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BLOCK INTRODUCTION 

 

 This book has been strictly in accordance with syllabus in Allied 

Physics for B.Sc students of PRIDE.  The subject matter in this book has been 

astutely developed.  A large number of questions and problems have been 

given at the end of each chapter.  The student who attempts to tackle them 

successfully is bound to get a better insight and understanding of the subject. 

 The book illustrated with a large number of carefully drawn diagram 

which the students can easily reproduced.   

The subject matter is divided into five units.  Each unit is self contained 

and is treated in a comprehensive way. 

In first unit we will discuss about the Acoustics and Properties of matter.   

 In the second unit we are going to learn about the Heat and Optics 

 In the third unit we are going to study about the Electricity, Magnetism 

and Atomic physics.   

 In the fourth unit we are going to deal about the Nuclear Physics & 

Solid state physics.   

 In the fifth unit we are going to know and discuss the Electronics.  

Suggestions and Opinions for improvement of the book are cordially invited. 
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UNIT - I 

ACOUSTICS & PROPERTIES OF MATTER 

ACOUSTICS 

1.1 Ultrasonics 

The human ear is unable to hear sounds of frequency less than 20 and 

more than 20000. Sounds of frequency less than 20 are called infrasonics. 

Sound waves of frequency more than 20000 Hz are called ultrasonics. These 

waves also travel with the speed of sound (330ms-1). Hence they have a 

wavelength smaller than 330/20000 or 0.0165m. So the ultrasonic waves will 

have wavelengths of 1.65cm and less.  

1.1.1  Production of ultrasonic waves:  

(i) Magnetostriction oscillator  

Principle: when a rod of ferromagnetic material like nickel is magnetized 

longitudinally, it undergoes a very small change in length. This is known as 

magnetostriction effect. A nickel rod placed in a rapidly varying magnetic field 

alternately expands and contracts with twice the frequency of the applied 

magnetic field to be equal to the natural frequency of longitudinal vibration of 

the rod, resonance can be produced. Due to resonance, vibrations of large 

amplitude are produced in the rod which generates ultrasonic waves. 

Experimental arrangement : The ferromagnetic rod (nickel) is clamped at its 

mid-point O. Two magnetizing coils L1 and L2 are wound round the two halves 

of the rod respectively (Fig. 1.1.1(i)) L1 is connected in the grid circuit and L2 

is connected in the plate circuit of a triode valve. The valve acts as an oscillator 

and supplies high frequency alternating current to the coils. Then the rod is 

subjected to periodic changes in length. The frequency of the valve oscillator is 

adjusted by means of the variable condenser C so that it is equal to the natural 

frequency of the rod. Then the rod vibrates with a large amplitude. Producing 

ultrasonic waves in the surrounding medium. Magnetostrction oscillators are 

mechanically rugged. They are capable of producing large acoustical power 

with fairly good efficiency (eg. 60%). Their deficiencies are : (1) low upper 

frequency limit and (2) conversion losses due to hysterisis and eddy currents. 

 

Fig.1.1.1 (i) 

(ii) Piezo-eletric generator : Principle : If one pair of opposite faces of certain 

doubly refracting crystals, cut in a specified manner, is subjected to pressure, 
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the other pair or opposite faces develop equal and opposite electric charges on 

them. The sign of the charges is reversed, when the faces are subjected to 

tension instead of pressure. The electric charge developed is proportional to the 

amount of pressure or tension. This phenomenon is known as piezo-eletric 

effect. The effect is reversible i.e. if an electric field is applied across one pair 

of faces of the crystal, contraction or expansion occurs across the other pair. 

The crystal commonly used for this purpose is quartz. The natural 

quartz crystal is as shown in Fig. 1.1.1 (ii). Its cross-section is hexagonal. The 

axis along the longest dimension it the optic axis called Z axis. The lines 

joining the opposite corners are called the electric axes (or X-axes). We have 

three such axis. An axis perpendicular to both these axes is the mechanical axis 

(or Y axes). The type of crystal used for ultrasonic vibrations is generally the 

X-cut crystal, is obtained by cutting the hexagonal slice along Y axis such that 

the largest face are silvered to ensure proper contact and alternating field is 

applied by means of metallic plates pressing against the faces. 

 

Fig. 1.1.1 (ii). 

Experimental arrangement: The circuit diagram is shown in Fig 1.1.1(iii). 

The quartz crystal Q is placed between two metal plates A and B. The metal 

plates are connected to the primary (L3) of a transformer which is inductively 

coupled to the oscillatory circuit of a triode valve. Coil L2 is connected in the 

plate circuit. The tank circuit L2 and C1 is connected between the gird and the 

cathode. When the valve oscillates, high frequency alternating voltages are 

impressed on the plates A and B.  
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Fig. 1.1.1 (iii) 

Inverse piezo-electric effect takes place and the crystal contracts and 

expands periodically. The variable condenser C2 is adjusted so that the 

frequency of the oscillatory circuit is equal to one of the natural frequencies of 

the crystal. Due to resonance, the amplitude of the vibrations of the crystal 

becomes very large. The crystal can be immersed in a liquid so that ultrasonic 

waves are produced in the liquid. This arrangement is suitable for experiments 

in liquids. 

Detection of ultrasonic waves: (1) Kundt’s tube method:  

 If the wavelength of the ultrasonic waves is greater than a few 

millimeters, a Kundt’s tube can be used to form a stationary wave pattern with 

well defined nodes and antinodes. In the air or gas medium, lycopodium power 

collects in the form of heaps at the nodes. In a liquid medium, powdered coke 

is used to detect the position of nodes. 

(2) Piezo-electric detectors : This method is based on piezo-electric effect. 

When one pair of opposite faces of a quartz crystal is exposed to ultrasonic 

waves opposite charges are developed on the other pair of opposite faces, 

perpendicular to the first. These charges are amplified and detected using an 

electronic circuit. 

(3) Thermal detectors: Modern methods of detection use thermal detectors. A 

platinum wire is placed in the region to be tested for ultrasonic waves. At nodes, 

due to alternate compressions and rarefactions. Alternate heating and cooling is 

produced, change in temperature at the node brings about changes in the 

electrical resistance of the platinum wire. This is detected by means of a 

Wheastone’s bridge. No change in temperature occurs at the antinode. 

Properties of ultrasonic waves: 

(1) They have a high energy content. 

(2) Just like ordinary sound waves, ultrasonic waves get reflected, refracted 

and absorbed. 
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(3) Thermal detectors: Modern methods of detection use thermal detectors. 

A platinum  wire is placed in the region to be tested for ultrasonic 

waves. At nodes, due to alternate  compressions and rarefactions, 

alternate heating and cooling is produced, change in temperature at the 

node brings about changes in the electrical resistance of the platinum 

wire. This is detected by means of a Wheatstone’s bridge. No change in 

temperature occurs at the antinode. 

(4) They can be transmitted over large distances with no appreciable loss of 

energy. 

(5) If an arrangement is made to form stationary waves of ultrasounds in a 

liquid, it serves as a diffraction grating. It is called an acoustic grating. 

(6) They produce intense heating effect when passed through a substance. 

Applications of ultrasonic waves:  

(1) etermination of the depth of sea: The ultrasonic waves are directed to the 

bottom of the sea. The time (t) that elapses between the emission of ultrasonic 

waves and the reception of the echo is recorded. Then the depth of the sea 

/ 2.h vt where v   the velocity of ultrasonic waves through sea-water. 

(2) Detection of air craft, submarines etc :- Bacause of their short 

wavelength, ultrasonic waves are highly directional. A piezo-electric quartz 

crystal oscillator is used for sending out a beam of ultrasonic waves. This is 

reflected back from an aircraft, if one comes in its way. The reflected beam is 

detected by a quartz receiver. The entire system is called SONAR from sound 

navigation and ranging. 

(3) Sound signaling: The highly directional ultrasonic sound beam is used for 

purposes of signaling to a distant ship. 

(4) Chemical Applications: (i) Ultrasonic waves are used to form stable 

emulsions of even immiscible liquids like water and oil or water and mercury. 

This finds an application in the preparation of photographic films, face cream 

etc, (ii) They are used to liquefy gels like aluminum hydroxide in the same way 

as they are liquefied like by shaking (iii) They are used to coagulate fine solid 

or liquid particles in a gas for example, dust, smoke. Mist etc. Ultrasonics thus 

find use in collecting factory dust and purifying the air (iv) Ultrasonics act like 

a catalytic agent and accelerate chemical reactions. Ultrasonic waves accelerate 

crystalisation 

(5)  Science 

i. Investigation of Structure of Matter 

We can determine the velocity of ultrasonics in liquids and gases and its 

variation with frequency and temperature.  This study gives information about a 

number of properties of the medium such as its compressibility, absorption, 

concentration, specific heat capacity, chemical structure, arrangement of atoms 

in them etc. 
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ii. Study of Molecular Energies 

The frequencies of molecular vibrations are of the same order as the 

ultrasonic vibrations.  So ultrasonic waves are used in the study of molecular 

energies.  They are used in molecular acoustics for investigating structure and 

properties of substances. 

iii. Elastic Symmetries of Crystals 

When ultrasonic waves are applied to certain crystals, they give rise to 

diffraction images.  The diffraction images reveal the elastic symmetries of 

crystals.  

(6) Industrial Application 

a. Non-Destructive Testing (NDT) 

Principle:  Whenever there is a change in medium, the ultrasonic waves will be 

reflected.  Since the flaws can be detected without destroying the materials, it is 

called non-destructive testing. 

Working:  The pulse echo system used to determine the various flaws like 

cracks, holes, air bubbles, laminations, etc., in the specimen  

 a - Incident pulse 

 b - Pulse from flaw 

 c - Reflected pulse from the boundary of the specimen  

      TR - Transducer   

      CRT – Cathode Ray tube. 

Here short pulse of ultrasonic waves are transmitted into the material 

being tested.  These pulses get reflected from discontinuities on their path or 

from any boundary of the material on which they strike.  The received echoes 

are then displayed on a cathode ray tube screen.  The CRT screen furnishes 

specific data as to the relative size of a discontinuity in terms of signal 

amplitude.  The location of the discontinuity with respect to the scanning 

surface can be obtained by proper calibration of the CRT time base scale. 

b. Ultrasonic Soldering 

Ultrasonic solders are used for soldering aluminium coil capacitors, 

aluminium wires and plates without using any fluxes. 

An ultrasonic soldering iron consists of an ultrasonic generator having a tip 

fixed at its end.  The tip is heated by an electrical heating element.  The tip 

of the soldering iron melts solder on the aluminium.  The ultra vibrator 

removes the aluminium oxide layer.  The solder thus gets fastened to the 

clear metal without any difficulty. 

c. Ultrasonic Welding 

The properties of some metals changes on heating.  Therefore, they cannot 

be welded by electric or gas welding.  In such cases, the metal sheets are 

welded together at room temperature using ultrasonic waves. 
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d. Ultrasonic Drilling and cutting 

Ultrasonics are used for making holes in very hard materials such as glass, 

diamond, gems and ceramics. 

e. Ultrasonics in Metallurgy 

 To irradiate molten metals which are in the process of cooling, so as to 

 refine the grain size and to prevent the formation of cores and to release 

 trapped gases, the ultrasonic waves are used.  

f. Formation of Alloys 

The constituents of alloys, having widely different densities, can be mixed 

uniformly by a beam of ultrasonics.  Thus it is easy to get alloys of uniform 

composition. 

g. Acoustic Halograms 

Surface structures of various engineering materials used for space 

applications can be studied by using acoustic halograms. 

h. Sound Navigation and Ranging (SONAR) 

Ultrasonic waves sent form a point A travel through sea of water and get 

 reflected back from the bottom of the sea. The reflected waves are received 

 at the point B.  Using a CRO the time taken t, for the ultrasonic wave to 

 travel to the bottom of the sea and reflected back to the surface is calculated. 

Let  v = velocity of ultrasonic 

        wave in sea water. 

 Depth of the sea = .
2

vXt
 

The same method is used for finding the distance and direction of a 

submarine.  The change in frequency of the echo signal due to Doppler Effect 

helps to determine the velocity of the submarine and its direction.  The whole 

system is called SONAR. 

(7) Biological Applications: small animals like frog, fish, rat etc, are maimed 

or killed when exposed to ultrasonic waves. Ultrasonic waves can kill bacteria 

and therefore they are used for sterilizing milk. 

(8) Medical Applications: They are used for (i) treatment of neuralgic and 

rheumatic pains (ii) relieving pain in Arthritis (iii) restoring contracted fingers 

(iv) extraction of broken teeth etc. When ultrasonic waves are focused on a 

sharp instrument, it becomes capable of destroying tissues without loss of blood. 

Such instruments are used in performing bloodless brain surgery. 

(9) Industrial uses: (i) A glass rod oscillating with ultrasonic frequency can be 

used to bore holes in steel and other hard metals. (ii) Ultrasonic waves are used 

to detect creaks or flaws in metal structures. In this respect they are much better 

then X-rays (iii) They are used for producing alloys of uniform composition. 

(iv) They are used for cleansing clothes and parts of watches etc. 
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(10) Determination of velocity of ultrasonic waves in a liquid  

Ultrasonic diffraction : The apparatus consists of a quartz crystal forming 

ultrasonic waves in a liquid contained in a glass vessel (fig.1.1.(10)). These 

waves are reflected by the reflector. Due to superposition of direct and reflected 

waves, stationary waves are formed between the crystal and reflector. The 

density of the liquid is maximum at the nodal planes of the stationary wave 

pattern. The density is minimum at the antiondal planes. So alternate regions of 

high and low density are formed in the liquid behaves as the acoustic grating 

the distance between two adjacent nodal planes constitutes the grating element 

d. 

 

Fig 1.1.(10) 

The acoustic grating is mounted on the prism table of a spectrometer. A 

parallel beam incident on the acoustic grating, the diffracted beam of light is 

viewed through the telescope T. The diffraction pattern consists of a central 

maximum and principal maxima on either side. If  is the angle of diffraction 

for the nth order principal maximum 2 sin ,d n   Hence,  wavelength of the 

light used; knowing ,nand  the value of d can be calculated. If u  is the 

wavelength of ultrasonic waves in the liquid, / 2 2 .d u or u d    The 

frequency N of ultrasonic waves produced by the quartz oscillator is found by 

means of a wave meter. The velocity of ultrasonic waves uN can then be 

determined. 
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PROPERTIES OF MATTER 

ELASTICITY (Bending of Beams) 

1.2  Introduction 

              A body can be deformed (i.e., changed in shape or size) by the suitable 

application of external forces on it.  A body is said to be perfectly elastic, if it 

regains its original shape or size, when the applied forces are removed.  This 

property of a body to regain its original state or condition on removal of the 

applied forces is called elasticity.  A body which does not tend to regain its 

original shape or size, even when the applied forces are removed, is called a 

perfectly plastic body.  No body, in nature, is either perfectly elastic or 

perfectly plastic.  Quartz fibre is the nearest approach to a perfectly elastic body. 

              When an external force is applied on body, there will be relative 

displacement of the particles and due to the property of elasticity, the particles 

tend to regain their original positions.  Stress is defined as the restoring force 

per unit area.  If a force F is applied normally to the area of cross-section A of a 

wire, then stress = F/A.  Its dimensions are ML-1 T-2. 

Definitions 

Beam: A beam is defined as a rod or bar of uniform cross-section (circular or 

rectangular) whose length is very much greater than its thickness. 

Bending Couple:  If a beam is fixed at one end and loaded at the other end, it 

bends.  The load acting vertically downwards at its free end and the reaction at 

the support acting vertically upwards, constitute the bending couple.   

 

Fig. 1.2 

  This couple tends to bend the beam clockwise.  Since there is no 

rotation of the beam, the external bending couple must be balanced by another 

equal and opposite couple which comes into play inside the body due to elastic 

nature of the body.  The moment of this elastic couple is called the internal 

bending moment.  When the beam is in equilibrium, the external banding 

moment = the internal bending moment. 

Plane of Bending :  The plane of bending is the plane is which the bending 

takes place and the bending couple acts in this plane.  In Fig. 1.2, the plane of 

paper is the plane of bending. 
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Neutral Axis:  When a beam is bent as in Fig. 1.2, filaments like ab in the 

upper part of the beam are elongated and filament like cd in the lower part are 

compressed.  Therefore, there must be filament like ef in between, which is 

neither elongated nor compressed.  Such a filament is known as the neutral 

filament and the axis of the beam lying on the neutral filament is the neutral 

axis.  The change in length of any filament is proportional to the distance of the 

filament from the neutral axis.  

1.3  Expression for the bending moment 

 Consider a portion of the beam to be bent into a circular arc, as shown 

in Fig. 1.3.  ef is the neutral axis.  Let R be the radius of curvature of the neutral 

axis and  the angle subtended by it at its centre of curvature C. 

 Filaments above ef are elongated while filaments below ef are 

compressed.  The filament ef remains unchanged in length. 

 Let ab be a filament at a distance z from the neutral axis.  The length of 

this filament ab before bending is equal to that of the corresponding filament 

on the neutral axis ab.  

 We have, original length = ab = R 

Its extended length = ab = (R+z)  

 Increase in its length = ab -ab = (R+z)  - R = z. . 

 Linear strain = 
increase in length .

original length .

z z

R R




   

If E is the Young’s modulus of the material, 

                E = Stress / Linear strain 

ie.,          Stress = E X Linear strain = E(z/R) 

 

Fig 1.3. 

 If A is the area of cross-section of the filament, 

the  tensile force on the area A = stress X area = 
.

.
E z

A
R
  
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Moment of this force about the neutral axis ef 

  = 2.
. . .

E z E
A z A z

R R
   

          
2

The sum of the moments of
. .

forces acting on all the filaments

E
A z

R






  

      2.
E

A z
R

   

2.A z  is called the geometrical moment of inertia of the cross-section of the 

beam about an axis through its centre perpendicular to the plane of bending. It 

is written as equal to Ak2.  i.e., 2.A z  = Ak2.  (A = Area of cross-section 

and k = radius of gyration). 

 But the sum of moments of forces acting on all the filaments is the 

internal bending moment which comes into play due to elasticity. 

 Thus, bending moment of a beam = E Ak2 / R.   

 Notes : (i)  For a rectangular beam of breadth b, and depth (thickness) d, 

A = bd and k2 = d2 / 12. 

                             Ak2 = bd3 / 12. 

(ii) For a beam of circular cross-section of radius r, A = r2 and k2 

= r2 / 4. 

                             Ak2 = r4 / 4. 

(iii) E Ak2 is called the flexural rigidity of the beam. 

1.3.1  Depression of the loaded end of a cantilever 

Cantilever:  A cantilever is a beam fixed horizontally at one end and loaded at 

the other end. 

 

Fig. 1.3.1  

Let OA be a cantilever of length l fixed at O and loaded with a weight 

W at the other end.  OA is the unstrained position of the beam.  Let the 
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depression AA of the free end be y (Fig. 1.3.1).  Let us consider an element PQ 

of the beam of length dx at a distance (QA = x) from the loaded end.  C is the 

centre of curvature of the element PQ and R its radius of curvature.  The load 

W at A and the force of reaction W at Q constitute the external couple, so that, 

the external bending moment = W.x. 

The internal bending moment = 
2.E Ak

R
 

For equilibrium, Wx = 
2.E Ak

R
 or R = 

2.E Ak

Wx
    

 …(1) 

 Draw tangent at P and Q meeting the vertical line at T and S 

respectively.  Let TS = dy and d = Angle between the tangents.  Then, PCQ 

also = d. 

 Now, PQ = dx = R d or d =
2

.
dx Wx

dx
R EAk
  (From Eq. 1) 

We have, dy = x d = x
2

.
Wxdx

EAk
  = 

2

2

Wx dx

EAk
   …(2) 

  

1 2 3

2 2

0

the total depression of 

the end of the cantilever 3

Wx Wl
y dx

EAk EAk


  


  

Angle between the tangents at the ends of a cantilever: 

 Since the beam is fixed horizontally at O, the tangent at O is horizontal.  

If a tangent is drawn at A (the free end of the bent bar), it makes an angle  

with the horizontal. 

2

Angle between the 
.

tangents at P and Q

Wx
d dx

EAk



 


  

1

2

0

Angle between the 
.

tangents at O and A

Wx
dx

EAk



 


  

  = 
2

22

Wl

EAk
. 

Work done in uniform bending.  Consider a beam bent uniformly by an 

external couple.  Let A be the area of cross-section of the beam.  Consider a 

filament of area of cross-section A at a distance z from the neutral axis .  Then,  

              The tensile force on the area A = .
Ez

A
R
 . 

The linear strain of this filament = z / R.  If l is the length of the filament, then, 

 The extension of the filament = zl / R. 
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The work done in 1

bending the filament 2
forceXextension





 

    = 2

2

1 1
. .

2 2

Ez zl El
AX Xz A

R R R
   

For uniform bending R is constant.  Hence, the work done in bending 

the whole beam is  

 
2

2 2

2 2

1 1 1 1

2 2 2

El El EAk
W z A XAk X

R R R R
    

Here, 
2EAk

R
 = the bending moment and l / R = the angle subtended by the bent 

beam at its centre of curvature. 

 The work done in uniform bending = 
1

2
(bending moment) X (Angle 

subtended by the bent beam at its centre of curvature). 

Example 1:  Obtain an expression for the depression at the free end of a heavy 

beam clamped horizontally at end and loaded at the other end. 

Consider an element PQ of the beam of length dx at a distance x from the 

fixed end O. Now, in addition to the load W acting at A, a weight equal to that 

of the portion (l – x) of the beam also acts at is mid – point.  Let W1 be the 

weight of the beam.  Then, the weight per unit length of the beam = W1/l.  Now, 

we have an additional weight W1(l-x)/l acting at a distance (l – x)/2 from Q.  

Therefore, 

   1
total moment of the ( )

( ) ( )
external couple applied 2

W l x
W l x l x

l

 
   


 

      21( ) ( )
2

W
W l x l x

l
     

 

The beam being in equilibrium, this must be balanced by the bending 

moment 
2EAk

R
.  Therefore, 

  
2 2

2 2 21

2
( ) ( 2 . )

2

W EAk d y
W l x l l x x EAk

l R dx

 
       

 
 

Integrating, 

   
2 3

2 2 21 . .
2 2 3

Wx x dy
W lx l x l x EAk C

l dx

   
        

   
 

where C is constant of integration. 
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Since at x = 0, dy/dx =0, we have C = 0. 

Integrating once again, 

1 1

2 2 2 2 31

0 0 0

( / 2) ( / 3)
2

y
W

EAk dy W lx x dx l x lx x dx
l

        

or 
3 4

2 1

3 2 4

Wl l
EAk y W

l

   
    

   
 

or 
33

2 1 .
3 8

W lWl
EAk y    

or 
3

1 2

3
( )

8 3

l
y W W

EAk
   

1.3.2  Measurement of E 

(1)  Cantilever depression :  

 The given beam is clamped rigidly at on end (Fig. 1.3.2(a)).  A weight 

– hanger (H) is suspended at the free end of the beam.  A pin (P) is fixed 

vertically by some wax at the free end of the beam.  A traveling microscope (M) 

is focused on the pin.  The microscope is adjusted so that the horizontal cross-

wire coincides with the tip of the pin and the reading on the vertical scale is 

noted.  Then weights m, 2m, 3 m, 4 m, etc., are added to the weight-hanger.  

The microscope is adjusted each time to make the horizontal cross-wire 

coincide with the tip of the pin and the reading on the vertical scale of the 

microscope is noted in each case.  Observations are made for decreasing loads 

also.  The results are tabulated as follows: 

 

Fig. 1.3.2(a) 

The length of the beam (l0 between the clamped end and the loaded end 

is measured.  The mean breadth (b) of the beam and its mean thickness (d) are 

determined.  

If y is the depression produced for a load of Mg, then, 
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3 3

2 2

Mgl Mgl
y = .

3EAk 3Ak
orE

y
  

Load in kg 

 

Microscope Reading Depression  

For  

M(= 4 m) 

Mean 

depression 

for a load of 

M kg 

Load 

Increasing  

Load 

Decreasing 

 

Mean 

 

    W 

    W + m 

W + 2m 

W + 3m 

 

 

 

 

 

 

 

 

 

x 

x1 

x2 

x3 

  

 

 

 

 

 

W + 4m 

W + 5m 

W + 6m 

W + 7m 

   

x4 

x5 

x6 

x7 

 

x4 - x 

x5 - x1 

x6 - x2 

x7 - x3 

 

 

The mean depression(y) for a load M kg is found. 

 Now,   Ak2 = bd3 / 12  for a rectangular beam.  

Hence, 
3 3

3 3

Mgl 4
E = 

3(bd /12)y .

Mgl

bd y
  

The young’s modulus of the material of the beam is calculated using this 

relation. 

(2) E - by measuring the tilt in a loaded cantilever. 

The given rectangular beam is rigidly clamped at one end and a small 

plane mirror M is fixed at the free end [Fig. 1.3.2(b)].  A weight hanger (H) is 

attached at the free end of the beam.   A vertical scale (S) and telescope (T) are 

arranged in front of the mirror.  The telescope is focused so that the image of 

the vertical scale due to reflection in the mirror is obtained in the telescope.  

The reading on the scale which coincides with the horizontal cross-wire is 

noted.  Then weights m, 2m, 4m etc., are added to the weight-hanger and the 

readings of the scale as observed in the telescope, are noted in each case. 
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Fig 1.3.2(b) 

  Observations are made for decreasing loads also.  The results are 

tabulated as follows: 

Load in 

kg 

Readings on the scale Change in scale 

reading for M kg 
Load 

increasing 

Load 

decreasing 

Mean 

     

The average of the readings in the last column gives the mean change in 

scale reading s for a load of M kg.  The distance D between the mirror and the 

scale is found.  The breadth (b) and the thickness (d) of the beam are accurately 

measured. 

The angle between the two ends

of the cantilever for a load of M kg 2

s

D



 


  

 …(1) 

But,     
2 2

2 3

Mg.l Mg.l
 
2EAk 2E.bd /12

    

 
3

2

12

bd
SinceAk
 

 
 

 

    
2

3

6
.

Mgl

bd E
     …(2) 

From (1) and (2), 
2 2

3 3

6 . 12 .
.

2

s Mg l Mg l D
orE

D bd E bd s
   
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1.3.3  Oscillations of a cantilever 

Let OA be a cantilever of length l, of negligible mass fixed at O.  Let a 

mass M be attached at the other end A (Fig.1.3.3).  If the mass is slightly 

depressed and then released, the cantilever will execute simple harmonic 

motion about its original depressed position. 

 

Fig.1.3.3 

  The depression of the loaded end of the cantilever is  

   
3

23

Wl
y

EAk
  

or    
2

3

3
.

EAk
W y

l
  

 This must be equal to the elastic reaction of the cantilever balancing it 

and hence directed oppositely to it. 

 If M is the mass of the weight W and d2y/dt2, the acceleration (upwards), 

we have,  

  elastic reaction = 
2

2

d y
M

dt
 

   
2 2

2 3

3d y EAk
M y

dt l
   

or    
2 2

2 3

3
.

d y EAk
y

dt Ml


  

But,    
2

3

3EAk

Ml
 = A constant  

 The acceleration of mass M or the free end of the cantilever is thus 

proportional to its displacement and is directed opposite to it. 

 It, therefore, executes a S.H.M. of time period T, given by 



 24 

3

22

3

2 2 2
33

.

Displacement y Ml
T

Acceleration EAkEAk y

M l

    
 
 
 

 

If the mass of the cantilever is not negligible, it can be shown that,  

3

2

1
( )

32
3

M m l
T

EAk



  where m = mass of the cantilever. 

The mass of the cantilever can be eliminated by finding the periods T1 and T2 

for two different masses M1 and M2 attached to the cantilever at the same 

length.  Then,  

  

3

1
2 2

1 2

1
( )

34
3

M m l

T
EAk




   and 

3

2
2 2

2 2

1
( )

34
3

M m l

T
EAk




  

or  
2 3

2 2 2 1
2 1 2

4 ( )
.

3

M M l
T T

EAk

 
   

   
2 3

2 1

2 2 2

2 1

4 ( )
.

3 ( )

M M l
E

Ak T T

 



 

Experiment:  The given beam is rigidly clamped at O.  A certain load of M1 kg 

is suspended from the other end A.  The beam is set in transverse oscillations 

and the time for 25 oscillations is found.  From this the period of oscillation T1 

is calculated.  Similarly, the period T2 with at load M2 is found. 

 We have, 
2 3

2 1

2 2 2

2 1

4 ( )
.

3 ( )

M M l
E

Ak T T

 



 

For a rectangular bar,      Ak2 = bd3 / 12.   

Hence,   
2 3

2 1

3 2 2

2 1

( )16

( )

M Ml
E

bd T T

 



 

 The length of the cantilever l, the breadth b and depth d are measured.  

E is calculated using the above formula. 

Example 1:  A steel bar, 0.3 m long, 2 X 10-2 m broad and 2 X 10-3 m thick is 

clamped at one end and loaded at the other with a mass of 0.01 kg.  Calculate 

the period of vibration of the bar, neglecting the effect of weight of the bar. (E 

for steel = 20 X 1010 Nm-2 ). 

 
3

2

For a cantilever of length l, loaded
2

with a mass M, period of vibraiton 3

Ml
T

EAk



 


 

Here, l = 0.3m, M = 0.01 kg; E = 20 X 1010 Nm-2 
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 Ak2 = bd3 / 12 = (2 X 10-2)(2 X 10-3 )3/12 = 114
10

3
X   

 
3

10 11

(0.01) (0.3)
2 0.0365sec .

4
3 (20 10 ) 10

3

X
T onds

X X X X




 
 
 
 

 

1.3.4  Depression at the mid-point of a beam loaded at the middle 

Let AB represent a beam of length l, supported on two knife-edges at A 

and B and loaded with a weight W at the centre C.  The reaction at each knife-

edge is W/2 acting vertically upwards.  The beam bends as shown in Fig. 1.3.4, 

the depression being maximum at the centre.  The bending is non-uniform.  Let 

CD = y. 

The portion DA of the beam may be considered as a cantilever of length 

l/2, fixed at D and bending upwards under a load W/2.  Hence the elevation of 

A above D or, 

the depression of D below A = y = 
3 3

2 2

( / 2)( / 2)

3 48

W l Wl

EAk EAk
  

Note:  The inclination of the tangent at the points A and B is given by 

 

Fig. 1.3.4 

   
2

2
tan

16

dy Wl

dx EAK
    

Since  is small, tan .   

   
2

216

Wl

EAK
   
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1.4  Uniform bending of a beam 

Consider a beam of negligible mass supported symmetrically on two 

knife-edges A and B in a horizontal level (Fig. 1.4 (a)).  Let AB = 1. 

Let equal weights W, W be added to the beam at its ends C and D.  Let 

AC = BD = a.  Then the beam is bent into an arc of a circle.  The reactions on 

the knife-edges will then be W and W, acting vertically upwards.  Consider the 

cross-section of the beam at any point P.  The only forces acting on the part PC 

of the beam are the forces W at C and the reaction W at A. 

The external bending moment with respect to P 

    . . ( ) . .W Cp W AP W CP AP W AC Wa       

This must be balanced by the internal bending moment EAk2/R. 

Hence,  Wa = EAk2/R     …(1) 

 

 

Fig. 1.4(a) 

Since for a given load W, E, a and Ak2 are constant, R is a constant. The 

bending is then said to be uniform.  If y is the elevation of the mid-point of AB 

above its normal position (Fig. 1.4(b)), 

 

Fig. 1.4(b) 

   EF(2R – EF) = AF2 
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     y(2R – y) = (l / 2)2 

    y.2R = l2 / 4 

         (  y2 is negligible)      

         y = l2 / 8R 

From (1),  
2

1 Wa

R EAk
  

   
2

28

Wal
y

EAk
  

1.4.1  Measurement of Young’s modulus – By bending of a beam  

(1) Non-uniform Bending: 

The given beam is symmetrically supported on two knife-edges (Fig. 

1.4.1 (1)).  A weight-hanger is suspended by means of a loop of thread from the 

point C exactly midway between the knife-edges.  A pin is fixed vertically at C 

by some wax.  A traveling microscope is focused on the tip of the pin such that 

the horizontal cross-wire coincides with the tip of the pin.  The reading in the 

vertical traverse scale of microscope is noted.  Weights are added in equal steps 

of m kg and the corresponding readings are noted.  Similarly, readings are 

noted while unloading.  The results are tabulated as follows: -  

 

Fig. 1.4.1 (1) 

 

Load in 

kg 

Readings on the microscope  

y for M kg Load 

increasing 

Load decreasing Mean 

     

The mean depression y is found for a load of M kg.  The length of the 

beam (l) between the knife-edges is measured.  The breadth b and the thickness 

d of the beam are measured with a vernier calipers and screw gauge 

respectively. 
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Then,  
3 3

2 248 48

Wl Wl
y orE

EAk Ak y
   

or   
3

348 ( /12)

Mgl
E

X bd Xy
   ( W Mg  and  2 3A /12)k bd  

  
3

34

Mgl
E

bd y
  

Example 1:  In an experiment a rod of diameter 0.0126 m was supported on 

two knife-edges, placed 0.7 metre apart.  On applying a load of 0.9 kg exactly 

midway between the knife-edges, the depression on the middle point was 

observed to be 0.00025 m.  Calculate the Young’s modulus of the substance. 

  
3 3

4 4

(0.9)(9.8)(0.7)

12 12(0.00025) (0.0063)

Mgl
E

y r 
   

  11 22.039 10E X Nm  

(2) Uniform bending:   

The given beam is supported symmetrically on two knife-edges A and 

B (Fig. 1.4.1 (2)).  Two equal weight-hangers are suspended, so that their 

distances from the knife-edges are equal.  The elevations of the centre of the 

beam may be measured accurately by using a single optic level (L).  The front 

leg of the single optic lever rests on the centre of the loaded beam and the hind 

legs are supported on a separate stand.  A vertical scale (S) and telescope (T) 

are arranged in front of the mirror.  The telescope is focused on the mirror and 

adjusted so that the reflected image of the scale in the mirror is seen through 

the telescope.  The load on each hanger is increased in equal steps of m kg and 

the corresponding readings on the scale are noted.  Similarly, readings are 

noted while unloading.  The results are tabulated as follows: 

 

Fig. 1.4.1 (2) 
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Load in 

kg 

Readings of the scale as seen in the 

telescope 

 

Shift in 

reading for 

M kg 
Load 

increasing 

Load 

decreasing 

Mean 

     

The shift in scale reading for M kg is found from the table.  Let it be S.  

