop can be assigned a different variable name even though Q is

written inside the box. In that case the letter chosen for the flip-flop variable is

marked outside the box along the output line. The state of the flip-flop is

determined from the value of its normal output Q. If one wishes to obtain the

complement of the normal output, it is not necessary to insert an inverter,

because the complemented value is available directly from output Q’.

 115

 The characteristic table for the flip-flop for the flip-flop is shown in Fig.

6-4(c). This table summarizes the operation of the flip-flop in a tabular form. Q

is the binary state of the flip-flop at a given time (referred to as present state),

the S and R columns give the possible values of the inputs, and Q (t + 1) is the

state of the flip-flop after the occurrence of a clock pulse (referred to as next

state).

 The characteristic equation of the flip-flop is derived in the map of Fig.

6-4(d). This equation specifies the value of the next state as a function of the

present state and the inputs. The characteristic equation is an algebraic

expression for the binary information of the characteristic table. The two

indeterminate states are marked by X’s in the map, since the may result in either

a 1 or a 0. However, the relation SR=0 must be included as part of the

characteristic equation to specify that both S and R can not equal 1

simultaneously.

4.8.3 D FLIP- FLOP

 The D flip-flop shown in Fig. 6-5 is a modification of the clocked RS

flip-flop. NAND gates 1 and 2 form a basic flip-flop and gates 3 and 4 modify

it in to a clocked RS flip-flop. The D input goes directly to the S input, and its

complement, through gate 5, is applied to the R input. As long as the clock

pulse in put is at 0, gates 3 and 4 have a 1 in their outputs, regardless of the

value of the other in puts. This conforms to the requirement that the two inputs

 116

of a basic NAND flip-flop (Fig. 6-3) remain initially at the 1 level. The D input

is sampled during the occurrence of a clock pulse. If it is 1, the output of gate 3

goes to 0, switching the flip-flop to the set state (unless it was already set). If it

is 0, the output of gate 4 goes to 0, switching the flip-flop to the clear state.

 The D flip-flop receives the designation from its ability to transfer

“data” into a flip-flop. It is basically an RS flip-flop with an inverter in the R

input. The added inverter reduces the number of inputs from two to one. This

type of flip-flop is sometimes called a gated D-latch. The CP input is often

given the variable designation G (for gate) to indicate that this input enables the

gated latch to make possible the data entry into the flip-flop.

 The symbol for a clocked D flip-flop is shown in Fig. 6-5(b). The

characteristic table is listed in part (c) and the characteristic equation is derived

in part (d). The characteristic equation shows that the next state of the flip-flop

is the same as the D input and is independent of the value of the present state.

4.8.4 JK Flip-flop

 A JK flip-flop is a refinement of the RS flip-flop in that the

indeterminate state of the RS type is defined in the JK type. Inputs J and K

behave like inputs S and R to set and clear the flip-flop (note that in a JK flip-

flop, the letter J is for set and the letter K is for clear). When inputs are applied

to both J and K simultaneously, the flip-flop switches to its complement state,

that is, if Q = 1, it switches to Q = 0, and vice versa.

 A clocked JK flip-flop is shown in Fig. 6-6(a). Output Q is ANDed with

K and CP inputs so that the flip-flop is cleared during a clock pulse only if Q

was previously 1. Similarly, output Q’ is ANDed with J and CP inputs so that

the flip-flop is set with a clock pulse only if Q’ was previously 1.

 117

 As shown in the characteristic table in Fig. 6-6(c), the JK flip-flop

behaves like an RS Flip-flop, expect when both J and K are equal to 1. When

both J and K are 1, the clock pulse is transmitted through one AND gate only –

the one whose input is connected to the flip-flop output which is presently

equal to 1. Thus, if Q = 1, the output of the upper AND gate becomes 1 upon

application of a clock pulse, and the flip-flop is cleared. If Q’ = 1, the output of

the lower AND gate becomes a 1 and the flip-flop is set. In either case, the

output state of the flip-flop is complemented.

 The inputs in the graphic symbol for the JK flip-flop must be marked

with a J (under Q) and K (under Q’). The characteristic equation is given in Fig.

6-4(d) and is derived from the map of the characteristic table.

 Note that because of the feedback connection in the JK flip-flop, a CO

signal which remains a 1 (while J = K = 1) after the outputs have been

complemented once will cause repeated and continuous transitions of the

outputs. To avoid this undesirable operation, the clock pulse must have a time

duration which is shorter than the propagation delay through the flip-flop. This

is a restrictive requirement, since the operation of the circuit depends on the

width of the pulses. For this reason, JK flip-flops are never constructed as

shown in Fig. 6-6(a). The restriction on the pulse width can be eliminated with

a master-slave or edge-triggered construction, as discussed in the next section.

The same reasoning applies to the T flip-flop presented below.

 118

4.8.5 T Flip-flop

 The T flip-flop is a single-input version of the JK flip-flop. As shown in

Fig. (a), the T flip-flop is obtained from a JK type if both inputs are tied

together. The designation T comes from the ability of the flip-flop to “toggle,”

or change state. Regardless of the present state of the flip-flop, it assumes the

complement state when the clock pulse occurs while input T is logic-1. The

symbol, characteristic table, and characteristic table, and characteristic equation

of the T flip-flop are shown in Fig. 6-7, parts (b), (c), and (d), respectively.

4.8.6 Master-Slave Flip-Flop

 A master-slave flip-flop is constructed from two separate flip-flops. One

circuit serves as a master and the other as a slave, and the overall circuit is

referred to as a master-slave flip-flop. The logic diagram of an RS master-slave

flip-flop is shown in Fig. 6-9. It consists of a master flip-flop, a slave flip-flop,

and an inverter. When clock pulse CP is 0, the output of the inverter is 1. Since

the clock input of the slave is 1, the flip-flop is enabled and output Q is equal to

Y, while Q’ is equal to Y’. The master flip-flop is disabled because CP = 0.

When the pulse becomes 1, the information then at the external R and S inputs

is transmitted to the master flip-flop. The slave flip-flop, however, is isolated as

long as the pulse is at its 1 level, because the output of the inverter is 0. When

the pulse returns to 0, the master flip-flop is isolated, which prevents the

external inputs from affecting it. The slave flip-flop then goes to the same state

as the master flip-flop.

T

CP

 119

4.9 REGISTERS

 Various types of registers are available in MSI circuits. The simplest

possible register is one that consists of only flip-flops without any external

gates. Figure 7-1 shows such a register constructed with four D-type flip-flops

and a common clock pulse input. The clock pulse input, CP, enables all flip-

flops so that information presently available at the four inputs can be

transferred into the 4-bit register. The four outputs can be sampled to obtain the

information presently stored in the register.

 The way that the flip-flops in a register are triggered is of primary

importance. If the flip-flops are constructed with gated D -type latches as in

Fig. 6-5, then information present at a data (D) input is transferred to the Q

output when the enable (CP) is 1, and the Q output follows the input data as

long as the CP signal remains 1. When CP goes to 0, the information that was

present at the data input just before the transition is retained at the Q output. In

other words, the flip-flops are sensitive to the pulse duration, and the register is

enabled for as long as CP = 1. A register that responds to the pulse duration is

commonly called a gated latch, and the CP input is frequently labeled with the

variable G (instead of CP). Latches are suitable for use as temporary storage of

binary information that is to be transferred to an external destination.

 120

 A group of flip-flops sensitive to pulse duration is usually called a latch,

whereas a group of flip-flops sensitive to pulse transition is called a register.*

4.9.1 Register with parallel load

 The transfer of new information into a register is referred to as loading

the register. If all the bits of the register are loaded simultaneously with a single

clock pulse, we say that the loading is done in parallel. Clock pulse must be

inhibited from the CP terminal if the content of the register must be left

unchanged. In other words, the CP input acts as an enable signal which controls

the loading of new information is loaded into the register. If CP goes to 1, the

input information is loaded into the register. If CP remains at 0, the content of

the register is not changed. Note that the change of state in the outputs occurs at

the positive edge of the pulse. If a flip-flop changes state at the negative edge,

there will be a small circle under the triangle symbol in the CP input of the flip-

flop.

 Most digital systems have a master-clock generator that supplies a

continuous train of clock pulse. All clock pulses are applied to all flip-flops and

registers in the system. The master-clock generator acts like a pump that

supplies a constant beat to all parts of the system. A seprate control signal then

decides what specific clock pulses will have an effect on a particular register. In

such a system, the clock pulses must be ANDed with the control signal, and the

output of the AND gate is then applied to the CP terminal of the register shown

in Fig. 7-1. When the control signal is 0,the output of the AND gate is 0, and

the stored information in the register remains unchanged. Only when the

control signal is a 1 does the clock pulse pass through the AND gate and into

the CP terminal for new information to be loaded into the register.

 A 4-bit register with a load control input using RS flip-flops. The CP

input of the register receives continuous synchronized pulses which are applied

to all flip-flops. The inverter in the CP path flip-flops to be triggered by the

negative edge of the incoming pulses. The purpose of the inverter is to reduce

the loading of the master-clock generator. This is because the CP input is

connected to only one gate (the inverter) instead of the four-gate inputs that

would have been required if the connections were made directly into the flip-

flop clock inputs (marked with small triangles).

 121

 The clear input goes to a special terminal in each flip-flop through a

noninverting buffer gate. When this terminal goes to 0, the flip-flop is cleared

asynchronously. The clear input is useful for clearing the register to all 0’s prior

to its clocked operation. The clear input must be maintained at 1 during normal

clocked operations (see Fig. 6-14).

 122

The load input goes through a buffer gate (to reduce loading) and through a

series of AND gates to the R and S inputs of each flip-flop.

it is the load input that controls the operation of the register. The two AND

gates and the inverter associated with each input I determine the values of R

and S. If the load input is 0, both R and S are 0, and no change of state occurs

with any clock pulse. Thus, the load input is a control variable which can

prevent any information change in the register as long as its input is 0. when the

load control goes to 1, inputs I1 through I4 specify what binary information is

loaded into the register on the next clock pulse. For each I that is equal to 1, the

corresponding flip-flop inputs are S = 1, R = 0. For each I that is equal to 0, the

corresponding flip-flop inputs are S = 0, R = 1. Thus, the input value is

transferred into the register provided the load input is 1, the clear input is 1, and

a clock pulse goes from 1 to 0. This type of transfer is called a parallel-load

transfer because all bits of the register are loaded simultaneously. If the buffer

gate associated with the load input is changed to an inverter gate, then the

register is loaded when the load input is 0 and inhibited when the load input is

1.