If 

D = The distance between the scale and the mirror, 

x = the distance between the front leg and the plane containing the two 

hind legs of the optic lever, 

then  y = Sx / 2D. 

The length of the beam l between the knife-edges, and a, the distance 

between the point of suspension of the load and the nearer knife-edge (AC = 

BD = a) are measured.  The breadth b and the thickness d of the beam are also 

measured. 

Then,    
2

28

Wal
y

EAk
  or 

2

32 8 ( /12)

Sx Mgal

D E bd
  

[Since W = Mg and Ak2 = bd3 / 12] 

  
2

3

3Mgal D
E

Sxbd
  

Pin and Microscope Method:  The given beam is supported symmetrically on 

two knife-edges A and B.  Two equal weight-hangers are suspended so that 

their distances from the knife-edges are equal.  A pin is placed vertically at the 

centre of the beam.  The tip of the pin is viewed by a microscope.  The load on 

each hanger is increased in equal steps of m kg and the corresponding 

microscope readings are noted.  Similarly, readings are noted while unloading.  

The results are tabulated as follows: 

 

Load in 

kg 

Readings of the microscope  

y for M kg Load 

increasing 

Load decreasing Mean 

     

The mean elevation (y) of the centre for M kg is found.  The length of 

the beam l between the knife-edges and a, the distance between the point of 
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suspension of the load and the nearer knife-edge (AC = BD = a) are measured.  

The breadth b and the thickness d of the beam are also measured. 

 
2 2

2 38 8 ( /12)

Wal Mgal
y

EAk E bd
   

3
2 bd

 and  Ak  = 
12

W Mg
 

 
 

 

        
2

32

Mgal
E

bd y
  

Using the above formula we can calculate the Young’s modulus of the 

material of the beam. 

Example 1:  Distinguish between uniform and non-uniform bending. 

           In uniform bending every element of the beam is bent with the same 

radius of curvature (R).  In non-uniform bending, R is not the same for all the 

elements in the beam. 

1.5  Theory of Non-Uniform Bending 

(Beam supported at its Ends and Loaded in the Middle) 

 Consider a beam supported on two knife-edges A and B (Fig. 1.5).  The 

length of the beam between the two points A and B is l.  It is loaded with 

weight W at the centre C.  The reaction at each knife-edge is W/2 acting 

vertically upwards. 

 Consider a cross section of the beam at P, at a distance x from A. 

 

Fig. 1.5 

For equilibrium, 

  ( )
2 2

gEI l W
W x l x

R

 
    

 
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2

gEI W
x

R
    

  
1

2 g

Wx

R EI
       …(1) 

But  
2

2

1 d y

R dx
  

  
2

2 2 g

d y Wx

dx EI
       …(2) 

Integrating Eq. (2), 

  
2

1
4 g

dy Wx
C

dx EI
       …(3) 

At  , 0
2

l dy
x

dx
   

   
2

1

( / 2)
0

4 g

W l
C

EI
    

  
2

1
16 g

Wl
C

EI
  

  
2 2

4 16g g

dy Wx Wl

dx EI EI
       …(4) 

Integrating Eq. (4), 

  
3 2

2
12 16g g

Wx Wl x
y C

EI EI
     

At 0, 0;x y   2 0C   

  
3 2

12 16g g

Wx Wl x
y

EI EI
       …(5) 

At the mid point C, / 2.x l  

  
   

3 2/ 2 / 2

12 16g g

W l Wl l
y

EI EI
    

  
3

48 g

Wl
y

EI
      …(6) 
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Special cases 

1. For a beam of rectangular cross-section, 

  3 /12gI bd  

  
3

34

Wl
y

Ebd
      …(7) 

2. For a beam of circular cross-section. 

  4 / 4.gI r  

  
3

412

Wl
y

Er
      …(8) 

 

Torsion 

1.6  Torsion of a body 

 When a body fixed at one end and twisted about its axis by means of a 

torque at the other end, the body is said to be under torsion.  Torsion involves 

shearing strain and so the modulus involved is the rigidity modulus. 

Torsion of a cylinder-Expression for torque per unit twist 

 Consider a cylindrical wire of length L and radius a fixed at its upper 

end and twisted through an angle  by applying a torque at the lower end.  

Consider the cylinder to consist of an infinite number of hollow co-axial 

cylinders.  Consider one such cylinder of radius x and thickness dx. [Fig. 

1.6(1)]. 

   

Fig. 1.6 (1)              Fig. 1.6 (2) 

 



 33 

 A line such as AB initially parallel to the axis OO' of the cylinder is 

displaced to the position AB′ through an angle  due to the twisting torque [Fig. 

1.6(2)].  The result of twisting the cylinder is a shear strain.  The angle of shear 

= BAB' = . 

 Now  BB′ = x. = L  or  = x./L 

 We have, rigidity modulus = G = 
Shearing stress

angle of shear ( )
 

 Shearing stress = G. = Gx/L 

But,  Shearing stress = 
Shearing force

Area on which the force acts
 

 Shearing force = Shearing stress X Area on which the force acts. 

The area over which the shearing force acts = 2x dx 

Hence, the shearing force = F = 2
Gx

X xdx
L


  

3

The moment of this 
2

force about the axis 2 .

OO' of the cylinder 

Gx G
xdx x x dx

L L

  




 




  

 3

0

Twisting torque on the 2

whole cylinder 

a
G

C x dx
L

 
 


  

or   
4

2

Ga
C

L

 
  

 
4The torque per unit twist (i.e.,

the torque when   = 1 radian) 2

Ga
c

L






 


 

Note 1:  When an external torque is applied on the cylinder to twist it, at once 

an internal torque, due to elastic forces comes into play.  In the equilibrium 

position, these two torques will be equal and opposite. 

Note 2:  If the material is in the form of a hollow cylinder of internal radius a 

and external b, then, 

 3 4 4
The torque acting 2

( )
on the cylinder 2

b

a

G G
C x dx b a

L L

   
   


  

Torque per unit twist = c = G(b4-a4)/(2L)  

Example 1:  What torque must be applied to a wire one metre long, 10-3 metre 

in diameter in order to twist one end of it through 90o, the other end remaining 

fixed?  The rigidity of the material of the wire is 2.8 X 1010 Nm-2. 
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 Here, L = 1m; G = 2.8 X 1010 Nm-2; a =
3

310
0.5 10 ;

2
m X m


   

 = 90o = /2 radian; 

 
4 10 3 4(2.8 10 )(0.5 10 )

2 2 1 2

Ga X X
C X

L X

  




   

          = 4.318 X 10-3 Nm. 

Example 2:  A circular bar one metre long and 8 X 10-3 metre diameter is 

rigidly clamped at one end in a vertical position.  A torque of magnitude 2.5 

Nm is applied at the other end.  As a result, a mirror fixed at this end deflects a 

spot of light by 0.15 metres on a scale one metre away.  Calculate the modulus 

of rigidity of the bar. 

 For a twist , the mirror turns through , and the reflected beam through 

2.  If the deflection is d on a scale D away, 2D = d or 

d 0.15
= 0.075 ;

2D 2 1
radians

X
    

 Here, C= 2.5 Nm; a = 4 X 10-3 m;  = 0.075 radians; L = 1m; G = ? 

 Hence, 
4

2

Ga
C

L

 
  or 

4

.2C L
G

a 
  

i.e., 10 2

3 4

2.5 2 1
8.290 10

(4 10 ) (0.075)

X X
G X Nm

X



   

Example 3:  A steel wire of diameter 3.6 X 10-4 m and length 4 m extends by 

1.8 X 10-3 m under a load of 1 kg and twists by 1.2 radians when subjected to a 

total torsional torque of 4 X 10-5 Nm at one end.  Find the values of E, G and v 

for steel. 

 We have, 
/

/ .

F A FL
E

l L Al
   

Here, F = mg = 1 X 9.8 = 9.8N: L = 4m; 

         A = a2 = (1.8 X 10-4)2m2 and l = 1.8 X 10-3m. 

 
11 2

4 2 3

9.8 4
2.139 10

(1.8 10 ) 1.8 10

X
E X Nm

X X X


 
   

 
4

Torque which must be applied 

to twist one end of the wire
2

through an angle  radians

Ga
C

L

 





 




 

or  
4

.2C L
G

a 
  

Here, C = 4 X 10-5 Nm; L = 4m; a = 1.8 X 10-4m; 
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           = 1.2 radians 

 
4

.2C L
G

a 
 = 

5
11 2

4 4

(4 10 ) 2 4
0.8083 10

(1.8 10 ) 1.2

X X X
X Nm

X X





  

 
11

11

2.139 10
1 1 1.323 1 0.323.

2 2 0.8083 10

E X
v

G X X
        

Example 4:  Explain why a hollow rod is a better shaft than a solid one of the 

same mass, length and material. 

 Consider a solid cylinder of length L, radius r and shear modulus G. 

 
4

1

The torque required to twist the 

solid cylinder through an angle 2

Gr
C

L

 




 


  …(1) 

 Let r1 and r2 be the inner and outer radii of the hollow cylinder of the 

same length, mass and material.  

            Then the torque required to twist it through the same angle  is 

   
4 4

2 1
2

( )

2

G r r
C

L

 
    …(2) 

Hence,  
4 4 2 2 2 2

2 2 1 2 1 2 1

4 4

1

( )( )C r r r r r r

C r r

  
   

Since the two cylinders have the same mass, 

 2 2 2

2 1( ) .r r l r l      

(where  is the density of the material of the cylinders). 

or 2 2 2

2 1r r r        …(3) 

Adding 2r1
2 to both sides, 2 2 2 2

2 1 12r r r r      …(4) 

Hence,  
2 2 2 2 2

2 1 1

4 2

1

( 2 ) 2C r r r r r

C r r

 
   

 

or  
2

2 1

2

1

2
1

C r

C r
   

 C2>C1 i.e., the twisting torque for a hollow cylinder is greater than that 

for a solid cylinder of the same mass, length and material.  Hence a 

hollow cylinder is stronger and a better shaft than a solid one of the 

same mass, length and material.  

Torsional oscillations of a body 

Suppose a wire is clamped vertically at one end and the other end carries 

a body (i.e., a disc, bar or a cylinder) of moment of inertia I about the wire as 
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the axis.  Let the length, radius and rigidity modulus of the wire be respectively 

l, a and G.  When the body is given a slight rotation by applying a torque, say 

by the hand, the wire is twisted.  If the body is released, the body oscillates in 

the horizontal plane about the wire as axis.  These oscillations are called 

Torsional oscillations and the arrangement is known as a Torsion pendulum. 

Let us consider the energy of the vibrating system when the angle of 

twist is .  Let  be the angular velocity of the body. 

 The potential energy of the wire due to the twist =  21
.

2
c . 

  

2

2
The kinetic energy of the 1 1

body due to its rotation 2 2

d
I I

dt




  
   

 
 

  

2

2
The total energy 1 1

tan
of the system 2 2

d
I c cons t

dt




  
    

 
  

Differentiating this with respect to t, 

  
2

2

1 1
.2 . 2 0.

2 2

d d d
I c

dt dt dt

  
   

or  
2 2

2 2
0

d d c
I c or

dt dt I

 
     

The body has simple harmonic motion and its period is given by 

  2
I

T
c

  

1.7  Rigidity modulus by Torsion pendulum 

(Dynamic torsion method): 

 The torsion pendulum consists of a wire with one end fixed in a split 

chuck and the other end to the centre of a circular disc as in Fig. 1.7. 

 Two equal symmetrical masses (each equal to m) are placed along a 

diameter of the disc at equal distances d1 on either side of the centre of the disc.  

The disc is rotated through an angle and is then released.  The system executes 

torsional oscillations about the axis of the wire.  The period of oscillations T1 is 

determined. 
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Fig. 1.7. 

Then  1
1 2

I
T

c
  

or   
2

2

1 1

4
.T I

c


  

Here, I1 = Moment of inertia of the whole system about the axis of the 

wire and c= torque per unit twist. 

Let I0 = M.I. of the disc alone about the axis of the wire. 

 i = M.I. of each mass about a parallel axis passing through its centre of 

gravity. 

Then by the parallel axes theorem, 

2

1 0 12 2I I i md     

 
2

2 2

1 0 1

4
2 2 . .T I i m d

c


         …(1) 

 The two masses are now kept at equal distances d2 from the centre of 

the disc and the corresponding period T2 is determined.  Then, 

 
2

2 2

2 0 2

4
2 2 . .T I i m d

c


         …(2) 

  
2

2 2 2 2

2 1 2 1

4
.2 .T T m d d

c


      …(3) 

But  c = 
4

2

Ga

L


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Hence  
 2 2 2

2 12 2

2 1 4

4 .2 . 2m d d L
T T

Ga






   

or   
2 2

2 1

4 2 2

2 1

16 ( )

( )

Lm d d
G

a T T

 



 

Using this relation, G is determined. 

M.I. of the disc by torsional oscillations.  The two equal masses are removed 

and the period T0 is found when the disc alone is vibrating.  Then, 

 
22

2 0
0 0 0 2

4

4

cT
T I orI

c




      …(4) 

From (3),  
 2 2 2

2 1

2 2

2 1

4 .2 .m d d
c

T T

 



 

Hence  
   2 2 2 2 2 22

2 1 2 1 00
0 2 2 2 2 2

2 1 2 1

4 .2 . 2 .
.
4

m d d m d d TT
I

T T T T





 
 

 
 

 From this relation, the moment of inertia of the disc about the axis of 

the wire is calculated. 

1.7.1  Determination of rigidity modulus – Static torsion method 

Searle’s apparatus:  The experimental rod is rigidly fixed at one end A and 

fitted into the axle of a wheel W at the other end B (Fig. 1.7.1.).  The wheel is 

provided with a grooved edge over which passes a tape.  The tape carries a 

weight hanger at its free end.  The rod can be twisted by adding weights to the 

hanger.  The angle of twist can be measured by means of two pointers fixed at 

Q and R which move over circular scales S1 and S2.  The scales are marked in 

degrees with centre zero. 

 

Fig. 1.7.1 

 With no weights on the hanger, the initial readings of the pointers on the 

scales are adjusted to be zero.  Loads are added in steps of m kg (conveniently 
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0.2 kg).  The readings on the two scales are noted for every load, both while 

loading and unloading.  The experiment is repeated after reversing the twisting 

torque by winding the tape over the wheel in the opposite way.  The 

observations are tabulated. 

 The readings in the last column give the twist for a load of M kg for the 

length QR (=L) of the rod. 

 

L
o
ad

 

    

Reading on S1 

 

Torque Clockwise Torque 

Anticlockwise M
ean

 
1  

Load 

increasi

ng 

 

Load 
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ng 
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ng 
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
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 
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g
 

Torque Clockwise Torque Anticlockwise  

 

 

Mean 

2 

Load 

increasing 

 

Load 

decreasing 

Load 

increasing 
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decreasing 

     

 

The radius a of the rod and the radius R of the wheel are measured.  If a load of 

M kg is suspended from the free end of the tape, the twisting torque = MgR. 

 The angle of twist =   degrees = ./180 radians. 

 The restoring torque = 
4

2

Ga

L


. .
180


 

For equilibrium,   
4

2 4

. 360

2 180

Ga MgRL
MgR orG

L a

  

 
   

Since a occurs in the fourth power in the relation used, it should be 

measured very accurately. 
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Notes: (1)  We eliminate the error due to the eccentricity of the wheel by 

applying the torque in both clockwise and anticlockwise directions. 

(3) We eliminate errors due to any slipping at the clamped end by 

observing readings at two points on the rod. 

1.7.2  Determination of rigidity modulus – Static torsion method. 

(Searle’s apparatus – Scale and Telescope) 

             A plane mirror strip is fixed to the rod at a distance L from the fixed 

end of the rod [Fig. 1.7.2].  A vertical scale (S) and telescope (T) are arranged 

in front of the mirror.  The telescope is focused on the mirror and adjusted so 

that the reflected image of the scale in the mirror is seen through the telescope.  

With some dead load W on the weight-hanger, the reading of the scale division 

coinciding with the horizontal cross-wire is taken.  Weights are added in steps 

of m kg and the corresponding scale readings are taken.  Weights are then 

decreased continuously in steps of m kg and the readings taken again.  The 

torque is reversed now, by passing the tape anticlockwise on the wheel.  The 

readings are taken as before.  From these readings, the shift in scale reading (s) 

for a load m kg is found. 

 The length L of the rod from the fixed end to the mirror is measured.  

The mean radius a of the rod is accurately measured with a screw gauge.  The 

radius (R) of the wheel is found by measuring its circumference with a thread.   

 

Fig 1.7.2 

             The distance (D) between the scale and the mirror is measured with a 

metre scale. 

G is calculated using the formula G = 
4

4mgRLD

a s
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Work done in twisting a wire 

           Consider a cylindrical wire of length L and radius a fixed at its upper 

end and twisted through an angle  by applying a torque at the lower end. 

           If c is the torque per unit angular twist of the wire, then the torque 

required to produce a twist  in the wire is  

 C = c. 

           The work done in twisting the wire through a small angle d is  

 Cd = c d. 

 
0

The total work done in twisting
.

the wire through an angle   
W c d



 



 


  

 Or        21
.

2
W c  

The work done in twisting the wire is stored up in the wire as potential energy. 

Example 1:  Find the amount of work done in twisting a steel wire of radius 

10-3 m and of length 0.25 m through an angle of 45o.  Given G for steel = 8 X 

1010 Nm-2.  

We have,  
4 4

2 21 1
.

2 2 2 2

Ga Ga
W c c

L L

 
 

 
   

 
 

Here, G = 8 X 1010 Nm-2 ; a = 10-3 m;  = 45o = /4 rad; 
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 L = 0.25 m 

 
 

210 -3 4(8X10 )(10 ) /4  1
0.1550 .

2 2 0.25
W J

X

 
   

 

Surface Tension 

1.8  Introduction 

 Any liquid in small quantity, so that gravity influence is negligibly 

small, will always assume the form of a spherical drop – e.g., rain drops, small 

quantities of mercury placed on a clean glass plate etc.  So a liquid must 

experience some kind of force, so as to occupy a minimum surface area.  This 

contracting tendency of a liquid surface is known as surface tension of liquid.  

This is a fundamental property of every liquid. 

 

Fig. 1.8(a)           Fig. 1.8(b) 

 The following experiment illustrates the tendency of a liquid to decrease 

its surface area. 

 When a camel hair brush is dipped into water, the bristles spread out 

[Fig. 1.8 (a)].  When the brush is taken out, the bristles cling together on 

account of the films of water between them contracting [Fig. 1.8 (b)].  This 

experiment clearly shows that the surface of a liquid behaves like an elastic 

membrane under tension with a tendency to contract.  This tension or pull in 

the surface of a liquid is called its surface tension. 

 Definition:  It may be defined as the force per unit length of a line 

drawn in the liquid surface, acting perpendicular to it at every point and tending 

to pull the surface apart along the line. 

 Unit of surface tension.  Surface tension being force per unit length, its 

SI unit is Newton per meter (Nm-1). 

 Dimensions of surface Tension: Since it is the ratio of a force to a 

length, its dimensions are MLT-2/L = MT-2. 
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1.8.1  Pressure difference across a liquid surface 

(a) If the free surface of the liquid is plane, as in Fig. 1.8.1 (a), the 

resultant force due to S.T. on a molecule on the surface is zero. 

(b) IF the free surface of the liquid is concave, as if Fig. 1.8.1 (b), the 

resultant force due to S.T. on a molecule on the surface acts 

vertically upwards. 

(c) If the free surface of the liquid is convex, as in Fig. 1.8.1 (c), the 

resultant force due to S.T. on a molecule on the surface acts 

vertically downwards (into the liquid). 

 

Fig. 1.8.1 

Excess pressure inside a liquid drop:  A spherical liquid drop has a 

convex surface, as in Fig. (i).  The molecules near the surface of the drop 

experience a resultant force, acting inwards due to surface tension.  Therefore, 

the pressure inside the drop must be greater than the pressure outside it.  Let 

this excess pressure inside the liquid drop over the pressure outside it be p. 

Imagine the drop to be divided into two exactly equal halves.  Consider 

the equilibrium of the upper-half (or the upper hemisphere) of the drop as 

shown in Fig. (ii).  IF r is the radius of the drop, and σ its S.T., 

 

 
2

The upward force on the plane face

ABCD due to the excess pressure p
p r





 

 
The downward force due to surface tension acting 

2
along the circumference of the circle ABCD

r 




 

Since the hemisphere is in equilibrium, the two forces are equal.  

  
2 2p r r    or 2 /p r  
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Excess pressure inside a soap bubble:  A soap bubble has two liquid 

surfaces in contact with air, one inside the bubble and the other outside the 

bubble. 

 The force due to S.T. in this case = 2 2 4X r r    . 

 Therefore, for equilibrium of the hemisphere, 

  2 4p r r    or 4 /p r . 

 Thus the excess pressure inside a drop or a bubble is inversely 

proportional to its radius (i.e., 1/p r ).  Since 1/p r , the pressure needed to 

form a very small bubble is high.  This explains why one needs to blow hard to 

start a balloon growing.  Once the balloon has grown, less air pressure is 

needed to make it expand more. 

1.8.2  Excess pressure inside a curved liquid surface 

 When the pressure on both sides of a liquid surface is same, then the 

surface is flat, without any curvature.  But when it is curved convex upwards, 

then the pressure inside must be greater than the pressure outside and the 

excess pressure inside is balanced by the force of S.T. 

To find the excess pressure, consider a small curvilinear rectangular 

element A1B1C1D1 of a liquid surface [Fig. 1.8.2].  A1B1 has a radius of 

curvature R1 with centre at O1.  B1C1 has a radius of curvature R2 with centre at 

O2.  Let p be the excess of pressure inside the surface over that outside.  Then 

the outward thrust on the surface A1B1C1D1 = p X Area of the element 

A1B1C1D1 = p X A1B1 X B1C1. 

 

Fig. 1.8.2 

 Now, let the surface be moves outward through a very small distance x. 

 Let the new position of the surface be A2B2C2D2. 

Work done in the displacement = p.A1B1.B1C1. x   …(1) 

Now, increase

in surface area 





 = Area of A2B2C2D2 – Area of A1B1C1D1 
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    = A2B2.B2C2 - A1B1.B1C1 

From similar triangles, A1B1O1 and A2B2O1, 

   1 1 1 1

2 2 2 1

A B AO

A B A O
  or 1 1 1

2 2 1( )

A B R

A B R x



 

   1 1 1
2 2 1 1

1 1

( )
1

A B R x x
A B A B

R R

  
   

 
 

Similarly,   B2C2 = B1C1 
2

1
x

R

 
 

 
 

Hence   2 2 2 2 1 1 1 1

1 2

x x
A B .B C  =A B 1+ 1+

R R
B C

    
   
   

 

   1 1 1 1 1 1 1 1

1 2

Increase in x x
 A B .B C  1+ A B .B C
 surface area R R

  
    

  
 

= A1B1.B1C1 δx
1 2

1 1

R R

 
 

 
 

  
Work done in increasing 

 = 
the area of a surface      





Surface tension X increase

in surface area 

 
 
 

 

      = σ. A1B1.B1C1.x
1 2

1 1

R R

 
 

 
  …(2) 

Equating (1) and (2) we have,  

  1 1 1 1 1 1 1 1

1 2

1 1
.A B .B C . x= . A B .B C . x

R R
p   

 
 

 
 

0or    p = σ
1 2

1 1

R R

 
 

 
 

The excess of pressure inside any particular surface can be deduced 

from the above expression. 

(1) Spherical liquid drop (an air bubble in a liquid). 

 It has only one surface and the radius of curvature is the same 

 everywhere, i.e., R1 = R2 = r. p = 2σ/r. 

(2) Spherical soap bubble.  Here there are two surfaces having the 

same radius of curvature p = 4σ/r. 

(3) Cylindrical drop. R1 = r = Radius of the cylinder and R2 = , p = 

σ/r 
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(4) Cylindrical bubble. p = 2σ/r since it has two surfaces. 

Note:  We have, p = σ
1 2

1 1
.

R R

 
 

 
  The expression holds good for surfaces such 

as  

 

Fig. 1.8.2(a) & (b) 

spherical or ellipsoidal, for which the principal radii of curvature are on the 

same side.  Such surfaces are called synclastic surfaces [Fig. 1.8.2 (a)].  But in 

cases where the two radii are in opposite directions, the surface is called 

anticlastic [Fig. 1.8.2 (b)].  The expression for such surfaces is  

  p = σ
1 2

1 1
.

R R

 
 

 
   

Combining the two cases, the general relation is  

  p = σ
1 2

1 1
.

R R

 
 

 
   

 

Example 1:  Calculate the work done in spraying a spherical drop of water of 

10-3 m radius into million droplets, all of the same size, the surface tension of 

water being 72 X10-3 Nm-1. 

          Breaking the liquid drop means an increase in surface area.  Therefore 

work has to be done for this purpose. 

            Work done = Surface tension X Increase in surface area. 

            Let us calculate the increase in surface area. 

            Let R be the radius of the larger drop and r the radius of the smaller 

droplets. 

            Volume of the original drop = Volume of 106 droplets. 
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3 6 3

3 3 6 3 -3

3 -15 -5

4 4
10

3 3

4 4
(10 ) 10                          [ R=10 m]

3 3

or        r  = 10 m or r=10 m

R X r

X r

 

 



  

            Area of original large drop 2 3 2 6 24 4 (10 ) 4 10R X m       

                      Area of 106 droplets 6 2 6 5 210 4 10 4 (10 )X r X     

          = 4X10-4 m2 

Hence increase in surface area is 

    
4 6

3 2

4 10 4 10

1.244 10

X X

X m

  



 


 

 Work done = Surface tension X Increase in surface area. 

   

3 3

5

(72 10 ) (1.244 10 )

8.956 10 .

X X X

X joules

 






 

Example 2:  Calculate the amount of work done if a soap bubble is slowly 

enlarged from a radius of 0.1 m to a radius of 0.2m.   = 30 X10-3Nm-1. 

            Increase in surface area = 2[4(r2
2-r1

2)] 

     = 8[(0.2)2-(0.1)2] = 0.7536 m2 

 Work done = Increase in surface area X  

   = 0.7536 X (30 X 10-3) = 0.02261J. 

Example 3:  What is the work done in blowing a soap bubble of radius 0.1 m?  

What additional work will be performed in further blowing it, so that its radius 

becomes 0.15 m?  = 30 X 10-3 Nm-1.       

Work done in blowing a soap 
 tension X increase in surface area

bubble of radius 0.1 m 
surface





    

 W = X8r1
2 = (30 X 10-3) 8 (0.1)2 = 7.536 X 10-3J. 

2 2

2 1

-3 2 2 -3

Work done in increasing the radius of 
8 ( )

the soap bubble from 0.1m to 0.15m

i.e.,      W = (30X10 ) 8 [(0.15) -(0.1) ]=9.42X10 J.

X r r 




 

  

Example 4:  There is a minute circular hole at the bottom of a small hollow 

vessel.  The vessel has to be immersed in water to a depth of 0.4m, before any 

water penetrates inside.  Find the radius of the hole, if the surface tension and 

density of water be 73 X 10-3 Nm-1 and 1000 kg m-3 respectively. 

               Water cannot penetrate till the hydrostatic pressure is greater that the 

excess of pressure that comes into play due to surface tension.  At the limiting 
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condition, when water just penetrates, the two pressures should be equal; i.e., 

hg = 2/r where r is the radius of the hole. 

                        r = 2. /( hg) 

Here,  = 73 X 10-3 Nm-1;  h = 0.4m;  =1000kgm-3;         r =? 

 
3

52 (73 10 )
3.724 10

0.4 1000 9.8

X X
r X m

X X


   

Example 5:  What would be the pressure inside a small air bubble of 10-4 m 

radius, situated just below the surface of water?  S.T. of water may be taken to 

be 70 X 10-3 Nm-1 and the atmospheric pressure to be 1.012 X 105 Nm-2. 

               
Excess of pressure inside the spherical 2

air bubble over that of the atmosphere
p

r


 


 

Here,  = 70 X 10-3 Nm-1; r = 10-4m. 

 
Excess 

pressure





 = p = 
2

r


 = 

3
2

4

2 (70 10 )
1400

10

X X
Nm





  

 
Total pressure inside the

 
                       air bubble





 = 
Atmospheric pressure 

+Excess pressure 

 
 
 

 

    = 1.012 X 105 +1400 = 1.026 X 105 Nm-2.          

Example 6:  The pressure of air in a soap bubble of 7 X 10-3 m diameter is 8 

X 10-3 m of water above the atmospheric pressure.  Calculate the S.T. of the 

soap solution. 

 
Excess of pressure inside a soap 4

bubble over that outside it 
p

r


 


. 

Here, p = 8 X 10-3 m of water = (8 X 10-3) X 1000 X 9.81 Nm-2. 

    = 78.48 Nm-2 

 r = (7 X 10-3)/2 = 3.5 X 10-3 m. 

  = 
3

3 178.48 (3.5 10 )
68.67 10

4 4

pr X X
X Nm


    

Example 7:  A spherical bubble of radius 0.001m is blown in an atmosphere 

whose pressure is 105 Nm-2.  If the S.T. of the liquid comprising the film is 0.05 

Nm-1, to what pressure must the surrounding atmosphere be brought in order 

that the radius of the bubble may be doubled?                    

            The pressure inside the bubble initially is 

 5 5 24 4 0.05
10 1.002 10

0.001
i

X
p P X Nm

r

     
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3 9 3

i

The volume of 4 4
=V = r = 10            

the bubble       3 3
X m  




 

In the second case, the radius of the bubble is 0.002m.  Let the required 

pressure pf.  Then the total pressure inside the bubble,  

 24 4 0.05
(100 )

0.002 0.002
f f f f

X
P P P P Nm

        

In the second case, volume of the bubble = 34
(0.002)

3
fV   

Applying Boyle’s law, piVi = pfVf, 

                          

5 9 3

4 2

4 4
(1.002 10 ) 10 (100 ) (0.002)

3 3

, 1.252 10

f

f

X X P

Simplifying P X Nm

 



 
  

 



  

Example 8:  Two soap bubbles of radii r1 and r2 coalesce to form a single 

bubble of radius r.  If the external pressure is P, prove that the S.T. of the 

solution from which the soap bubble is formed is given by 

3 3 3 2 2 2

1 2 1 2

1
( ) /( ).

4
P r r r r r r       

              Pressure inside the first bubble = p1 = (4/r1)+P 

              Pressure inside the second bubble = p2 = (4/r2)+P 

              Let the bubbles coalesce into a larger bubble of radius r. 

Then, pressure inside this larger bubble = p3 = (4/r)+P. 

Let V1, V2 be the volumes of the two bubbles before they coalesce and V3 the 

volume of the large bubble formed.  Then by Boyle’s law, 

 p1V1+ p2V2 = p3V3 

 

3 3 3

1 2

1 2

2 2 2 3 3 3

1 2 1 2

4 4 4 4 4 4
.

3 3 3

         4 ( ) ( )

P r P r P r
r r r

or r r r P r r r

  
  



     
         

     

    

 

 3 3 3 2 2 2

1 2 1 2

1
( ) /( ).

4
P r r r r r r       

1.9  Drop-weight method of determining the surface tension of a liquid  

Experiment: A short glass tube is connected to the lower end of a burette (or 

funnel) clamped vertically, by means of a rubber tube [Fig. 1.9.].  The funnel is 

filled with the liquid whose S.T. is to be determined.  A beaker is arranged 

under the glass tube to collect the liquid dropping from the funnel.  The 

stopcock is adjusted so that the liquid drops are formed slowly.  In a previously 

weighed beaker a known number of drops, (say 50) are collected. 
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Fig. 1.9 

 The beaker is again weighed.  The difference between this weight and 

the weight of the empty beaker gives the weight of 50 drops of the liquid.  

From this the mass m of each drop is calculated.  The inner radius r of the tube 

is determined using a vernier calipers.  The S.T. of the liquid at the room 

temperature is calculated using the formula, 

   
.

3.8

m g

r
   

 Theory:  Here, we consider the vertical forces that keep a small drop of 

liquid in equilibrium, just before it gets detached from the end of a vertical 

glass tube of circular aperture.  At the instant the drop gets detached, it assumes 

a cylindrical shape at the orifice of the tube (Fig. 1.9).  Let σ = S.T. of the 

liquid and r = radius of the orifice. 

  
Excess pressure (p) inside the drop over

the outside atmospheric pressure r





 

 The area of the section is r2.  Therefore,   

  
2

Downward forces on the drop

due to this excess of pressure 
r

r








 

 The weight mg of the drop also acts vertically downwards. 

 Total force on the drop = (r2σ/r)+mg 

This downward force is balanced by the upward pull due to surface tension 

2rσ acting along a circle of radius r.  Therefore 
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  2 rσ = 
2r

mg
r

 
  or 2 rσ = rσ+mg 

   
.

.

m g

r



  

But the equilibrium of the drop at the instant of its detachment is 

dynamic and not static.  Lord Rayleigh, taking dynamical aspect into account, 

showed that 

   
.

3.8

m g

r
   

Example 1:  In a drop weight method for the determination of S.T. between 

water and air, a glass tube of external diameter 2mm is used, and 100 drops of 

water are collected.  The mass of these drops is 2.8 gms.  Find the S.T. of water 

in air. 

 Here, r = 10-3m.m = 2.8 X 10-3/100 = 2.8 X 10-5kg 

  
.

3.8

m g

r
   = 

-5
1

3

(2.8 X 10 ) 9.8
0.07221

3.8 10

X
Nm

X




  

1.9.1  Interfacial Tension:  At the surface of separation between two 

immiscible liquids there is a tension similar to surface tension.  It is called the 

interfacial tension.  

Definition:  When one liquid rests on another without mixing with it, 

the interface between the two liquids possesses energy just like the surface of a 

liquid.  The interfacial tension is the value of the force acting per metre normal 

to a line drawn on the interface. 

Experiment to determine the interfacial tension between water and 

kerosene 

 Sufficient amount of the lighter liquid (kerosene) is taken in a beaker.  