 123

 A register with parallel load can be constructed with D flip-flops as

shown in Fig. 7-3. The clock and clear inputs are the same as before. When the

load input is 1, the I inputs are transferred into the register on the next clock

pulse. When the load input is 0, the circuit inputs are inhibited and the D flip-

flops are reloaded with their present value, thus maintaining the content of the

register. The feedback connection in each flip-flop is necessary when D type is

used because a D flip-flop does not have a “no-change” input condition. With

each clock pulse, the D input determines the next state of the output. To leave

the output unchanged, it is necessary to make the D input equal to the present Q

output in each flip-flop.

 We saw in chapter 6 that a clocked sequential circuit consists of a group

of flip-flops and combinational gates. Since registers are readily available as

MSI circuits, it becomes convenient at times to employ a register as part of the

sequential

circuit. A block diagram of a sequential circuit that uses a register is shown in

Fig. 7-4. The present state of the register and the external inputs determine the

next state of the register and the values of external outputs. Part of the

combinational circuit determines the next state and the other part generates the

outputs. The next state value from the combinational circuit is loaded into the

register with a clock pulse. If the register has a load input, it must be set to 1;

otherwise, if the register has no load input (as in Fig. 7-1), the next state value

will be transferred automatically every clock pulse.

 The combinational circuit part of a sequential circuit can be

implemented by any of the methods discussed in chapter 5. It can be

constructed with SSI gates, with ROM, or with a programmable logic array

(PLA). By using a register, it is possible to reduce the design of a sequential

circuit to that of a combinational circuit connected to a register.

EXAMPLE 7-1 Design the sequential circuit whose state table is listed in

Fig. 7-5(a).

 The state table specifies two flip-flops A1 and A2, one input x, and one

output y. The next state and output information is obtained directly from the

table:

 A1 (t + 1) = ∑ (4 , 6)

 124

 A2 (t + 2) = ∑ (1 , 2 , 5 , 6)

 Y (A1 , A2 , x) = ∑ (3 , 7)

The minterm values are for variables A1, A2, and x, which are the present state

and input variables. The functions for the next state and output can be

simplified by means of maps to give:

 A1 (t + 1) = A1 x´

 A2 (t + 1) = A2 x

 Y = A 2 x

The logic diagram is shown in Fig. 7-5 (b).

EXAMPLE 7-2 Repeat Example 7-1, but now use a ROM and a register.

 The ROM can be used to implement the combinational circuit and the register

will provide the flip-flops. The number of inputs to the ROM is equal to the

number of flip-flops plus the number of external inputs. The number of outputs

y

 125

of the ROM is equal to the number of flip-flops plus the number of external

outputs. In this case we have three inputs and three outputs for the ROM; so its

size must be 8 × 3. The implementation is shown in Fig. 7 – 6. The Rom truth

table is identical to the state table with “present state” and “inputs” specifying

the address of ROM and “next state” and “outputs” specifying the ROM

outputs. The next state values must be connected from the ROM outputs to the

register inputs.

4.10 SHIFT REGISTERS

 A register capable of shifting its binary information either to the right or

to the left is called a shift register. The logical configuration of a shift register

consists of a chain of flip-flops connected in cascade, with the output of one

flip-flop connected to the input of the next flip-flop. All flip-flops receive a

common clock pulse, which causes the shift from one stage to the next.

 The simplest possible shift register is one that uses only flip-flops, as

shown in Fig. 7-7. The Q output of a given flip-flop is connected to the D input

of the flip-flop at its right. Each clock pulse shifts the contents of the register

one bit position to the right. The serial input determines what goes into the

leftmost flip-flop during the shift. The serial output is taken from the output of

the rightmost flip-flop prior to the application of a pulse. Although this register

shifts its contents to the right, if we turn the page upside down, we find that the

register shifts its contents to the left. Thus a unidirectional shift register can

function either as a shift-right or as a shift-left register.

 The register in Fig. 7-7 shifts its contents with every clock pulse during

the negative edge of the pulse transition. (This is indicated by the small circle

associated with the clock input in all flip-flops.) If we want to control the shift

so that it occurs only with certain pulses but not with others, we must control

the CP input of the register. It will be shown later that the shift operations can

be controlled through the D inputs of the flip-flops rather than through the CP

input. If, however, the shift register in Fig. 7-7 is used, the shift can easily be

controlled by means of an external AND gate as shown below.

 126

4.10.1 Serial Transfer

 A digital system is said to operate in a serial mode when information is

transferred and manipulated one bit at a time. The content of one register is

transferred to another by shifting the bits from one register to the other. The

information is transferred one bit at a time by shifting the bits out of the source

register into the destination register.

 The serial transfer of information from register A to register B is done

with shift registers, as shown in the block diagram of Fig. 7-8(a). The serial

output (SO)of register A goes to the serial input (SI) of register B. To prevent

the loss of information stored in the source register, the A register is made to

circulate its information by connecting the serial output to its serial input

terminal. The initial content of register B is shifted out through its serial output

and is lost unless it is transferred to a third shift register. The shift-control input

determines when and by how many times the registers are shifted. This is done

by the AND gate that allows clock pulses to pass into the CP terminals only

when the shift-control is 1.

 Suppose the shift registers have four bits each. The control unit that

supervise the transfer must be designed in such a way that it enables the shift

registers, through the shift-control signal, for a fixed time duration equal to four

clock pulses. This is shown in the timing diagram of Fig. 7-8(b). The shift-

control signal is synchronized with the clock and changes value just after the

negative edge of a clock pulse. The next four clock pulses find the shift-control

signal in the 1 state, so the output of the AND gate connected to the CP

terminals produces the four pulses T 1 , T2 , T3 , and T4. The fourth pulse

changes the shift control to 0 and the shift registers are disabled.

 Assume that the binary content of A before the shift is 1011 and that of

B, 0010. The serial transfer from A to B will occur in four steps as shown in

Table 7-1. After the first pulse T1, the rightmost bit of A is shifted into the

leftmost bit of B and, at the same time, this bit is circulated into the leftmost

 127

position of A. The other bits of A and B are shifted once the right. The previous

serial output from B is lost and its value changes from 0 to 1. The next three

pulses perform identical operations, shifting the bits of A into B, one at a time.

After the fourth shift, the shift control goes to 0 and both registers A and B have

the value 1011. Thus, the content of A is transferred into while the content of A

remains unchanged.

The difference between serial and parallel modes of operation should be

apparent from this example. In the parallel mode, information is available from

all bits of a register and all bits can be transferred simultaneously during one

clock pulse. In the serial mode, the registers have a single serial input and a

single serial output. The information is transferred one bit at a time while the

registers are shifted in the same direction.

The time interval between clock pulses is called the bit time, and the

time required to shift the entire contents of a shift register is called the word

time.

4.10.2 Bidirectional Shift Register with Parallel Load

 Shift registers can be used for converting serial data to parallel data, and

vice versa. If we have access to all the flip-flop outputs of a shift register, then

information entered serially by shifting can be taken out in parallel from the

outputs of the flip-flops. If a parallel load capability is added to a shift register,

then data entered in parallel can be taken out in serial fashion by shifting the

data stored in the register.

Some shift registers provide the necessary input and output terminals

for parallel transfer. They may also have both shift-right and shift-left

capabilities. The most general shift register has all the capabilities listed below.

1. A clear control to clear the register to 0.

2. A CP input for clock pulses to synchronize all operations.

3. A shift-right control to enable the shift-right operation and the

serial input and output lines associated with the shift-right.

4. A shift-left control to enable the shift-left operation and the serial

input and output lines associated with the shift-left.

5. A parallel-load control to enable a parallel transfer and the n input

lines associated with the parallel transfer.

Timing pulse

Initial value

After T1

After T2

After T3

After T4

 128

6. Parallel output lines.

7. A control state that leaves the information in the register

unchanged even though clock pulses are continuously applied.

 Parallel outputs

 A1 A2 A3 A4

 A register capable of shifting both right and left is called a bidirectional

shift register. One that can shift in only one direction is called a unidirectional

shift register. If the register has both shift and parallel-load capabilities, it is

called a shift register with parallel load.

 The diagram of a shift register that has all the capabilities listed above is

shown in Fig. 7-9.* It consists of four D flip-flops, although RS flip-flops could

be used provided an inverter is inserted between the S and R terminals. The four

multiplexers (MUX) are part of the register. The four multiplexers have two

common selection variables, s1 and s0. Input 0 in each MUX is selected when

s1s0 = 00, input 1 is selected when s1s0 = 01, and similarly for the other two

inputs to the multiplexers.

 When s1s0 = 00, the present value of the register is applied to the D

inputs of the flip-flops. This condition forms a path from the output of each

flip-flop into the input of the same flip-flop. The next clock pulse transfers into

each flip-flop the binary value it held previously, and no change of state occurs.

 129

When s1s0 = 01, terminals 1 of the multiplexer inputs have a path to the D

inputs of the flip-flops. This causes a shift-right operation, with the serial input

transferred into flip-flop A4. When s1s0 = 10, a shift-left operation results, with

the other serial input going into flip-flop A1. Finally, when s1s0 = 11, the

binary information on the parallel input lines is transferred into the register

simultaneously during the next clock pulse.

Table 7-2 Function table for the register of Fig. 7-9

Mode control Register operation

 s1 s0

0 0

0 1

1 0

 1 1

 No change

 Shift right

 Shift left

 Parallel load

*This is similar to IC type 74194.

A bidirectional shift register with parallel load is a general-purpose

register capable of performing three operations: shift left, shift right, and

parallel load. Not all shift registers available in MSI circuits have all these

capabilities. The particular application dictates the choice of one MSI shift

register over another.

Serial Addition

 Operations in digital computers are mostly done in parallel because this

is faster mode of operation. Serial operations are slower but require less

equipment. To demonstrate the serial mode of operation.

 The two binary numbers to be added serially are stored in two shift

registers. Bits are added one pair at a time, sequentially, through a single full-

adder (FA) circuit. The carry out of the full-adder is transferred to a D flip-flop.

The output of this flip-flop is then used as an input carry for the next pair of

significant bits.

 130

Figure 7.10 serial adder

 The operation of the serial adder is as follows. Initially, the A register

holds the augend, the B register holds the addend, and the carry flip-flop is

cleared to 0. The serial outputs (SO) of A and B provide a pair of significant bits

for the full-adder at x and y. Output Q of the flip-flop gives the input carry at z.

The shift-right control enables both registers and the carry flip-flop; so at the

next clock pulse, both registers are shifted once to the right, the sum bit from S

enters the leftmost flip-flop of A, and the output carry is transferred into flip-

flop Q. The shift-right control enables the registers for a number of clock pulse,

a new sum bit is transferred to A, a new carry is transferred to Q, and both

registers are shifted once to the right. This process continues until the shift-right

control is disabled.

4.11 Ripple Counters

 MSI counters come in two categories: ripple counters and synchronous

counters. In a ripple counter, the flip-flop output transition serves as a source

for triggering other flip-flops. In other words, the CP inputs of all flip-flops

(except the first) are triggered not by the incoming pulses but rather by the

transition that occurs in other flip-flops. In a synchronous counter, the input

pulses are applied to all CP inputs of all flip-flops. The change of state of a

particular flip-flop is dependent on the present state of other flip-flops.

Synchronous MSI counters are discussed in the next section. Here we present

some common MSI ripple counters and explain their operation.

4.11.1 Binary Ripple Counter

 A binary ripple counter consists of a series connection of

complementing flip-flops (T or JK type), with the output of each flip-flop

connected to the CP input of the next higher-order flip-flop. The flip-flop

Shift-right

 CP

 External

 input

 131

holding the least significant bit receives the incoming count pulses. The

diagram of a 4-bit binary ripple counter is shown in Fig. 7-12. All J and K

inputs are equal to 1. The small circle in the CP input indicates that the flip-flop

complements during a negative-going transition or when the output to which it

is connected goes from 1 to 0.

To understand the operation of the binary counter, refer to its count sequence

given in Table 7-4. It is obvious that the lowest-order bit A1 must be

complemented with each count pulse. Every time A1 goes from 1 to 0, it

complements A2. Every time A2 goes from 1 to 0, it complements A3, and so on.

For example, take the transition from count 0111 to 1000. The arrows in the

table emphasize the transitions in this case. A1 goes from 1 to 0, it triggers A2

and complements it. As a result, A2 goes from 1 to 0, which in turn

complements A3. A3 now goes from 1 to 0, which complements A4. The output

transition of A4, if connected to a next stage, will not trigger the next flip-flop

since it goes from 0 to

1. The flip-flops change one at a time in rapid succession, and the signal

propagates through the counter in a ripple fashion. Ripple counters are

sometimes called asynchronous counters.

 A binary counter with a reverse count is called a binary down-counter.

In a down-counter, the binary count is decremented by 1 with every input count

pulse. The count of a 4-bit down-counter starts from binary 15 and continues to

binary counts 14 , 13 , 12, . . ., 0 and then back to 15. The circuit of Fig. 7-12

1

Count

Pulses

1

 132

will function as a binary down-counter if the outputs are taken from the

complement terminals Q’ of all flip-flops. If only the normal outputs of flip-

flops are available, the circuit must be modified slightly as described below.

 A list of the count sequence of a count-down binary counter shows that

the lowest-order bit must be complemented with every count pulse. Any other

bit in the sequence is complemented if its previous lower-order bit goes from 0

to 1. therefore, the diagram of a binary down-counter looks the same as in Fig.

7-12, provided all flip-flops trigger on the positive edge of the pulse. (The

small circles in the CP inputs must be absent.) If negative-edge-triggered flip-

flops are used, then the CP input of each flip-flop must be connected to the Q’

output of the previous flip-flop. Then when Q goes from 0 to 1, Q’ will go from

1 to 0 and complement the next flip-flop as required.

4.11.2 BCD Ripple Counter

 A decimal counter follows a sequence of ten states and returns to 0 after

the count of 9. Such a counter must have at least four flip-flops to represent

each decimal digit, since a decimal digit is represented by a binary code with at

least four bits. The sequence of states in a decimal counter is dictated by the

binary code used to represent a decimal digit. This is similar to a binary

counter, except that the state after 1001 (code for decimal digit 9) is 0000 (code

for decimal digit 0).

 0000 0001 0010 0011 0100

 1001 1000 0111 0110 0101

Figure 7-13 State diagram of a decimal BCD counter

The design of a decimal ripple counter or of any ripple counter not

following the binary sequence is not a straightforward procedure.

 The logic diagram of a BCD ripple counter is shown in Fig. 7-14.* The

four outputs are designated by the letter symbol Q with a numeric subscript

equal to the binary weight of the corresponding bit in the BCD code. The flip-

flops trigger on the negative edge, i.e., when the CP signal goes from 1 to 0.

Note that the output of Q1 is applied to the CP input of Q4. The J and K inputs

are connected either to a permanent 1 signal or to outputs of flip-flops, as

shown in the diagram.

 133

Q

Q’

 A ripple counter is an asynchronous sequential circuit and cannot be

described by Boolean equations. The CP input goes from 1 to 0, the flip-flop is

set if J = 1, is cleared if K = 1, is complemented if J = K = 1, and is left

unchanged if J = K = 0. The following are the conditions for each flip-flop

state transition:

 1. Q1 is complemented on the negative edge of every count pulse.

 2. Q2 is complemented if Q8 = 0 and Q1 goes from 1 to0. Q2 is cleared if Q8

= 1 and Q1 goes from 1 to 0.

 3. Q4 is complemented when Q2 goes from 1 to 0.

 4. Q8 is complemented when Q4Q2 = 11 and Q1 goes from 1 to 0. Q8 is

cleared if either Q4 or Q2 is 0 and Q1 goes from 1 to 0.

To verify that these conditions result in the sequence required by a BCD

ripple counter. Another way to verify the operation of the counter is to derive

the timing diagram for each flip-flop from the conditions listed above. This

diagram is shown in Fig.

0 1 0 1 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1 0 0 0

0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0

Figure 7-15 Timing diagram for the decimal counter of Fig. 7-14

7-15 with the binary states listed after each clock pulse. Q1 changes state

after clock pulse. Q2 complements every time Q1 goes from 1 to 0 as long as Q8

= 0. When Q8 becomes 1, Q2 remains cleared at 0. Q4 complements every time

Q8

 Count

 Pulses

 Q1

 Q2

 Q3

 Q4

 134

Q2 and Q4 become 1’s, Q8 complements when Q1 goes from 1 to 0. Q8 is

cleared on the next transition of Q1.

The BCD counter of Fig. 7-14 is a decade counter, since it counts from 0

to 9. To count in decimal from 0 to 99, we need a two-decade counter. To count

from 0 to 999, we need a three-decade counter. Multiple-decade counters can

be constructed by connecting BCD counters in cascade, one for each decade. A

three-decade counter is shown in Fig. 7-16. The inputs to the second and third

decades come from Q8 of the previous decade. When Q8 in one decade goes

from 1 to 0, it triggers the count for the next higher-order decade while its own

decade goes from 9 to 0. For instance, the count after 399 will be 400.

4.11.3 Synchronous Counters

 Synchronous counters are distinguished from ripple counters in that

clock pulses are applied to the CP inputs of all flip-flops. The common pulse

triggers all the flip-flops simultaneously, rather than one at a time in succession

as in a ripple counter. The decision whether a flip-flop is to be complemented

or not is determined from the values of the J and K inputs at the time of the

pulse. If J = K = 0, the flip-flop remains unchanged. If J = k = 1, the flip-flop

complements.

 A design procedure for any type of synchronous counter was presented

in Section 6-8. The design of a 3-bit binary counter was carried out in detail

and is illustrated in Fig. 6-30. In this section, we present some typical MSI

synchronous counters and explain their operation. It must be realized that there

is no need to design a counter if it is already available commercially in IC form.

4.11.4 Binary Counter

 The design of synchronous binary counters is so simple. In a

synchronous binary counter, the flip-flop in the lowest-order position is

complemented with every pulse. This means that its J and K inputs must be

maintained at logic-1. A flip-flop in any other position is complemented with a

pulse provided all the bits in the lower-order positions are equal to 1, because

the lower-order bits (when all 1’s) will change to 0’s on the next count pulse.

The binary count dictates that the next higher-order bit be complemented. For

example, if the present state of a 4-bit counter is A4A3A2A1 = 0011, the next

count will be 0100. A1 is always complemented. A2 is complemented because

the present state of A1 = 1. A3 is complemented because the present state of

A3A2A1 = 011, which does not give an all-1’s condition.

Q8 Q4

 102
DI GIT

 135

 Synchronous binary counters have a regular pattern and can easily be

constructed with complementing flip-flops and gates. The regular pattern can

be clearly seen from the 4-bit counter depicted in Fig.7-17. The CP terminals of

all flip-flops are connected to a common clock-pulse source. The first stage A1

has its J and K equal to 1 if the counter is enabled. The other J and K inputs are

equal to 1 if all previous low-order bits are equal to 1 and the count is enabled.

The chain of AND gates generates the required logic for the J and K inputs in

each stage. The counter can be extended to any number of stages, with each

stage having an additional flip-flop and an AND gate that gives an output of 1

if all previous flip-flop outputs are 1’s.

 Note that the flip-flops trigger on the negative edge of the pulse. This is

not essential here as it was with the ripple counter. The counter could also be

triggered on the positive edge of the pulse.

4.11.5 Binary Up-Down Counter

 In a synchronous count-down binary counter, the flip-flop in the lowest-

order position in complemented with every pulse. A flip-flop in any other

position is complemented with a pulse provided all the lower-order bits are

equal to 0. For example, if the present state of a 4-bit count-down binary

counter is A4A3A2A1 = 1100, the next count will be 1011. A1 = 0. A3 is

complemented because the present state of A2A1 = 00.

 136

 A4 A3 A2

A1

 But A4 is not complemented because the present of A3A2A1 = 100, which

is not an all-0’s condition.