The weight w1 of the beaker with kerosene is determined.  The heavier liquid 

(water) is taken in the burette [Fig 1.9.1].  The glass tube is fixed vertically 

with its end under the surface of kerosene.  The flow of water is regulated so 

that drops of water detach themselves into kerosene one by one.  After 

collecting 50 drops, the beaker is again weighed.  Let this weight be w2.  Then 

w2-w1 gives the mass of 50 drops.   
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Fig 1.9.1 

 From this the average mass m of each drop is calculated.  The 

interfacial tension σ between water and kerosene is calculated using the 

formula 

.

3.8

m g

r
  2

1

1




 
 

 
 

 

 

 

No 

Mass of beaker  

+ lighter liquid 

  

 

 

Mean 

w1 kg 

Mass of beaker  

+ lighter liquid 

+50 drops  

 

 

Mean 

w2 kg 

Mass of 50 

drops =(w2-

w1) kg 

Trial 

I  

Trial 

II 

Trial I  Trial 

II 

        

Theory: Let 1 and 2 be the densities of water and kerosene respectively.  

Let m be the mass of water drop in air. 

  Volume of water drop = m/1 

  
1

Volume of kerosene displaced

by the water drop 

m







 

  2

1

mass of kerosene displaced 

by the water drop

m






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  2

1

Apparent weight of the 

water drop in kerosene 

m g
mg






 


 

Let σ be the S.T. at the interface between the two liquids. 

Then,   
2

2

1

.
2 .

m gr
r m g

r

 
 


    

  
.m g

r



 2

1

1




 
 

 
 

Again the more accurate equation will be 

  
.

3.8

m g

r
  2

1

1




 
 

 
 

 

Questions: 

1) What are ultrasonic waves? 

2) What is piezoelectric effect?  How is inverse piezoelectric effect used to 

produce ultrasonic wave? 

3) Explain the principle of magnetostriction method of producing 

ultrasonics. 

4) What are the usual methods employed to detect ultrasonic. 

5) Mention the properties of ultrasonics. 

6) Give important applications of ultrasonic. 

7) Describe the piezoelectric method of producing ultrasonic waves. 

8) Explain how ultra sonic are produced in a magetrostriction oscillator. 

9) Write any four applications of ultrasonics 

10) What are ultrasonic waves? Describe in detail one method of their 

production and  

Detection. Give some of their important applications. 

11) What are ultrasonic waves? How are they produced and detected? 

12) Calculate the work done in twisting a wire. 

13) Derive an expression for the period of oscillation of a torsion pendulum. 

14) What is meant by a beam?  Explain the terms neutral surface, neutral 

axis, plane of bending, and bending moment of a beam. 

15) Describe, with necessary theory, how the rigidity modulus of the 

material of a rod is determined by the static torsion method. 

16) Describe, with necessary theory, how you would determine the rigidity 

modulus of a wire experimentally by using the torsion pendulum.  
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17) What is a cantilever?  Obtain an expression for the depression at the 

free end of a thin light beam clamped horizontally at one end and 

loaded at the other. 

18) Derive an expression for the bending of a bar supported at the two ends 

and loaded in the middle.  Describe an experiment to determine E by 

bending. 

19) Describe, with necessary theory, the oscillation method to determine E 

for the material of a cantilever. 

20) A wire of length lm and diameter 10-3 m is fixed at one end and twisted 

at the other end through an angle of 70o by applying a couple of value 

0.01 Nm.  Evaluate the rigidity modulus of the wire. 

21) Explain the theory of uniform bending? 

22) Explain the theory of non-uniform bending? 
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UNIT – II 

 

HEAT & OPTICS   

HEAT 

2.  Postulates of the Kinetic Theory of Gases 

1.   A gas is composed of a large number of tiny, perfectly elastic particles, 

called molecules. 

2.   The molecules of a gas are identical in all respects. 

3.   The molecules are in a state of continuous motion.  They move in all 

directions with all possible velocities.  In their motion, they collide with 

each other and with the walls of the containing vessel.  Collisions 

between molecules are elastic. 

4.   The molecules move in straight lines between any two consecutive 

collisions. 

5.   The average distance traveled by a molecule between two successive 

collisions is called the mean free path. 

6.   The time of impact is negligible in comparison to the time taken to 

traverse the free path. 

7.   The molecules do not exert any force of attraction or repulsion on one 

another. 

8.   The volume of the molecule is negligible, compared with the volume of 

the gas. 

9.   The molecules are perfectly hard elastic spheres and the whole of their 

energy is kinetic. 

2.1 Van der Waals Equation of State 

 The perfect gas equation PV = RT was derived on the following 

assumptions:  

(i) the size of the molecule of the gas is negligible. 

(ii) the forces of inter-molecular attraction are absent. 

 But in actual practice, at high pressure, the size of the molecules of the 

gas becomes significant.  So the size of the molecule cannot be neglected in 

comparison with the volume of the gas. 

 At high pressure, the molecules come closer and the forces of 

intermolecular attraction are appreciable. 

 Van der Waals modified the perfect gas equation PV =RT by applying 

corrections for (i) finite size of the molecules and (ii) intermolecular attractions. 
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Fig. 2.1 

 Let us now derive Van der Waals equation of state. 

(i) Correction for Pressure:   

 A molecule at a point A well within the interior of the gas is attracted 

by other molecules equally in all directions. Hence the net cohesive force on it 

is zero (Fig. 2.1).  But when a molecule B strikes the walls of the container, it is 

pulled back by other molecules.  Such molecules collide on the walls of the 

vessel with a diminished momentum.  Due to this reason, the observed pressure 

of the gas is less than the actual pressure. 

The correction for pressure p depends upon: 

(i) the number of molecules striking unit area of the walls of the container 

per second and  

(ii) the number of molecules present in a given volume. 

 Both these factors depend on the density ρ of the gas. 

 Correction for pressure p   ρ2   1/V2 

2

a
p

V
  

Here, a is a constant and V is the volume of the gas 

 Corrected pressure 
2

( )
a

P p P
V

 
   

 
  …(1) 

Here, P is the observed pressure. 

(iii) Correction for Volume:   

 In the case of a real gas, molecules have a definite size and therefore 

occupy some volume.  Hence the actual space for the movement of the 

molecules is less than the volume of the vessel. 

 Corrected volume of the gas = (V-b)   …(2) 

 Here, b is a constant for the given mass of the gas.  It is called the co-

volume of the gas.  It is not equal to the actual volume occupied by the gas 

molecules.  Van der Waals showed that b is equal to four times the actual 

volume of the molecules.  

 Thus the Van der Waals equation of state for a gas is 
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2

( )
a

P V b RT
V

 
   

 
  …(3) 

Here, a and b are known as van der Waals constants. 

2.2  Derivation of Critical Constants 

 Consider the isothermal ACB, at the critical temperature cT  (Fig. 2.2).  

The values of volume, pressure and temperature of a gas corresponding to its 

critical point C are called the critical constants of the gas.  They are called 

critical volume, critical pressure and critical temperature, denoted by cV , cP  

and cT  respectively.  The critical point C is a point of inflexion. 

 

Fig. 2.2 

 Hence, at , 0c

dP
T T

dV
   and 

2

2
0.

d P

dV
  

From Van der Waals equation, we get 

  
2( )

RT a
P

V b V
 


    …(1) 

At the critical point C, 

  
2 3

2
0

( )

dP RT a

dV V b V
   


   …(2) 

and   
2

2 3 4

2 6
0

( )

d P RT a

dV V b V
  


   …(3) 

At the critical point, 

  ,c cP P V V   and cT T   

From (1), 
2( )

c
c

c c

RT a
P

V b V
 


    …(4) 



 59 

From (2), 
2 3

2

( )
c

c c

RT a

V b V



    …(5) 

From (3) 
3 4

2 6

( )
c

c c

RT a

V b V



    …(6) 

Dividing Eq. (5) by (6), 

  
2 3

c cV b V
  

   3cV b  

Substituting 3cV b  in Eqn. (5), 

  
2 3

2

4 27
cRT a

b b
      …(7) 

  
8

27
c

a
T

Rb
      …(8) 

Substituting  
 

8
3 ,

27
c c

a
V b T

Rb
   in Eq. (4), 

  
 
  2

8 / 27

3 9
c

R a Rb a
P

b b b


 


 

  
227

c

a
P

b
      …(9) 

Critical constants of a gas: 

(i) Critical temperature ( cT ) of a gas is that temperature above which it is 

not possible to liquefy the gas by the application of pressure alone.  To 

liquefy a gas, it must be cooled below its critical temperature before 

compressed. 

(ii) Critical pressure ( cP ) is that pressure which just liquefies a gas at its 

critical temperature. 

(iii) Critical volume ( cV ) is the volume of unit mass of gas at its critical 

temperature and pressure.  It is the reciprocal of the critical density.  It 

is often taken as the volume of one mole of a gas at its critical 

temperature and pressure. 

Demerits of Van der Waals equation  

(i) Van der Waals assumed a and b to be constants but experiments show 

that a and b vary with temperature. 

(ii) The ratio cRT /( c cPV ) is called the critical coefficient. 
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28 27 1 8

2.67
27 3 3

c

c c

RT a b
R

PV Rb a b
       

 Thus, the critical coefficient should be constant for all gases.  But, 

actually it caries from 3.28 for hydrogen to 4.99 for acetic acid. 

(iii)  According to Van der Waals, cV  = 3 b for all gases.  But, actually it 

varies form 1.4 b for argon to 2.8b for hydrogen. 

LOW TEMPERATURE PHYSICS 

Production of low temperature.  The general principle involved in the 

production of low temperature is to device means for removing from a body its 

heat content.  The following methods have been employed, with what results 

we shall presently see. 

(i) Freezing mixtures of salts in ice. 

(ii) Cooling due to evaporation of liquids under reduced pressure. 

(iii) Cooling due to Joule-Thomson effect. 

(iv) Cooking due to adiabatic expansion. 

(v) Cooling due to desorption. 

(vi) Adiabatic demagnetization,  

i.e., by demagnetizing certain crystals adiabatically, magnetic energy is made to 

leave the system and thereby extreme cooling is produced under suitable 

conditions. 

            Of these methods, the first two. viz., freezing mixtures and cooling by 

evaporation are of practical importance, as they are utilized in the modern 

refrigerating machines.  The third and fourth methods have been used for the 

liquefaction of gases.  These are very important, since these are intimately 

connected with the production of very low temperatures and are of great 

interest on account of the theoretical principles involved as well of the many 

practical applications both in science and industry.  The method of cooling due 

to desorption has its use in aiding to a further cooling of an already very much 

cooled system.  For example, charcoal absorbs helium at 5 atmospheres and 

10oK and when it is allowed to escape at a lower pressure of 0.1 mm.  cooling 

results due to the heat absorption by a process similar to the evaporation of the 

liquids and the temperature is lowered to 4oK which is sufficient to liquefy 

Helium.  The last method of adiabatic demagnetization is of special interest to 

the physicist, as it has enabled him to reach almost the absolute zero, where 

matter, so to say, is born, and any information concerning the nature of 

substances in that region is bound to be of great value.  It is to be noted that 

most of these methods are not exclusive of each other by complementary, in the 

sense that they can be used conductively reach the desired low temperature.  

Here, we have discussed only Joule Thomson Effect. 
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2.3  Joule-Thomson Effect 

If a gas initially at a constant high pressure is allowed to suffer throttle 

expansion through the porous plug of silk wool or cotton wool having a number 

of fine pores, to a region of constant lower pressure adiabatically, a change of 

temperature of the gas (either cooling or heating) is observed. This effect is 

called Joule-Thomson or Joule-Kelvin effect. 

Joule in collaboration with William Thomson [Lord Kelvin] devised a 

very sensitive technique known as porous plug experiment and performed 

number of experiments from 1852 to 1862 and established beyond doubt the 

existence of intermolecular attraction. In this effect, the total heat function H = 

U + PV  remains constant. 

At ordinary temperatures, all gases except hydrogen show cooling effect 

on passing through the porous plug, but hydrogen shows a heating effect. At 

sufficiently low temperatures all gases show a cooling effect. 

2.3.1  Joule-Thomson Porous Plug Experiment 

The experimental set up for the porous plug experiment to study the 

Joule-Thomson effect is shown in Fig.2.3.1. It consists of the following main 

parts: 

1. The apparatus consists of a porous plug having two perforated brass 

discs D, D. 

2. The space between D, D is packed with cotton wool or silk fibers. 

3. The porous plug is fitted in a cylindrical box-wood W which is 

surrounded by a vessel containing cotton wool (Fig. 2.3.1). This is 

done to avoid loss or gain of heat from the surroundings. 

4. T1 and T2 are two sensitive platinum resistance thermometers and 

they measure the temperatures of the incoming and outgoing gas. 

5. The gas is compressed to a high pressure with the help of piston 

 P and it is passed through a spiral tube immersed in water bath 

maintained at a constant temperature. If there is any heating of the gas due to 

compression, this heat is absorbed by the circulating water in the water bath. 
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Fig. 2.3. 

Experimental procedure 

By means of the compression pump P, the experimental gas is passed 

slowly and uniformly through the porous plug keeping the high pressure 

constant, read by pressure gauge. During its passage through the porous plug, 

the gas is throttled, i.e. the separation between the molecules increases. On 

passing through the porous plug, the volume of the gas increases against the 

atmospheric pressure. As there is no loss or gain of heat during the whole 

process, the expansion of the gas takes place adiabatically. 

The initial and final temperatures are noted by means of the platinum 

resistance thermometers T1 and T2. 

2.4  Experimental Results 

Inversion Temperature 

The behaviour of a large number of gases was studied at various inlet 

temperatures of the gas and the results obtained are as follows: 

(i) At sufficiently low temperatures, all gases show a cooling effect. 

(ii) At ordinary temperatures, all gases except hydrogen and helium show 

cooling effect. Hydrogen and helium show heating instead of cooling at 

room temperature. 

(iii) The fall in temperature is directly proportional to the difference in 

pressure on the two sides of the porous plug. 

(iv) The fall in temperature for a given difference of pressure decreases with 

rise in the initial temperature of the gas. It was found that the cooling 

effect decreased with the increase of initial temperature and became zero 

at a certain temperature and at a temperature higher than this temperature, 

instead of cooling, heating was observed. This particular temperature at 

which the Joule-Thomson effect changes sign is called the temperature 

of inversion. 
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Definition 

The temperature at which Joule-Thomson effect is zero and changes 

sign is known as the temperature of inversion. 

It is denoted by  Ti  and at this temperature 

2

i

a
b

RT
  

 or    
2

i

a
T

Rb
  

when  T < Ti, cooling takes place, and 

  T > Ti, heating takes place. 

for  helium  Ti = 35 K, and for hydrogen  Ti = 193 K. 

Regenerative Cooling 

In case of hydrogen and helium, heating was observed at room 

temperature because it was at a temperature far higher than its temperature of 

inversion. The temperature of inversion for hydrogen is –80°C and for helium 

is –258°C. If helium is passed through the porous plug at a temperature lower 

than –258°C, it will also show cooling effect.  It means any gas below its 

temperature of inversion shows a cooling effect when it is passed through the 

porous plug or a throttle valve. This is called regenerative cooling or Joule-

Kelvin cooling. This principle is used in the liquefaction of the so called 

permanent gases like nitrogen, oxygen, hydrogen and helium. 

Estimates of J-T Cooling (Theory of Porous Plug Experiment) 

Theory 

The simple arrangement of the Joule-Thomson porous plug experiment 

is shown in Fig. 2.4. The gas is allowed to pass through the porous plug from 

the high pressure side to the low pressure side. Due to this large difference of 

pressure, the gas flows through the fine pores and becomes throttled or wire 

drawn, i.e. the molecules of the gas are further drawn apart from one another. 

 

Fig. 2.4 
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Consider one gram molecule of a gas to the left and to right of the 

porous plug. Let P1, V1 and P2, V2 represent the pressure and volume on the two 

sides of the porous plug. When the piston A is moved through a certain 

distance dx, the piston B also moves through the same distance dx. The work 

done on the gas by the piston 1 1 1 1A PAdx PV  . The work done by the gas on the 

piston  2 2 2 2B P A dx PV  .  Thus, the net external work done by the gas is  

2 2 1 1PV PV . 

If w is the work done by the gas in separating the molecules against 

their intermolecular attractions, the total amount of work done by the gas is 

2 2 1 1( )PV PV w   

No heat is gained or lost to the surroundings. There are three possible 

cases: 

(i)  Below the Boyle temperature, 

1 1 2 2PV PV  

and  P2V2 – P1Vl  is  + ve,  w  must be either positive or zero. Thus a net  + ve 

work is done by the gas and there must be cooling when the gas passes though 

the porous plug. 

(ii) At the Boyle temperature if  P1  is not very high 

1 1 2 2PV PV  

and     2 2 1 1PV PV  = 0 

The total work done by the gas in this case is  w.  Therefore cooling 

effect at this temperature is only due to the work done by the gas in overcoming 

intermolecular attractions. 

(iii) Above the Boyle temperature 

1 1 2 2PV PV  

or     2 2 1 1PV PV  is – ve 

Thus, the observed effect will depend upon whether ( 2 2 1 1PV PV ) is 

greater or less than  w. 

If  w > (PlVl - P2V2),  cooling will be observed. 

If  w < (PlVl - P2V2),  heating will be observed. 

Thus, the cooling or heating of a gas due to free expansion through a 

porous plug from a high pressure to a low pressure side will depend on (i) the 

deviation from Boyle's law and (ii) work done in overcoming intermolecular 

attractions. 



 65 

Joule-Kelvin Effect-Temperature of Inversion 

Assuming that the Van der Waals equation is obeyed, the attractive 

forces between the molecules are equivalent to an internal pressure  
2

a

V
. 

When the gas expands from  1V   to  2V ,  the work done in overcoming 

intermolecular attractions 

    
2

1

.
V

V
w P dV  

But    
2

a
P

V
  

    
2

1
2

V

V

a
w dV

V
  

        
2 1

a a

V V
    

If  1V   and  2V   represent the gram molecular volumes on the high and 

the low pressure sides respectively, the external work done by the gas is 

    2 2 1 1( )PV PV  

 Hence the total work done by the gas 

    2 2 1 1( )W PV PV w    

      2 2 1 1

2 1

( )
a a

PV PV
V V

     

Van der Waals equation of state for a gas is 

  
2

( )
a

P V b RT
V

 
   

 
 

or  
2

a ab
PV bP RT

V V
     

or    
a

PV RT bP
V

    

    
2

isnegligible
ab

V

 
 
 

 

    2 1

2 1 2 1

a a a a
W RT bP RT bP

V V V V

   
          
   

 

         2 1

1 2

1 1
2b P P a

V V

 
    

 
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But   
1

1

RT
V

P
    and   

2

2

RT
V

P
  

     1 2
2 1 2

P P
W b P P a

RT RT

 
    

 
 

or       1 2 1 2

2a
W b P P P P

RT
     

or   1 2

2a
W P P b

RT

 
   

 
    …(i) 

 Suppose the fall in temperature is   T  

     W JH  

         [ ]PJ MC T  

where  M  is the gram-molecular weight of the gas 

     1 2

2
P

a
JMC T P P b

RT


 
   

 
 

or    1 2 2

P

P P a
T b

JMC RT


   
     

  
  …(ii) 

 (i)  Since   1 2P P    is  + ve 

 T   will be  + ve  if  
2a

b
RT

 
 

 
  is  + ve 

 i.e.,   
2a

b
RT

    or    
2a

T
Rb

   …(iii) 

 Therefore, cooling will take place if the temperature of the gas is less 

than  
2a

Rb
. 

 (ii)  For  T   to be zero, from equation  (ii), 

    
2

0
a

b
RT

   

or    
2a

T
Rb

  

 This temperature is called the temperature of inversion and is 

represented by  iT  

    
2

i

a
T

Rb
     …(iv) 

 (iii)   T   will be negative, if 
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2a

b
RT

 
 

 
  is –ve 

 i.e.,   
2a

b
RT

  

or    
2a

T
Rb

  

    iT T  

 Therefore, heating will take place if the temperature of the gas is more 

than the temperature of inversion. 

Results 

(i)   If the gas is at the temperature of inversion, then no cooling or heating 

is observed when it is passed through the porous plug. 

(ii)   If the gas is at a temperature lower than the temperature of inversion, 

cooling will take place when it is passed through the porous plug. This 

is called regenerative cooling or Joule-Kelvin cooling. This principle 

has been used in the liquefaction of the so-called permanent gases like 

nitrogen, oxygen, hydrogen and helium. 

(iii)  If the gas is at a temperature higher than the temperature of inversion, 

instead of cooling, heating is observed when the gas passed through the 

porous plug. 

2.5  Relation between Boyle Temperature, temperature of Inversion and 

Critical Temperature 

Temperature of inversion, 

2
i

a
T

Rb
   …(1) 

Boyle temperature, 

     B

a
T

Rb
   …(2) 

Critical temperature, 

     
8

27
c

a
T

Rb
   …(3) 

From (1) and (2), we have 

     2i BT T  

From (1) and (3), we have 

     
2 27

.
8

i

c

T a Rb

T Rb a
  
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27
6.75

4
     …(4) 

 The experimental value of  i

c

T

T
  for actual gases is just less than 6. 

 It means that the temperature of inversion is very much higher than the 

critical temperature. For hydrogen  190iT   K  and  33cT   K.  As  i cT T ,  the 

methods employing regenerative cooling  (Joule-Kelvin cooling)  are preferred 

to those employing the initial cooling of the gas below the critical temperature. 

 Since ratio  i

c

T

T
  is a number  (i.e., 6.75)  from equation  (4), the ratio of 

temperature of inversion and critical temperature does not depend upon the 

nature of the gas. 

LIQUEFACTION OF GASES 

Introduction 

 A gas goes into liquid and solid forms as the temperature is reduced. 

Thus the processes of liquefaction of gases and solidification of liquids are 

intimately involved in the production of low temperatures. Andrews experiment 

showed that if a gas is to be liquefied by merely applying pressure on it, it has 

to be cooled below its critical temperature. Critical temperatures of carbon 

dioxide, ammonia are sulphur dioxide are higher than room temperature. Hence 

these gases can be liquefied at room temperature without pre-cooling, simply 

by increasing the pressure. So, the simple process would be to cool the gas 

below its critical temperature by some coolant and then to liquefy it by 

applying a pressure on it. This method does not work always, in the case of 

some gases like oxygen, nitrogen, hydrogen and helium; no pre-cooling can 

bring the temperature below their critical temperatures. Thus, they cannot 

liquefied by this method. 

 Joule–Thomson expansion is a very important technique to liquefy 

gases. The cooling produced in J-T expansion of a gas depends on the 

difference of pressure on the two sides of the porous plug and the initial 

temperature. For most of the gases, the J-T cooling is very small. However, the 

cooling effect can be intensified by employing the process called regenerative 

cooling. 

Regenerative Cooling 

 This process consists in cooling the incoming gas by a portion of the 

gas which has already been cooled by J-T expansion. That is, the cooling effect 

is made cumulative. By maintaining a continuous cycle of such operations, the 

initial temperature can be rapidly and progressively lowered. This happens due 

to the fact that, lower the temperature the greater is the cooling in J – T process. 



 69 

 

Fig. 2(ii) 

 The schematic arrangement of regenerative principle is shown in Fig. 

2(ii). The gas is compressed to a high pressure by the compressor P. The heat 

of compression is removed by passing the gas in a water- cooled jacket (Heat 

exchanger No. 1). Then the gas undergoes J-T expansion at needle valve T so 

that it cools by a small amount. This cooled gas is allowed to go back to the 

pump P. while going up, it cools the incoming gas in heat exchanger No. 2. 

This gas gets further cooled after undergoing J-T expansion at T.  This 

regenerative process continues till the gas gets liquefied. This process was first 

used by Linde to liquefy air. 

2.6  Liquefaction of hydrogen 

 Temperature of inversion of hydrogen is – 80oC. But for practical 

purposes, it has to be pre-cooled to – 177o C to obtain appreciable cooling due 

to J-T effect. The apparatus is shown in Fig. 2.6. The entire apparatus is 

enclosed in an outer Dewar flask L for complete insulation. Hydrogen is 

compressed to a pressure of about 200 atmospheres by the pump P. Then it is 

passed through a coil immersed in solid CO2 and alcohol. Then it enters the coil 

a in the chamber A where it is further cooled by the outgoing hydrogen. The 

hydrogen coming from chamber A is then passed through the coil b in chamber 

B. The chamber B contains liquid air and cools hydrogen in the coil b. 
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Fig. 2.6 

 This hydrogen is then passed through coil c in the chamber C.  In 

chamber C, liquid air is allowed to boil under reduced pressure.  Hence in this 

chamber hydrogen is  cooled to a temperature of – 200o C. After the pre-

cooling, the hydrogen passes through the coil D. It suffers throttle expansion at 

the nozzle valve N which is operated by the handle H. Hence hydrogen is 

cooled further due to J-T effect. The cooled hydrogen passes up through the 

chambers C, B and A, cooling the gas from compress the gas coming through 

the coils in those chambers. Thus, the incoming gas from the compressor is 

cooled by the gas flowing up the chambers after expansion. After a few cycles, 

the temperature of the gas reaching N falls to –250o C. Hydrogen gas under 

these conditions suffering J-T expansion is liquiefied and collected in the 

Dewar flask D. 

 The boiling point of liquid hydrogen at atmospheric pressure is 252.8o C. 

By making it boil at a lower pressure, the liquid can be made to freeze into a 

solid. Solid hydrogen is white in colour. 

2.6.1  Liquefaction of helium.  

Helium, the last remaining gas, could not be liquefied for a long time.  

The attempts made by Dewar and Olszewski by adiabatic expansion method 

proved unsuccessful.  At last, in 1908, Kamerlingh Onnes, after a tenacious and 

systematic study of the problem for well over ten years, succeeded to liquefy 

helium by the Joule-Thomson process.  He first cleared the ground by 

determining the various constants that were implicated in the experiment.  Such 

were the critical temperature Tc = -268o C = 5o K, the critical pressure pc = 2.3 

atmospheres, the normal boiling point = -268.8oC = 4.2o K, the inversion 

temperature = -238o C = 35o K and the Boyle temperature = - 256o C = 17o K.  

He then concluded that if helium was to be liquefied by the Joule-Thomson 

expansion it had to be pre-cooled to 17o K.    
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He succeeded in obtaining the temperature by passing compressed 

helium through liquid hydrogen boiling at reduced pressure.  The apparatus 

employed is very complicated due to the use of air and hydrogen liquefiers for 

pre-cooling processes.  A simple form of the apparatus for final stages is as 

shown in Fig. 2.6.1 pre-cooled helium gas at a pressure of about 40 

atmospheres enters the spiral tube at C and flows partly through the spiral tubes 

S1 and partly through S2.   

 

Fig. 2.6.1. 

 The spiral S1 is surrounded by hydrogen boiling under reduced pressure 

and portion passing through the spiral S2 is surrounded by cooled out going 

helium gas.  Similar process takes place in the spirals S3 and S4 which are also 

surrounded by boiling liquid hydrogen and cooled helium respectively.  The 

circulation process is repeated and when temperature of helium is sufficiently 

low it gets liquefied in passing through the nozzle N due to Joule-Thomson 

effect.  The outgoing helium is compressed again by the compressor P and fed 

back to the spirals S1 and S2 and then S3 and S4.  Liquid helium is collected in 

the Dewar flask through the tap T.  To have perfect heat insulation the whole 

apparatus is surrounded by Dewar flasks. 

 Kapteza has liquefied helium pre-cooled by passing through cooling 

liquid nitrogen.  Simon using the fact that the thermal capacity of metal 

container is extremely small at temperatures near the absolute zero, has 

liquefied helium in small quantities.  By adiabatically expanding helium (with 

subsequent cooling) contained in a small metal cylinder immersed in liquid 

hydrogen the gas of liquefied.  Simon also making use of the fact that heat is 

evolved when a gas is adsorbed on charcoal and when it is desorbed the 

temperature of the gas falls, liquefied helium by using considerably large 

quantities of activated charcoal immersed in liquid hydrogen.  To minimize 

heat exchanges with the surroundings the apparatus is enclosed in an 

evacuating vessel.  On pumping off helium, the temperature considerably falls 

and thus it is liquefied.  
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 The storage of liquid hydrogen and liquid helium presents a more 

difficult problem than in the case of liquid air as these have a very low 

temperatures and low latent heats.  Liquid hydrogen is usually stored in a 

double-Dewar vessel, the space between the evacuated containers is filled with 

liquid air. 

 To store liquid helium a triple Dewar vessel is generally used, the liquid 

helium being surrounded by liquid hydrogen which in turn is surrounded by 

liquid air.  Liquid helium is a colourless mobile liquid which boils at 4.2K.  It 

has a density which is about one-eighth that of water and its very flat meniscus 

shows that it has a very small surface tension. 

OPTICS 

Interference 

2.7  Introduction 

 The phenomenon of interference of light has proved the validity of the 

wave theory of light. Thomas successfully demonstrated his experiment on 

interference of light, in 1802. when two or more wave trains act simultaneously 

on any particle in a medium, the displacement of the particle at any instant is 

due to the superposition of all the wave trains.  

 

Fig. 2.7 

 

Also after the superposition, at the region of cross over, the wave trains 

emerge as if they have not interfered at all. Each wave train retains its 

individual characteristics. Each wave train behaves as if others are absent. This 

principle was explained by Huygens in 1678. 

 The phenomenon of interference of light is due to the superposition of 

two wave trains within the region of cross over. Let us consider the waves 



 73 

produced on the surface of water. In Fig. 2.7 points A and B are the two 

sources which produce waves of equal amplitude and constant phase difference. 

Waves spread out on the surface of water which are circular in shape. At any 

instant, the particle will be under the action of the displacement due to both the 

waves. The points shown by circles in the diagram will have minimum 

displacement because the crest of one wave falls on the trough of the other and 

the resultant displacement is zero. The points shown by crosses in the diagram 

will have maximum displacements because, either the crest of one will combine 

with the crest of the other or the trough of one will combine with the trough of 

the other. In such a case, the amplitude of the displacement is twice the 

amplitude of with each other. As the intensity (energy) is directly proportional 

to the square of the amplitude 2( )I A the intensity at these points is four times 

the intensity due to one wave. It should be remembered that there is no loss of 

energy due to interference. The energy is only transferred from the points of 

minimum displacement to the points of maximum displacement. 

2.7.1  Young’s Experiment 

 In the year 1802, Young demonstrated the experiment on the 

interference of light. He allowed sunlight to fall on a pinhole S and then at 

some distance away on two pinholes A and B (fig 2.7.1) 

A and B are equidistant from S and are close to each other. Spherical 

waves spread out from S. spherical waves also spread out from A and B. these 

waves are of the same amplitude and wavelength. On the screen interference 

bands are produced which are alternatively dark and bright. The points such as 

E are bright because the crest due to one wave coincides with the crest due to 

the other and therefore they reinforce each other. The points such as F are dark 

because the crest of one falls on the trough of the other and they neutralize the 

effect of each other. Points, similar to E, where the trough of one falls on the 

trough of the other, are also bright because the two waves reinforce. 
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Fig. 2.7.1 

  It is not possible to show interference due to the independent sources of 

light because a large number of difficulties are involved. The two sources may 

emit light waves of largely different amplitude and wavelength and the phase 

difference between the two may change with time. 

Coherent Sources 

 Two sources are said to be coherent if they emit light waves of the same 

frequency, nearly the same amplitude and are always in phase with each other. 

It means that the two sources must emit radiations of the same colour 

(wavelength). In actual practice it is not possible to have two independent 

sources which are coherent. But for experimental purposes, two virtual sources 

formed from a single source can act as coherent sources. Methods have been 

devised where (i) interference of light takes place between the waves from the 

real source and a virtual source (ii) interference of light takes place between 

waves from two virtual sources formed due to a single source. In all such cases, 

the two sources will act, as if they are perfectly similar in all respects. 

 Since the wavelength of light waves is extremely small (of the order of 

10-5 cm), the two sources must be narrow and must also be close to each other. 

Maximum intensity is observed at a point where the phase difference between 

the two waves reaching the point is a whole number multiple of 2 or the path 

difference between the two waves is a whole number multiple of wavelength. 

For minimum intensity at a point, the phase difference between the two waves 

reaching the point should be an odd number multiple of  or the path difference 

between the two waves should be an odd number multiple of half wavelength. 
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Phase Difference and path difference 

If the path difference between the two waves is  , the phase difference 2  

Suppose for a path difference x , the phase difference is   

For a path difference  , the phase difference 2  

for a path difference x , the phase difference 

   
2 x


  

Phase difference 
2 2x

x
 


 

  (path difference) 

2.7.2  Analytical treatment of interference 

 Consider a monochromatic source of light S emitting waves of 

wavelength  and two narrow pinholes A and B (Fig. 2.7.2) A and B are 

equidistant from S and act as two virtual coherent sources. Let a be the 

amplitude of the waves. The phase difference between the two waves reaching 

the point P, at any instant, is   

 

Fig. 2.7.2 

If y1 and y2 are the displacement  

   
1

2

sin

sin ( )

y a t

y a t



 



 
 

   

1 2 sin sin ( )

sin sin cos cos sin

sin (1 cos ) cos sin

y y y a t a t

y a t a t a t

a t a t

  

    

   

    

  

  

 

Taking  (1 cos ) cosa R        …(i) 

And   sin sina R      …(ii) 

   sin cos cos siny R t R t      

   sin( )y R t       …(iii) 
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Which represents the equation of simple harmonic vibration of amplitude R. 

 Squaring (i) and (ii) and adding. 

2 2 2 2 2 2 2 2sin cos sin (1 cos )R R a a         

(or)   2 2 2 2 2sin (1 cos 2cos )R a a       

   2 2 2 2 2 2 2sin cos 2 cos )R a a a a        

    2 22 2 cosa a    

    22 (1 cos )a    

2 2 2 2 22 .2cos 4 cos
2 2

R a a
 

   

The intensity at a point is given by the square of the amplitude 

  2I R  

(or)  2 24 cos
2

I a


      …(iv) 

Special cases: (i) When the phase difference 0,2 ,2(2 ),............... (2 ),n     

or the path difference 0, ,2 ,... .x n    

24I a  

 Intensity is maximum when the phase difference is a whole number 

multiple of 2 or the path difference is a whole number multiple of wavelength. 