 A count-down binary counter can be constructed as shown in Fig. 7-17,

except that the inputs to the AND gates must come from the complement

outputs Q’ and not from the normal outputs Q of the previous flip-flops. The

two operations can be combined in one circuit. A binary counter capable of

counting either up or down is shown in Fig. 7-18. The T flip-flops employed in

this circuit may be considered as JK flip-flops with the J and K terminals tied

together. When the up input control is 1, the circuit counts up, since the T

inputs are determined from the previous values of the normal outputs in Q.

when the down input control is 1, the circuit counts down, since the

complement outputs Q’ determine the states of the T inputs. When both the up

and down signals are 0’s, the register does not change state but remains in the

same count.

 137

4.11.6 BCD Counter

 A BCD counter counts in binary-coded decimal from 0000 to 1001 and

back to 0000. Because of the return to 0 after a count of 9, a BCD counter does

not have a regular pattern as in a straight binary count. To derive the circuit of a

BCD synchronous counter, it is necessary to go through a design procedure as

discussed in Section 6-8.

 The count sequence of a BCD counter is given in Table 7-5. The

excitation for the T flip-flops is obtained from the count sequence. An output y

is also shown in the table. This output is equal to 1 when the counter present

state is 1001. In this way, y can enable the count of the next-higher-order

decade while the same pulse switches the present decade from 1001 to 0000.

 The flip-flop input functions from the excitation table can be simplified

by means of maps. The unused states for minterms 10 to 15 are taken as don’t-

care terms. The simplified functions are listed below:

TQ1 = 1

TQ2 = Q’8Q1

TQ4 = Q2Q1

TQ8 = Q8Q1 + Q4Q2Q1

 y = Q8Q1

The circuit can be easily drawn with four T flip-flops, five AND gates,

and one OR gate.

Synchronous BCD counters can be cascaded to form a counter for

decimal numbers of any length. The cascading is done as in Fig. 7-16, except

that output y must be connected to the count input of the next-higher-order

decade.

 138

Table 7-5 Excitation table for a BCD counter

Count sequence Flip-flop inputs Output carry

Q8 Q4 Q2

Q1

TQ8 TQ4 TQ2

TQ1
Y

 0 0 0 0

 0 0 0 1

 0 0 1 0

 0 0 1 1

 0 1 0 0

 0 1 0 1

 0 1 1 0

 0 1 1 1

 1 0 0 0

 1 0 0 1

 0 0 0 1

 0 0 1 1

 0 0 0 1

 0 1 1 1

 0 0 0 1

 0 0 1 1

 0 0 0 1

 1 1 1 1

 0 0 0 1

 1 0 0 1

0

0

0

0

0

0

0

0

0

1

 139

Unit-IV

Self-Assessment Questions

Fill in the blanks:

1. A combinational circuit that performs the addition of 2 bits is

called a

2. A is a combinational circuit that converts binary

information from n input lines to a maximum of 2n unique

output lines.

3. IC type 74138 is a line decoders.

4. An has 2n input lines and n output lines.

True / False:

 1. A combinational circuit that performs the addition of two bits is called

as half-adder and the addition of three bits is called as full-adder.

2. An encoder is a digital function that produces a reverse operation from

that of a decoder.

3. A register is not a group of binary storage cells suitable for holding

binary information.

4. The flip-flops hold binary information and the gates control when and

how new information is transferred into the register.

Multiple Choice:

1. The type of encoder available in the IC form is called a

a) Property encoder b) priority encoder

c) Proper encoder d) none of the above

2. A register capable of shifting both right and left is called a

 a) Bidirectional shift register b) unidirectional shift register

 c) Tridirectional shift register c) None of the above

3. The time interval between clock pulses is called the

 a) Bit time b) Baud time

 c) Word time d) All of the above

4. Shift registers can be used for converting

 a) Serial data to parallel data b) Parallel data to serial data

 c) All the above d) None of the above

Questions

1. Explain about Flip-Flops with neat diagram?

 140

2. What is the use of Shift Registers?

3. Explain in detail about encoder & decoder with neat circuit and truth

table?

4. What is the function of demultiplexer & multiplexer?

5. Explain in detail about address with neat diagram?

6. Explain in detail about subtractors with truth tables?

Self Assessment Answers:

Fill in the blanks

1. Half adder

2. Decoder

3. 3 to 8

4. Encoder

True OR False

1. True

2. True

3. False

4. True

Multiple Choice

1. (b)

2. (a)

3. (a)

4. (c)

 141

UNIT-V

Computer Design

5.1 Introduction

5.2 SYSTEM CONFIGRATION

5.2.1 Memory Address and Memory Buffer Registers

5.2.2 Program Counter

5.2.3 Accumulator Register

5.2.4 Instruction Register

5.2.5 Sequence Register

5.2.6 E,F and S Flip-flops

5.2.7 Input and Output Registers

5.3 Computer Instructions

5.3.1 AND to A

5.3.2 ADD to A

5.3.3 STORE in A

5.3.4 Increment and Skip if Zero(ISZ)

5.3.5 Branch Unconditionally (BUN)

5.3.6 Branch to Subroutine

5.3.7 Register-reference Instructions

5.3.8 Input-Output Instructions

5.4 Design Of Computer Registers

5.4.1 Register Operation

5.5 Design of Computer

5.6 Design Of Control

5.6.1 Hard-wired Control

5.6.2 PLA Control

5.6.3 Microprogram Control

5.7 Computer Console

Self Assessment Questions

Self Assessment Answers

 142

UNIT-V

Computer Design

5.1 Introduction

The hardware design of a digital computer may be divided into three

interrelated phases: system design, logic design, and circuit design. System

design is concerned with the specifications and general properties of the

system. This task includes the establishment of design objective and design

philosophy, the formulation of computer instructions, and the investigation of

its economic feasibility. The specifications of the computer structure are

translated by the logic designer to provide the hardware implementation of the

system. The circuit design specifies the components for the various logic

circuits, memory circuits, electromechanical equipment, and power supplies.

The computer hardware design is greatly influenced by the software system,

which is normally developed concurrently and which constitutes an integral

part of the total computer system.

The design process is divided into six phases:

1. The decomposition of the digital computer into registers which specify

the general configuration of the system.

2. The specification of computer instructions.

3. The formulation of a timing and control network.

4. The listing of the register-transfer operations needed to execute all

computer instructions.

5. The design of the processor section.

6. The design of the control section.

5.2 SYSTEM CONFIGRATION

 The configuration of the computer is shown in Fig.11.1. Each block

represents a register, expect for the memory unit, the master-clock generator,

and the control logic. This configuration is assumed to satisfy the final system

structure. In a practical situation, the designer starts with a tentative system

configuration and constantly modifies it during the design process. The name of

each register is written inside the block, together with a symbolic designation in

parentheses.

 The master-clock generator is a common clock-pulse source, usually an

oscillator, which generates a periodic train of pulses. These pulses are fanned

out by means of amplifiers and distributed over the entire system. Each pulse

must reach every flip-flop and register at the same time. Phasing delays may be

needed intermittently so that the difference in transmission delays may be

needed intermittently so that the difference in transmission delays is uniform

throughout. The frequency of the pulses is a function of the speed with which

the system operates. We shall assume a frequency of 1 megahertz, which gives

 143

one pulse every microsecond. This pulse frequency is chosen for the sake of

having a round number and to avoid problems of circuit propagation delays.

The memory unit has a capacity of 4096 words of 16 bits each. This

capacity is large enough for meaningful processing. A smaller size may be used

if the computer is to be constructed in the laboratory under economic

restrictions. Twelve bits of an instruction are needed to specify the address of

an operand,

Figure 11.1 Block diagram of digital computer

Program Counter

 (PC)

Memory Address

Register (MAR)

Instruction

Register (I)

 Control

 Logic
S

F

Sequence

Register (G)

Master clock

 Generator

Memory unit

4096words

16 bits/word

Memory Buffer register

 (B)

Memory Buffer register

 (B)
E

Input Register

(N)
Output Register

(U)

 144

Table 11-1 List of registers for computer

Symbolic

designation
Name

Numb

er of

Bits

Function

A

B

PC

MAR

I

E

F

S

G

N

U

Accumulator register

Memory buffer register

Program counter

Memory address register

Instruction register

Extension register

Fetch flip-flop

Start-stop flip-flop

Sequence register

Input register

Output register

16

16

12

12

4

1

1

1

2

9

9

Processor register

Holds contents of memory word

Holds address of next instruction

Holds address of memory word

Holds current operation-code

Accumulator extension

Controls fetch and execute cycles

Starts and stops computer

Provides timing signals

Holds information from input device

Holds information from output

device

Which leaves four bits for the operation part of the instruction. The

access time of the memory is assumed to be less than 1 microsecond so that a

word can be read or written during the interval between two clock pulses.

The part of the digital computer to be designed is decomposed into

register subunits. The following paragraphs explain why each register is needed

and what function it performs. A list of the registers and a brief description of

their functions is presented in Table 11-1. Registers that hold memory words

are 16 bits long. Those that hold an address are 12 bits long. Other registers

have different numbers of bits, depending on their function.

5.2.1 Memory Address and Memory Buffer Registers

 The memory address register, MAR, is used to address specific memory

locations. MAR is loaded from PC when an instruction is to be read from

memory, and from the 12 least significant bits of the B register when an

operand is to be read from memory. Memory buffer register B holds the word

read from or written into memory. The operation part of an instruction word

placed in B is transferred into the I register, and the address part is left in the B

register for transfer to MAR. An operand word placed in the B register is

accessible for operation with the A register. A word to be stored in memory

must be loaded into the B register before a write operation is initiated.

 145

5.2.2 Program Counter

 Program counter PC holds the address of the next instruction to be read

from memory. This register goes through a step-by-step counting sequence and

causes the computer to read successive instructions previously stored in

memory. When the program calls for a transfer to another location or for

skipping the next instruction in sequence, the PC is modified accordingly,

causing the program to continue from a memory location out of the counting

sequence. To read an instruction, the contents of PC are transferred to MAR

and a read operation is initiated. The program counter is always incremented by

1 while a memory write operation reads the present instruction. Therefore, the

address of the next instruction, one higher than the one presently being

executed in the processor, is always available in PC.

5.2.3 Accumulator Register

 Accumulator register A is a processor register that operates on data

previously stored in memory. This register is used to execute most instructions

and for accepting data from the input device or transferring data to the output

device. The A register, together with the B register, makes up the bulk of the

processor unit for the computer. Although most data processing systems

include more registers for the computer. Although most data processing

systems include more registers for the processor unit, we have chosen to

include only one accumulator here in order most to complicate the design. With

a single accumulator as the arithmetic element, it is possible to implement only

the add operation. Other arithmetic operations such as subtraction,

multiplication, and division must be implemented with a sequence of

instructions that form a subroutine.