(ii) When the phase difference, ,3 ,...(2 1) ,n      or the path difference 

    

3 5
, , ,........(2 1) ,

2 2 2 2

0

x n

I

   
 



 

Intensity is minimum when the path difference is an odd number 

multiple of half wavelength. 

(iii) Energy distribution. From equation (iv) it is found that the intensity at 

bright points is 
24a and at dark points it is zero. According to the law of 

conservation of energy, the energy cannot be destroyed.  Here also the energy 

is not destroyed but only transferred from the points of minimum intensity to 

the points of maximum intensity. For at bright point, the intensity due to the 

two waves should be 
22a but actually it is 

34a . As shown in Fig. 2.7.2(iii)., the 

intensity varies from 0 to
24a , and the average in still 

22a . It is equal to the 

uniform intensity 
22a which will be present in the absence of the interference 

phenomenon due to the two waves. Therefore the formation of interference 

fringes is in accordance with the law of conservation of energy. 
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Fig. 2.7.2(iii) 

2.7.3  Theory of interference fringes 

 Consider a narrow monochromatic source S and two pinholes A and B, 

equidistant from S. A and B act as two coherent sources separated by a distance 

d. Let a screen by placed at a distance D from the coherent source.  

 

Fig. 2.7.3 

The point C on the screen is equidistant from A and B. Therefore, the 

path difference between the two waves is zero. Thus the point C has maximum 

intensity. 

 Consider a point P at a distance x from C. The waves reach at the point 

P from A and B. 

Here,  ,
2 2

d d
PQ x PR x     

 

2 2

2 2 2 2( ) ( )
2 2

d d
BP AP D x D x

      
            

         

 

 2 2( ) ( ) 2BP AP xd   

  
2xd

BP AP
BP AP

 


 

But BP AP D    (approximately) 
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 Path difference 
2

2

xd xd
BP AP

D D
       …(i) 

Phase difference 
2 xd

D





 
  

 
      …(ii) 

(i) Bright Fringes. If the path difference is a whole number multiple of 

wavelength , the point P is bright. 

  
xd

n
D

  

Where 0,1,2,3...n  

(or) 
n D

x
d


       …(iii) 

 This equation gives the distances of the bright fringes from the point C.  

At C, the path difference is zero and a bright fringe is formed. 

When 11,
D

n x
d


   

  2

2
2,

D
n x

d


   

  2

3
3,

D
n x

d


   

    n

n D
x

d


  

 Therefore the distance between any two consecutive bright fringes  

  2 1

2 D D D
x x

d d d

  
       …(iv) 

(ii) Dark Fringes. If the path difference is an odd number multiple of 

half wavelength, the point P is dark. 

(2 1) 0,1,2,3...
2

xd
n wheren

D


    

 (or) 
(2 1)

2

n D
x

d


     …(v) 

This equation gives the distances of the dark fringes from the point C. 

 When,  00,
2

D
n x

d


   

   1

3
1,

2

D
n x

d


   
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2

5
2,

2

D
n x

d


   

and   
(2 1)

2
n

n D
x

d


  

The distance between any two consecutive dark fringes, 

  
2 1

5 3

2 2

D D D
x x

d d d

  
       …(vi) 

The distance between any two consecutive bright or dark fringes is 

known as fringe width. Therefore, alternately bright and dark parallel fringes 

are formed. The fringes are formed on both sides of C.  Moreover, from 

equations (v) and (vi) it is clear that the width of the dark fringe. All the fringes 

are equal in width and are independent of the order of the fringe. The breadth of 

a bright or a dark fringe is, however, equal to half the fringe width and is equal 

to .
2

D

d


 The fringe width .

D

d


   

 Therefore, (i) the width of the fringe is directly proportional to the 

wavelength of light,   . (ii) The width of the fringe is directly proportional 

to the distance of the screen from the two sources, .D (iii) the width of the 

fringe is inversely proportional to the distance between the two sources, 
1

.
d

  

Thus, the width of the fringe increases (a) with increase in the distance D and (c) 

by bringing the two sources A and B close to each other. 

Example 1. Green light of wavelength 5100Å from a narrow slit is 

incident on a double slit. If the overall separation of 10 fringes on a screen 200 

cm away is 2cm, find the slit separation. 

D

d


   

Here  85100 10 , ?cm d     

  
200

10 2

D cm

cm




 

(or)  0.2cm   

  
85100 10 200

0.2

0.051

D
d

d

d cm








 




 

Example 2. Two coherent sources are 0.18 mm apart and the fringes are 

abserved on a screen 80 cm away. It is found that with a certain monochromatic 
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source of light, the fourth bright fringe is situated at a distance of 10.8 mm 

from the central fringe. Calculate the wavelength of light. 

Here 

80 , 0.18 0.018

4, 10.8 1.08 , ?

D cm d mm cm

n x mm cm

nD
x

d



  

   



 

(or)   

81.08 0.018
6075 10

4 80

6075Å

xd
cm

nD
 
   





 

Example 3. In Young’s double slit experiment the separation of the slits is 1.9. 

mm and the fringe spacing  is 0.31 mm at a distance of 1 metre from the slits. 

Calculate the wavelength of light. 

Here   0.31 0.031mm cm    

1.9 0.19

1 100

d mm cm

D m cm

D

d




 

 



 

(or)   
d

D


   

0.031 0.19

100



  

   85890 10 cm    

   5890Å   

Example 4.  Two straight and narrow parallel slits 1 mm apart are illuminated 

by monochromatic light.  Fringes formed on the screen held at a distance of 

100 cm from the slits are 0.50 mm apart.  What is the wavelength of light? 

Here   0.50 0.05mm cm    

   

1.9 0.19

1 100

d mm cm

D m cm

D

d




 

 



 

   
d

D


   

   
0.05 0.1

100



  
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   55 10 cm    

(or)   5000 Å   

2.7.4  Fresnel’s Biprism 

 Fresnel used a biprism to show interference phenomenon. The biprism 

abc consists of two acute angled prisms placed base to base. Actually, it is 

constructed as a single prism of obtuse angle of about 179o (Fig. 2.7.4). The 

acute angle  on both sides is about 30'. The prism is placed with its refracting 

edge parallel to the line source S (slit) such that Sa is normal to the face bc of 

the prism. When light falls from S on the lower portion of the biprism it is bent 

upwards and appears to come from the virtual source B. similarly light falling 

from S on the upper portion of the prism is bent downwards and appears to 

come from the virtual source A. Therefore A and B act as two coherent sources. 

Suppose the distance between A and B=d.  

 

Fig. 2.7.4 

If a screen is placed at C, interference fringes of equal width are produced 

between E and F but beyond E and F fringes of large width are produced which 

are due to diffraction. MN is a stop to limit the rays.  To observe the fringes, 

the screen can be replaced by an eye-piece or a low power microscope and 

fringes are seen in the field of view. If the point C is at the principle focus of 

the eyepiece, the fringes are observed in the field of view. 

Theory.  

The point C is equidistant from A and B. Therefore, is has maximum 

intensity. On both sides of C, alternately bright and dark fringes are produced, 

the width of the bright fringe of dark fringe, .
D

d


    Moreover, any point on 

the screen will be at the centre of a bright fringe if its distance from C is 
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,
n D

d


where n =0,1,2,3…etc. The point will be at the centre of a dark fringe if 

its distance from C is 
2( 1)

,
2

n D

d


 

Where n=0,1,2,3,… etc. 

2.7.5  Determination of wavelength of light. Fresnel’s biprism can be used to 

determine the wavelength of a given source of monochromatic light. 

 A fine vertical slit S is adjusted just close to a source of light and the 

refracting edge is also set parallel to the slit S such that bc is horizontal (Fig. 

2.7.5). They are adjusted on an optical bench.   

A mircrometer eyepiece is placed on the optical bench at some distance from 

the prism, to view the fringes in its focal plane (at its cross wires). 

 

Fig. 2.7.5 

Suppose the distance between the source and the eyepiece – D and the distance 

between the two virtual sources A and B=d. The eyepiece is moved 

horizontally (perpendicular to the length of the bench) to determine the fringe 

width.  Suppose, for crossing 20 bright fringes from the field of view, the 

eyepiece has moved through a distance l. 

Then the fringe width, 
20

l
   

But the fringe width 
D

d


   

   
d

D


        

         …(i) 

In equation (i),  and D are known. If d is also known,  can be calculated. 

2.7.6  Determination of the distance between the two virtual sources (d). 
For this purpose, we make use of the displacement method. A convex lens is 

placed between the biprism and the eye-piece in such a position, that the 

images of the virtual sources A and B are seen in the field of view of the 

eyepiece. Suppose the lens is in the position L1 (Fig. 2.7.6). Measure the 

distance between the image of A and B as seen in the eyepiece. Let it be d1.
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In this case, 1d v n

d u m
         

        …(ii) 

 Now move the lens towards the eyepiece and bring it to some other 

position L2, so that again the image of A and B are seen clearly in the field of 

view of the eyepiece. Measure the distance between the two images in this case 

also. Let it be equal to d2. 

Here,     ,v m and u n   

   2d v m

d u n
      …(iii) 

From equations (ii) and (iii) 

   1 2

2
1

d d

d
  

(or)   1 2d d d  

 

Fig. 2.7.6 

Here d1 will be greater than d2 and d is the geometrical mean of d1 and d2. 

Therefore d can be calculated. Substituting the value of d,  and D in equation 

(i), the wavelength of the given monochromatic light can be determined. 

 The second method to find d is to measure accurately the refracting 

angle  . As the angle is small, the deviation produced 0 ( 1) .     Therefore 

the total angle between Aa and Ba is 2 2( 1) .      If the distance between 

the prism and the slit S is y1 then 12( 1)d y   .Therefore d can be calculated. 
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Fringes with while light using A biprism 

 When white light is used, the centre of the fringe at C is white while the 

fringes on both sides of C are coloured because the fringe width ( )  depends 

upon wavelength. Moreover, the fringes obtained in the case of a biprism using 

while light are different from the fringes obtained with Fresnel’s mirrors. In a 

biprism, the two coherent virtual sources are produced by refraction and the 

distance between the two sources depends upon the refractive index, which in 

tern depends upon the wavelength of light. Therefore, for blue light the distance 

between the two apparent sources is different to that with red light. The 

distance of the nth fringe from the centre (with monochromatic light). 

   
1, (2 1)

n D
x whered y

d


     

   
12( 1)

n D
x

y



 



 

Therefore for blue and red rays, the nth fringe will be, 

   
12( 1)

b
b

b

n D
x

y



 



    …(i) 

   
12( 1)

r
r

r

n D
x

y



 



    …(ii) 

Example 5. A biprism is placed 5 cm from a slit illuminated by sodium light 

( 5890Å)   the width of the fringes obtained on a screen 75 cm from the 

biprism is 9.424 x 10-2 cm. What is the distance between the two coherent 

sources. 

Here   85890 10 cm    

   

2? 9.424 10

5 75 80

d cm

D cm

D

d






  

  



 

(or)   
8

2

5890 10 80

9.424 10
d





 



 

(or)   0.05d cm  

 

2.7.7  Fringes produced by a wedge-shaped thin film 

 Consider two plane surfaces OA and OB inclined at an angle  and 

enclosing a wedge-shaped air-film. The thickness of the air film increases from 

O to A (Fig. 2.7.7). When the air-film is viewed with reflected monochromatic 
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light, a system of equidistant interference fringes as observed which are parallel 

to the line of intersection of the two surfaces.  

 

Fig. 2.7.7 

The interfering rays do no enter the eye parallel to each other but they 

appear to diverge from a point near the film. The effect is best observed when 

the angle of incidence is small. 

 

Fig. 2.7.7(a) 

Suppose the nth bright fringe occurs at 
nP (Fig. 2.7.7(a)). The thickness of the 

air-film at n n nP PQ . As the angle of incidence is small, cos 1r   

Applying the relation for a bright fringe, 2 cos (2 1)
2

t r n


    

Here, for air 1   

And Cos r=1 

And t=PnQn 

2 (2 1)
2

n nPQ n


    

The next bright fringe (n+1) will occur at 1nP  , such that 

  1 12 2 1 1
2

n nP Q n


        

(or) 1 12 (2 3)
2

n nP Q n


          

 …(ii) 
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Subtracting (i) from (ii) 

 
1 1

2
n n n nP Q PQ


           

 …(iii) 

Thus, the next bright fringe will occur at the point where the thickness 

of the air film increases by 
2


. Suppose the (n+m)th bright fringe it at n mP  . 

Them, there will be m bright fringes between nP and n mP  such that 

 
2

n m n m n n

m
P Q PQ


         

 …(iv) 

If the distance n m nQ Q x    

2
2

n m n m n n

n n m

m
P Q PQ m

Q Q x x




  




        

 …(v) 

(or) 
2

m
x




         

 …(vi) 

Therefore, the angle of inclination between OA and OB can be known. Hence, 

x is the distance corresponding to m fringes. The fringe width. 

 
20

x

m


           

 …(vii) 

2.7.8  Testing the planeness of surfaces 

 If the two surfaces OA and OB are perfectly plane the air-film gradually 

varies in thickness from O to A. 

 

Fig. 2.7.8 



 87 

 The fringes are of equal thickness because each fringes is the locus of 

the points at which the thickness of the film has a constant value (Fig. 2.7.8). 

This is an important application of the phenomenon of interference. If the 

fringes are not of equal thickness it means the surfaces are not plane. The 

standard method is to take an optically plane surface OA and the surface to be 

tested OB. The fringes are observed in the field of view and if they are of equal 

thickness, the surface OB is plane. If not, the surface OB is not plane. The 

surface OB is polished and the process is repeated. When the fringes observed 

are of equal width, it means that the surface OB is plane. 

2.8  Jamin’s Refractometer 

 It is used to determine the refractive index of a gas at different pressures. 

A and B are two glass plates silvered at their back surfaces. The two plates are 

sufficiently thick and two identical glass tubes T1 and T2 are placed in the path 

of the beams 1 and 2 respectively (Fig. 2.8). A source S is placed at the focal 

plane of the lens L and a parallel beam of light is incident on the front surface 

at the plate A. It is divided into two beams by the plate A.  

 

Fig. 2.8  Jamin’s Refractometer 

The beam 1 is reflected by the front surface and the beam 2 is reflected 

by the back surface. The two beams are incident on the plate B and the beam 2 

is reflected by the front surface and the beam 1 is reflected by the back surface. 

The emergent beams interfere and they are viewed by a telescope T which is 

focused at infinity. Interference fringes are obtained. Here, the plants of A and 

B are inclined at a small angle. 

 The tubes T1 and T2 are evacuated and the fringes are observed in the 

field of view of the telescope. The gas is allowed to enter one of the tubes and 

the number of fringes that cross the centre of the field of view is counted. 

Suppose, n fringes have crossed the field of view. It the length of the tube is l, 

the path difference introduced = ( 1)l   

    ( 1)l n    
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Therefore, the refractive index of the gas at a desired pressure can be 

determined.  

In order to avoid the counting of fringes every time, two compensating 

plates C1 and C2 of equal thickness cut from the same piece, are introduced in 

the beams 1 and 2 as shown in fig. 2.8. The plates C1 and C2 can be rotated 

about a common horizontal axis (at a fixed angle  between them) with the 

help of a calibrated circular disc D. When the disc D is rotated, the interfering 

beams passing through C1 and C2 are affected such that in one case the path 

increases and in the other case it decreases. The circular disc is calibrated by 

counting the number of fringes directly and is marked in terms of the refractive 

index and the number of wavelengths. Here, the tubes T1 and T2 are evacuated 

and using while light the telescope is focused such that the central white fringe 

is in the field of view. The gas is introduced at a desired pressure and 

temperature, into the tube T1. The central fringe shifts. With the help of the 

circular disc D, the plate C2 is rotated to bring the central fringe back to its 

original position. The reading on the calibrated circular disc directly gives the 

refractive index of the gas. 

2.9  Rayleigh’s Refractometer 

 Light from a monochromatic source S after passing the slit is incident 

on the lens L1. The parallel beam is split up into two beams by the slits S1 and 

S2. After passing through the tubes T1 and T2 and the compensating plates. C1 

and C2, the beams pass through the lens L2 and interference fringes are 

observed with the help of the eyepiece or a telescope. This is mainly used to 

determine the refractive index of gases, slight variation in the refractive index 

of a gas and also the slight difference in the refractive index of solutions and 

gases. The circular disc D attached to the compensating plates C1 and C2 is 

previously calibrated in terms of wavelength and refractive index. Initially both 

the tubes T1 and T2 are evacuated and the central white fringe is observed in the 

field of view of the eyepiece using white light. The gas at a known pressure and 

temperature is introduced in the tube T1 and the central white fringe shifts from 

the field of view. 

 

Fig. 2.9 

 By rotating the circular disc D, and thus the plates C1 and C2 the central 

white fringe is brought back to the centre of the field of view. The number of 

wavelengths graduated or calibrated on the circular disc are noted. The change 

in the path difference ( 1)l n   . Hence,  can be calculated. 
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2.10  Specific Rotation 

 Liquids containing an optically active substance e.g., sugar solution, 

camphor in alcohol etc. Rotate the plane of the linearly polarized light. The 

angle through which the plane polarized light is rotated depends upon (1) the 

thickness of the medium (2) concentration of the solution or density of the 

active substance in the solvent (3) wavelength of light and (4) temperature. 

 The specific rotation is defined as the rotation produced by a decimeter 

(10cm) long column of the liquid containing 1 gram of the active substance in 

one cc of the solution. Therefore, 

10tS
lC




  

Where ,tS represents the specific rotation at temperature toC for a wavelength 

,  is the angle of rotation, l is the length of the solution in cm through which 

the plane polarized light passes and C is the concentration of the active 

substance in g/cc in the solution. 

 The angle through which the plane of polarization is rotated by the 

optically active substance is determined with the help of a polarimeter. When 

this instrument is used to determine the quantity of sugar in a solution, it is 

known as a saccharimeter. 

2.10.1  Laurent’s Half shade polarimeter 

 It consists of two nicol prisms N1 and N2, N1 is a polarizer and N2 is an 

analyzer.  Behind N1, there is a half wave plate of quartz Q which covers one 

half of the field of view, while the other half G is a glass plate.  The glass plate 

G absorbs the same amount of light as the quartz plate Q.  T is a hollow glass 

tube having a large diameter at its middle portion.  When this tube is filled with 

the solution containing an optically active substance and closed at the ends by 

cover-slips and metal covers, there will be no air bubbles in the path of light.  

The air bubbles (if any) will appear at the upper portion of the wide bore T1 of 

the tube. 

Light from a monochromatic source S is incident on the converging lens 

L.  After passing through N1, the beam is plane polarized.  One half of the 

beam passes through the quartz plate Q and the other half passes through the 

glass plate G. 
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Fig. 2.10.1 

 Suppose the plane of vibration of the plane polarized light incident on 

the half shade plate is along AB (Fig. 2.10.1(a)).   

 

Fig. 2.10.1(a) 

Here AB makes an angle θ with YY'.  On passing through the quartz 

plate Q, the beam is split up into ordinary and extraordinary components which 

travel along the same direction but with different speeds and on emergence a 

phase difference of π or a path difference of 
2


 is introduced between them.  

The vibrations of the beam emerging out of quartz will be along CD 

whereas the vibrations of the beam emerging out of the glass plate will be along 

AB.  If the analyser N2 has its principal plane or section along YY' i.e., along 

the direction which bisects the angle AOC, the amplitudes of light incident on 

the analyser N2 from both the halves (i.e., quartz half and glass half) will be 

equal.  Therefore, the field of view will be equally bright [Fig. 2.10.1(i)]. 

 If the analyser N2 is rotated to the right of YY', then the right half will 

be brighter as compared to the left half [Fig. 2.10.1(ii)].  On the other hand, if 

the analyser N2 is rotated to the left of YY', the left half is brighter as compared 

to the right half [Fig. 2.10.1 (iii)]. 
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Fig. 2.10.1 

 Therefore, to find the specific rotation of an optically active substance 

(say, sugar solution), the analyser N2 is set in the position for equal brightness 

of the field of view, first without the solution in the tube T.  The readings of the 

verniers V1 and V2 are noted.  When a tube containing the solution of known 

concentration is placed, the vibrations from the quartz half and the glass half 

are rotated.  In the case of sugar solution, AB and CD are rotated in the 

clockwise direction.  Therefore, on the introduction of the tube containing the 

sugar solution, the field of view is not equally bright.  The analyser is rotated in 

the clockwise direction and is brought to a position so that the whole field of 

view is equally bright.  The new positions of the verniers V1 and V2 on the 

circular scale are read.  Thus, the angle through which the analyser has been 

rotated gives the angle through which the plane of vibration of the incident 

beam has been rotated by the sugar solution.  In the actual experiment, for 

various concentrations of the sugar solution, the corresponding angles of 

rotation are determined.  A graph is plotted between concentration C and the 

angle of rotation θ.  The graph is a straight line (Fig. 2.10.1(b)). 

 

Fig. 2.10.1(b) 

 Then from the relation  

  
10tS
lC




 , the specific rotation of the optically active substance 

is calculated. 
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Example 1.  Determine the specific rotation of the given sample of sugar 

solution if the plane of polarization is turned through 13.2o.  The length of the 

tube containing 10% sugar solution is 20 cm. 

 Here,   13.2o   

   310% 0.1 /C g cm   

   20l cm  

   
10 13.2

66
20 0.1

t oS


 


 

Example 2.  On introducing a polarimeter tube 25 cm long and containing 

sugar solution of unknown strength, it is found that the plane of polarization is 

rotated through 10o .  Find the strength of the sugar solution in / og cc  (Given 

that the specific rotation of sugar solution is 60o
 per decimeter per unit 

concentration.) 

 Here,   10o   

   60oS   

   25l cm  

   
10

S
lC


  

   
10 10 10 1

25 60 15
C

lS

 
  


 

   0.067 /C g cc  

Example 3.  Calculate the specific rotation if the plane of polarization is turned 

26.4o , traversing 20 cm length of 20% sugar solution. 

   
10tS
lC




  

Here,   26.4 , 20o l cm    

   320% 0.2 /C g cm   

   
10 26.4

20 0.2

tS





 

   66o  

Example 4.  A 20 cm long tube containing sugar solution rotate the plane of 

polarization by 11o .  If the specific rotation of sugar is 66o
, calculate the 

strength of the solution.  

 Here  11o   

   20 ,l cm  66oS   
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10

S
lC


  

10
C

lS


  

or   
10 11

20 66
C





 

   30.0833 /C g cm  

  

Questions 

1. Derive van der Waals equation for gases and calculate the theoretical 

values of the critical constants. 

2. Derive van der Waals equation of state and use it to obtain the 

expressions for the critical constants in terms of the constants of the van 

der Waals equation. 

3. What consideration led van der Waals to modify the perfect gas 

equation?  Deduce can der Waals equation of state for a gas.  Also 

obtain the expression for the critical constants of a gas in terms of van 

der Waals constants. 

4. What are the critical constants of a gas?  State and explain van der 

Waals equation.  Calculate the critical constants of a gas in terms of the 

constants of this equation. 

5. Calculate the van der Waals constants for dry air, given that Tc = 132 K, 

Pc = 37.2 atmospheres, R per mole = 82.07 ×10-6 atmospheres m3; b = 

36.40×10-6m3. 

6. Explain Joule-Thomson effect. 

7. Explain the principle of regenerative cooling.  How is the principle 

applied in the liquefaction of gases? 

8. Explain the principle involved in the liquefaction of liquid helium. 

9. Describe the porous plug experiment.  Sketch a liquid air plant and 

explain its action. 

10. Describe the methods for the liquefaction of hydrogen and helium using 

Joule – Thomson effect. 

11. Write an essay on the industrial and scientific applications of “Low 

Temperatures”.  

12. Describe Joule-Kelvin effect and give its theory.  How is it utilized in 

the liquefaction of gases? 

13. What is Joule-Thomson effect?  Obtain an expression for the cooling 

produced in this process in case of van der Waal’s gas.  Why do 

hydrogen and helium show a heating effect at ordinary temperature? 

14. Describe Joule-Thomson effect and give its theory.  How has it been 

utilised in the liquefaction of gases? 
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15. Describe Joule-Thomson porous plug experiment.  What are the 

important inferences from this experiment? 

16. Give an account of the methods of liquefying gases and discuss the 

principles on which they depend. 

17. Define Joule-Thomson effect for liquefaction of gases.  Prove that any 

gas below its inversion temperature will cool on suffering Joule-

Thomson expansion.  What is regenerative cooling. 

18. Describe Jamin's interferometer.   

19. Define specific rotation. 

20. Describe Fresenel’s biprism.  Explain how the wavelength of light can 

be determined with tits help. 

21. Explain how interference fringes may be obtained with the help of a 

Fresnel’s biprism. 

22. Short notes on: 

(i) Rayleigh’s refractometer. 

(ii) Interference fringes. 

(iii) Testing of Optical planes. 

23. Find the specific rotation of a given sample of sugar solution if the 

plane of polarization is turned through 26.4o.  The length of the tube 

containing 20% sugar solution is 20 cm. 

24. Describe Laurent’s Half shade Polarimeter. 
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UNIT – III 

 

ELECTRICITY, MAGNETISM & ATOMIC PHYSICS 

ELECTRICITY & MAGNETISM 

3.1  CAREY FOSTER BRIDGE 

Description. The Carey Foster bridge is a form of Wheat stone’s bridge. 

It consists of a uniform wire AB of length 1 metre stretched on a  wooden board. 

(Fig. 3.1). 

 

Fig. 3.1 

Two equal resistances  P  and  Q  are connected in gaps  2  and  3.  The 

unknown resistance  R  is connected in gap  1.  A standard resistance  S,  of the 

same order of resistance as  R,  is connected in gap  4.  A Leclanche cell is 

connected across  MN.  A galvanometer  G  is connected between the terminal  

C  and a sliding contact maker  D. 

Theory. The contact maker is moved until the bridge is balanced. Let  l1  

be the balancing length as measured from end  A.  Let    and    be the end 

resistances at  A  and  B.  Let    be the resistance per unit length of the wire. 

From the principle of Wheat stone’s bridge, 

1

1(100 )

P R l

Q S l

 

 

 


  
    …(1) 

The resistances  R  and  S  are interchanged and the bridge is again 

balanced. The balancing length  l2  is determined from the same end  A. 

Then, 

2

2(100 )

P S l

Q R l

 

 

 


  
    …(2) 

Figs. 3.1(a) and 3.1(b) and  represent the equivalent Wheatstone’s 

bridge circuit in the two cases. 
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 Fig. 3.1 (a)    Fig. 3.1 (b) 

From Eqns. (1) and (2), 

1 2

1 2(100 ) (100 )

R l S l

S l R l

   

   

   


     
  …(3) 

Adding 1 to both sides of Eq. (3), 

1 1 2 2

1 2

100 100

(100 ) (100 )

R l S l S l R l

S l R l

         

   

           


     

 

 1 2

100 100

(100 ) (100 )

R S R S

S l R l

     

   

       


     
 

Since the numerators are equal, the denominators must be equal. 

  1 2100 100S l R l           
 …(4) 

or  1 2S l R l   
 

         2 1( )R S l l  
   …(5) 

To find  . A standard resistance of 0.1  is connected in gap 1. A 

thick copper strip is connected in gap 4 i.e., R = 0.1  and S = 0. The balancing 

length  l1'  is determined. The standard resistance and the thick copper strip are 

interchanged. The balancing length  l2'  is determined. 

From Eq. (5),  2 10.1 ( )S l l    
 

or    2 1

0.1

( )l l
 

 
 

Thus by knowing S and  , the unknown resistance R is calculated.  
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3.2  Determination of the temperature coefficient of resistance 

Let R0 and R1 be the resistances of a wire at temperatures 0°C and toC. 

Then, 

0 (1 )tR R t 
 

or   

0

0 0

1tR R dR

R t R dt



 

 

where   is the temperature coefficient of resistance of the material. 

The increase of resistance per unit original resistance per degree rise of 

temperature is called temperature coefficient of resistance. 

The given wire is wound non-inductively in the form of a double spiral 

on a glass tube. It is immersed in a beaker containing ice at 0oC. The resistance 

of the wire is determined as above. The resistance of the wire is determined at 

10o, 20o, 30o, …100oC. A graph is drawn with temperature along the X-axis 

and resistance along the X-axis and resistance along the Y-axis. A straight line 

is obtained. 

Slope of the line  =  tan   =  

dR

dt  

 

Y  intercept  =  R0. 

   is calculated using the formula,     =  0

1 dR

R dt
 

 

Fig. 3.2 

Note. Let   R1  and  R2  be the resistances at  t1
oC  and  t2

oC respectively. 

 1 0 11R R t 
 and 

 2 0 21R R t 
 

   

2 1

1 2 2 1

R R

R t R t






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Example 1.  In an experiment with Carey Foster bridge, the shift in the 

balance point is 5.4 cm when a thick copper strip and one ohm resistance are 

interchanged. The one ohm resistance is then replaced by an unknown 

resistance. Now the balance point shifts by 10 cm on interchanging. Calculate 

the unknown resistance. 

Sol.   

1

5.4
 

 ohm/cm 

2 1

1
( ) 0 10 1.85

5.4
R S l l      

  ohm. 

3.3  Potentiometer 

Principle.  A potentiometer is a device for measuring or comparing 

potential differences.  A potentiometer can be used to measure any electrical 

quantity which can be converted into a proportionate D.C. potential difference. 

It consists of a uniform wire AB of length 10 m stretched on a wooden 

board. A steady current is passed through the wire AB with the help of a cell of 

EMF E.  Let 

 

Fig. 3.3 

r = resistance per unit length of potentiometer wire, and 

l = steady current passing through the wire. 

Let  C  be a variable point. 

Let  AB  =  L  and  AC  =  l. 

PD  across  AB  =  L r I,  and 

PD  across  AC  =  l r I 

across

across

PD AB L I L

PD AC l I l




 
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  
across across

l
PD AC PD AB

L
 

 

i.e., for a steady current passing through the potentiometer wire AB, the 

PD across any length is proportional to the length of the wire. 

If a D.C. voltmeter is connected between A and the variable point C, it 

will be noted that the voltmeter registers greater values of PD's as the point C 

slides from A to B. 

3.4  Calibration of voltmeter (Low range) 

The connections are made as shown in Fig. 3.4.  The voltmeter is 

connected parallel to R. Let l be the balancing length for the standard cell. The 

PD across R is balanced against the potentiometer. Let l1, be the balancing 

length when the voltmeter reads V1. 

 

Fig. 3.4 

PD across R = El1/l 

Correction to voltmeter = (El1/l) – V1 

The experiment is repeated for various readings of the voltmeter and a 

calibration graph is drawn. 

3.4.1  Calibration of voltmeter (High range) 

Connections are made as shown in Fig. 3.4.1.  Take suitable high 

resistances in P and Q such that the PD across P does not exceed the PD across 

the potentiometer. The balancing length l for the standard cell is determined 

first. Then the PD across P is balanced against the potentiometer and the 

balancing length l1 is determined. 

PD across P = El1/l 
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PD across  P + Q  = 

1P Q El

P l

  
  
    

Correction to voltmeter = 

1
1

P Q El
V

P l

  
  

    

 

Fig. 3.4.1 

The experiment is repeated for various readings of the voltmeter. A 

calibration curve is plotted for voltmeter, taking voltmeter readings on X-axis 

and corrections on Y-axis. 

3.4.2  Calibration of Ammeter 

Connect the ends of the potentiometer wire to the terminals of a storage 

cell through a key K1. (Fig. 3.4.2).   

 

Fig. 3.4.2 
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S is a standard cell. Connect the ammeter (A) to be calibrated in series with a 

battery, key K2, a rheostat and a standard resistance R. When a current / passes 

through the standard resistance R, the PD across R  is  IR.  This potential drop 

is measured with the help of potentiometer. 

Connect 1 and 3 and balance the EMF of the standard cell against the 

potentiometer. Find the balancing length from A. The PD per cm of the 

potentiometer = E/l. 

Connect 2 and 3. Adjust the rheostat so that the ammeter reads a value 

A1. Balance the PD across R against the potentiometer and find the balancing 

length l1. 

PD across R = El1/l 

Current through R = El1/(lR) 

Correction to ammeter reading = (El1/lR) – A1 

Similarly, the corrections for other ammeter readings are determined. A 

calibration curve is plotted for ammeter, taking ammeter readings on X-axis and 

corrections on Y-axis. 

3.5  Moving Coil Ballistic Galvanometer 

Principle. When a current is passed through a coil, suspended freely in 

a magnetic field, it experiences a force in a direction given by Fleming's left 

hand rule. 

Construction. It consists of a rectangular coil of thin copper wire 

wound on a non-metallic frame of ivory. It is suspended by means of a 

phosphor bronze wire between the poles of a powerful horse-shoe magnet. A 

small circular mirror is attached to the suspension wire.  

 

Fig. 3.5 (a) 
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Lower end of the coil is connected to a hair-spring. The upper end of 

the suspension wire and the lower end of the spring are connected to terminals 

Tx and T2. 

A cylindrical soft iron core (C) is placed symmetrically inside the coil 

between the magnetic poles which are also made cylindrical in shape. This iron 

core concentrates the magnetic field and helps in producing radial field. 

 

Fig. 3.5 (b) 

The B.G. is used to measure electric charge. The charge has to pass 

through the coil as quickly as possible and before the coil starts moving. The 

coil thus gets an impulse and a throw is registered. To achieve this result, a coil 

of high moment of inertia is used so that the period of oscillation of the coil is 

fairly large. The oscillations of the coil are practically undamped. 

Theory, (i) Consider a rectangular coil of N turns placed in a uniform 

magnetic field of magnetic induction B. (Fig. 3.5(b)) Let l be the length of the 

coil and b its breadth. 

Area of the coil = A = lb. 

When a current i passes through the coil, 

torque on the coil =  = NiBA.     …(1) 

If the current passes for a short interval  dt,  the angular impulse 

produced in the coil is 

dt NiBAdt 
     …(2) 

If the current passes for  t  seconds, the total angular impulse given to 

the coil is 

0 0

t t

dt NBA idt NBAq       …(3) 

Here,  0

t

i dt  = q  =  total charge passing through the galvanometer coil. 