5.2.4 Instruction Register

 Instruction register I holds the operation-code bits of the current

instruction. This register has only four bits since the operation-code of

instructions is four bits long. The operation-code bits are transferred to the I

register from the B register, while the address part of the instruction is left in B.

The operation-code part must be taken out of the B register because an operand

read from memory into the B register will destroy the previously held

instruction. The operation part of the instruction is needed by the control to

determine what is to be done to the operand just read.

5.2.5 Sequence Register

 Sequence register G is a counter that produces the timing signals for the

computer. The G register is decoded to supply four timing variables for the

control unit. The timing variables, together with other control variables,

produce the control functions that initiate all the micro operations for the

computer.

5.2.6 E,F and S Flip-flops

 Each of these flip-flops is considered a one-bit register. The E flip-flop

is an extension of the A register. It is used during shifting operations, receives

 146

the end carry during addition, and otherwise is a useful flip-flop that can

simplify the data processing capabilities of the computer. The F flip-flop

distinguishes between the fetch and execute cycles. When F is 0, the word read

from memory is treated as an instruction. When F is 1, the word is treated as an

operand. S is a start-stop flip-flop that can be cleared by program control and

manipulated manually. When S is 1, the computer runs according to a sequence

determined by the program stored in memory. When S is 0, the computer stops

its operation.

5.2.7 Input and Output Registers

 The input-output (I/O) device is not shown in the block diagram of Fig.

5.1. It is assumed to be a teletypewriter unit with a keyboard and a printer. The

teletypewriter sends and receives serial information. Each quantity of

information has 8 bits of an alphanumeric code. The serial information from the

keyboard is shifted into the input register. The serial information for printer is

stored in the output register. These two registers communicate with the

teletypewriter serially and with the accumulator register in parallel.

 Input register N consists of nine bits. Bits 1 through 8 hold

alphanumeric input information; bit 9 is a control bit called an input flag. The

flag bit is set when a new character is available from the input device and

cleared when the character is accepted by the computer. The flag bit is needed

to synchronize the slow rate by which the input device operates compared to

the high-speed circuits in the computer. The process of information transfer is

as follows. Initially, the flag bit in N9 is cleared. When a key is struck on the

keyboard, an 8-bit code is shifted into the input register (N1-N8). As soon as the

shift operation is completed, the flag bit in N9 is set to 1. The computer checks

the flag bit; if it is 1, the character code from the N register is transferred in

parallel into the A register and the flag bit is cleared. Once the flag is cleared, a

new character can be shifted into the N register by striking another key.

Output register U works in a similar fashion, but the direction of

information flow is reserved. Initially, the output flag in U9 is set to 1. The

computer checks the flag bit; if it is 1,a character code from the A register is

transferred in parallel to the output register (U1-U8) and the flag bit U9 is

cleared to 0. The output device accepts the coded information and prints the

corresponding character; when the operation is completed, it sets the flag bit to

1. The computer does not load a new character into the output register when the

flag is 0, because this condition indicates that the output device is in the process

of printing the previous character.

5.3 Computer Instructions

The number of instructions available in a computer and their efficiency

in solving the problem at hand are a good indication of how well the system

designer foresaw the intended application of the machine. Medium- to large-

scale computing systems may have hundreds of instructions, while most small

computers limit the list to less than 100. The instructions must be chosen

carefully to supply sufficient capabilities to the system for solving a wide range

 147

of data processing problems. The minimum requirements of such a list should

include a capability for storing and loading words from memory, a sufficient set

of arithmetic and logic operations, some address-modification capabilities,

unconditional branching and branching under test conditions, register

manipulation capabilities and I/O instructions. The instruction list chosen for

our computer is believed to be close to the absolute minimum required for a

restricted but practical data processor.

The formulation of a set of instructions for the computer goes hand in

hand with the formulation of the formats for data and instruction words. A

memory word consists of 16 bits. A word may represent either a unit of data or

an instruction. The formats of data words are shown in Fig. 11-2. Data for

arithmetic operations are represented by a 15-bit binary number, with the sign

in the 16th bit position. Negative numbers are assumed to be in their 2’s-

complement equivalent. Logical operations are performed on individual bits of

the word, with bit 16 treated as any other bit. When the computer

communicates with the I/O device, the

Sign Magnitude (negative numbers in 2’s complement)

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(a) Arithmetic operand

Logical word

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(b) Logical operand

 character character

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(c) Input/output data

Figure 11-2 Data formats

Information transferred is considered to be 8-bit alphanumeric characters. Two

such characters can be accommodated in one computer word.

 The formats of instruction words are shown in Fig. 11-3. The operation

part of the instruction contains four bits; the meaning of the remaining 12 bits

depends on the operation-code encountered. A memory-reference instruction

 148

uses the remaining 12 bits to specify an address. A register-reference

instruction implies an

 Operation Address

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(a) Memory-reference instruction

 Code 0110 Type of register operation or test

(b) Register-reference instruction

 Code 0111 Type of input-output operation or test

(c) Input/output instruction

Figure 11-3 Instruction formats

 Operation on, or a test of, the A or E register. An operand from memory

is not needed; therefore, the 12 least significant bits are used to specify the

operation or test to be executed. A register-reference instruction is recognized

by the code 0110 in the operation part. Similarly, an input-output instruction

does not need a reference to memory and is recognized by the operation code

0111. The remaining 12 bits are used to specify the particular device and the

type of operation or test performed.

 Only four bits of the instruction are available for the operation code. It

would seem, then, that the computer is restricted to a maximum of 16 distinct

operations. However, since register-reference and input-output instructions use

the remaining 12 bits as part of the operation-code, the total number of

instructions can exceed 16. In fact, the total number of instructions chosen for

the computer is 22.

 Of the 16 distinct operations that can be formulated with four bits, only

eight have been utilized by the computer because the leftmost bit of all

instructions (bit 16) is always a 0. This leaves open the possibility of adding

new instructions and extending the computer capabilities if desired.

 The six memory-reference instructions for the computer are listed in

Table 11-2. The symbolic designation is a three-letter word and represents a

abbreviation intended for use by programmers and users when writing symbolic

programs for the computer. The hexadecimal code listed is an equivalent

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

 149

hexadecimal number of the binary code adopted for the operation-code. A

memory-reference instruction uses one hexadecimal digit (4 bits) for the

operation-code; the remaining three hexadecimal digits (12 bits) of the

instruction represent an address designated by the letter m. Each instruction has

a brief word description and is specified more precisely in the function column

with a macrooperation statement. A further clarification of each instruction is

given below, together with an explanation of its use.

Table 11-2 Memory-reference instruction

*m is the address part of the instruction. M is the memory word addressed by

m.

5.3.1 AND to A

 This is a logic operation that performs the AND operation on

corresponding pairs of bits in A, with the memory word M specified by the

address part of the instruction. The result of the operation is left in register A,

replacing its previous contents. Any computer must have a basic set of logic

operations for manipulating nonnumerical data. The most common logic

operations found in computer instructions are AND,OR, exclusive-OR, and

complement. Here we use only the AND and complement. The latter is

included as a register-reference instruction. These two logic operations

constitute a minimal set from which all other logic operations can be derived,

because together the AND and the complement perform a NAND operation. In

section 4-7 we saw that this is a universal operation from which any other logic

operation can be obtained.

5.3.2 ADD to A

 This instruction adds the contents of the memory word M, specified by

the address part of the instruction, to the present contents of register A. The

addition is done assuming that negative numbers are in their 2’s-complement

form. This requires that the sign bit be added I the same way as all other bits

are added. The end-carry out of the sign-bit position is transferred to the E flip-

flop. This instruction, together with the register-reference instructions, is

sufficient for writing programs to implement all other arithmetic operations.

Subtraction is achieved by complementing and incrementing the subtrahend.

Multiplication is achieved by adding and shifting. The increment and shift are

register-reference instructions.

 150

 The ADD instruction must be used for loading a word from memory

into the A register. This is done by first clearing the A register with the register-

reference instruction CLA (defined in Table 11-3). The required word is then

loaded from memory by adding it to the cleared A register.

5.3.3 STORE in A

 This instruction stores the contents of the A register into the memory

word specified by the instruction address. The first three memory-reference

instructions are used to manipulate data between memory words and the A

register. The next three instructions are control instructions that cause in normal

program sequence.

5.3.4 Increment and Skip if Zero(ISZ)

 The increment-and-skip instruction is useful for address modification

and for counting the number of times a program loop is executed. A negative

number previously stored in memory at address m is read by the ISZ

instruction. This number is incremented by 1 and stored back into memory. If,

after it is incremented, the number reaches 0, the next instruction is skipped.

Thus, at the end of a program loop, one inserts an ISZ instruction followed by a

branch unconditionally (BUN) instruction to the beginning of the program

loop. If the stored number does not reach 0, the program returns to execute the

loop again. If it reaches 0, the next instruction (BUN) is skipped and the

program continues to execute instructions after the program loop.

5.3.5 Branch Unconditionally (BUN)

 This instruction transfers control unconditionally to the instruction at

the location specified by the address part m. Remember that the program

counter holds the address of the next instruction to be read and executed.

Normally, the PC is incremented to give the address of the next instruction in

sequence. The programmer has the prerogative of specifying any other

instruction out of sequence by using the BUN instruction. This instruction tells

the computer to take the address part m and transfer it into PC. The address of

the next instruction to be executed is now in PC and is the one which was

previously the address part of the BUN instruction.

 The BUN instruction is listed with the memory-reference instructions

because it needs an address part m. However, it does not need a reference to

memory to access a memory word (designated by the symbol M), as is required

by the other memory-reference instructions.

5.3.6 Branch to Subroutine

 This instruction is useful for branching to a subroutine portion of a

program. When executed, the instruction stores the address of the next

instruction in sequence which is presently held in PC (called the return address)

into the memory word specified by the address part of the instruction. It also

stores the operation code of BUN (hexadecimal 5) in the same memory

location. The contents of the address part m plus 1 are transferred into PC to

start executing the subroutine program at this location. After the subroutine is

 151

executed, control is transferred back to the calling program by means of a BUN

instruction placed at the end of the subroutine.