Let  I  be the moment of inertia of the coil about the axis of suspension 

and    its angular velocity. Then, 

change in angular momentum of the coil  =  I   …(4) 
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  I  =  NBAq.     …(5) 

(ii)  The kinetic energy of the moving system  

1

2 I2  is used in twisting the 

suspension wire through an angle  .  Let  c  be the restoring torque per unit 

twist of the suspension wire. Then, 

work done in twisting the suspension wire by an angle  

21

2
c 

 

  

2 21 1

2 2
I c 

. 

or  
2 2I c 

     …(6) 

(iii) The period of oscillation of the coil is 

  

2
I

T
c


 

  
   or 

2
2 4 I

T
c




 

  

2

24

T c
I




     …(7) 

Multiplying Eqs. (6) and (7),  

2 2 2
2 2

24

c T
I







 

or  2

cT
I







     …(8) 

Equating (5) and (8),  NBAq  =  2

cT

  

or  
2

T c
q

NBA




  
   
      …(9) 

This gives the relation between the charge flowing and the ballistic 

throw    of the galvanometer.  q   . 

2

T c

NBA

  
  
   is called the ballistic reduction factor (K). 

 q = K       …(10) 
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Correction for Damping in Ballistic Galvanometer 

We have assumed that the whole of the kinetic energy imparted to the 

coil is used in twisting the suspension of the coil. In actual practice, the motion 

of the coil is damped by air resistance and the induced current produced in the 

coil. The first throw of the galvanometer is, therefore, smaller than it would 

have been in the absence of damping. The correct value of first throw is 

however obtained by applying damping correction. 

Let 1, 2, 3, ...   be the successive maximum deflections from zero 

position to the right and left.  Then it is found that 

1 2 3

2 3 4

... d
  

  
   

    …(1) 

The constant d is called the decrement per half vibration. 

Let  
d e

  so that     =  loge d 

Here   is called the logarithmic decrement. 

For a complete vibration, 

  

2 21 1 2

3 2 3

d e   

  
   

 

Let  be the true first throw in the absence of damping. 

 > 1. The first throw 1 is observed after the coil completes a quarter 

of vibration. In this case, the value of the decrement would be 
/ 2e . 

  

/ 2

1

1
2

e
 



 
   

   

or  
1 1

2


 

 
  

      …(2) 

We can calculate   by observing the first throw 1 and the eleventh 

throw  11. 

101 1 2 3 4 5 6 7 8 9 10

11 2 3 4 5 6 7 8 9 10 11

e           

          
 

 

or  

1 1
10

11 11

1 2.3026
log log .

10 10
e

 


 
 

 …(3) 
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   
1 1

2 2

T c
q

NBA






    
     
       …(4) 

Dead-beat and Ballistic galvanometers 

Galvanometers are classified as (i) dead-beat or aperiodic and (ii) 

ballistic galvanometers. 

A moving coil galvanometer in which the coil is wound on a metallic 

conducting frame is known as a dead-beat galvanometer. It is called "dead-

beat" because it gives a steady deflection without producing any oscillation, 

when a steady current is passed through the coil. 

Conditions for a moving coil galvanometer to be dead beat: 

(i)  Moment of inertia of the system should be small. 

(ii)  Coil should be mounted on a conducting frame. 

(iii)       Suspension fibre should be comparatively thicker. 

Conditions for a moving coil galvanometer to be ballistic: 

(i) The moment of inertia of moving system should be large. 

(ii) Suspension fibre should be very fine. 

(iii) Air resistance should be small. 

(iv) The damping should be small i.e., the coil should be wound on a non-

conducting frame. 

3.5.1  Current and Voltage Sensitivities of a moving-coil galvanometer 

The figure of merit or current sensitivity (Sc) of a moving coil mirror 

galvanometer is the current that is required to produce a deflection of 1 mm on 

a scale kept at a distance of 1 metre from the mirror. 

It is expressed in  A/mm. 

The voltage sensitivity (Sv) is the p.d. that should be applied to the 

galvanometer to produce a deflection of 1 mm on a scale at a distance of 1 

metre. 

It is expressed in  V/mm. 

To determine the current and voltage sensitivities of a galvanometer, the 

circuit shown in Fig.3.5.1 is used. Two resistance boxes P and Q and a key K 

are connected in series with a lead accumulator of emf E. Between the ends of 

P, a resistance box R and the M.G., through a commutator, are connected. 
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Fig. 3.5.1 

A low resistance (say 1 ) is introduced in P and a high resistance (say 

9999 ) in Q. With no resistance in R, the deflection 6 of the galvanometer is 

found. 

 Voltage sensitivity,  
610 /

( )
V

EP
S V mm

P Q



 


   

The resistance in R is adjusted such that the deflection becomes /2. 

The resistance in R is equal to the galvanometer resistance Rg. 

 Current sensitivity,  
610 /

( )
C

g

EP
S A mm

P Q R



 


  

The experiment is repeated for various values of P keeping P + Q 

constant. 

3.6  Measurement of charge sensitiveness (Figure of merit of a B.G.) 

The charge passing through a B.G., is given by  

   1 11 1
2 2 2

T c
q K

NBA

 
 



   
      

   
 

Here K is charge sensitiveness or figure of merit of the galvanometer. It 

is also known as the 'ballistic reduction factor' of the galvanometer. 

The charge that should circulate through the coil to produce an 

undamped throw of 1 mm in the spot of light on a scale placed at a distance of 

1 metre from the mirror is called the charge sensitiveness K of the ballistic 

galvanometer. 

Two resistance boxes P and Q and a key K are connected in series with 

an accumulator of emf E (Fig. 3.6). A capacitor of known capacitance C is 

connected to P through the vibrator V and charging terminal Ch of the charge-

discharge key. The capacitor is charged with the p.d. across P. The charge on 
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the capacitor can be discharged through the B.G. included in the circuit through 

the vibrator and discharge terminal of the charge-discharge key. A commutator 

Cr is included in the circuit to reverse the charge in the B.G. 

1000  in P and 9000Q in Q are included. The capacitor is charged and 

immediately discharged through the B.G. The first throw 1 is noted. The 

experiment is repeated with P = 2000 , 3000  etc., keeping P + Q = 10,000 

. Mean value of  P/1  is calculated. 

 

 

Fig. 3.6 

Let the capacitance of the capacitor be  CF. 

Charge on the capacitor  
( )

EP
q C C

P Q
 


. 

This charge produces a throw 1. 

Undamped throw  1

1
1

2
  

 
  

 
 

Charge required to produce unit deflection = K. 

 1

1
1

2 ( )

EP
K C

P Q
 
 
   

 
 

or   

1

/ .
1

1
2

EC P
K C div

P Q


 

 
  

 
 

 

The value of    is obtained by observing the first throw  1 and then the 

eleventh throw  11 and using the relation 

  1 1
10

11 11

1 1
log 2.3026 log .

10 10
e

 


 
     
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USES OF BALLISTIC GALVANOMETER 

Absolute capacitance of a capacitor 

(i) Two resistance boxes P and Q are connected in series with an 

accumulator   of emf E. A small resistance ( 0.1 ) is taken in P and a large 

resistance (9999.9 ) in Q so that P + Q = 10,000 . The galvanometer (MG) 

and a resistance box R are connected across P. With no resistance in R, the 

steady deflection d of the galvanometer is found. A suitable resistance is taken 

in R till the deflection becomes half. The resistance in R is the galvanometer 

resistance Rg. The experiment is repeated for various values of P keeping P + 

Q constant. 

 

Fig. 3.6(i) 

Current through galvanometer =  
1

g

EP

P Q R



  …(1) 

Current through the galvanometer is also = 
c

d
BAN

 …(2) 

From Eqns. (1) and (2), 

   
1

g

c EP
d

BAN P Q R
 


 

   
1

( ) g

c E P

BAN P Q d R

 
  

  
  …(3) 

The mean value of P/d is found out from this part of the experiment. 

(ii) The galvanometer coil is set oscillating freely in open circuit. The time 

for 10 oscillations is found and the period T is calculated. 

(iii) Connections are made as shown in Fig. 3.6(iii).  Resistances  P1(1000 ) 

and Q1 (9000 ) are included in the boxes  P and Q respectively. 
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Fig. 3.6 (iii) 

Potential difference across 

1
1

1 1

EP
P V

P Q
 


 

The drop of potential across  P1  is used to charge the capacitor, by 

connecting the terminals  Ch  and  V  of the charge-discharge key. 

Charge on the capacitor = q = CV =  1

1 1

EP
C

P Q



  …(4) 

The terminals Dh and V are now connected so that the capacitor gets 

discharged through the galvanometer. The first throw  1  is noted. 

1

1
1

2 2

T c
q

BAN
 



 
  

 
   …(5) 

  1
1

1 1

1
1

2 2

EP T c
C

P Q BAN
 



 
   

  
 

[From Eqns. (4) and (5)] 

or  1 1 1

1

1
1

2 2

T c P Q
C

BAN P E






    
    

  
 …(6) 

Substituting the value of  (c/BAN) from Eq. (3) in Eq. (6), 
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1 1 1

1

1 1
1

2 ( ) 2g

T E P P Q
C

P Q d R P E






     
     

     
 

But  P + Q = P1 + Q1 

 1

1

1 1
1

2 2g

T P
C

R d P






    
     

    
  …(7) 

The experiment is repeated for various values of P1 keeping 1 1( )P Q  

the same as P + Q. The mean value of  1 1/ P   is calculated. 

(iv) To find  , the coil is set oscillating. The first throw  1 , and the 

eleventh throw  11   are noted. Then, 

1
10

11

2.3026
log

10





  

Substituting the values of  T, Rg, (P/d),  1 1/ P , and   in Eq (7), C 

(the value of capacitance of the given capacitor) is determined. 

3.7  Comparison of two Capacitances using B.G. 

Connections are made as shown in Fig. 3.7.  Let C1 and C2 be the 

capacitances of the two given capacitors. These capacitors are connected to the 

end terminals of the DPDT key. A resistance of 1000 . is introduced in P and 

9000 . in Q. 

The capacitor C1 is charged to the p.d. across P. The charge on C1 is 

then discharged through the B.G. The throws in the B.G. are noted before and 

after reversing the commutator. The mean throw 1  is found out. 

With the same resistances in P and Q, the handle of the DPDT key is 

thrown on the side of C2. C2 is charged to the same potential across P. The 

charge on C2 is then discharged through the B.G. The mean throw 2  is found 

out. 
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Fig. 3.7 

Let V  be the p.d. across the terminals of  P. Then, 

In the first case,  1 1 1

1
1

2
q C V K 

 
    

 
 

In the second case,  2 2 2

1
1

2
q C V K 

 
    

 
 

    1 1

2 2

C

C




  

The experiment is repeated for different values of P keeping (P + Q) 

constant. 

P+Q 

ohms 

P 

ohms 

Throw due to C1 Throw due to C2 
1 1

2 2

C

C






 

Left 

 

 

Right  Mean 

θ1  

 

Left Right Mean  

θ2 

       

         

                                                                             Mean 1

2

C

C
 =… 
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3.8  The vector Atom Model 

Introduction. 

1 Bohr’s theory was able to explain only the series spectra of the simplest 

hydrogen atom. It could not explain the multiple structure of spectral 

lines in the simplest hydrogen atom. Sommerfeld’s theory was able to 

give an explanation of the fine structure of the spectral lines atom.  

However, Sommerfeld’s theory could not predict the correct number of 

the fine structure lines. Moreover, it gave no information about the 

relative intensities of the lines. Sommerfeld’s theory could not explain 

the complex spectra of alkali metals like sodium. 

2. These older theories were inadequate to explain new discoveries like 

Zeeman Effect and Stark Effect in which the spectral lines could be split 

up under the influence of magnetic and electric fields. 

3. Another drawback of the Bohr model was that it could not explain how 

the orbital electrons in an atom were distributed around the nucleus. 

Therefore, in order to explain the complex spectra of atoms and their 

relation to atomic structure, the vector atom model was introduced. The two 

distinct features of the vector atom model are:  

1. the conception of spatial quantization, and 

2. the spinning electron hypothesis 

3.9  Spatial quantization. According to Bohr’s theory, the orbits are 

quantized as regards their magnitude (i.e. their size and form) only. But 

according to quantum theory, the direction or orientation of the orbits in space 

also should be quantized.   To specify the orientation of the electron orbit in 

space, we need a fixed reference axis. This reference line is chosen as the 

direction of an external magnetic field that is applied to the atom. The 

difference permitted orientations of an electron orbit are determined by the fact 

that the projections of the quantized orbits on the field direction must 

themselves be quantized. The idea of space quantization leads to an explanation 

of Zeeman effect. The Stern –Garlach experiment provided an excellent proof 

of the space quantization of atom. 

3.10  Spinning electron. To account for the observed find structure of spectral 

lines and to explain the anomalous Zeeman effect, the concept of spinning 

electron was introduced by Uhlenbeck and Goudsmit in 1926. According to 

their hypothesis, the electron spins about an axis of its own, while it also moves 

round the nucleus of the atom in its orbit. The spin of the electron is analogous 

to the spinning of a planet about its own axis, as it moves in an elliptical orbit 

around the sun. In other words, the electron is endowed with a spin motion over 

and above the orbital motion. According to the quantum theory, the spin of the 

electron also should be quantized. Hence a new quantum number called the 

spin quantum number (s) is introduced. Since the orbital and spin motions are 

both quantized in magnitude and direction according to the idea of spatial 

quantization, they are considered as quantized vectors. Hence the atom model 
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based on these quantized vectors is called the “vector atom model”, to which 

vector laws apply. 

 According to the older theories, the electron was supposed to have only 

orbital motion round the nucleus. Hence, only the orbital angular momentum 

and orbital magnetic moment were considered. The spin endows the electron 

with a spin angular momentum sħ and a spin magnetic moment. Hence the total 

angular momentum of an atom should be the vector sum of the orbital angular 

momentum and spin angular momentum. Similarly, the total magnetic moment 

of an atom should be the vector sum of the orbital and spin magnetic moments. 

3.11 Quantum Numbers Associated with the Vector atom Model 

(1) The principal quantum number (n). This is identical with the one 

used in Bohrsommerfeld theory. The serial number of the shells starting from 

the innermost is designated as its principal quantum number (n). It can take 

only integral values excluding zero. i.e., n=1,2,3,4,…. 

(2) The orbital quantum number (l). This may take any integral value 0, 

1,2,3,4,….(n-1). Thus, if n=4, l can take of four values 0,1,2,3. By convention, 

an electron for which l=0, is called as electron; if l=1.p electron ; l=2, d 

electron; 1=3, f electron etc. The orbital angular momentum Pl of the electron is 

given by pl = lħ. 

According to the wave mechanics  
1/ 2

1 ћlp l l     

3) The spin quantum number (s). This has only values, 
1

2
 . The spin 

angular momentum ћsp s where 
1

2
s  . According to wave mechanics, 

 
1/ 2

1 ћsp s s     

4) Total angular momentum quantum number (j). It represents the total 

angular momentum of the electron which is the sum of the orbital angular 

momentum and spin angular momentum. The vector j is defined by the 

equation j l s   with the restriction that j is positive. The spin angular 

momentum 
1

. ,
2

s j l s      plus sign when s is parallel to l and minus 

sign when s is antiparallel. Thus for l=2 and 
1

,
2

s j can have the values 

5 3

2 2
and  (Fig. 3.11 (4)). 

The total angular momentum of the electron ћjp j  . 

According to wave mechanics, ( 1)ћjp j j  . 
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Fig. 3.11(4) 

To explain the splitting of spectral lines in a magnetic field, three more 

magnetic quantum numbers are introduced. 

5)  Magnetic orbital quantum number (ml). The projection of the orbital 

quantum number l on the magnetic field direction is called the magnetic 

orbital quantum number ml. The possible values of ml, are 

, 1, 2,.......,0, 1, 2,.......... . . .,l l l l i e      there are (2 1)l  possible values of 

ml.  This is illustrated in Fig. 3.11(5) for 3l  . The angle  between 

l and B is given by cos 1 .
m

l
   Conversely, the permitted orientations of 

the l vector relative to the field direction B is also (2 1)l  . For example, if 

3l  , the permitted orientations of l are 7 directions shown in Fig. 3.11(5). 

l cannot be inclined to B at any other angle. This is known as ‘spatial 

quantization’. 

 

Fig. 3.11(5) 

6) Magnetic spin quantum number (ms). this is the projection of the spin 

vector s along the direction of the magnetic field. The spin angular 

momentum (s) can assume only two possible positions with respect to the 
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magnetic field: it may be parallel to it or antiparallel. sm can have only two 

values 
1 1

,
2 2

or  as illustrated in Fig. 3.11(6) 

 

Fig. 3.11(6) 

7) Magnetic total angular momentum quantum number (mj). This is the 

projection of total angular momentum vector j on the direction of the 

magnetic field. Since we are dealing with a single electron, j can have only 

odd half-integral values 
1

( )
2

j l  . Hence, mj must have only odd half-

integral values. mj can have only (2 1)j  values, from + j to – j zero 

excluded. Fig. 3.11(7) shows the possible value of mj for 3/ 2.j   

 

Fig. 3.11(7) 

Notes. (1). The state of an electron in an atom is completely specified by 

the four quantum number, , ,   l sn l m and m . 

(1) In spectroscopic notation, small letters , ,   , , , , ,l s j and s p d f g  etc., are 

used to describe the state of the electron and capital letters, 

, ,   , , , ,L S J and S P D F Gare used to describe the state of the atom as a 

whole. 
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3.12 Coupling Schemes 

In an atom having two or more electrons, the orbital and spin angular 

momentum of all its electrons can be added together in two ways. The methods 

of combination depends on the impaction or coupling between the orbital and 

spin angular momenta. Two types of schemes have been developed. They are : 

(1) L-S coupling or the Russel - Saunders coupling and (2) the j j   coupling. 

(1) L-S coupling. The type of coupling which occurs most frequently is the L-

S coupling. In this type, all the orbital angular momentum vectors of the 

various electrons combine to form a resultant L and independently, all their 

spin angular momentum vectors combine to form the total angular 

momentum j of the atom (Fig. 3.12(1)). This scheme may be summarised as 

follows:  

 

Fig. 3.12(1) 

 ; ; .i iL l S s J L S L    is always an integer including zero. S is an 

integer for an even number of electrons, and odd multiple of 
1

2
for an odd 

number of electrons (Fig. 3.12(a)). Hence J must be an integer, if S is an integer 

and J must be an odd multiple of 
1

2
if S is an odd multiple of 

1

2
. It can be 

shown that, when L>S, J can have (2S+1) values and when L<S,J can have 

(2 1)L values. In particular, if L=0, J can have only one value namely J=S. 

 

Fig. 3.12(a) 
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(2) The j-j coupling. This method is employed when the interaction between 

the spin and orbital vectors of each electron is stronger than the interaction 

between either the spin vectors or the orbital vectors of the different 

electrons. The orbital and spin angular momenta of each electron in the 

atom are added to obtain the resultant angular momentum of the electron 

(Fig 3.12(2)) 

Thus .i iij l s   

The vector sum of all the individual j vectors gives the total angular 

momentum J of the atom. Thus iJ j  . This type of  coupling exists mainly in 

heavy atoms. 

 

 

Fig. 3.12(2) 

Application of spatial quantisation. The resultant vectors L,S and J, 

representing the atom, can be obtained by the above coupling schemes. 

According to quantum theory L,S and J are quantized in magnitude and 

direction. Hence the number of permitted orientations of L,S and J with respect 

to a given field direction are (2 1),(2 1) (2 1)L S and J    respectively. The 

corresponding magnetic quantum numbers 

L l s s J jm m m m and m m     , can have only (2 1),(2 1)L S   and 

(2 1)J   values respectively. 

Note : For a one electron atom with only a single effective electron, the state of 

the atom as a whole is identical with the state of the electron i.e., 

.L l S sand J j   . 

3.13  The Pauli Exclusion Principle 

 Statement. No two electrons in an atom exist in the same quantum state. 

The four quantum numbers n, l, m1 and m3 determine the state of an electron 

completely. Hence the principle may be stated as “No two electrons in an 

isolated atom may have the same four quantum numbers. 
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Explanation. The principle implies that each electron in an atom must a 

different set of quantum numbers n, l, m1, and m3. If two electrons have all 

their quantum numbers identical, then one of those two electrons would be 

excluded from entering into the constitution of the atom. Hence the name 

“exclusion principle”. 

 Application. This principle enables us to calculate the number of 

electrons that can occupy a given subshell. 

(1) Consider the K-shell with n=1, l=0 and hence ml=0 since 
1

,
2

ss m can be 

either 
1 1

2 2
or  . Hence, the K-shell can have two electrons: electron 1 

with quantum numbers 
1

1
1, 0, 0, ;

2
sn l m m    and electron 2 with 

quantum numbers 
1

1, 0, 0
2

l sn l m m     . If there were a third 

electron, its quantum numbers will be identical with those of the first or 

second electron, which is against Pauil’s exclusion principle. The K-shell 

is therefore completed or closed with two electrons. 

(2) For the L-shell, 2 0 1.n and l or   For the subshell 12, 0,n l m   must 

be zero and 
1 1

.
2 2

sm or     Hence there can be only 2 electrons in this 

subshell.  For the subshell 2, 1, ln l m   must be zero and 

1 1

2 2
sm or   . Hence there can be only 2 electrons in this subshell. For 

the subshell 2, 1, ln l m   can have three values -1, 0, +1. For each of 

these three values of ,l sm m  may be either 
1 1

.
2 2

or   Hence there will 

be six possible set of values for the quantum numbers characterizing the 

electrons. Therefore, the maximum number of electrons in this subshell is 

6.  The L shell with two subshells  ( 2, 0)  2, 1n l and n l      is, 

therefore, completed when it contains 2+6=8 electrons. 

(3) For the M-shell with 3n  there can be three subshells with 0,1,2.l    

The first and second subshells are completed by 2 and 6 electrons as 

explained above. The third subshell is completed with 2(2 1), . .,l i e  10 

electrons since 2l  . Hence the total number of electrons required to 

complete the M-shell is 18. 

(4) Similarly, the N-shell can have a maximum of 32 electrons.  

In general, we get the two following conclusions: 

(i) In the nth shell there are n sub-shells corresponding to the values 

0,1,2,3…….(n-1) of l.  
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The maximum number of electrons in a sub-shall with a given value 

of l is 2(2l+1) 

Orbital quantum number (l)  

 0 1 2 3 4 ....  

Number of possible electron states 

 2 6 10 14 18 ....  

Subshell symbol    

 ....s p d f g  

(ii) The number of electrons that can be accommodated in a shell with 

principal quantum number n=Sum of the electrons in the constituents 

subshells. 

1 1

0 0

2(2 1) 2 (2 1)
l n l n

l l

l l
   

 

      

   22[1 3 5 7 .......{2( 1) 1}] 2n n         

The following table shows the distribution of electrons according to this 

scheme. 

Shell symbol      

 K L M N O  

Quantum number (n)     

 1 2 3 4 5  

Number of electrons 2(2 )n     

 2 8 18 32 50  

The distribution of electrons in the various states (shells and sub-shells) 

according to the exclusion principle is given in the following table (Table 3.13) 

Table 3.13 

n l m1 ms Number of 

electrons in sub-

shell with 

spectroscopic 

notation 

Total 

number of 

electrons in 

shell = 2n2 

1 0 0 1 1
,

2 2
   

2       1s2 2 

2 

 

2 

0 

 

1 

0 

 

-1, 0, 

+1 

1 1
,

2 2

1 1
,

2 2

 

 

 

2       2s2 

 

6       2p6 

8 



 121 

3 

 

3 

 

3 

0 

 

1 

 

2 

0 

 

-1, 0, 

+1 

 

-2, -1, 0 

+1, +2 

1 1
,

2 2

1 1
,

2 2

 

 

 

1 1
,

2 2
   

2       3s2 

 

6       3p6 

 

10       3d10 

 

18 

4 

4 

 

4 

 

4 

0 

1 

 

2 

 

3 

0 

-1, 0, 

+1 

 

-2, -1, 0 

+1, +2 

 

-3, -2, -

1, 0, 

+1, +2, 

+3 

 

1 1
,

2 2

1 1
,

2 2

 

 

 

2       4s2 

6       4p6 

 

10       4d10 

 

14       4f14 

32 

3.14  The Periodic Classification of Elements 

 The periodic table. The periodic table is an arrangement of different 

elements that exist in nature, based on their chemical properties and atomic 

numbers. Table 3.14. shows the simplest form of the periodic table. 

 Elements with similar properties form the groups shown as vertical 

columns in the table. Thus group I consists of hydrogen plus the alkali metals, 

all of which are  
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Table 3.14 

 

extremely active chemically and all of which have valence of +1. Group VII 

consists of the halogens that have valence of -1. Group VIII consists of the inert 

gases which are chemically inactive. 

 The horizontal rows are called periods. As we go from left to right in 

the same period, the chemical and physical properties of the elements vary 

gradually as the atomic number increases. Since the atomic number gives also 

the number of electrons in the atom, it follows that the atoms of successive 

elements in the periodic table are formed by the addition of one more electron 

at each step. 

 We have already seen the arrangement of electrons in an atom by 

applying Pauli’s exclusion principle. The notion of electron shells and subshells 

fits perfectly into the pattern of the periodic table. The total orbital and spin 

angular momenta of the electrons in a closed subshell are zero. The electrons in 

a closed shell are all very tightly bound, since the positive nuclear charge is 

large relative to the negative change of the inner shielding electrons. Since an 

atom containing only closed shells has no dipole moment, it does not attract 

other electrons, and its electrons, cannot be readily detached. We expect such 

atoms to be passive chemically, like the inert gases and the inert gases all turn 

out to have closed shell electron configurations. 

 Those atoms which have a single electron in their outermost shell, tend 

to lose this electron. Hydrogen and the alkali metals are in this category and 

accordingly have valences of +1.  Atoms whose outer shells lack a single 

electron for being closed, tend to acquire such an electron, which accounts for 

the chemical behaviour of the halogens. It is clear that the chemical and 

physical properties of an atom are determined by the number and arrangement 

of the electrons in the outermost-shell and not by the total number of electrons 
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in the atom. In this manner the similarities of the members of the various 

groups of the periodic table may be accounted for. 

3.15  Some Examples of Electron Configurations with their modern 

symbolic Representations. 

The electronic configuration of an atom is the distribution of electrons in 

various subshells around the nucleus of the atom. In describing the electron 

configuration, small letters are used to represents the values of l as follows: 

0, 1, 2, 3, 4, 5, .....

, , , , , , .....

l

s p d f g h


  

i.e., if an electron is in a shell for which 0,l  it is called an s electron; for 1,l   

a p electron and so on. The value of the principle quantum number n is written 

as a prefix to the letter representing its l value. For example, a state in which 

2, 0n l  is a 2 ; 4, 2 4s state n l isa d   -state and so on. The number of 

electrons having the same n and l values is indicated by an index written at the 

upper right of the letter representing their l value. Thus the 11 electrons of 

sodium in the normal state are designated as follows: 2 2 61 2 2 3 . . .,s s p s i e  there 

are two 1s electrons, two 2s electrons, six 2p electrons, and one 3 s electrons. 

We shall now consider electron configurations of a few elements. 

(1) Hydrogen (Z=1). The normal state of an atom is one in which all the 

electrons are in the lowest possible energy levels. In hydrogen, the normal state 

is characterized by the quantum numbers 
11, 0, 0 sn l m and m   may be 

either 
1 1

2 2
or  . The symbolic representation is ls. The K- shell requires one 

more electron to be completed. Hence atomic hydrogen is very active 

chemically. 

(2) Helium (Z=2). It has both its electrons in the shell 

1
1, 0,

2
sn l m   for one electron and 

1

2
 for the second electron. The 

symbolic representations is 2ls . This shell is now completed or closed. The 

rectangular enclosure indicates that the electrons are interlocked in a closed 

shell. Therefore, helium may be expected to have a very stable configuration. 

This should also be true of all the other inert gases. 

(3) Lithium (Z=3). It has three electrons. Two electrons can be put in the 

shell 1, 0.n l   The third electron must be put into a new shell 2, 0n l  . So 

the neutral lithium atom is represented by 22 .ls s  Lithium is one of the alkali 

elements and has a valence of unity. This means that the valence 2s electron 

can be detached easily from the atom to from the lithium ion Li+. This is 

indicated by the fact that its ionization potential is only 5.39 volts, whereas for 

He it is 24.58 volts. Lithium is chemically quite active and is monovalent. 

Similarly, all alkali metals ( , , , )Na K Rb Cs have one electron in their outermost 

shell and hence are monovalent having similar chemical properties. 
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(4) Beryllium ( 4).Z   It has two electrons in the completed K-shell 

( 1)n . It has two additional electrons in the ( 2, 0)n l  subshell. It is 

represented by 2 22 .ls s  Beryllium is one of the alkaline earth elements with a 

valence of 2. Its optical spectrum is that of a two electron atom. The atoms of 

the other elements of the group ( , , , , )Mg Ca Sr Ba Ra should have similar 

structures. They have two electrons outside an inert gas or closed shell 

configuration. They have very similar chemical and physical properties. 

Similarly the electronic configurations from boron (Z=5) to neon (Z=10) 

are: 

(i) Boron : 2 22 2ls s p  

(ii) Carbon 2 2 2( 6): 2 2Z ls s p  

(iii) Nitrogen 2 2 3( 7):1 2 2Z s s p  

(iv) Oxygen 2 2 4( 8):1 2 2Z s s p  

(v) Flourine 2 2 5( 9) :1 2 2Z s s p  

(vi) Neon 2 2 6( 10):1 2 2Z s s p  

In neon, both the n=1 and n=2 shells are completed. Neon is one of the 

inert gases and has a very stable configuration 

 The next eight elements from sodium (Z=11) to argon (Z=18) are 

formed by adding the additional electrons to the M shell for which n=3. 

(i) Sodium 2 2 6( 11): 1 2 2 3Z s s p s . Sodium has an electron (3s electron) 

outside a closed shell. This single electron, like that in lithium, is easily 

ionized;  the valence is 1; the spectrum is that of one-electron atom. 

(ii) Magnesium 2 2 6 2( 12) : 1 2 2 3Z s s p s . The two electrons in the 

outermost incomplete M shell (n=3) are the valence electrons marking 

Mg divalent. 

(iii) Aluminum 2 2 6 2( 13) : 1 2 2 3 3Z s s p s p  Al is trivalent. 
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Questions 

1. Describe the theory of low range ammeter using potentiometer.  

2. Describe the theory of low range voltmeter using potentiometer 

3. Describe the theory of Carey Foster bridge, find the resistance of the two 

coils separately and hence calculate the specific resistance.  Find the 

length of the third coil of the same material without unwinding it. 

4. Explain the theory of Moving coil Ballistic galvanometer? 

5. How do you determine the charge sensitiveness of Ballistic galvanometer? 

6. Describe the comparison of two capacitors using BG. 

7. Describe the vector model of the atom and explain the different quantum 

numbers associated with it.  Write down the electron configuration for 

Cu(29) employing modern symbolism and explain it. 

8. State and explain Pauli’s exclusion principle as applied to electrons  in 

atoms.  Describe how this principle assists in the interpretation of the 

periodic system of the elements. 

9. What is Pauli’s exclusion principle? On the basis of this principle explain 

the configuration of electrons in atoms. 
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UNIT - IV 

NUCLEAR PHYSICS & SOLID STATE PHYSICS 

NUCLEAR PHYSICS 

4.  Meson Theory of Nuclear Forces 

 According to the meson theory of nuclear forces, all nucleons consist of 

identical surrounded by a “cloud” of one or more mesons. Mesons may be 

neutral or may have a positive or negative charge. The sole difference between 

neutrons and protons is supposed to lie in the composition of their respective 

meson clouds.  Yukawa assumed that π meson is exchanged between the 

nucleons and that this exchange is responsible for the nuclear binding forces. 

The forces that act, between one neurons and another, and between one proton 

and another, are the result of the exchange of neutral mesons 0( ) between 

them. The force between a neutron and a proton is the result of the exchange of 

charged masons ( )and  between them. 

Thus a neutron emits a  meson and it converted into a proton: 

n p     

The absorption of the   meson by the proton (with which the neutron 

was interacting) converts it into a neutron: 

   .p n    

 In the reverse process, a proton emits a   meson, becoming a neutron 

and the neutron, on receiving the   meson, becomes a proton: 

   
p n

n p









 

 
 

Thus is the nucleus of an atom, attractive forces exist between (1) 

proton and proton (2) proton and neutron and (3) neutron and neutron. These 

forces of attraction are much larger then the electrostatic force of repulsion 

between the protons, thus giving a stability to the nucleus. 

Just as a photon is a quantum of electromagnetic field, a meson is a 

quantum of nuclear field.  Yukawa considered the equation for particle of mass 

m as, 

 
2 2 2

2

2 2 2

1
0

( 2 )

m c

hl c t




 
    

 
    …(1) 

This is a relativistic equation valid only for spinless particles. 

Separating the time dependent part, the equation for the radial part is 

 2 2( ) ( ) 0r                   ….(2) 

Where ( / 2 )mcl h   
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The solution of Eq. (2) is ( )
re

r g
r






      …(3) 

Here g is a constant, which plays the same role as the change q in 

electromagnetic theory. In analogy with electromagnetism, the potential 

between two nucleons is then given by 

2( )
re

V r g
r



         …(4) 

 Here g2 is called the Coupling constant’. The argument made Yukawa 

predict the existence of pion as a quantum of nuclear force field. 

 The range of the pion field is 
/ 2

1.4
h

fm
m C


  

The form of V(r) given by Eq. (4) is known as the one-pion exchange 

potential (OPEP). 

On the basis of the range of nuclear force and the uncertainty principle, 

it is possible to estimate the mass of the meson. According to uncertainty 

principle /2E X t h where Eand t     are the uncertainties in energy and 

time. The range of nuclear force  is 151.4 10 .R X m   Let us assume that the 

meson travels between nuclei at approximately the speed of light c. Let t be 

the time interval between the emission of meson from one nucleon and the 

absorption by the other nucleon. 

Then  
( / 2 )

/ .
h

t R c E
t


   


 

 The minimum meson mass is specified by 
( / 2 )

.
h

m
Rc


  

It terms of the electronic mass em , the mass of the meson is 

 
34

31 15 8

/ 2 1.054 10
275

(9.108 10 )(1.4 10 )(3 10 )e e

m h X

m m Rc X X X

 

 
    

i.e., mass of the meson 275 X mass of electron. 

 In 1947, Powell discovered  meson of mass about 273 me. This 

particle showed strong interaction with nucleons and was recognized as the 

Yukawa particle. 

 The discovery of the meson of mass of about 273 electrons mass and 

the existence of positive, negative and neutral mesons, lends some support to 

this theory. The experimental values of the magnetic moments of a free proton 

and of a free neutron also lend some support to the “Yukawa’s meson field 

theory” of nuclear forces. A free proton is, for a part of its life-time, a neutron 

with a closely bound meson. Hence the magnetic moment of a free proton can 

be the resultant of the true magnetic moment of the proton and the magnetic 
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moment of the meson. Thus the net magnetic moment of a free proton will 

exceed that given by the simple theory. Similarly, a neutron is for a fraction of 

its life-time dissociated into a proton and a negative meson. This combination 

will have a negative magnetic moment. It follows that, though uncharged, a 

neutron will have a negative magnetic moment. 

4.1  Models of Nuclear Structure 

 The precise nature of the forces acting in the nucleus is unknown. 

Hence, nuclear models are resorted to for investigation and theoretical 

prediction of its properties. Such models may be based on (i) the extrinsic 

analogy between the properties of atomic nuclei and those of a liquid drop (ii) 

the electron shell of an atom etc. The corresponding models are called the 

liquid –drop model, shell model etc. 

4.2  The Liquid Drop Model 

In the liquid model, the forces acting in the nucleus are assumed to be 

analogical to the molecular forces in a droplet of some liquid. This model was 

proposed by Neils Bohr who observed that there are certain marked similarities 

between an atomic nucleus and a liquid drop. The similarities between the 

nucleus and a liquid drop are the following: 

(i) The nucleus is supposed to be spherical in shape in the stable 

state, just as a liquid drop is spherical due to the symmetrical 

surface tension forces. 

(ii) The force of surface tension acts on the surface of the liquid-

drop. Similarly, there is a potential barrier at the surface of the 

nucleus. 

(iii) The density of a liquid –drop is independent of its volume. 

Similarly, the density of the nucleus is independent of its 

volume. 

(iv) The intermolecular forces in a liquid are short range forces. The 

molecules in a liquid drop interact only with their immediate 

neighbours. Similarly, the nuclear forces are short range forces. 

Nucleons in the nuclear forces and a constant binding energy per 

nucleon. 

(v) The molecules evaporate from a liquid drop on raising the 

temperature of the liquid due to their increased energy of 

thermal agitation. Similarly, when energy is given to a nucleus 

by bombarding it with nuclear projectiles, a compound nucleus 

is formed which emits nuclear radiations almost immediately. 

(vi) When a small drop of liquid is allowed to oscillate, it breaks up 

into two smaller drops of equal size. The process of nuclear 

fission is similar and the nucleus breaks up into two smaller 

nuclei. 
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Semi-empirical mass formula. The liquid-drop model can be used to obtain an 

expression for the binding energy of the nucleus. Weizacker proposed the semi-

empirical nuclear binding energy formula for a nucleus of mass number A, 

containing Z protons and N neutrons. It is written as 

2
2/3

1/3 3/ 4

( 1) ( )
. .

cZ Z d N Z
B E aA bA

A A A

 
      

Where a,b,c and  are constants. 

Explanation of the terms. (1) The first terms is called the volume energy of a 

nucleus ( )vE aA . The larger the total number of nucleons A, the more 

difficult it will be to remove the individual protons and neutrons from the 

nucleus. The B.E. is directly proportional to the total number of nucleons A. 

2) The nucleons, at the surface of the nucleus, are not completely 

surrounded by other nucleons. Hence energy of the nucleon on the 

surface is less then that in the interior. The number of surface 

nucleons depends upon the surface effect reduces the B.E. by 
2/3

sE b A .  A nucleus of radius R has an area of 4πR2 = 4πr0
2A2/3.  

Hence the surface effect reduces the B.E. by Es=bA2/3.  The negative 

energy Es is called the surface energy of a nucleus. It is most 

significant for the lighter nuclei, since a greater fraction of their 

nucleons are on the surface. 

3) The electrostatic repulsion between each pair of protons in a nucleus 

also contributes towards decreasing its B.E. The Coulomb energy Ec 

of a nucleus is the work that must be done to bring together Z protons 

from infinity into a volume equal to that of the nucleus. Hence 

( 1) / 2cE Z Z   (the number of proton pairs in a nucleus containing 

Z protons) and Ec is inversely proportional to the nuclear radius 
1/3

0 . cR r A E is negative because it arises from a force that opposes 

nuclear stability. 

4) The fourth term 
2( )

a

d N Z
E

A


  originates from the lack of 

symmetry between the number of protons (Z) and the number of 

neutrons (N) in the nucleus. The maximum stability of a nucleus 

occurs when N=Z. Any departure from this introduces an asymmetry 

N-Z, which results in a decrease in stability. The decrease in the B.E. 

arising from this is called the asymmetric energy (Ea). this is also 

negative. 

5) The final correction term  allows for the fact that even-even nuclei 

are more stable than odd-odd nuclei.  is positive for even-even 

nuclei, is negative for odd-odd nuclei and 0  for an odd A.  

The best values of the constants, expressed in MeV, are a=15.760;    

b=17.810, c=0.711, d=23.702, 34.   
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The contributions of the various effects is Weizacker’s empirical 

formula are represented schematically in the graph of fig. 4.2 

Merits. (1) The liquid drop model accounts for many of the salient 

features of nuclear matter, such as the observed binding energies of nuclei and 

their stability against  and  disintegration as well as nuclear fission. 

 

Fig. 4.2 

2). The calculation of atomic masses and binding energies can be 

done with good accuracy with the liquid drop-model. 

However, this model fails to explain other properties, in particular the 

magic numbers. It fails to explain the measured spins and magnetic moments of 

nuclei. 

Example. Calculate the atomic number of the most stable nucleus for a given 

mass number A.  

Sol. The most stable nucleus with a given mass number A is that which 

has the maximum value of the B.E. thus we have to compute 

( . )B E

Z




with A constant, equate it to zero. In the formula for B.E., we 

can write 2( 1) 2 .Z Z Z and N Z A Z Then      

2 2
2/3

1/3 3/ 4

( 2 )
. .

cZ d A Z
B E aA bA

A A A


      

1/3 12 4 ( 2 ) 0bE
cZA d A Z A

Z




       

 or, introducing the numerical values of c and d, we have 

   
2/32 0.0157

A
Z

A



. 

For light nuclei; having small A, we can neglect the second term in 

the denominator.  / 2.Z A   This result is confirmed experimentally. 
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4.3  The Shell Model 

 The shell model of the nucleus assumes that the energy structure 

(energy levels of the nucleons) of the nucleus is similar to that of an electron 

shell in an atom. According to this model, the protons and neutrons are grouped 

in shells in the nucleus, similar to extra-nuclear electrons in various shells 

outside the nucleus. The shells are regarded as “filled” when they contain a 

specific number of protons or neutrons of both. The number of nucleons in each 

shell is limited by the Pauli exclusion principle. The shell model is sometimes 

referred to as the independent particle model because it assumes that each 

nucleon moves independently of all the other nucleon of all the other nucleons 

and is acted on by an average nuclear field produced by the action of all the 

other nucleons. 

Evidence for shall model. It is known that a nucleus is stable if it has a certain 

definite number of either protons or neutrons. These number are known as 

magic numbers. The magic numbers are 2, 8, 20,50,82 and 126. Thus nuclei 

containing 2, 8, 20, 50, 82 and 126 nucleons of the same kind form some sort of 

closed nuclear shell structures. The main points in favour of this inference are: 

i. The inert gases with closed electron shells exhibit a high degree of 

chemical stability. Similarly, nuclides whose nuclei contain a magic 

number of nucleons of the same kind exhibit more than average 

stability. 

ii. Isotopes of elements having an isotopic abundance greater than 60% 

belong to the magic number category. 

iii. Tin 50( )Sn has ten stable isotopes, while calcium (20Ca40) has six 

stable isotopes. So elements with Z=50, 20 are more then usually 

stable. 

iv. The three main radioactive series (viz., the uranium series, actinium 

series and thorium series) decay to 82pb208 with Z=82 and N=126. 

Thus lead 82pb208 is the most stable isotope. This again shows that 

the numbers 82 and 126 indicate stability. 

v. It has been found that nuclei having a number of neutrons equal to 

the magic number, cannot capture a neutron because the shells are 

closed and they cannot contain an extra neutron. 

vi. It is found that some isotopes are spontaneous neutron emitters 

when excited above the nucleon binding energy by a preceding  -

decay. These are 8O
17, 36Kr87 and 54Xe137 for which N = 9, 51 and 83 

which can be written as 8 + 1, 50 + 1, and 82 + 1.  If we interpret 

this loosely bound neutron, as a valency netutron, the neutron 

numbers 8, 50, 82 represent greater stability than other neutron 

numbers. 

It is apparent from the above conclusions that nuclear behaviour is often 

determined by the excess or deficiency of nucleons with respect to closed shells 
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of nucleons corresponding to the magic numbers. It was, therefore, suggested 

that nucleons revolve inside the nucleus just as electrons revolve outside in 

specific permitted orbits. The protons and neutrons move in two separate 

systems of orbits round the centre of mass of all the nucleons. The extra-

nuclear electrons revolve in the coulomb field of a relatively distant heavy 

nucleus. But the nucleons move in orbits around a common centre of gravity of 

all the constituents of the nucleus. Each nucleon shell has a specific maximum 

capacity. When the shells are filled to capacity, they give rise to particular 

numbers (the magic numbers) characteristic of unusual stability. 

The shell models able to account for several nuclear phenomena in addition to 

magic numbers. 

(i) It is observed that even-even nuclei are, in general, more stable than 

odd-odd nuclei. This is obvious from the shell model. According to 

pauli’s principle, a single energy sublevel can have a maximum of two 

nucleons only completed sublevels are present which means greater 

stability. On the other hand, an odd-odd nucleus contains incomplete 

sublevels for both kinds of nucleon which means lesser stability. 

(ii) The shell model is able to predict the total angular momenta of nuclei. 

In even-even nuclei, all the protons and neutrons should pair off so as to 

cancel out one another’s spin and orbital angular momenta. Thus even-

even nuclei ought to have zero nuclear angular momenta, as observed. 

In even-odd and odd-even nuclei, the half-integral spin of the single 

“extra” nucleon should be combined with the integral angular 

momentum of the rest of nucleus for a half-integral total angular 

momentum. Odd-odd nuclei each have an extra neutron and an extra 

proton whose half-integral spins should yield integral total angular 

momenta. Both these predictions are experimentally confirmed. 

The collective Model 

 The collective model was proposed by A.Bohr, B.R. Mottleson and 

James Rainwater. The model combines the best features of the liquid drop 

model and the shell model. In this model it is assumed that the particles within 

the nucleus exert a centrifugal pressure on the surface of the nucleus. That 

results in the permanent deformation to non-spherical shape. As a result, the 

surface may undergo periodic oscillations. 

 The particles within the nucleus move in a non-spherical potential. Thus 

the nuclear distortion reacts on the particles and modifies the independent 

particle aspect. Thus the nucleus is considered as a shell structure capable of 

performing collections in shape and size. Thus the model can easily describe 

the drop like properties such as nuclear fission and at the same time it can 

retain the shell model characteristics. It is capable of explaining not only the 

large electric quadrupole moments but it can also predict the fine structure of 

nuclear level spectrum due to the energies associated with the vibrational and 

rotational motion of the core. 
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The total energy is expressed as 

rot vib nW E E E    

Where Erot is the energy due to rotational motion of the core, Evib is the 

energy due to the vibrational coordinates and En is the energy due to the 

nucleonic coordinates. So the wave function is the product of three wave 

functions each containing the respective coordinates. 

 According to the collective model, all even-even nuclei such 
4 16 40 208

2 8 20 82, , ,as He O Ca pb  will have spherical shapes and zero electric 

quadrupole moment, while the even-odd, odd-even or odd-odd nuclei will have 

non-spherical shapes and finite electric quardrupole moment. The nuclear 

energy levels predicted by the model agree closely with the ones given by 

ray  spectra of the nuclei. 

Exercise 

1. Find the energy release, it two 1H
2 nuclei can fuse together to from 2He4 

nucleus. The binding energy per nucleon of H2 and He4 is 1.1 MeV and 

7.0 MeV respectively. 

(Hint. B.E. for 2He4 = 28 MeV ; B.E., for 1H
2 nucleus = 2.2. MeV. 

2 4

1 2{ } { }

2( 2.2) (2 2 28.0) 23.6 )p n p n

E massof H Massof He

M M M M MeV

  

      
 

2. Calculate the binding energy per nucleon in 6C
12. Masses of proton, 

neutron and electron aer 1.007276. 1.0086655 u respectively. The mass 

of 6C
12 atom is 12.000000 

(Hint. Mass of 6 protons +mass of 6 neutrons = (6 x 1.007276+6 x 

1.008665) u=12.095646 u. 

Mass of carbon nucleus = mass of carbon atom – mass of 6 

electrons 

  = (12.000000 – 6 x 0.00055) u= 11.996700 u 

 m  = (12.095646 – 11.996700) u = 0.098946 u 

 B.E. = 0.098946 x 931.3 MeV = 92.148 MeV 

B.E. per nucleon = 92.148/12 = 7.69 MeV) 

Nuclear detectors 

4.4   Introduction 

 Most of the nuclear reactions are accompanied by the emission of 

changed particles like  -particles, protons, electrons and radiations like 

rays  . In order to understand these particles and their interaction with 

atomic nuclei, precise information about their mass, momentum, energy, etc., 

are necessary. We shall describe in this chapter some o f the common 
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techniques employed for the detection of nuclear radiations and for analyzing 

their energies. 

 Several nuclear radiation detectors depend for their operation on the 

ionization that is produced in them by the passage of charged particles. This 

group of detectors includes ionization chambers, proportional counters. G-M 

counters, semiconductor radiation detectors, cloud chambers and spark 

chambers. In other detectors, excitation and sometimes molecular dissociation 

also play important roles. These phenomena, in combination with ionization, 

bring about the luminescence in scintillation detectors and the latent images in 

photographic emulsions. 

Interaction between Energetic Particles and Matter 

 (a) Heavy Charged Particles. A heavy charged particle (like a proton, 

 -particle or fission fragment) has a fairly definite range in a range in a gas 

liquid, or solid. The particle loses energy primarily by the excitation and 

ionization of atoms in its path. The energy loss occurs in a large number of 

small increments. The primary particle has such a large momentum that its 

direction is usually not seriously changed during the slowing process. 

Eventually it loses all its energy and comes to rest. The distance traversed is 

called the range of the particle. 

The energy loss per unit length ( / )dE dx is called the stopping power. 

The rate dE/dx at which a heavy particle of change ze and speed v loses energy 

in an absorber of atomic number Z which contains N atoms per unit volume 

whose average ionization energy is I is given by 

2 2 2
0

2 2 2 2

0 0

22 4
1

4

m vdE z e NZ v v
In In

dx m v l c c

    
        

   
  …(1) 

M0 is electron rest mass 

The range can be calculated by integrating Eq. (1) over the energies of the 

particle 

  

1
0

T

dE
R dE

dx


 

  
 

      …(2) 

(b) Electrons. Electrons interact through coulomb scattering from atomic 

electrons, just like heavy charged particles. There are however, a number of 

important differences: 

1. Electrons travel at relativistic speeds. 

2. Electron will suffer large deflections in collisions with other electrons, 

and therefore will follow erratic paths. The range will therefore be very 

different from the length of the path that the electron follows. 

3. Very energetic electrons (E > 1 MeV) lose an appreciable fraction of 

their energies by producing continuous X-rays (also called Bremsstrablung). 

The cross section for this process increases with increasing E. 
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(C)The absorption of Rays  . The interaction of rays  with matter is 

markedly different from that of charged particles such as or  particles. 

rays  are extremely penetrating so that they are able to pass through 

considerable thicknesses of matter. rays   show the exponential absorption in 

radiation absorbed dI is proportional both to dx and I. hence. 

0 .xdI I dxor I I e     

 Here,  is a constant of proportionality which is a characteristic 

property of the medium, known as linear absorption coefficient. The mass 

absorption coefficient m may be obtained by dividing  by the density of the 

medium. / .m    The above relation gives the intensity (number of quanta 

per unit area per second) of the beam of initial intensity I0, after traversing a 

thickness x of the homogeneous material. At low energies (0.1 MeV to 25 MeV) 

there are three important processes through which  photons are absorbed by 

matter. (Fig. 4.4(c)) 

 

Fig. 4.4(c) 

(i) Photoelectric effect. In this process, the rays  knock out electrons from 

inside the atoms of the absorbing material. This results in the ionization of the 

atoms and the emission of fluorescent radiations. Einstein’s equation for those 

photo-electrons will be 

2 21 1
, .

2 2
k k L Lmv hv W mv hv W etc     

Where hv is the photon energy, ,k Lv v  represent the velocities of the 

photoelectrons arising in the K, L. shells, and , ....k LW W are the binding energies 

of K, L… shells. 

(ii)  Pair Production.  In this process, the photon disappears and is converted 

to an electron positron pair.  This process can take place only when the photon 

energy exceeds 2m0c
2.  The pair production process cannot occur in free space 

and usually takes place in the presence of a nuclear field.  The nucleus recoils 



 137 

in this process conserving momentum.  But the K.E. carried away by the 

nucleus is negligibly small due to its large mass compared with that of the 

electron.  Photon energy, if any, in excess of 2m0c
2 is shared as K.E. by the 

product particles. 

(iii) Compton effect.  It is elastic scattering process in which the photon 

imparts energy to an electron.  When a photon of energy hv strikes the 

perfectly free electron (at rest), the photon with diminished energy hv' is 

scattered at an angle θ with the direction of incident photon and the 

electron recoils at an angle .  The energy absorbed by these Compton 

electrons is only a small fraction of the total energy of the incident 

rays  , unlike in the case of photoelectrons. 

 

Fig. 4.4(iii) 

 At low photon energies, the photoelectric effect is the chief mechanism 

of energy loss.  The importance of the photoelectric effect decreases with 

increasing energy.  In the lighter elements, Compton scattering becomes 

dominant at photon energies of a few tens of keV, whereas in the heavier ones 

this does not happen until photon energies of nearly 1 MeV are reached.  Pair 

production becomes increasingly likely the more the photon energy exceeds the 

threshold of 1.02 MeV.  Fig. 4.4(iii) is a graph of the linear attenuation 

coefficient for photons in lead as a function of photon energy.  The 

contributions to μ of the photoelectric effect, Compton scattering, and pair 

production are shown. 

Example.  The linear attenuation coefficient for 2-MeV gamma rays in water is 

about 5m-1.  (a) Find the relative intensity of a beam of 2MeV gamma rays 

after it has passed through 0.1 m of water.  (b) How far must such a beam travel 

in water before its intensity is reduced to 1 percent of its original value? 

 Sol.  We have, I = I0e
- μx. 

i. Here, μ = 5m-1; x = 0.1, m; I/I0 = ? 
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µx 0.5

0

0.61.
I

e e
I

     

ii. Here I0/I = 100, μ = 5m-1; x = ? 

0log ( / ) log 100
0.92 .

5
e eI I

x m


    

4.5  Ionization Chamber 

 The principle employed here is that charged sub-atomic particles can 

ionize gases. The number of ion-pairs produced gives us information not only 

on the nature of the incident particles, but even on their energy. The ionization 

chamber consists of a hollow metallic cylinder C, closed at both ends, with a 

window W at end for the entry of the ionizing particles or radiation (Fig. 4.5). 

A metal rod r, well insulated from the cylinder, is mounted coaxially within the 

cylinder. R is connected to a quadrant electrometer E. A p.d of several hundred 

volts is maintained between C and R. An earthed guard ring G prevents leakage 

of charge from the cylinder to the rod. The chamber contains some gas like 

sulphur dioxide or methyl bromide. When a charged particle enters the chamber, 

it produces a large number of ion pairs in the enclosed gas, along its path. 

Positive ions move towards R and negative towards C. 

 

Fig. 4.5 

The quadrant electrometer E measures the rate of deposition of positive 

charges on R. The ionisation currents produced are quite small 12 1510 10    

amperes. Special electrometers and D.C. amplifying devices have to be 

employed to measure such small currents. 

If individual particles are to be counted, then the pulses of current 

produced are fed to a pulse amplifier, which is joined to the ionization chamber 

by a coupling capacitor (fig. 4.5(i)) Ionisation chambers have been used to 

study  -particles,  -particles, protons, electrons and nuclei of lighter 

elements. Ionisation chambers were extensively used in the early studies of 

cosmic ray phenomena. Ionisation chambers can also be used for measurements 
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of X-rays and  -rays. For neutron detection, the chambers walls are lined 

inside with a boron compound in the form of a paste. 

 

Fig. 4.5(i) 

An ionization chamber is much less sensitive to  -particles (in 

comparison to  particles) because  -particles produce fewer pairs of ions in 

their passage through the chamber. 

For detecting rays  , an ionization chamber of thick wall made of 

high atomic –number material (Pt, Bi) is employed. The rays  impinging of 

the walls of the chamber eject high –speed electrons which produce ionization 

in the gas. 

Example 1.  particles of energy 5MeV pass through an ionization chamber 

at the rate of 10 per second. Assuming all the energy is used in producing ion 

pairs, calculate the current produced. (35 eV is required for producing an ion 

pair and e=1.6 x 10-19C). 

Sol. Energy of  particles = 5 x 106 eV. 

Energy required for producing one ion pair = 35 eV 

No. of ion pairs produced by one particle 

   
6

55 10
1.429 10

35


    

Since 10 particles enter the chamber in one second, 

No. of ion pairs produced per second 

   = 1.429 x 105  x 10 = 1.429 x 106 

Charge on each ion  = 1.6 x 10-19 C 

 Current = (1.429 x 106) x (1.6 x 10-19)C/s 

   = 2.287 x 10-13 A. 

Example 2. An ionization chamber is connected to an electrometer of 

capacitance 0.5 pF and voltage sensitivity of 4 divisions per volt. A beam of 
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 particles causes a deflection of 0.8 divisions. Calculate the number of ion 

pairs required and the energy of the  -particles. Given that 1 ion pair requires 

energy of 35 eV and e=1.6 x 10-19 coulomb. 

Sol. Voltage sensitivity of electrometer = 4 divisions / volt 

 Voltage required to produce a deflection of 0.8. divisions = 

0.8
0.2

4
volt volt   

12 12

13

(0.5 10 ) 0.2(sin 0.5 0.5 10 )

                           10

Q CV ceC pF F

C

 



      


 

 No. of ion pairs required = 
13

5

19

10
6.25 10

1.6 10




 


 

1 ion pair requires 35 eV. 

 Total energy required = 35 x (6.25 x 105)eV 

    = 21.88 MeV. 

4.6  Geiger-Muller Counter 

 It consists of a metal chamber C containing air or some other gas 

at a pressure of about 10 cm of Hg. A fine tungsten wire (W) is stretched along 

the axis of the tube and is insulated from it by ebonite pulgs EE (Fig. 4.6). The 

wire is connected to the positive terminal of a high tension battery (about 1000 

to 3000 volts) through a high resistance R (about 100 megohms) and the 

negative terminal is connected to the chamber C. The D.C. Voltage is kept 

slightly less then that which will cause a discharge between the electrodes. 

 

Fig. 4.6 

When an ionizing particle (say an  particle) enters the counter, 

ionization takes place and a few ions are produced. If the applied P.D. is strong 

enough, these ions are multiplied by further collisions. An avalanche of 

electrons moves towards the central wire and this is equivalent to a small 

current impulse which flows through the resistance R. The critical potential is 
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lowered momentarily, casing a sudden discharge through the resistance R. The 

p.d. thus developed across R is amplified by vacuum tube circuits and is made 

to operate a mechanical counter. In this way single particles can be registered. 

The sudden pulse of discharge sweeps away the ions from the chamber and the 

counter is ready to register the arrival of the next particle. 

The voltage characteristics of a Geiger-Muller counter are shown in Fig. 

4.6(i). This is a plot of the counting rate against the counter potential with a 

radioactive source placed near the counter. It is seen that there is a threshold 

below which the tube does not work. This can be several hundred volts. As the 

applied potential is increased, the counting begins and rises rapidly to a flat 

portion of the curve called the plateau. The is the region of the counter 

operation where the counting rate is, more or less, independent of small 

changes in p.d across the tube. Beyond the plateau the applied electric field is 

so high that a continuous discharge takes place in the tube as shown in fig. 4.6(i) 

and the count rate increases very rapidly. It does not require any ionizing event 

for to happen so that the tube must not be used in this region. 

 

Fig. 4.6(i) 

The efficiency of the counter is defined as the ratio of the observed 

counts/sec. to the number of ionizing particles entering the counter per second. 

Counting efficiency is defined as the ability of its counting, if at least one ion 

pair is produced in it. 

 

Fig. 4.6(ii) 
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Counting efficiency 1 slpe  where s= specific ionization at one 

atmosphere; p=pressure in atmospheres and l=path length of the ionization 

particle in the counter. The efficiency  of a GM counter, as a pressure for air 

and hydrogen, is illustrated in Fig. 4.6(ii). 

The counter set-up is portage (with the transistorized electronics) and 

serves best for mineral prospecting, apart from its several other applications in 

cosmic ray work. A virtue of the Geiger counter in that the pulse height is 

constant over a range of applied voltages, as in Fig 4.6(i). so the power supply 

does not have to be precisely regulated as it does for a proportional counter. 

Also, the pulses are several volts in height which amplifies unnecessary. 

Disadvantages of the Geiger counter are : (i) it is insensitive for a period of 

200 to 400 s following each pulse, which prevents its use at very high 

counting rates. (ii) it cannot provide information about the particle or photon 

causing a pulse. 

Example. A self-quenched G-M counter operates at 1000 volts and has a wire 

diameter of 0.2. mm. the radius of the cathode is 2 cm and the tube has a 

guaranteed lifetime of 109 counts. What is the maximum radial field and how 

long will the counter last if it is used on an average for 30 hours per week at 

3000 counts per minute? Consider 50 weeks to a year. 

Sol. The radial field at the central wire is 

max 2

10 4

6

1000

log ( / ) 2 10
0.0001 2.3026log

10

1.89 10 /

e

V
E

r b a

volts metre





 
 

  
 

 

 

If the lifetime of the tube is N years. The total number of counts recorded will 

be 

 

8

8 9

50 30 60 3000 2.7 10

2.7 10 10

3.7

N N

N

or N years

     

   



 

4.7  The Wilson Cloud Chamber 

 Principle. If there is a sudden expansion of saturated vapour in a 

chamber, supercooling of the vapour occurs. Tiny droplets will be formed by 

condensation over the dust particles present in the chamber. If, therefore, we 

have completely dust-free and saturated air, and if it is suddenly allowed to 

expand and thereby cool, condensation will not take place. But if ions are 

available in the chamber during the expansion, they serve as nuclei for 

condensation. Hence, if an ionising particle passes thought the chamber during 

an expansion. Ions are produced along its path and droplets condense on these 

ions. Hence the “track” of the particle becomes visible. 
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Fig. 4.7 

Description. The apparatus consists of a large cylindrical chamber A, with 

walls and ceiling made of glass (fig. 4.7).  It contains dust-free air saturated 

with water vapour. P is a piston working inside the chamber.  When the piston 

moves down rapidly, adiabatic expansion of the air inside the chamber takes 

place. The piston is connected to a large evacuated vessel F through a valve V. 

when the valve is opened, the air under the piston rushes into the evacuated 

vessel F, thereby causing the piston to drop suddenly. The wooden blocks WW 

reduce the air space inside the piston. Water at the bottom of the apparatus 

ensures saturation in the chamber. The expansion ration can be adjusted by 

altering the height of the piston. 

 As soon as the gas in the expansion chamber is subjected to sudden 

expansion, the ionizing particles are shot into the chamber through a side 

window. A large number extremely fine droplets are formed on all the ions 

produced by the ionizing particles. These droplets form a track of the moving 

ionizing particles. At this stage, the expansion chamber is profusely illuminated 

by a powerful beam of light L. Two cameras CC are used to photograph the 

tracks. The process of expansion, shooting of the ionizing particles into the 

expansion, chamber, illuminating the chamber and clicking the camera must all 

be carried out in rapid succession in order to get satisfactory results. 

 The ionizing agent can be easily identified from its path in the cloud 

chamber.  -particles, being comparatively massive, go straight and their paths 

are thick, straight and sharply defined.  -particles being lighter, are easily 

deflected by collision and their paths are thin and crooked. The cloud chamber 

has led to the discovery of many elementary particles like positron, meson, etc. 
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Advantages (1). Cloud chambers can be used to study the variation of specific 

ionization along the track of a charged particle and the range of such particles. 

(2) The sign of the electric change and the momentum p of the particle can 

be determined if the chamber is placed in a strong magnetic field. Let a 

particle of mass m and charge q move with a velocity v perpendicular 

to the direction of the magnetic field of flux density B. The particle 

will be forced by the field to follow a circular path of radius R. The 

magnetic force Bqv is exactly balanced by the centrifugal force 
2 /mv R . 

Thus 2 / .Bqv Mv R or mv p BRq    

The K.E. of the particle can be calculated, if the rest mass energy 2

0m c of 

the particle is known, by the relation. 

 2 2 2 2

0 0. .K E Ek p c m c m c     
 

Limitations. 

(i) One is not always sure of the sense of track photographed. 

(ii) The range of the particle may exceed the dimensions of the chamber 

so that the whole track is not photographed. 

(iii) There remains a certain amount of uncertainty about the nature of 

the nuclei constituting the arms of the forked tracks. 

4.7.1  Diffusion Cloud Chamber  

 The disadvantage of the cloud chamber lies in the fact that it needs a 

definite time to recover after an expansion.  

 

Fig. 4.7.1 

Hence it is not possible to have a continuous record of events taking 

place in the chamber. This difficulty was removed by the introduction of the 

diffusion cloud chamber. 

 The outline of the apparatus is shown in Fig. 4.7.1. 
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 It consists of a chamber containing a heavy gas which is kept warm at 

the top and cold at the bottom. Thermal and top of the chamber by external 

heating or cooling. The liquid (methyl alcohol) vaporises in the warm region, 

where the vapour pressure is high. The vapour a region near the base, the 

supersaturation factor is high and condensation takes place around the available 

ions. The chamber remains continuously sensitive to ionizing particles until the 

supply of volatile liquid is exhausted. The system is illuminated by a strong 

source of light and the track of the particle is photographed by camera. 

4.8  Particle Accelerators 

Introduction 

 A particle accelerator is a device for increasing the K.E. of electrically 

charged particles.  Methods of acceleration can be classed into three groups:  

direct field, inductive, and resonance.  According to the shape of the path of the 

particles, accelerators are classified as linear and cyclic.  In linear accelerators, 

the paths of particles are approximately straight lines; in cyclic accelerators, 

they are circles or spirals.  (i) In a direct field linear accelerator, a particle 

passes only once through an electric field with a high p.d. set up by electrostatic 

generators. (ii) The only accelerator of the inductive type is the betatron.  (iii) 

In magnetic resonance accelerators, the particle being accelerated repeatedly 

passes through an alternating electric field along a closed path, its energy being 

increased each time.  A strong magnetic field is used to control motion of 

particles and to return them periodically to the region of the accelerating 

electric field.  The particles pass definite points of the alternating electric field 

approximately when the field is in the same phase (“in resonance”).  The 

simplest resonance accelerator is the cyclotron. 

4.9  The Cyclotron 

 Construction. The cyclotron (Fig. 4.9) consists of two hollow 

semicircular metal boxes, D1, D2 called “dees”. A source of ions is located near 

the mid-point of the gap between the “dees”. The “dees’’ are insulated from 

each other and are enclosed in another vacuum chamber. The “dees” are 

connected to a powerful radio-frequency oscillator. The whole apparatus is 

placed between the pole-pieces of a strong electromagnet. The magnetic field is 

perpendicular to the plane of the “dees”.  

 

Fig. 4.9 
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Theory. Suppose a positive ion leaves the ion source at the centre of the 

chamber at the instant when the ‘dees’ D1 and D2 are at the maximum negative 

and positive A.C. potentials respectively. The positive ion will be accelerated 

towards the negative dee D1 before entering it. The ions enter the space inside 

the dee with a velocity v given by 21
,

2
Ve mv where V is the applied voltage 

and e and m are the charge and mass of the ion respectively. When the ion is 

inside the “dee’’ it is not accelerated since this space is fields free.  Inside the 

dee, under the action of the applied magnetic field, the ions travel in a circular 

path of radius r given by 

 2 /Bev mv r       …(1) 

Where B=the flux density of the magnetic field. 

(or)    /r mv Be    …(2) 

The angular velocity of the ion in its circular path  

v Be

r m
     …(3) 

The time taken by the ion to travel the semicircular 

path 
m

t
Be

 


     …(4) 

 Suppose the strength of the field (B) or the frequency of the oscillator (f) 

are so adjusted that by the time the ion has described a semicircular path and 

just enters the space between D1 and D2, D2 has become negative with respect 

to D1. The ion is then accelerated towards D2 and enters the space inside it with 

a greater velocity. Since the ion is now moving with greater velocity, it will 

describe a semicircle of grater radius in the second ‘dee’. But from the equation 

/t m Be it is clear that the time taken by the ion to describe a semicircle is 

independent of both the radius of the path (r) and the velocity of the ion (v).  

Hence the ion describes all semicircles, whatever be their radii, in exactly the 

same time. This process continues until the ion reaches the periphery of the 

dees. The ion thus spirals round in circles of increasing radius and acquires 

high energy. The ion will finally come out of the dees in the direction indicated, 

through the window. 