 Memory

Figure 11-4 Demonstration of branch-to-subroutine instruction

The process of branching to a subroutine and the return to the calling

program is demonstrated in Fig. 11-4 by means of a specific numerical

example. The calling program is now in location 32. The subroutine program

starts at location 65. The BSB instruction causes a transfer to the subroutine,

and the last instruction in the subroutine causes a branch back to location 33 in

the calling program. The numerical example in Fig. 11-4 shows a BSB

instruction in location 32 with an address part m equal to binary 64. While this

instruction is being executed, PC holds the address of the next instruction in

sequence, which is 33.

The BSB instruction performs the macrooperation (see Table 11-2):

 M PC + 5000, PC m + 1

The contents of PC plus hexadecimal 5000 (code for BUN) are

transferred into location 64. This transfer produces an instruction BUN 33. The

address part of the instruction is incremented and placed in PC. PC now holds

the binary equivalent of 65, so the computer starts executing the subroutine at

this location. The last instruction in the subroutine is BUN 64. When this

instruction is executed, control is transferred to the instruction in location 64.

But in address 64, there is now an instruction that branches back to address 33.

The address stored in location 64 by the BSB instruction will always have the

proper return address no matter where the BSB instruction is located. In this

way, the subroutine return is always to a location one higher than the location

32 0100 000001000000

33

0101 000000100001

0101 000001000000

Address

(dec)

BSB 64

BUN 33

Subroutine

BUN 64

 m = 64

 m + 1 = 65

 152

of the BSB instruction. Note that the address number of BUN instruction

placed at the end of the subroutine must always be equal to the address number

where the return address is temporarily stored, which is 64 in this case.

5.3.7 Register-reference Instructions

 The 12 register-reference instructions for the computer are listed in

Table 11-3. Each register-reference instruction has an operation code 0110

(hexadecimal 6) and contains a single 1 in one of the remaining 12 bits of the

instruction. These

 Table 11-3 Register-reference instructions

instructions are specified with four hexadecimal digits which represent all 16

bits of an instruction word. The first seven instructions perform an operation on

the A or E register and are self-explanatory. The next four are skip instructions

used for program control, conditioned on certain status bits. To skip the next

instruction, the PC is incremented by 1 once again. The first increment occurs

when the present instruction is read. In this way, the next instruction read from

memory is two locations up from the location of the present (skip) instruction.

 The status bits for the skip instructions are the sign bit in A, which is in

flip-flop A16, and a zero condition for A or E. If the designated status condition

is present, the next instruction in sequence is skipped; otherwise, the computer

continues from the next instruction in sequence because PC is not incremented.

 The halt instruction is usually placed at the end of a program if one

wishes to stop the computer. Its execution clears the start-stop flip-flop, which

prevents further operations.

 153

5.3.8 Input-Output Instructions

 The computer has four input-output instructions and they are listed in

Table 11-4. These instructions have an operation code 0111 (hexadecimal 7),

and each contains a 1 in only one of the remaining 12 bits of the instruction

word. The input-output instructions are specified with four hexadecimal digits

starting with 7.

 The INP instruction transfers the input character from N to A and also

clears the input flag in N9. The OUT instruction transfers an 8-bit character

code from A into the output register and also clears the output flag in U9. The

two skip instructions check the corresponding status flags and cause a skip of

the next

Table11-4 Input-Output instructions

 Instruction if the flag bit is 1. The instruction that is skipped is normally

a BUN instruction. The BUN instruction is not skipped if the flag bit is 0; this

causes a branch back to the skip instruction to check the flag again. If the flag

bit is 1, the BUN instruction is skipped and an input or output operation is

executed. Thus, the computer stays in a two-instruction loop (skip on flag and

branch back to previous instruction) until the flag bit is set by the external

device. The next instruction in sequence must be an input or output instruction.

5.4 Design Of Computer Registers

 The design of a synchronous digital system follows a prescribed

procedure. From a knowledge of the system requirements, one formulates a

control network and obtains a list of register-transfer operations for the system.

Once this list is derived, the rest of the design is straightforward. Some

installations utilize computer design automation techniques for translating the

register-transfer statements to a circuit diagram composed of integrated circuits.

 Section 11-5 specified the register-transfer statements for the computer

in five separate tables. The entries in the tables consist of control functions and

microoperations. The list of control functions provides the Boolean functions

for the gates in the control logic network. The list of microoperations gives an

indication of the types of registers that must be chosen for the computer.

Although these tables are sufficient to complete the logic design of the system,

it may be convenient to rearrange the information in the tables in a more

convenient way during the actual implementation process.

 154

5.4.1 Register Operation

 To determine the type of control input that must be provided in each

register, we must obtain the list of microoperations that affect each register

separately. This can be done by scanning the tables in Section 11-5 and

retrieving all those statements that change the contents of a particular register.

This also applies to the read and write operations in the memory unit. For

example, a memory-read operation is symbolized with the microoperation:

 B M

 The statement also indicates that the contents of register B will change

in value. This statement is found twice in the list of microoperations. In Table

11-5, we find it with control function F’t1, and in Table 11-6, with control

function F(q0 + q1 +q3)t1. Since both control functions produce the same

operation, they can be combined with an OR into one statement:

R = F’t1 + F(q0 + q1 + q3)t1: B M

 The symbol R is used for convenience to designate the read operation

with a single Boolean control variable. The equal sign after R designates its

equality with the control function listed.

 This procedure is repeated for the memory-write operation and for all

the registers in the computer. The result is as shown in Table 11-10. Each

control function listed in the table is assigned a control-variable name. The

single-letter variable names are not necessary, but they help shorten the

algebraic expressions of input control for the registers. In most cases, the

control variable is assigned a lowercase letter identical to the capital letter

reserved to symbolize the corresponding register. The control variables

common to the same register are distinguished by different numerical

subscripts.

 Table 11-10 is derived directly from Tables 11-5 through 11-9. The

register to which a microoperation belongs is recognized by the presence of its

symbol on the left side of the arrow. To recognize the microoperations

belonging to register A, we scan the operations listed in Tables 11-5 through

11-9 and retrieve all those that have an A as a destination register. The

microoperation occurs more than once, the corresponding control functions are

ORed to form a composite control function.

 The operations for the E flip-flop must be separated from the operations

for the A register, even though they were listed together in the previous tables.

The circular shift-right operation, for example, is stated in Table 11-8 as:

rB8 : A shr A, A16 E, E A1

 Note that r is a variable equal to q6t3, and rB8 is assigned a control

variable a5. In Table 11-10 under the A register, we have:

a5 = rB8: A shr A, A16 E

 which is the part of the shift operation that changes the contents of A.

Under the E flip-flop, we have:

 155

a5 = rB8: E A1

which shows the part of the shift operation that changes the E flip-flop.

Thus, the shift-right control variable a5 shifts the contents of A to the right and

inserts the value of E into the leftmost bit of A. it also transfers the rightmost bit

of A into E. The sequence register G does not have any listed microoperations

in the previous tables. This register is shown in Fig. 11-6 to be a counter whose

clock pulses are enabled by the start-stop flip-flop S. This is included in Table

11-10 with the statement: S : G G + 1

Table 11-10 Microoperations for register

Memory control

R = F’t1 + F(q0+q1+q3)t1:

W = F(q2 +q3+q4)t3:

A register

 a1 = Fq0t3:

 a2 = Fq1t3:

 a3 = rB12:

 a4 = rB10:

 a5 = rB8:

 a6 = rB7:

 a7 = rB6:

 a8 = pB11:

B register

 b1 = Fq2t2:

 b2 = Fq3t2:

 b3 = Fq4t2:

PC register

 c1 = F’t1

 +(q3Bz + q4)Ft3

 +(B5A’16 + B4A16)

 +B3Az + B2E’)r

 +(B12N9 + B10U9)P:

 c2 = q5t3::

 b3 = Fq4t2:

MAR Register

 d1 = F’t0:

 d2 = Ft0:

I Register

 i1=F’t2:

E Flip-Flop

 e1 = rB11:

 e2 = rB9:

 a2 = Fq1t3:

 a5 = rB8:

 a6 = rB7:

 B M

 M B

 A A B

 A A + B

 A 0

 A A

 A shr A, A16 E

 A shl A, A1 E

 A A + 1

 A1-8 N1-8

 B A

 B B + 1

 B(AD) PC, B(OP)

PC PC + 1

 PC B(AD)

 PC MAR

 MAR PC

 MAR B(AD)

 E 0

 E E

 E carry

 E A1

 E A16

Memory read

Memory write

AND

Add

Clear

Complement

Shift-right

Shift-left

Increment

Transfer

Transfer

Increment

Transfer

Increment

Transfer

Transfer

Transfer

Transfer

Clear

Complement

Transfer

Shift-right

Shift-left

 156

F Flip-Flop

 f1 = F’(q0 + q1

+q2+q3+q4)t3:

 f2 = Ft3:

S Flip-Flop

 s1 = rB1:

G register

 S:

U Register

 u1 = p B9:

N Register

 a8 = pB11:

 F 1

 F 0

 S 0

 G G + 1

 U1-8 A1-8, U9 0

 N9 0

Set

Clear

Clear

Count

Transfer

Clear

5.5 Design of Computer

 The list of microoperations given in Table 11-10 provides the

information needed to design the registers of the computer. The operations to

be performed on each register are clearly demonstrated by the listed statements.

For example, program counter PC has three microoperations:

 c1 : PC PC + 1

 c2 : PC B(AD)

b3 : PC MAR

 This register must have increment and transfer capabilities. It can be

implemented by means of a counter with parallel load of the type shown in Fig.

7-19. Since PC receives input information from two sources, it requires a

multiplexer to select between the two inputs, as explained in conjunction with

Fig. 8-3. The other registers are designed in a similar manner.

 A block diagram showing the types of registers needed for the computer

is given in Fig. 11-7. The memory unit is also included to show its connection

to the processor. The control logic provides all the control variables for the

registers. The design of the control logic is discussed in the next section. The

control variables that are generated in the control unit are applied to the

registers as indicated in the diagram. In addition to the registers, the processor

uses four multiplexers to select from two or more sources. All the registers and

multiplexers are MSI functions available in standard integrated circuits. The

three flip-flops, E, F, and S, and their corresponding combinational logic must

be designed with SSI gates and flip-flops.