Energy of an ion. Let rmax be the radius of the outermost orbit described by the 

ion and vmax the maximum velocity gained by the ion in its final orbit. Then the 

equation for the motion of the ion in a magnetic field is  

2

max
max

max

mv
Bev

r
  

(or)  
max max

e
v B r

m
      …(5) 

 The energy of the ion   
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2 2 2

2 max
max

1

2 2

B r e
E mv

m

 
   

 
  …(6) 

The condition for acceleration of the ion in the inter-dee gap is that 

The time taken by the ion to travel the semicircular path = Half the time period 

of oscillation of the applied high frequency voltage  

i.e.,  
2

2

m T m
orT

Be Be

 
   

 Frequency of the oscillator 

   
2

Be
f

m
     …(7) 

Hence the energy of the ion is given by 

   2 2 2

max2E r f m    …(8) 

The particles are ejected out of the cyclotron not continuously but as pulsed 

streams. 

Limitations of the Cyclotron. The energies to which particles can be 

accelerated in a cyclotron are limited by the relativistic increase of mass with 

velocity. The mass of a particle, when moving with a velocity v is given by 

0

2
21 /

m
m

v c



where 0m is the rest mass and c the velocity of light. 

According to equation (4), 

The time taken by the ion to travel the semicircular path 
2

m T
t

Be


    

 Frequency of the ion 
2 2

0

1 1 /
}

2 2

Be Be v c
n or n

T m m 


     

 Therefore, the frequency of rotation of the ion decreases with increase 

in velocity. The ions take longer time to describe their semicircular paths than 

the fixed period of the oscillating electric field. Thus, the ions lag behind the 

applied potential and finally they are not accelerated further. Due to this reason, 

the energy of the ions produced by the cyclotron is limited can be overcome in 

the following two ways. 

Now, the frequency of the ion 
2 2

0

1 /

2

v c
Be

m


  

(i) Field variation. The frequency of the ion can be kept constant by 

increasing the magnetic field (B) at such a rate that the product 
2 21 /B v c remains constant. For this purpose, the value of the 

magnetic field B should increase, as velocity of the ion increases, so 
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that the product 2 21 /B v c remains unchanged. This type of machine 

in which the frequency of electric field is kept constant and magnetic 

field is varied is called synchrotron. 

(ii) Frequency modulation. In another from of apparatus, the frequency of 

the applied A.C. is varied so that it is always equal to the frequency of 

rotation of the ion. This type of machine in which magnetic field kept 

constant and the frequency of the applied electric field is varied is called 

a frequency modulated cyclotron or synchro-cyclotron. 

Example 1. A crclotron in which the flux density is 1.4 weber/m2 is employed 

to accelerate protons. How rapidly should the electric field between the dees be 

reversed? Mass of the proton =1.67x10-27 kg and charge=1.6x10-19C. 

 Sol. Here,  2 27 191.4 / ; 1.67 10 ; 1.6 10B weber m m kg e C       

  
27

8

19

(1.67 10 )
2.342 10 .

1.4 (1.6 10 )

m
t s

Be

  





   

 
 

Example 2. Deuterons in a cyclotron describe a circle of radius 0.32 m just 

before emerging from the dees. The frequency of the applied e.m.f. is 10 MHz. 

Find the flux density of the magnetic field and the velocity of deuterons 

emerging out of the cyclotron. Mass of deuterium = 3.32 x 10-27 kg; e =1.6 x 

10-19 C. 

Sol. We have 
2

2

Be mf
f B

m e




    

Here,  27 7 193.32 10 ; 10 10 ; 1.6 10m kg f MHz Hz e C        

  
27 7

2

19

2 (3.32 10 )10
1.303 /

1.6 10
B weber m

 




 


 

We have  
2

max

max

  
Bermv

Bev or v
r m

   

Here, 
2 19 27

max1.303 / ; 1.6 10  ; 0.32   3.32 10B weber m e C r m and m kg        

  

19

max

27

7 1

1.303(1.6 10 )0.32

3.32 10

2.009 10

Ber
v

m

ms








 



 

 

4.9.1  The Synchrocyclotron 

 Synchrocyclotron is a modified from of the Lawrence cyclotron. This 

consists of only one dee placed in a vacuum chamber between the poles of an 

electromagnet (Fig. 4.9) Instead of the second dee, opposite the opening of the 

dee, there is metal sheet connected to the earth. The alternating P.D is applied 

between the dee and the metal plate (Fig. 4.9.1). The alternating potential 
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applied to the ‘dee’ is made to rise and fall periodically, instead of remaining 

constant. The frequency is changed at such a rate that as the ion lags a little due 

to the increase in mass caused by increase in velocity, the electric field 

frequency also automatically lags in variation. Hence the particle always enters 

the dee at the correct moment, when it can experience maximum acceleration. 

An advantage of using one dee is that is leaves sufficient space in the vacuum 

chamber for the ion source and the target. The pole-pieces of the magnet are of 

suitable shape such that the field decreases outwards from the centre. This 

ensures good focusing of the accelerated ions. 

 

Fig. 4.9.1 

4.10  The Betatron 

 Betatron is a device to accelerate electrons (beta particles) to very high 

energies. It was constructed in 1941 by D.W. Kerst. The action of this device 

depends on the principle of a transformer. 

Construction.  

It consists of a doughnut shaped vacuum chamber placed between the 

pole-pieces of an electromagnet. The electromagnet is energized by an 

alternating current. The electromagnet is energized by an alternating current. 

The magnet produces a strong magnetic field in the doughnut. The electrons are 

produced by the electron gun (FG) and are allowed to move in a circular orbit 

of constant radius in the vacuum chamber (Fig. 4.10(a)). The magnetic field 

varies very slowly compared with the frequency of revolution of the electrons 

in the equilibrium orbit. 

 

    Fig. 4.10    (a)                (b) 
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 The varying magnetic field, parallel to the axis of the vacuum tube, 

produces two effects on the electrons viz., (i) The changing flux due to the 

electromagnet produces the induced e.m.f. which is responsible for the 

acceleration of the electrons. (ii) The field of the  magnet serves at the same 

time to bend the electrons in a circular path in the chamber and confine them to 

the region of the changing flux. 

Theory:  

Consider the electron moving in an orbit of radius r(Fig. 4.10(b)) Let be 

 the flux linked with the orbit. The flux increases at the rate /d dt  and the 

induced e.m.f in the orbit is given by  

  
d

E
dt


       …(1) 

The work done on an electron of charge e in one revolution 
d

Ee e
dt


    

        …(2) 

Let f be the tangential electric force acting on the orbiting electron. 

For one revolution, the path length is 2 r . Then 

The work done on the electron in one revolution 2F r   

   2
d

F r e
dt


    

(or)   
2

e d
F

r dt




      …(3) 

When the velocity of the electron increases due to the above force, it 

will try to move into an orbit of larger radius. Because of the presence of the 

magnetic flux perpendicular to the plane of the electron orbit, the electron will 

experience a radial force inward given by 

  2 /Bev mv r      …(4) 

Here B is the value of the magnetic field intensity at the electron orbit 

of constant radius r, v=velocity of the electron and m=mass of the electron from 

(4). 

The momentum of the electron = mv=Ber   …(5) 

From Newton’s second law of motion. 

  ( )
d dB

F mv er
dt dt

      …(6) 

To maintain the constant radius of the values of F given in equations (3) 

and (6) must be numerically equal. 

  2  2
2

e d dB
er or d r dB

r dt dt


 


   
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Integrating,  2

0 0

2
B

d r dB



    

(or)    22 r B     …(7) 

If the uniform magnetic field B acts over an area 
2r , the magnetic 

flux 2r B  . Therefore the flux through the orbit is twice the flux enclosed by 

the orbit, if the magnetic field were to be uniform over the area. Equation (7) 

represents the condition under which a betatron works and is called betatron 

condition. This distribution of magnetic flux is obtained by the special pole-

pieces where the magnetic field is greater at the centre of the orbit than at its 

circumference.  

Fig. 4.10(c) shows the variation of magnetic field with time. Electrons 

are injected into the chamber when magnetic field just begins to rise. The 

electrons are then accelerated by the  

 

Fig. 4.10(c) 

increasing magnetic flux linked with the electron orbit. During the time the 

magnetic field reaches its peak value, the electrons make several thousand 

revolutions and get accelerated. If they are allowed to revolve any more, the 

decreasing magnetic field would retard the electrons. Hence, the electrons are 

extracted at this stage by using an auxiliary magnetic field to deflect them from 

their normal course. The high energy electron beam can be made to strike the 

target, generating X-rays. Alternately the electrons can be made to emerge out 

of the apparatus and used for transmutation work. 

Example. In a certain betatron the maximum magnetic field at orbit was 0.4 

Wb/m2, operating at 50 Hz with a stable orbit diameter of 1.524 m. Calculate 

the average energy gained per revolution and the final energy of the electrons. 

Sol. In the betatron, the electron velocities are nearly c. 

 the total distance traveled in the acceleration time (i.e. one quarter cycle) 

4 2

T
c c




     
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Total number of revolutions   
/ 2

2 4

c c
N

r r

 

 
    

Here, frequency 
8 150 . 2 2 50 100 ; 0.762 , 3 10f Hz f r m and c ms               

   
8

53 10
3.132 10

4(100 )0.762
N




    

Let E be the final energy acquired by the electrons. Since the electrons must be 

treated relative-istically 

 Momentum of the electrons =mv = E/c 

But 2 /mv r Bev or mv Ber or E Berc    

 
19 8

13

0.4(1.6 10 )(0.762)(3 10 )

1.6 10
E MeV





 



 

  =91.45 MeV. 

 Average energy gained per revolution = 
6

5

91.45 10
291.9 .

3.132 10
eV





 

4.11  Bonding in Crystals 

 Most solids are crystalline, with the atoms, ions or molecules of which 

they are composed falling into regular, repeated three-dimensional patterns. 

The presence of long-range order is thus the defining property of a crystal. 

Crystals may be classified in terms of the dominant type of chemical binding 

force keeping the atoms together. All these bonds involve electrostatic forces, 

with the chief differences among them lying in the ways in which the outer 

electrons of the structural elements are distributed. The distinct types of bonds 

that provide the cohesive forces in crystals can be classified as follows: (i) the 

ionic bond (ii) the covalent bond (iii) the metallic bond (iv) the van der Waals 

bond and (v) the hydrogen bond. We briefly discuss the different types of 

bonds in crystals. 

4.12  lonic Bond 

 Ionic bonds are formed when atoms that have low ionization energies, 

and hence lose electrons readily, interact with other atoms that tends to acquire 

excess electrons. The former atoms give up electrons to the latter.  

Thus the atoms become positive and negative ions respectively. These 

ions come together in an equilibrium configuration in which the attractive 

forces between positive and negative ions predominate over the repulsive 

forces between similar ions. 
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Fig. 4.12(a)    Fig. 4.12(b) 

 Consider the case if sodium chloride which is a typical example of an 

ionic crystal. Here, a single valence electron is transferred from the sodium 

atom to the chlorine atom. The Na+ and Cl- ions so formed are arranged in a 

face-centered cubic structure (fig. 4.12(a)) A different arrangement is found in 

cesium chloride crystals. The body-centered cubic structure of a CsCl crystal is 

shown in Fig. 4.12 (b) 

Expression for the cohesive energy of an ionic crystal 

 The cohesive energy of an ionic crystal is the energy that would be 

liberated by the formation of the crystal from individual neutral atoms. The 

principal contribution to the cohesive energy of an ionic crystal is the 

electrostatic potential energy U coulomb of the ions. Let us consider an Na+ ion in 

NaCl. Its nearest neighbours are six Cl- ions, each one the distance r away 

 

Sodium chloride crystal structure 

 The potential energy of the Na+ ion due to the 6Cl- ions 
2

1

0

6

4

e
U

r
   

The next nearest neighbours are 12 Na+ ions, each one the distance 2 r away. 

 The potential energy of the Na+ ion due to the 12 Na+ ions  

2

2

0

12

4 2

e
U

r
   
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Then there are 8Cl- ions at 3r distance, 6 Na+ ions at 2r distance and so on. 

When the summation is continued over all the + and – ions a crystal of infinite 

size, the result is 

2 2 2 2

0 00 0

6 12 8 6
...

4 4 24 2 4 3
conlomb

e e e e
U

r rr r  
        

 
2

0

6 12 8 6
...

4 21 3 4

e

r

 
      

 
 

 
2

0

1.748
4

e

r
   

or in general 
2

04
conlomb

e
U

r



     …(1) 

This result holds for the potential energy of a Cl- ion also.  is called 

the modeling constant of the crystal. It has the same value for all crystals of the 

same structure. For simple crystal structures  lies between 1.6 and 1.8 

Two ions cannot continuously approach each other under coulomb 

attraction on account of the exclusion principle. When they are at a certain 

small distance apart, they begin to repel each other with a force which increases 

rapidly with decreasing internuclear distance r. The potential energy 

contribution of the short-range repulsive forces can be expressed approximately 

in the form. 

 repulsive n

B
U

r
      … (2) 

Where B is a constant and n is a number (n=9) 

Therefore, the total potential energy U of each ion due to its interactions with 

all the other ions is 

 
2

04
conlomb repulsive n

e B
U U U

r r




        …(3) 

We must now evaluate the constant B. At the equilibrium separation r0 of the 

ions, U is a minimum. So ( 0( / ) 0  rdU dr when r   

0

2

2 1

0 0 0

0
4 n

r r

dU e nB

dr r r



 



 
   

 
 

(or) 
2

1

0

04

ne
B r

n




      ….(4) 

The total potential energy at the equilibrium separation is 
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2 12

0

0 0 0 04 4

n

n

e re
U

r nr



 



    

2

0 0

1
(1 )

4

e
U

r n




        …(5) 

This is the magnitude of the energy needed to separate an ionic crystal 

into individual ions (not into atoms) 

 In  an NaCl crystal, the equilibrium distance r0, between ions is 
10 9 2 2

02.81 10 , 1.784 9,1/ 4 9 10X m and n X Nm C      

The potential energy of an ion of either sign is 

 
2

0 0

1
(1 )

4

e
U

r n




    

 

9 2 2 19 2

10

18

(9 10 )(1.748)(1.60 10 ) 1
(1 )

2.81 10 9

1.27 10 7.96

X Nm C X C

X m

X J eV

 





  

  

 

Because we may not count each ion more than once, only half this 

potential energy, or -3.98 eV, represents the contribution per ion to the 

cohesive energy of the crystal. 

 Some energy is needed to transfer and electron from a Na atom to a Cl 

atom to from a Na+-Cl- ion pair. This electron transfer energy is the difference 

between the +5.14 eV ionization energy of Na and the -3.61 eV electron 

affinity of Cl, or +1.53 eV. Each atom thus contributes +0.77 eV to the 

cohesive energy. 

 the total cohesive every per atom in the NaCl crystal is  

( 3.98 0.77) / 3.21 / .cohesiveE eV atom eV atom      

Properties : (i) Most ionic solids are hard, brittle and have high melting points. 

(ii) They are soluble in polar liquids like water. 

(iii) Their electrical conductivity is much smaller then that of metals at 

room temperature. But is contrast to metals, the conductivity of 

ionic crystals increases with increasing temperature. At elevated 

temperatures, the ions themselves become mobile and ionic 

conductivity results. 

(iv) Ionic solids crystallize in close- packed structures, of which the 

NaCl CsCI structures are the commonest. 

4.13  Covalent Bond 

In the covalent bond, atoms are held together by the sharing of electrons. 

Each atom participating in a covalent bond contributes an electron to the bond. 

These electrons are shared by both atoms rather than being the virtually 
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exclusive property of one of them as in an ionic bond. Diamond is an example 

of a crystal whose atoms are linked by covalent bonds. Fig 4.13(a) shows the 

structure of a diamond crystal. The tetrahedral arrangements is a consequence 

of the ability of each carbon atom to from covalent bonds with four other atoms. 

The binding of molecular hydrogen (H2) is a simple example of 

covalent bond. In the H2 molecule, two electrons are shared by the two atoms 

(Fig. 4.13(b)). As these electrons circulate, they spend more time between the 

atoms (in fact between the protons) than elsewhere and this produces an 

attractive force. Thus covalent crystals are composed of neutral atoms having 

slightly overlapping electron clouds. Diamond, germanium, silicon, and silicon 

carbide, (SiC) are examples of covalent crystals. In SiC each atom is 

surrounded by four atoms of the other kind in the same tetrahedral structure as 

that of diamond. 

 

Fig. 4.13(a) 

 

Fig. 4.13(b) 

Characteristics of Covalent Crystals: 

(1) Covalent bond is a strong bond. Cohesive energies of 6 to 12 

eV/atom are typical of covalent crystals, which is more then the 

usual cohesive energies in ionic crystals. All covalent crystals are 

hard, have high melting points, and are insoluble in all ordinary 

liquids. 
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Covalent Bond Strongest Bond Formed by Sharing Electron 

2) Covalent bonds are strongly directional The other important 

characteristic property of the covalent bond is its saturability. 

Saturability means that each atoms can form covalent bonds 

only with a limited number of itsneghbours. 

3) The conductivity of covalent crystals varies over a wide 

range. Some crystals are insulators (diamond) and some are 

semiconductors (Ge). The conductivity increase with the 

increase of temperature. 

4) The optical properties of the covalent crystals are 

characterized by high refractive index and high dielectric 

constant. Covalent crystals are transparent to long-

wavelength radiation but opaque to shorter wavelengths. 

4.14  Metallic Bond 

 In metallic crystals, the metallic bond arises when all of the atoms share 

all of the valence electrons. The valence electrons of the atoms comprising a 

metal are common to the entire aggregate, so that a kind of “gas” of free 

electrons pervades it. The crystal is held together by the electrostatic attraction 

between the negative electron gas and the positive metal ions. The best 

example for a metallic crystal is sodium. 

The cohesion (i.e., the ability to remain a solid) of the metallic crystal 

results from a combination of forces: 
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Fig. 4.14 

i. The attraction of the electron cloud for the ion cores, 

ii. The mutual repulsion of the electrons and 

iii. The mutual repulsion of the cores. 

Fig. 4.14 Shows a sketch of a reasonable form for the potential (free) energy 

contribution, as a function of nuclear spacing, from each of these charge 

interactions. 

The following are the characteristics of metal crystals. 

1. The presence of free electrons accounts for the high electrical and 

thermal conductivities of metals. The high electrical conductivity of 

metals is in turn responsible for their high optical reflection and 

absorption coefficients. 

2. the other characteristic properties of metals are their ductility and 

metallic lustre. Since the metallic bonds are not localized between 

adjacent atoms, the atoms of a metal can be rearranged in position 

without rupturing the crystal. This explains ductility of metals. When 

light shines on a metal, the free electrons oscillate under the 

electromagnetic field of the incident light and become sources of light. 

Thus gives the metal its surface lustre. 

3.  Metallic bonds are weaker than ionic and covalent bonds. 

4.15  Molecular Bond  

 Neutral atoms with closed electron shells are bound together weakly by 

the Van der Waals forces. The van derWaals’ attraction was first explained for 

electrically neutral gas molecules by Debye. He assumed that negihbouring 

molecules induced dipoles in each other because of their own changing electric 

fields. This interaction produces an attractive force that is inversely 

proportional to the seventh power of the separation. The molecules are located 

at the crystal lattice points and the bonds between them are developed by Van 

der Waals’ forces. Solid argon and solid methane (CH4) are examples of 

molecular crystals. 
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 Properties: Van der Waals forces are much weaker than those found in 

ionic and covalent bonds. As a result, molecular crystals generally have low 

melting and boiling points and little mechanical strength. Molecular crystals 

have low cohesive energies. Molecular crystals are good insulators due to non-

availability of free electrons. 

4.16  Hydrogen Bond 

 Hydrogen bond is formed under certain conditions when a single 

hydrogen atom appears to be bonded to two distinct electronegative atoms. This 

configuration is represented as x-H…Y where X is called ‘donor’ while Y is 

called acceptor’. The weaker of the two bonds while the other dotted line) is the 

hydrogen bond while the other (shown by a full line) is a strong covalent bond. 

H2O (ice), NH3 and HF are examples of hydrogen-bonded crystals. These 

bonds are stronger than van der Waals bonds but weaker than ionic or covalent 

bonds. 

 

 

Calculation of Repulsive exponent n 

 Born determined the repulsive exponent (n) from measurements of the 

compressibility of the crystal as follows: 

 The compressibility C (i.e. reciprocal of bulk modulus K) is defined as 

  
1 dP

K V
C dV

 
    

 
   ….(1) 

Where V is volume, P is pressure 

From the first law of thermodynamics 

  dQ dU PdV   

At absolute zero there is no absorption of heat energy by the ions 

   0dQ   
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change in internal energy, dU PdV  

   
dU

P
dV

   

(or)   
2

2

d U dP

dV dV
       …(2) 

   
2

2

1 d U
V

C dV
      …(3) 

Also   . . ., .
dU dU dr d dr d

i e
dV dr dV dV dV dr

    …(4) 

   and   
2

2
.

d U d dU d dU dr

dV dV dV dV dr dV

   
    

   
  

    
2

2
. .

dU d r dr d dU

dr dV dV dV dr

 
   

 
 

    
2

2
. .

dU d r dr dr d dU

dr dV dV dV dr dr

   
    

   
 

    

22 2

2 2
. .

dU d r dr d U

dr dV dV dr

 
  

 
  …(5) 

For NaCl crystal the volume of unit cell is 

  3 3(2 ) 8r r  

 The unit cell has 4 sodium ions and 4 chloride ions. The volume 8r3 

corresponds to 8 ions. So each ion corresponds to the volume r3. If the crystal 

contains N-Na and N –Cl atoms, then V=2Nr3 

2

2

1
6

6

dV dr
N r or

dr dV N r
    

 
2

2 2 2 2 5

1 1 1
.

6 6 18

d r d dr dr d dr d
X

dV dV dV dV dV dV N r dr Nr N r

    
        

     
 

Substituting these values in Eq. (5) 

  
2 2

2 2 5 2 4 2

1 1

18 36

d U dU d U

dV N r dr N r dr
      …(6) 

At 0r r , U is minimum and dU / dr=0 

 

0 0

2 2

2 2 4 2

0

1

36
r r r r

d U d U

dV N r dr
 

   
   

   
    …(7) 
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Substituting the above value in Eq. (3) 

 

0 0

2 2
3

02 2 4 2

0

1 1
2

36
r r r r

d U d U
V Nr X

C dV N r dr
 

   
    
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0

2

2

0

1

18
r r

d U

N r dr


 
  

 
    …(8) 

But  
2

04
i n

B e
U NU N

r r





 
   

 
   …(9) 

  
2

1 2

04n

dU Bn e
N X

dr r r





 
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 
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0 0

dU
r r
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2

1 2

0 0 0

0
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Bn e

r r




    

2 1

0

04

ne r
B

n






     …(10) 

Also 
2 2

2 2 3

0 0 0

( 1) 2

4n

d U n n B e
N

dr r r





 
  

 
 

 Substituting the value of B, 

  
2 2

2 3

0 0

( 1)

4

d U N e n

dr r





  
 

 
   …(11) 

 Substituting this value in Eq. (8), 

  
2

3

0 0 0

1 1 ( 1)

18 4

N e n

C Nr r






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n

C e
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
      …(12) 
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Questions 

1. What do you meant by nuclear models. 

2. Explain liquid drop model.  What are its merits and demerits. 

3. Derive Weizacker semi-empirical mass formula. 

4. Explain the Shell model of the nucleus. 

5. What are the similarities between liquid drop and nucleus. 

6. Explain the theory and principle of working of a synchrocyclotron. 

7. What is the difference between a cyclotron and a synchrocyclotron?  

8. Describe giving necessary theory the working of a betatron.  Show that 

to keep the electron in a constant radial motion, the magnetic induction 

in the area enclosed by the path has to be maintained at any instant 

equal to double the induction over the circular orbits. 

9. Give an account of the theory, construction and working of a modern 

synchrotron.  Give its uses. 

10. Describe the construction and working of an ionization chamber. 

11. Describe a G.M. counter and explain its working as a particle detector. 

12. Explain fully the working of a cloud chamber.  How is it used to 

determine the energy of a particle passing through it? 

13. Describe about Ionic Bond. 

14. Describe the expression for the cohesive energy of an ionic crystal? 

15. Short notes on Bonding in crystals. 

16. Describe Covalent bond and its characteristics of covalent crystals. 

17. Describe about Metallic Bond. 

18. Explain briefly about Molecular Bond and its properties? 

19. Write short notes on Hydrogen Bond. 
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UNIT - V 

ELECTRONICS 

5.1  Field-Effect Transistors 

Introduction  

 The field effect transistor (FET) is a three terminal semiconductor 

device in which the output current is controlled by an applied electric field.  

Further the current in an FET is entirely due to the majority carriers whereas in 

a junction transistor both majority and minority carriers contribute to the 

current.  Thus while the junction transistor is bipolar an FET is unipolar.  There 

are two types of field effect transistors: (i) junction field effect transistor (JFET 

or simply FET). (ii) metal oxide semiconductor field effect transistor 

(MOSFET).  A JFET can be either of the n-channel type or of the p-channel 

type.  We shall here describe an n-channel JFET. 

n-channel JFET.  It consists of a channel (n-type) into which two p-regions 

are diffused.  One end of this symmetric structure is called source (S) and the 

other end is called drain (D).  The two o-regions are connected together to a 

third terminal called gate (G) (Fig. 5.1).   

 

Fig. 5.1 

 The p-regions are heavily doped compared to the n-region.  During 

operation, majority carriers (electrons in this case) enter the channel through 

the source S and leave it through the drain D.  The current is controlled by the 

gate which is always reverse-biased. 

Drain Characteristics of an n Channel JFET 

 A curve plotted between drain current DI  and drain-to-source voltage 

DSV , at a fixed gate-to-source voltage GSV  is called the drain characteristics.  

Fig. 5.1(a)  shows the circuit diagram for determining the output characteristics.  

GGV  is the gate bias supply and DDV  is the drain voltage source. 
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 Keeping GSV  fixed at some value, the drain source voltage ( DSV ) is 

changed in steps and the corresponding drain current DI  is noted.  A group of 

such drain characteristics curves are drawn by setting GSV  at different fixed 

values.  Fig. 5.1(b) shows a family of drain characteristics.  There are three 

distinct regions in the characteristic thus obtained. 

 

Fig. 5.1(a) 

 

Fig. 5.1(b) 

(i) When DSV  is small, the channel acts as a resistor.  The current increases 

linearly with the voltage DSV  till point A is reached.  This region of the 

characteristics is called the ohmic region. 

(ii) When DS PV V , the current DI  reaches its maximum value, .DSSI   If 

DSV  IS increased beyond PV , the current does not increase further.  The 

region BC is called saturation region or pinch off region. 

(iii) At a certain voltage AV , corresponding to point C, current increases 

suddenly due to avalanche breakdown.  The covalent bonds in the 
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depletion region break up and the current rises.  This region is called the 

avalanche region.  In actual practice this region is to be avoided. 

Characteristic parameters of FET.  

 There are three main characteristic parameters of a FET which describe 

its performance in an electronic circuit. 

(i)  Drain resistance dr .  It is defined as the ratio of the change in drain-

to-source voltage to the corresponding change in drain current at a 

constant gate-to-source voltage. 

    

GS

DS
d

D V

V
r

I

 
  

 
  …(i) 

It is given by the reciprocal of the slope of the drain characteristic. 

(ii)  Transconductance mg .  It is defined as the ratio of the change in 

drain current to the corresponding change in gate-to-source voltage at 

a constant drain-to-source voltage. 

    

DS

D
m

GS V

I
g

V

 
  

 
  …(ii) 

The transductance measures the control that the gate voltage has over 

the drain current. 

(iii)  Amplification factor  .  It is defined as the ratio of the change in 

drain-to-source voltage to the corresponding change in gate-to-source 

voltage at a constant drain current. 

     

D

DS

GS I

V

V


 
  

 
   …(iii) 

Relation between the three parameters. 

We have from the definition of the amplification factor 

     DS DS D
d m

GS D GS

V V I
r g

V I V


  
    
  

 

     .d mr g    

5.2  Silicon Controlled Rectifier (SCR) 

 A silicon controlled rectifier is a semiconductor device that acts as a 

true electronic switch.  It can change alternating current and at the same time 

can control the amount of power fed to the load.  Thus SCR combines the 

features of a rectifier and a transistor. 
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Fig. 5.2 

 Constructional details.  When a pn junction is added to a junction 

transistor, the resulting three pn junction device is called a silicon controlled 

rectifier.  Fig. 5.2(i)  shows the construction.  It is clear that is essentially an 

ordinary rectifier (pn) and a junction transistor (npn) combined in one unit to 

form pnpn device.  Three terminals are taken; one from the outer p-type 

material called anode A, second from the outer n-type material called cathode 

K and the third from the base of transistor section and is called gate G.  In the 

normal operating conditions of SCR, anode is held at high positive potential 

w.r.t. cathode and gate at small positive potential w.r.t. cathode.  Fig. 5.2 

(ii) shows the symbol of SCR. 

 The silicon controlled rectifier is a solid state equivalent of thyratron.  

The gate, anode and cathode of SCR correspond to the grid, plate and cathode 

of thyratron.  For this reason, SCR is sometimes called thyristor.  

V-I Characteristics of SCR 

 It is the curve between anode-cathode voltage (V) and anode current (I) 

of an SCR at constant gate current.  Fig. 5.2.1 shows the V-I characteristics of a 

typical SCR. 

(i) Forward characteristics.  When anode is positive w.r.t. cathode, the 

curve between V and I is called the forward characteristic.  In Fig. 5.2.1, 

OABC is the forward characteristic of SCR at IG = 0.  If the supply 

voltage is increased from zero, a point is reached (point A) when the 

SCR starts conducting.  Under this condition, the voltage across SCR 

suddenly drops as shown by dotted curve AB and most of supply 

voltage appears across the load resistance RL.  If proper gate current is 

made to flow, SCR can close at much smaller supply voltage. 
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Fig. 5.2.1 

(ii) Reverse characteristics.  When anode is negative w.r.t. cathode, the 

curve between V and I is known as reverse characteristic.  The reverse 

voltage does come across SCR when it is operated with a.c. supply.  If 

the reverse voltage is gradually increased, at first the anode current 

remains small (i.e. leakage current) and at some reverse voltage, 

avalanche breakdown occurs and the SCR starts conducting heavily in 

the reverse direction as shown by the curve DE.  This maximum reverse 

voltage at which SCR starts conducting heavily is known as reverse 

breakdown voltage. 

SCR in Normal Operation 

 In order to operate the SCR in normal operation, the following 

points are kept in view: 

(ii) The supply voltage is generally much less than breakover voltage. 

(iii) The SCR is turned on by passing an appropriate amount of gate current 

(a few mA) and not by breakover voltage. 

(iv) When SCR is operated from a.c. supply, the peak reverse voltage which 

comes during negative half-cycle should not exceed the reverse 

breakdown voltage. 

(v) When SCR is to be turned OFF from the ON state, anode current should 

be reduced to holding current. 

(vi) If gate current is increased above the required value, the SCR will close 

at much reduced supply voltage. 

SCR as a Switch 

 The SCR has only two states, namely; ON state and OFF state and no 

state inbetween.  When appropriate gate current is passed, the SCR starts 

conducting heavily and remains in this position indefinitely even if gate voltage 

is removed.  This corresponds to the ON condition.  However, when the anode 
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current is reduced to the holding current, the SCR is turned OFF.  It is clear that 

behaviour of SCR is similar to a mechanical switch.  As SCR is an electronic 

device, therefore, it is more appropriate to call it an electronic switch. 

Advantages of SCR as a switch.  As SCR has the following advantages over a 

mechanical or electromechanical switch (relay): 

(i) It has no moving parts.  Consequently, it gives noiseless operation at 

high efficiency. 

(ii) The switching speed is very high upto 109 operations per second. 

(iii)  It permits control over large current (30-100A) in the load by means of 

a small gate current (a few mA). 

(iv)  It has small size and gives trouble free service. 

5.3  Unijunction Transistor (UJT) 

 Unijunction (abbreviated as UJT) is a three terminal semiconductor 

switching device.  This device has a unique characteristic that when it is 

triggered, the emitter current increases regeneratively until it is limited by 

emitter power supply.  Due to this characteristic, the unijunction transistor can 

be employed in a variety of applications e.g., switching, pulse generator, saw-

tooth generator etc. 

 

Fig. 5.3 

Construction.  Fig. 5.3(i) shows the basic structure of a unijunction transistor.  

It consists of an n-type silicon bar with an electrical connection on each end.  

The leads to these connections are called base leads base-one B1 and base two 

B2.  Part way along the between the two bases, nearer to B2 than B1, a pn 

junction is formed between a p-type emitter and the bar.  The lead to this 

junction is called the emitter lead E.  Fig. 5.3(ii) shows the symbol of 

unijunction transistor.  Note that emitter is shown closer to B2 than B1.   
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The following points are worth noting: 

(i)  Since the device has one pn junction and three leads, it is commonly 

called a unijunction transistor (uni means single). 

(ii)  With only one pn-junction, the device is really a form of diode.  

Because the two base terminals are taken from one section of the 

diode, this device is also called double-based diode. 

(iii) The emitter is heavily doped having many holes.  The n region, 

however, is lightly doped.  For this reason, the resistance between 

the base terminals is very high (5 to 10 kΩ) when emitter lead is 

open. 

Operation. 

  Fig. 5.3.1 shows the basic circuit operation of a unifunction 

transistor.  The device has normally B2 positive w.r.t B1. 

 

Fig. 5.3.1 

(i) If voltage VBB is applied between B2 and B1 with emitter open [see fig. 

5.3.1(i)], a voltage gradient is established along the n-type bar.  Since 

the emitter is located nearer to B2, more than half of VBB appears 

between the emitter and B1.  The voltage V1 between emitter and B1 

establishes a reverse bias on the pn junction and the emitter current is 

cut off.  Of course, a small leakage current flows from B2 to emitter due 

to minority carriers. 

(ii) If a positive voltage is applied at the emitter [see Fig. 5.3.1 (ii)], the pn 

junction will remain reverse biased so long as the input voltage is less 

than V1.  If the input voltage to the emitter exceeds V1, the pn junction 

becomes forward biased.  Under these conditions, holes are injected 

from p-type material into the n-type bar.  These holes are repelled by 

positive B2 terminal and they are attracted towards B1 terminal of the 

bar.  This accumulation of holes in the emitter to B1 region results in the 

decrease of resistance in this section of the bar.  The result is that 

internal voltage drop from emitter to B1 is decreased and hence the 

emitter current IE increases.  As more holes are injected, a condition of 
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saturation will eventually be reached.  At this point, the emitter current 

is limited by emitter power supply only.  The device is now in the ON 

state. 