 157

 All of the registers in the computer, expect register A, require a load,

increment, or both load and increment control inputs. One can choose to

employ an MSI counter with parallel load for all registers. In this manner, it

would be possible to have an inventory of just one standard type of IC

component for the registers. A possible commercial component is IC type

74161. This MSI circuit contains a 4-bit counter with parallel load and an

asynchronous clear input. The clear inputs of the registers can be connected to a

master reset switch in the computer to clear all registers asynchronously prior

to the clocked operations. The 12-bit registers, PC and MAR, will need three

such ICs, and the 16-bit register, B, will require four ICs. The I and G registers

can be implemented with one IC each. The 4-bit counter, IC, can be converted

to a 2-bit counter for G by the method outlined in Section 7-5, in conjunction

Fig 7-20.

 The A register is the most complicated register because it performs all

the processing tasks for the computer. This register is an accumulator register

of the type designed in section 9-10 and can use the configuration shown in

Fig.9-22. It can also be implemented with a bidirectional shift register with

parallel load, as shown in Fig. 7-9, together with an ALU of the type discussed

c2

b3

 d2

 d1

 f1

 f2

 s1

 158

in Section 9-6. A better choice would be to use an accumulator MSI circuit

such as type 74S281 IC.

When implemented with an ALU or accumulator IC, the control unit

must generate the corresponding control variables to select the required

microoperations in the ALU. These will be different from the single control

functions defined for the control unit in this design.

 Input register N and output register U can be part of a standard

teletypewriter interface. Integrated circuits that interface with a teletypewriter

unit are available commercially and are usually called universal asynchronous

receiver-transmitters (abbreviated UART). Such an IC includes an input

register and an output register within the unit, together with the two flags

required for synchronizing the transfer.

 Three of the multiplexers in Fig.11-7 select between two input sources.

When the select input marked with an S is 1, MUX input number 1 is selected.

When s = 0, MUX input number 0 is selected. The multiplexer associated with

register B has three input sources. Selection variables s1 and s0 determine the

selected input. When both selection lines are 0, the selected input comes from

PC. The memory-read signal R makes s0 = 1 while s1 remains 0 (because b1 =

0 when R = 1). With s1s0 = 01, MUX input number 1 is selected and this input

comes from the memory unit. Similarly, control variable b1 produces a

selection s1s0 = 10, which causes the contents of register A to be selected.

 The entire computer shown in Fig.11-7 can be enclosed within a single

IC package to form a microcomputer. A typical microcomputer IC normally

has added features in the processor section, but includes a smaller memory.

Most of the memory in a microcomputer is usually of the ROM type. The

internal design of a microcomputer chip requires that the logic of the computer

be derived with a set of Boolean functions that specify all gates and flip-flops

in the system. The Boolean functions that implement each register in the system

can be derived by the method presented in Section 9-10 for the design of

registers in terms of Boolean functions.

5.6 Design Of Control

 The control unit of the computer generates the control variables for the

registers and memory unit. There are 24 distinct control variables and all of

them are listed in Table 11-10 as control functions. In Chapter 10, we presented

three methods for control logic design: hard-wired control, PLA control, and

microprogram control. The control unit of the computer can be designed using

any one of these three methods.

5.6.1 Hard-wired Control

 The control organization presented in Fig.11-6 is essentially a hard-

wired organization of the sequence register and decoder method. Sequence

register G in this case is a counter, and the timing decoder provides four control

states for the system. A second decoder is used for the operation code stored in

 159

the I register. The control-logic-network block generates all the control

functions for the computer.

 The implementation of the control logic network in Fig. 11-6 completes

the design of the hard-wired control. This implementation consists of

combinational gates that generate the 24 control functions listed in Table 11-10.

The Boolean functions listed as control functions specify the Boolean equations

from which the combinational circuit can be derived. This circuit will not be

drawn here but can be easily obtained from the 24 Boolean functions that

define the control variables R,W,a1 through a8,b1,b2,b3,c1,c2,d1,d2,e1,e2,f1,f2,s1,

and u1.

5.6.2 PLA Control

 The PLA control is similar to the sequence register and decoder method,

expect that all combinational circuits are implemented within the PLA. The two

decoders are included inside the PLA implementation, since they are

combinational circuits. The total number of control outputs is 24. The total

number of PLA inputs is also 24. A 24-input, 24-output PLA may not be

available in one commercial IC package. For this reason, the control unit

should be partitioned in such a way so it can be implemented with a minimum

number of PLA ICs.

 One way to partition the control is according to the function tables

presented in section 11-5. The register-transfer statements in this section are

listed in Tables 11-5 through 11-9.The PLA control partitioned according to

these tables is shown in Fig. 11-8. This implementation replaces the hard-wired

control of Fig. 11-3.

 Figure 11-8 shows three PLAs and two registers for the control unit.

The two decoders are not needed here, since they are implemented inside the

PLA. Note that there are no connections from the outputs of any PLA to the

inputs of sequence register G. A feedback connection in not necessary because

the G register is a counter and the next state is predetermined from the

continuous count sequence. PLA 1 implements the control variables listed in

Table 11-5 (fetch cycle) and Table 11-3 (common operations for execute

cycle). These control variables depend on the timing variables from G, the

operation code from I, and cycle control in F. PLA 2 implements the control

functions listed in Table 11-4 (execution of memory-reference instructions).

These control functions have the same input variables as PLA 1, with the

addition of binary variable Bz. Remember that Bz is a binary variable equal to 1

when the B register contains all 0’s.

 The third PLA generates the register-reference and input-output control

functions listed in Tables 11-8 and 11-9. These control functions have two

common variables:

 r = q6 t3 for the register-reference operations

 p= q7 t3 for the input-output operations

 160

 These two common variables are generated in PLA 1 and applied as

inputs to PLA 3. The other inputs to third PLA come from register B (bits 1-12)

and other status-bit conditions.

 Control variable c1 increments the program counter. This control

variable is generated an all three PLAs. The three outputs must be combined

with an external OR gate to provide a single output. This output is applied to

the increment input of PC.

 161

The derivation of the program tables for the three PLAs completes the

control design. The PLA 1 program table can be obtained from the control

functions listed in Tables 11-5 and 11-6. These functions are repeated again in

Table 11-11 for convenience. Some of the functions have been simplified for

entry in the program table. For example, the read control variable R was

originally listed as:

 R = F’t1 + F (q0 + q1 + q3) t3

 The decoded output variables q0,q1, and q3 are a function of the

variables in the I register and can be simplified as follows:

 q0 + q1 + q3 = I’3I’2I’1 + I’3I2I1 = I’3I1 + I’3I’2

Table 11-11 Control functions for PLA 1

 d1 = F’t0: MAR PC

 c1 = F’t1: PC PC + 1

 R = F’t1 + F(I’3I1 + I’3I’2)t1: B M

 i1 = F’t2: I B(OP)

 f1 = F’(I’3 + I’2I’1)t3: F 1

 c2 = q5t3: PC B(AD)

 d2 = Ft0: MAR B(AD)

 f2 = Ft3: F 0

 r =q6t3: Register reference

 p = q7t3: Input-output

Since the PLA accepts the I variables rather than the q variables, it is

more convenient to use the two-term function rather than the three-term

function. Control variable f1 is simplified in a similar manner. The other

Boolean variables need a translation from the t designation to a state in the

sequence register G and from the q designation to the corresponding operation

code in the I register.

The program table for PLA 1 is given in Table 11-12. The PLA has 6

inputs, 12 product terms, and 10 outputs. The entries for G2 and G1 are 00, 01,

10, and 11 and correspond to timing variables t0 , t1 , t2 , and t3 , respectively.

The entry for I3,I2,and I1 is a binary number equal to the value of subscript i in

qi, unless the function is simplified. Note that register I has four bits, but I4 is

not used since it is always 0. The procedure for obtaining a PLA program table

from a set of Boolean functions is explained in Section 5-8.

 162

Table 11-12 Program table for PLA 1

Prod

uct

term

Inputs

Outputs

I3 I2 I1 F G2 G1 d1 c1 R i1 f1 c2 d2 f2 r p

1

2

3

4

5

6

7

8

9

10

11

12

- - - 0 0 0

- - - 0 0 1

0 - 1 1 0 1

0 0 - 1 0 1

- - - 0 1 0

0 - - 0 1 1

- 0 0 0 1 1

1 0 1 - 0 0

- - - 1 0 0

- - - 1 1 1

1 1 0 - 1 1

1 1 1 - 1 1

 1 - - - - - - - - - F’t0

 - 1 1 - - - - - - - F’t1

 - - 1 - - - - - - - FI’3I1t1

 - - 1 - - - - - - - FI’3I’2t1

 - - - 1 - - - - - - F’t2

 - - - - 1 - - - - - F’I’3t3

 - - - - 1 - - - - - F’I’2I’1t3

 - - - - - 1 - - - - q5t3

 - - - - - - 1 - - - Ft0

 - - - - - - - 1 - - Ft3

 - - - - - - - - 1 - q6t3

 - - - - - - - - - 1 q7t3

The program table for PLA 2 can be derived in a similar manner,

although it is not listed here. The third PLA requires 12 AND terms and a 6-

input OR gate (to generate control variable c1). This part of the control may be

implemented more economically with SSI gates or with a field-programmable

gate array (FPGA). The FPGA’ is similar to the FPLA has 9 AND (or NAND)

gates sharing 16 common inputs.* Two such FPGA integrated circuits are

required to replace PLA 3 in Fig. 11-8. The external OR gate can be combined

with the other lines that generate variable c1.

5.6.3 Microprogram Control

 The organization of the control unit for the computer is more suitable

for a PLA control than for a microprogram control, mostly because of the way

the register-reference instructions were originally formulated. The

microprogram control configuration to be developed here implements the

control functions for the fetch cycle and the memory-reference instructions.

The register-reference and input-output operations can be implemented more

efficiently with a hard-wired or PLA control.

 The microprogram control does not need the I, G, and F registers. The

operation code is in B(OP) at the end of the fetch cycle, and this code can be

used to specify a macrooperation address for control memory without the need

for an I register. The timing variables generated in the sequence register G can

be replaced by a sequence of clock pulses that read consecutive

microinstructions from control memory. The transfer from the fetch cycle to the

execute cycle can be done in control memory by a branch microinstruction that

 163

transfers control to the next cycle without the use of the F flip-flop. The

microprogram control configuration to be developed here replaces the entire

hard-wired control of Fig. 11-6 (except the B register).

Going over Tables 11-5,11-6, and 11-7, we note that all

microinstructions can be sequenced by incrementing the control memory

address, except for going to execute a particular memory-reference instruction

or for returning to the fetch cycle. A particular memory-reference instruction

routine can be accessed with an external macrooperation address. If we start the

fetch cycle from address 0, it would be possible to branch to the fetch cycle by

clearing the control memory address register CAR. Therefore, the address-

sequencing part of the microprogram control needs only three operations:

1. Increment CAR to read the next microinstruction in sequence.

2. Clear CAR to start the fetch cycle.

3. Provide a bit transformation from B(OP) to an external address for

CAR.

*IC type 82S103 from Signetics.

 A possible microprogram control for the computer is shown in Fig. 11-

9. The control memory ROM has 32 words of 7 bit each. The first four bits are

encoded computer has 24 control functions, 16 are sufficient to generate those

control functions associated with the fetch cycle and the execution of the

memory-reference instructions. Instead of using 16 bits of ROM to specify 16

outputs, we chose to employ only 4 bits and decode them through a 4-to-16 line

decoder to provide up to 16 distinguishable output variables. This scheme saves

ROM bits but requires an external decoder. It also limits the capability of the

microinstructions because only one control function can be specified in any

given microinstruction.

The address-sequencing part of the microprogram unit does not require

a multiplexer to select status-bit conditions. There is only status bit to be

considered and we will show later how this can be included with an external

circuit. There is no need for an address field in the microinstruction because no

branching capabilities are provided except to return to the beginning of the

fetch cycle or to transfer an external address. The last three bits of a

microinstruction determine the next address. Bit 7 increments the control

address register. Bit 6 clears CAR, which causes a return to the fetch cycle. Bit

5 loads an external address into CAR. The input address must contain 5 bits

because the ROM has 32=25 words. Three of these bits come from the B-

register part that holds the operation-code. The last two bits are always equal

to11. This is a code transformation from the operation-code bits of the

instruction to an external address for control memory. This transformation

causes the AND instruction whose operation code is 000 to be changed into an

address for CAR equal to 00011. The ADD instruction transforms from 001 to

00111; and so on, up to an input-output instruction whose operation code is 111

 164

and whose address transformation is 11111. The most significant bit in B(OP)

is not used because it is always 0.

 The microprogram control unit shown in Fig. 11-9 is very simple and

requires only three MSI circuits. Because of its simplicity, it is not very flexible

and, as sown subsequently, requires additional circuits for a complete control-

unit implementation.

 The microoperations for the fetch cycle and the execution of memory-

reference instructions are listed in Tables 11-5, 11-6, and 11-7. The

microoperations for the I and F registers are not needed, since these registers

are not used. The remaining microoperations and their encoded control

functions are listed in Table 11-13. The first four bits of a ROM word in control

memory provide 16 combinations, and each combination specifies a

microoperation. The other 14 combinations are decoded to provide control

variables for the listed microoperations. Decoder output 14 initiates the

memory-write operation, M B, and also specifies a conditional control for

incrementing PC dependent on variable Bz. The reason for repeating these two

microoperations in one microinstruction will be clarified later. Note that the

memory-write microoperation is also initiated with decoder output 11, and the

control variable that increments PC is also available from decoder output 2.

not

used

 165

 The microprogram for control memory is given in Table 11-14. This is

also the truth table for programming the ROM. There are 32 words of ROM,

and the address and content of each word are specified in the table. The table is

subdivided into nine routines showing the microinstructions that belong to the

fetch cycle and the microinstructions for executing each of the computer

instructions. The symbolic designation column gives the microprogram in

symbolic form and the address sequencing for CAR.

 166

The fetch cycle starts from address 0. The three consecutive

microoperations in the fetch routine transfer the contents of PC to MAR, read

the instruction into the B register, and increment PC. At address 2 (0010), bit 5

of the microinstruction is equal to 1. The same clock pulse that increments PC

also performs the microoperation:

 CAR 22B(OP) + 3

B(OP) contains the three bits of the operation code. These bits are

shifted twice to the left (multiplied by 22) and binary 3 (11) is added to form an

address for CAR. The address received in CAR transfers control to one of the

routines listed in the table, and control continues to execute the specified

instruction. The implementation of this code transformation is depicted in

Fig.11-9.

 This configuration assigns four words of ROM for each instruction,

except for the I/O instruction. For example, the ISZ instruction has operation

code 011. The beginning of the routine that executes this instruction is at

address 4 3 + 3 = 15, which is binary 01111. The four ROM words for this

routine are at addresses 15, 16, 17 and 18. We cannot use the word at address

19 because this address contains the first microinstruction for the BSB routine.

Since there are no branching capabilities in this microprogram unit, we cannot

branch to an unused ROM word; therefore, each routine must be completed

with no more than four microinstructions.

 The AND routine can be implemented with three microinstructions. The

address of the instruction is transferred into MAR, the operand is read from

memory into B, and the AND microoperation is performed between the A and B

registers. The last microinstruction at address 5 (00101) has bit 6 equal to 1.

This causes CAR to be cleared, and control returns to address 0 to start the fetch

cycle again. The first two microinstructions of the AND routine have bit 7

equal to 1, which causes CAR to be incremented. The last word in this routine

at address 6 is not used. This word cannot be left empty because we must

specify something for the ROM truth table. The best way to fill in this word is

to specify no microoperation in bits 1 through 4 and to clear CAR with bit 6. In

this way, if a malfunction occurs and control memory finds itself in address 6,

no operation will be executed and control will return to the fetch cycle.

 The ADD and STO routines need three microinstructions. The BSB

instruction uses all four words available for the routine. The BUN instruction

needs only one microinstruction. A register-reference instruction initiates a

control variable r, which must be used in conjunction with a bit in the B register

to initiate one of the specified operations. The same applies to an input-output

(I/O) instruction.

 167

 The ISZ routine needs four microoperations and a conditional operation

dependent on the value of Bz. This imposes a problem, because there are only

four ROM words available for this routine and the microprogram configuration

has no facility for checking status-bit conditions. This problem can be solved

by including two microoperations in one microinstruction and checking the

status bit with an external AND gate. To compensate for this unorthodox

configuration, we insert an external circuit as shown in Fig. 11-10. The ROM

decoder has two outputs for a memory-write operation M B : one in output

11 and the other in output 14. These two outputs is ANDed externally with

status bit Bz to provide the increment-PC control function. Decoder output 2

also specifies an increment-PC. Some of the operations in the register-reference

and input-output instructions specify this operation as well. The three outputs

must be ORed together to form a single output for incrementing PC. Variables

r and p from the ROM decoder are used in conjunction with other status-bit

conditions to generate the remaining control variables can be generated with an

external hard-wired configuration or with a PLA as indicated in the diagram.

5.7 Computer Console

Any computer has a control panel or console with switches and lamps to

allow manual and visual communication between an operator and the computer.

This communication is needed for starting the operation of the computer

(bootstrapping) and for maintenance purposes. For the sake of completeness,

we shall enumerate a set of useful console functions for the computer, although

the circuits required to implement these functions will not be shown.

 Lamps indicate to the operator the status of registers in the computer.

The normal output of a flip-flop connected to an indicator lamp to light when

the flip-flop is set and to turn off when the flip-flop I cleared. The registers

whose outputs are to be observed in the computer console are: A , B ,PC , MAR

, I , E , F and S. When a count is made of the total number of the flip-flops

involved, we find that 63 indicator lamps are needed.

 A set of switches and their functions for the console may include the

following:

 168

1. Sixteen “word” switches to set manually the bits of one word.

2. A “start” switch to set the S flip-flop. The signal from this switch also

clears flip-flop F , N9 ,U9 and register G.

3. A “stop” switch to clear the S flip-flop. To ensure the completion of the

current instruction, the signal from the switch is ANDed with the

Boolean function (F + q5 + q6 + q7)t3 before it is applied to clear S.

4. A “load address” switch to transfer an address to the PC register. When

this switch is activated, the contents of 12 “word” switches are

transferred to PC.

5. A “deposit” switch to manually store words into memory. When this

switch is activated, the content of PC is transferred to MAR and a

memory cycle is initiated. After 1 s, the contents of the 16 “word”

switches are transferred into the B register and PC is incremented by 1.

6. A “display” switch to examine the content of a word in memory. When

this switch is activated, the content of PC is transferred to MAR, a

memory cycle is initiated, and PC is incremented by 1. The contents of

the memory word specified by the address in PC are in register B and

can be seen in the corresponding indicator lamps.

To ensure that the computer is not running when the power is turned on,

the S flip-flop must have a special circuit that forces it to always turn to the

clear position right after the application of power to the machine.

 169

Unit-V

Self Assessment Questions

Fill in the blanks :

1. A switch to manually store words into memory.

2. Program counter PC holds the address of the instruction to

be read from memory.

3. is a counter that produces the timing.

True/ False

1. Start stop flip-flop which is doing stars and stops computer.

 2. The symbolic designation E stands for electrical flip-flop.

 3. The memory unit has a capacity of 4096 words of 16 bits each

Multiple Choice :

1. MAR stands for

a) Memory address register b) Main address register

c) Memory accumulator register c) None

 2. Integrated circuits that interface with a teletypewriter unit are available

commercially and are abbreviated as

 a) VBRT b) UART

 c) UARP d) ABRP

 3. A “start” switch to set the Flip-flop

 a) JK b) RS

 c) S d) None

 4. BSB stands for

 a) Branch to subprogram b) Branch to store

 c) Branch to subroutine d) None of the above

Questions:

1. Explain in detail about system configuration?

2. Describe detail about computer instructions?

3. Explain about the Design of computer registers?

4. What is computer console discussed in detail?

5. Explain about the design of control?

6. What are the six phases of design process?

 170

Self Assessment Answers:

Fill in the blanks

1. Deposit

2. Next

3. Sequence register G

True OR False

1. True

2. False

3. True

Multiple Choice

1. (a)

2. (b)

3. (c)

4. (c)

 171

NOTES

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

 172

NOTES

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