(iii) If a negative pulse is applied to the emitter, the pn junction is reverse 

biased and the emitter current is cut off.  The device is then said to be in 

the OFF state. 

Characteristics of UJT 

 Fig. 5.3.2a shows the curve between emitter voltage (VE) and emitter 

current (IE) of a UJT at a given voltage VBB between the bases.  This is known 

as the emitter characteristic of UJT.  The following points may be noted from 

the characteristics: 

 

Fig. 5.3.2a 

(i) Initially, in the cut-off region, as VE increases from zero, slightly 

leakage current flows from terminal B2 to the emitter.  This current is 

due to the minority carriers in the reverse biased diode. 

 

Fig. 5.3.2b 

(ii) Above a certain value of VE, forward IE begins to flow, increasing until 

the peak voltage VP and current IP are reached at point P. 
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(iii) After the peak point P, an attempt to increase VE is followed by a 

sudden increase in emitter current IE with a corresponding decrease in 

VE.  This is a negative resistance portion of the curve because with 

increase in IE, VE decreases.  The device, therefore, has a negative 

resistance region which is stable enough to be used with a great deal of 

reliability in many areas e.g., trigger circuits, saw-tooth generators, 

timing circuits. 

(iv) The negative portion of the curve lasts until the valley point V is 

reached wit valley-point voltage VV and valley-point current IV.  After 

the valley point, the device is driven to saturation. 

Fig. 5.3.2b shows the typical family of VE/IE characteristics of a UJT at 

different voltages between the bases.  It is clear that peak-point voltage (= η 

VBB + VD) falls steadily with reducing VBB and so does the valley point voltage 

VV.  The difference VP-VV is a measure of the switching efficiency of UJT and 

can be seen to fall off as VBB decreases.  For a general purpose UJT, the peak-

point current is of the order of 1 μA at VBB = 20 V with a valley-point voltage 

of about 2.5 V at 6 mA.  

Example 1.  The intrinsic stand-off ratio for a UJT is determined to be 0.6.  If 

the inter-base resistance is 10kΩ, what are the values of 1BR  and 2BR ? 

Sol.     10 , 0.6BBR K     

Now    1 2BB B BR R R   

or   1 210 B BR R   

Also    1

1 2

B

B B

R

R R
 


 

or   10.6
10

BR
    1 2( 10 )B BR R K    

  1 10 0.6 6BR K     

and  2 10 6 4BR K     

Example 2  A unijunction transistor has 10V between the bases.  If the intrinsic 

stand off ratio is 0.65, find the value of stand off voltage.  What will be the 

peak-point voltage if the forward voltage drop in the pn junction is 0.7V? 

Sol.   10 ; 0.65; 0.7BB DV V V V    

 Stand off voltage = 0.65 10 6.5BBV V     

 Peak-point voltage, 6.5 0.7 7.2P BB DV V V V      
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Advantages of UJT 

 The UJT was introduced in 1948 but did not become commercially 

available until 1952.  Since then, the device has achieved great popularity due 

to the following reasons: 

(i) It is a low cost device. 

(ii) It has excellent characteristics. 

(iii) It is a low-power absorbing device under normal operating 

conditions. 

 Due to above reasons, this device is being used in a variety of 

applications.  As few include oscillators, trigger circuits, saw-tooth generators, 

bistable network etc. 

Applications of UJT 

 Unijunction transistors are used extensively in oscillator, pulse and 

voltage sensing circuits.  Some of the important applications of UJT are 

discussed below: 

(i)  UJT relaxation oscillator.  Fig. 5.3.2c shows UJT relaxation where 

the discharging of a capacitor through UJT can develop a saw-tooth 

output as shown. 

 

     Fig. 5.3.2c 

 When battery BBV  is turned on, the capacitor C charges through resistor 

1R .  During the charging period, the voltage across the capacitor rises in an 

exponential manner until it reaches the peak-point voltage.  At this instant of 

time, the UJT switches to its low resistance conducting mode and the capacitor 

is discharged between E and 1B .  As the capacitor voltage flys back to zero, the 

emitter ceases to conduct and the UJT is switched off.  The next cycle then 

begins, allowing the capacitor C to charge again.  The frequency of the output 

saw-tooth wave can be varied by changing the value of 1R  since the controls 

the time constant 1R C of the capacitor charging circuit. 
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 The time period and hence the frequency of the saw-tooth wave can be 

calculated as follows.  Assuming that the capacitor is initially uncharged, the 

voltage CV  across the capacitor prior to breakdown is given by: 

     1/1 t R C

C BBV V e   

where    1R C   charging time constant of resistor-capacitor 

circuit 

    t   time from the commencement of waveform. 

The discharge of the capacitor occurs when CV  us equal to the peak-point 

voltage BBV  i.e.  

     1/1 t R C

BB BBV V e    

or    1/1 t R Ce    

or    1/ 1t R Ce     

or    1

1
log

1
et R C





 

 Time period, 1 10

1
2.3 log

1
t R C





 

Frequency of saw-tooth wave, 
1

  seconds
f Hz

t in
  

(i) Overvoltage detector.   A warning pilot-lamp L is connected between 

the emitter and 1B  circuit.  So long as the input voltage is less than the 

peak-point voltage  PV  of the UJT, the device remains switched off.  

However, when the input voltage exceeds PV , the UJT is switched on 

and the capacitor discharges through the low resistance path between 

terminals E and 1B .  The current flowing in the pilot lamp L light it, 

thereby indicating the overvoltage in the circuit. 

5.4  Principle of Phase Shift Oscillators 

 One desirable feature of an oscillator is that it should feedback energy 

of correct phase to the tank circuit to overcome the losses occurring in it.  In the 

oscillator circuits discussed so far, the tank circuit employed inductive (L) and 

capacitive (c) elements.  In such circuits, a phase shift of 180o was obtained due 

to inductive or capacitive coupling and a further phase shift of 180o was 

obtained due to transistor properties.  In this way, energy supplied to the tank 

circuit was in phase with the generated oscillations.  The oscillator circuits 

employing L-C elements have two general drawbacks. Firstly, they suffer from 

frequency instability and poor waveform.  Secondly, they cannot be used for 

very low frequencies because they become too much bulky and expensive. 
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 Good frequency stability and waveform can be obtained from oscillator 

employing resistive and capacitive elements.  Such amplifiers are called R-C or 

phase shift oscillators and have the additional advantage that they can be used 

for very low frequencies.  In a phase shift oscillator, a phase shift of 180o is 

obtained with a phase shift circuit instead of inductive or capacitive coupling.  

A further phase shift of 180o is introduced due to the transistor properties.   

Thus, energy supplied back to the tank circuit is assured of correct phase. 

Phase shift circuit.  A phase-shift circuit essentially consists of an R-C 

network.  Fig. 5.4 (i) shows a single section of RC network.  From the 

elementary theory of electrical engineering, it can be shown that alternating 

voltage V'1 across R leads the applied voltage V'1 by  o. The value of  depends 

upon the values of R and C.  If resistance R is varied, the value of  also 

changes.  If R were reduced to zero, V'1 will lead V1 by 90o i.e.,  = 90o.  

However, adjusting R to zero would be impracticable because it would lead to 

no voltage across R.  Therefore, in practice, R is varied to such a value that 

makes V'1 to lead V1 by 60o. 

 

Fig. 5.4 

 Fig. 5.4 (ii) shows the three sections of RC network.  Each section 

produces a phase shift of  60o .  Consequently, a total phase shift of 180o is 

produced i.e. voltage V2 leads the voltage V1 by 180o. 

Phase shift Oscillator 

 Fig. 5.4.1 shows the circuit of a phase shift oscillator.  It consists of a 

conventional single transistor amplifier and a RC phase shift network.  The 

phase shift network consists of three sections R1C1, R2C2 and R3C3.  At some 

particular frequency f0, the phase shift in each RC section is 60o so that the total 

phase-shift produced by the RC network is 180o.  The frequency of oscillations 

is given by: 

   0

1

2 6
f

RC
      …(i) 

where   1 2 3R R R R    

  1 2 3C C C C    
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Fig. 5.4.1 

Circuit operation.  When the circuit is switched on, it produces oscillations of 

frequency determined by exp. (i).  The output E0 of the amplifier is feedback 

network.  This network produces a phase shift of 180o and a voltage Ei appears 

at its output which is applied to the transistor amplifier. 

 Obviously, the feedback fraction m = Ei/E0.  The feedback phase is 

correct.  A phase shift of 180o is produced by the transistor amplifier.  A further 

phase shift of 180o is produced by the RC network.  As a result, the phase shift 

around the entire look is 360o. 

Advantages 

(i) It does not require transformers or inductors. 

(ii) It can be used to produce very low frequencies. 

(iii)  The circuit provides good frequency stability. 

Disadvantages 

(ii) It is difficult for the circuit to start oscillations as the feedback is 

generally small. 

(iii) The circuit gives small output. 

5.5  Multivibrators 

 An electronic circuit that generates square waves (or other non-

sinusoidals such as rectangular, saw-tooth waves) is known as a multivibrator. 

 A multivibrator is a switching circuit which depends for operation on 

positive feedback.  It is basically a two-stage amplifier with output of one 

feedback to the input of the other as shown in Fig. 5.5. 
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Fig. 5.5 

 The circuit operates in two states (viz ON and OFF) controlled by 

circuit conditions.  Each amplifier stage supplies feedback to the other in such a 

manner that will drive the transistor of one stage of saturation (ON state) and 

the other to cut off (OFF state). 

 After a certain time controlled by circuit conditions, the action is 

reversed i.e. saturated stage is driven to cut off and the cut off stage is driven to 

saturation.  The output can be taken across either stage and may be rectangular 

or square wave depending upon the circuit conditions. 

 

Fig. 5.5.a 

 Fig. 5.5 shows the block diagram of a multivibrator.  It is a two-stage 

amplifier with 100% positive feedback.  Suppose output is taken across the 

transistor 2Q .  At any particular instant, one transistor is ON and conducts 

( )C satI  while the other is OFF.  Suppose 2Q  is ON and 1Q  is OFF.  The 

collector current in 2Q  will be ( )C satI  as shown in Fig, 5.5.a.  This condition 

will prevail for a time (bc is this case) determined by circuit conditions.  After 

this time, transistor 2Q  is cut off and 1Q  is turned ON.  The collector current in 

2Q  is now CEOI  as shown.  The circuit will stay in this condition for a time de.  

Again 2Q  is turned ON and 1Q  is driven to cut off.  In this way, the output will 

be a square wave. 
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Types of Multivibrators 

 A multivibrator is basically a two-stage amplifier with output of one 

fedback to the input of the other.  At any particular instant, one transistor is ON 

and the other is OFF.  After a certain time depending upon the circuit 

components, the stages reverse their conditions- the conducting stage suddenly 

cuts off and the non-conducting stage suddenly starts to conduct.  The two 

possible states of a multivibrator are: 

   ON  OFF 

 First State 1Q   2Q  

 Second state  2Q   1Q  

 Depending upon the manner in which the two stages interchange their 

states, the multivibrators are classified as: 

(i) Astable or free running multivibrator 

(ii) Monostable or one-shot multivibrator 

(iii) Bi-stable or flip-flop multivibrator. 

Fig. 5.5.b shows the input/output relations for the three types of multivibrators. 

 

Fig. 5.5.b 

(i) The astable or free running multivibrator alternates automatically 

between the two states and remains in each for a time dependent upon 

the circuit constants.  Thus it is just an oscillator since it requires no 

external pulse for its operation.  Of course, it does require a source of 

d.c. power.  Because it continuously produces the square-wave output, it 

is often referred to as a free running multivibrator. 

(ii) The monostable or one-shot multivibrator has one state stable and one 

quasi-stable (i.e. half-stable) state.  The application of input pulse 

triggers the circuit into its quasi-stable state, in which it remains for a 

period determined by circuit constants.  After this period of time, the 

circuit returns to its initial stable state, the process is repeated upon the 
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application of each trigger pulse.  Since the monostable multivibrator 

produces a single output pulse for each input trigger pulse, it is 

generally called one-shot multivibrator. 

(iii)   The bistable multivibrator has both the tow states stable.  It requires 

the application of an external triggering pulse to change the operation 

from either one state to the other.  Thus one pulse is used to generate 

half-cycle of square wave and another pulse to generate the next half-

cycle of square wave.  It is also known as a flip-flop multivibrator 

because of the two possible states it can assume. 

5.5.1  Transistor Astable Multivibrator 

 A multivibrator which generates square waves of its own (i.e. without 

any external triggering pulse) is known as an astable or free running 

multivibrator. 

 The astable multivibrator has no stable state.  It switches back and for 

the from one state to the other, remaining in each state for a time determined by 

circuit constants.  In other words, at first one transistor conducts (i.e. ON state) 

and the other stays in the OFF state for some time.  After this period of time, 

the second transistor is automatically turned ON and the first transistor is 

turned OFF.  Thus the multivibrator will generate a square wave output of its 

own.  The width of the square wave and its frequency will depend upon the 

circuit constants. 

 

Fig. 5.5.1 

Circuit details.  Fig. 5.5.1 shows the circuit of a typical transistor astable 

multivibrator using two identical transistors 1Q  and 2Q .  The circuit essentially 

consists of two symmetrical CE amplifier stages, each providing a feedback to 

the other.  Thus collector loads of the two stages are equal i.e. 1 4R R  and the 

biasing resistors are also equal ie. 2 3R R .  The output of transistor 1Q  is 

coupled to the input of 2Q  through 1C  while the output of 2Q  is fed to the input 

of 1Q  through 2C .  The square wave output can be taken from 1Q  or 2Q .   
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Operation.   

 When CCV  is applied, collector currents start flowing in  1Q  and 2Q .  In 

addition, the coupling capacitors 1C  and 2C  also start charging up.  As the 

characteristics of no two transistors ( . . , )BEi e V  are exactly alike, therefore, one 

transistor, say 1Q , will conduct more rapidly than the other.  The rising 

collector current in 1Q  drives its collector more and more positive.  The 

increasing positive output at point A is applied to the base of transistor 2Q  

through 1C .  This establishes a reverse bias on 2Q  and its collector current 

starts decreasing.  As the collector of 2Q  is connected to the base of 1Q  through 

2C , therefore, base of 1Q  becomes more negative i.e. 1Q  is more forward 

biased.  This further increases the collector current in 1Q  and causes a further 

decrease of collector current in 2Q .  This series of actions is repeated until the 

circuit drives 1Q  to saturation and 2Q  to cut off.  These actions occur very 

rapidly and may be considered practically instantaneous.  The output of 1Q  

(ON state) is approximately zero and that of 2Q  (OFF state) is approximately 

CCV .  This is shown by ab in Fig. 5.5.1a 

 

Fig. 5.5.1a 

 When 1Q  is at saturation and 2Q  is cut off, the full voltage CCV  appears 

across 1R  and voltage across 4R  will be zero.  The charges developed across 

1C  and 2C  are sufficient to maintain the saturation and cut off conditions at 1Q  

and 2Q  respectively.  This condition is represented by time interval bc in Fig. 

5.5.1a.  However, the capacitors will not retain the charges indefinitely but will 

discharge through their respective circuits.  The discharge path for 1C , with 

plate L negative and 1Q  conducting, is 1 2CCLAQV R M  as shown in Fig. 5.5.1a(i).  

 The discharge path for 2C , with plate K negative 2Q  cut off, 4 3KBR R J  

as shown in fig. 5.5.1a(ii).  As the resistance of the discharge path for 1C  is 

lower that that of 2C , therefore, 1C  will discharge more rapidly. 
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Fig. 5.5.1.a 

 As 1C  discharges, the base bias at 2Q  becomes less positive and at a 

time determined by 2R  and 1C , forward bias is re-established at 2Q .  This 

causes the collector current to start in 2Q .  The increasing positive potential at 

collector of 2Q  is applied to the base of through the capacitor 2C .  Hence the 

base of 1Q will become more positive i.e.  1Q  is reverse biased.  The decrease in 

collector current in 1Q  sends a negative voltage to the base of 2Q  through 1C , 

thereby causing further increase in the collector current of 2Q .  With this set of 

actions taking place, 2Q  is quickly driven to saturation and 1Q  to cut off.  This 

condition is represented by cd in fig. 5.5.1a.  The period of time during which 

2Q   remains at saturation and 1Q  at cut off is determined by 2C  and 3R . 

ON or OFF time:  The time for which either transistor remains ON or OFF is 

given by 

 ON time for 1Q  (or OFF time for 2Q ) is 

    1 2 10.694T R C  

 OFF time for 1Q  (or ON time for 2Q ) is 

    2 3 20.694T R C  

 Total time period of the square wave is  

    1 2 2 1 3 20.694T T T R C R C     

 As 2 3R R R   and 1 2 ,C C C    
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    0.694 1.4 secT RC RC RC onds   

Frequency of the square wave is 

   
1 0.7

f Hz
T RC

  

It may be noted that in these expressions, R is in ohms and C in farad. 

Example 2.  In the astable multivibrator shown in Fig. 21.12, 2 3 10R R K    

and 1 2 0.01C C F  .  Determine the time period and frequency of the square 

wave. 

 Sol 

 Here 4 810 10 ; 0.01 10R K C F F       

Time period of the square wave is  

   4 81.4 1.4 10 10 secT RC ond     

    4 4 31.4 10 sec 1.4 10 10  second m       

    0.14  secm  

Frequency of the square wave is 

   
4

1 1

 in second 1.4 10
f Hz Hz

T 
 


 

    37 10 7Hz kHz    

5.5.2  Transistor Monostable Multivibrator 

 A multivibrator in which one transistor is always conducting (i.e. in the 

ON state) and the other is non-conducting (i.e. in the OFF state) is called a 

monostable multivibrator. 

 A monostable multivibrator has only one state stable.  In other words, if 

one transistor is conducting and the other is non-conducting, the circuit will 

remain in this position.  It is only with the application of external pulse that the 

circuit will interchange the states.  However, after a certain time, the circuit will 

automatically switch back to the original stable state and remains there until 

another pulse is applied.  Thus a monostable multivibrator cannot generate 

square waves of its own like an astable multivibrator.  Only external pulse will 

cause it to generate the square wave. 

Circuit details: 

 Fig, 5.5.2 shows the circuit of a transistor monostable multivibrator.  It 

consists of two similar transistors 1Q  and 2Q  with equal collector loads i.e. 

1 4R R .  The values of BBV  and 5R  are such as to reverse bias 1Q  and keep it at 

cut off.  The collector supply CCV  and 2R  forward bias 2Q  and keep it at 
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saturation.  The input pulse is given through 2C  to obtain the square wave.  

Again output can be taken from 1Q  or 2Q .    

 

Fig. 5.5.2 

Operation.  With the circuit arrangement shown, 1Q  is at cut off and 2Q   is at 

saturation.  This is the stable state for the circuit and it will continue to stray in 

this state until a triggering pulse is applied at 2C .  When a negative pulse of 

short duration and sufficient magnitude is applied to the base of 1Q  through 2C , 

the transistor 1Q  starts conducting and positive potential is established at its 

collector.  The positive potential at the collector of 1Q  is coupled to the base of 

2Q  through capacitor 1C .  This decreases the forward bias on 2Q  and its 

collector current decreases.  The increasing negative potential on the collector 

of 2Q  is applied to the base of 1Q  through 3R .  This further increases the 

forward bias on 1Q  and hence its collector current.  With this set of actions 

taking place, 1Q  is quickly driven to saturation and 2Q  to cut off. 
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 With 1Q  at saturation and 2Q  at cut off, the circuit will come back to 

the original stage, (i.e. 2Q  at saturation and 1Q  at cut off) after some time as 

explained in the following discussion.  The capacitor 1C  (charged to 

approximately CCV ) discharges through the path 2 1.CCR V Q   As  1C  discharges, it 

sends a voltage to the base of 2Q  to make it less positive.  This goes on until a 

point is reached when forward bias is re-established on 2Q  and collector 

current starts to flow in 2Q .  The step by step events already explained occur 

and 2Q  is quickly driven to saturation and 1Q  to cut off.  This is the stable state 

for the circuit and it remains in this condition until another pulse causes the 

circuit to switch over the states.   

5.5.3  Transistor Bistable Multivibrator 

 A multivibrator which has both the states stable is called a bistable 

multivibrator. 

The bistable multivibrator has both the states stable.  For instance, suppose at 

any particular instant, transistor 1Q  is conducting and transistor 2Q  is at cut off.  

It left to itself, the bistable multivibrator will stay in this position forever.  

However, if an external pulse is applied to the circuit in such a way that 1Q  is 

cut off and 2Q  is tuned on, the circuit will stay in the new position.  Another 

trigger pulse is then required to switch the circuit back to its original state. 

Circuit details.   

 Fig. 5.5.3. shows the circuit of a typical transistor bistable multivibrator.  

It consists of two identical CE amplifier stages with output of one fed to the 

input of the other.  The feedback is coupled through resistors ( 2R , 3R ) shunted 

by capacitors 1C  and 2C .  The main purpose of capacitors  1C  and 2C  is to 

improve the switching characteristics of the circuit by passing the high 

frequency components of the square wave.  this allows fast rise and fall times 

and hence distortionless square wave output.  The output can be taken across 

either transistor. 
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Fig. 5.5.3 

Operation. 

 When CCV  is applied, one transistor will start conducting slightly ahead 

of the other due to some difference in the characteristics of the transistors.  This 

will drive one transistor to saturation and the other to cut off in a manner 

described for the astable multivibrator.  Assume that 1Q  is turned ON and 2Q  is 

cut OFF.  If left to itself, the circuit will stay in this condition.  In order to the 

base of 1Q  through 3C  will cut it off or a positive pulse applied to the base of 

2Q  through 4C  will cause it to conduct. 

 Suppose a negative pulse of sufficient magnitude is applied to the base 

of 1Q  through 3C .  This will reduce the forward bias on 1Q  and cause a 

decrease in its collector current and an increase in collector voltage.  The rising 

collector voltage is coupled to the base of 2Q  where it forward biases the base-

emitter junction of 2Q .  This will cause an increase in its collector current and 

decrease in collector voltage.  The decreasing collector voltage is applied to the 

base of 1Q  where it further reverse biases the base-emitter junction 1Q  to 

decrease its collector current.  With this set of actions taking place, 2Q  is 

quickly driven to saturation and  1Q  to cut off.  The circuit will now remain 

stable in this state until a negative trigger pulse at 2Q  (or a positive trigger 

pulse at 1Q ) changes this state. 
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Number Systems 

5.6 Decimal Number System 

 This is the frequently used number system in our daily life.  It uses ten 

numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.  The base or the radix of the decimal 

system is 10.  A number in decimal system is expressed in terms of the position 

or place values. 

 For example, the number 10523 is represented as 

  10523 = 1×104+0×103+5×102+2×101+3×100. 

 The digit (3) has the position value 100 and is the least significant digit 

(LSD). 

 The digit (1) has the place value 104 and is the most significant digit 

(MSD). 

 Similarly, the number 2564.397 can be expressed as 

 
3 2 1 0 1 2 32564.397 2 10 5 10 6 10 4 10 3 10 9 10 7 10 .                 

 That is the powers to the base 10 are numbered to the left of the decimal 

point starting with 0 and to the right of the decimal point starting with -1. 

Binary Number System 

 In a binary system of representation the base (or radix) is 2.  It uses only 

two numerals 0 and 1.  In a digital system there are only two possible state or 

conditions.  For example, a situation may be True or False, a switch close or 

open, a voltage signal High or Low etc.  These sates or conditions are 

designated as 1 and 0 respectively.  The binary digits 0 and 1 are termed as bits.  

Like the decimal system, the binary system also has a place or position value 

representation. 

 For example, the number 15 of decimal system is written in the binary 

system as 1111, since,  

    3 2 1 01111 1 2 1 2 1 2 1 2 15.          

 This can also be written as 2 101111 15 ,  the subscript indicating the 

number system.  In the binary 1111, the bit 1 at the extreme left is the MSB 

(most significant bit) and the bit 1 at the extreme right is the LSB. 

 Similarly, the binary 1011.011 is written in the decimal system as 

11.375, since 

  3 2 1 0 1 2 31011.011 1 2 0 2 1 2 1 2 0 2 1 2 1 2                 

    
1 1

8 0 2 1 0 11.375
4 8

         

 or 2 101011.011 11.375  
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 Thus, the place values of the bits in a binary number are given by 

ascending powers of 2 to the left of binary point starting from 0 and to the right 

of binary point in the descending powers of 2 starting from -1. 

Conversion of Binary Number into Decimal Number 

(i) Conversion of integral binary numbers 

Example 1.  Convert 2(1010)  into its decimal equivalent. 

  3 2 1 01010 1 2 0 2 1 2 1 2 8 0 2 0 10              

  2 10(1010) (10)   

 

(ii) Conversion of fractional binary numbers 

As an example, let us find the decimal equivalent of 0.1101. 

   1 2 3 40.1101 1 2 1 2 0 2 1 2            

    
1 1 1

0 0.8125
2 4 16

      

    

2 10   0.1101 0.8125

                      

       Binary      Decimal

        point         point

 

 
 

(iii) Mixed Number 

 For mixed numbers, that is, having integer and fractional parts, each 

part is handled separately according to the following rules. 

(i) The integer numbers are multiplied by their corresponding powers of 

base 2, i.e., 0 1 22 ,2 ,2 ,...  from left of the binary point and then added. 

(ii) The fractional numbers are multiplied by their corresponding powers of 

base 2, i.e., 1 2 32 ,2 ,2 ,...    from right of the binary point and then added. 

Consider the binary number 1101. 101.  Its decimal equivalent is  

3 2 1 0 1 2 31101.101=1 2 1 2 0 2 1 2 1 2 0 2 1 2                

  
1 1

8 4 0 1 0 13.625
2 8

         
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Example 2.  Convert (1011.0101)2 into its decimal equivalent. 

 
0 1 2 3 1 2 3 41011.0101 1 2 1 2 0 2 1 2 0 2 1 2 0 2 1 2                    

     
1 1

1 2 0 8 0 0
4 16

         

     11.3125  

    2 10
(1011.0101) 11.3125  

Conversion of Decimal number into Binary number 

(i) Conversions of integral decimal numbers 

 The given decimal number is divided progressively by 2, until we get 

zero.  The remainders, taken in the reverse order, give the binary number. 

 As an example let us covalent the decimal 19 into its binary equivalent. 

  

 Reading the remainders from the bottom to the top, the binary 

equivalent of 19 is found to be 10011, or  

  10 219 10011 .  

Example 3.  Convert 10(25)  into binary number. 

  

  10 2(25) (11001)  
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(ii) Conversion of fractional – decimal numbers 

 The given decimal number is multiplied by 2 progressively.  For each 

step that results in a 1 in the unit place, transfer the 1 to the binary record and 

repeat the process with the fractional number.  For each multiplication by 2 that 

results in a product less than unity, record a 0 in the binary number and carry 

on the process.  The last step is reached if the fractional part is zero or it is 

terminated when the desired accuracy is attained.  The carries are taken in the 

forward (top to bottom) direction to give the equivalent binary. 

  Let us convert 0.9125 into its binary equivalent. 

   

 The process is terminated here to get an approximate result, namely, 

representation of 0.9125 by six binary digits. 

  10 2     0.9125 =0.111010  

 The point in front of the binary is referred to as the binary point. 

 To find the binary equivalent of a decimal number like 35.625, we split 

the number into an integer of 35 and a fraction of 0.625.  Then the binary 

equivalent of each part is obtained separately by methods discussed above. 

 First let us find out the binary equivalent of the integer part 35 by 

divide-by-two method. 

   

 The binary equivalent of 0.625 is found by the multiple-by-two method,  

 

0.625 2    1.25    =  1+0.25      carry1        Top

  0.25 2    0.50    =  0+0.50      carry0          

  0.50 2    1.0      =  0+1           carry1        Bottom

 

  

 

 

Taking the carrys from top to bottom 

  100.625 101  
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  10 235.625 100011.101  

Example 1.  Convert 10(21.6)  into binary number. 

  

 

   10 2
(21.6) 10101.1001  

Binary Multiplication 

The following are the rules for binary multiplication 

 

( )   0 0 0

( )  0 1 0

( ) 1 0 0

( )  1 1 1

i

ii

iii

iv

 

 

 

 

 

Binary multiplication is carried out as in decimal system. 

Example 1.  Multiply 10110 by 110. 

 

10110 110

       00000

     10110

   10110     

 10000100



   22 6

132

Verification

  
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 The result is 10000100. 

Binary Division 

 Binary division is done as in decimal system. 

Example 2.  Divide 1111 by 110. 

        Verification  

              15 6  

    

Quotient: 10     Quotient: 2 

Remainder: 11    Remainder: 3 

Octal Number System 

 The radix or base of this system is 8.  It uses the eight numerals 9, 

1,2,3,4,5,6,7.  For counting beyond 7, 2-digit combinations are formed taking 

the second digit followed by the first, then the second digit followed by the 

second and so on.  For example, after 7, the next number in the octal system is 

10 (second digit followed by the first), then 11 (second digit followed by the 

second).  The position value of each digit is in ascending powers of 8 for 

integers and descending powers of 8 for fractions as shown below: 

  

3 2 1 0 -1 -2 -38     8     8     8     .    8     8     8   

                                  

                            Octal point  

 

  

 For example, 425.350 in the octal system can be expressed in decimal 

system in the following way. 

  2 1 0 -1 -2 -3425.350=4  8 2 8 5  8 3 8 5  8 0 8            

  
1 1

=4 64 2  8+5 1+3 5
8 64

        

  10256 16 5 0.375 0.078 277.453       

Hexadecima Number system 

 In the hexadecimal system the radix or baste is 16.  It uses the sixteen 

numerals  

  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. 
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 Thus, A represents 10, B represents 11, … F represents 15.  After 

reaching F, two digit combinations are formed taking the second digit followed 

by the first, then the second followed by the second and so on.  For example, in 

the hexadecimal system 10 (second digit followed by the first represents 16 in 

the decimal system.  The position value for each digit is in ascending powers of 

26 for integers and descending powers of 16 for fractions. 

Example of Hexadecimal to Decimal conversion 

(i) 

16 2 1 0

10

3C8 =3 16 +12 16 +8 16

768 192 8 968

  

   
 

(ii) 3 2 1 0

165 8 14 16 +5 16 +15 16 +8 16E F       

 1057344 1270 240 8 58.872      

5.7  Boolean Algebra 

 Digital circuit perform the binary arithmetic operations with binary 

digits 1 and 0.  These operations are called logic functions or logical operations.  

The algebra used to symbolically describe logic functions is called Boolean 

algebra.  Boolean algebra is a set of rules and theorems by which logical 

operation can be expressed symbolically in equation form and be manipulated 

mathematically.  As with the ordinary algebra, the letters of alphabet (e.g. A, B, 

C etc.) can be used to represent the variables.  Boolean algebra differs from 

ordinary algebra in that Boolean constant and variables can have only two 

values; 0 and 1.  There are four connecting symbols used in Boolean algebra 

viz. 

 (i) equals sign (=) (ii) Plus sign (+) 

 (iii) multiply sign (.)   (iv) Bar (-) 

(i) Equals sign (=).  The equals sign in Boolean algebra refers to the 

standard mathematical equality.  In other words, the logical value on 

one side of the sign is identical to the logical value on the other side of 

the sign.  Suppose we are given two logical variables such that A = B.  

Then if A = 1, then B =1 and if A =0, then B =0. 

(ii) Plus sign (+).  The plus sign is Boolean algebra refers to the logical OR 

operation.  Thus, when the statement A+B=1 appears in Boolean 

algebra, it means A ORed with B equals 1.  Consequently, either A 

=1or B =1or both equal 1. 

(iii)  Multiply sign (.).  The multiply sign in Boolean algebra refers to AND 

operation.  Thus, when the statement A.B =1 appears in Boolean 

algebra, it means A ANDed with B equals 1.  Consequently, A =1 and 

B =1.  The function A.B is often written as AB, omitting the dot for 

convenience. 
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(iv) Bar sign (-).  The bar sign in Boolean algebra refers to NOT operation.  

The NOT has the effect of inverting (complementing) the logical 

value.  Thus, if A =1, then 0A . 

Boolean Algebra 

 The algebra of logic prominently used in the operation of computer 

devices is the algebra developed by George Boole.  It is a binary or two valued 

logic, i.e., it permits only two values or states for its variables.  These two states 

are ‘true’ and ‘false’ in logic but are represented by ‘on’ and ‘off’ states of 

electronic circuits. 

 The two variables of the Boolean algebra are usually represented by 0 

and 1.  Hence, every variable is either a 0 or a 1.  There are no negative or 

fractional numbers.  Logically, we may write: 

  
If              0   then      1

 If     1    then     0.

X X

And X X

 

 
 

 Boolean algebra uses only three operations on its variables.  These 

operations are: 

(i) The OR addition represented by a + (plus) sign. 

(ii) The AND multiplication represented by a × (cross) or a.(dot) 

sign.  We will normally write the adjacent letters without the dot 

such as AB. 

(iii) The NOT operation represented by a bar over a variable. 

The rules for OR, AND and NOT operations of Boolean algebra are 

summarized in Table 10.1. 

Table 10.1 Rules of Boolean algebra OR, AND and NOT operations 

OR operation AND operation  NOT operation 

0+0=0 

0+1=1 

1+0=1 

1+1=1 

0.0=0 

0.1=0 

1.0=0 

1.1=1 

0 =1 

1=0 

Postulates and theorems of Boolean Algebra 

1. OR Laws:  OR laws in general form may be expressed as 

 

( ) 0

( ) 1 1

( )

( ) 1

i A A

ii A

iii A A A

iv A A

 

 

 

 

  

 



 194 

2. AND Laws: 

 

( ) .0 0

( ) .1

( ) .

( ) . 0

v A

vi A A

vii A A A

viii A A









 

2. Complementation (or NOT) Laws: 

 

( )0 0

( )1 0

( )  A=0, then 1

( )  A=1, then 0

( )

ix

x

xi If A

xii If A

xiii A A











 

Here A  refers to double complement operation. 

Rule (xiii) states that if a variable is complemented twice, the result is the 

variable itself. 

3. Commutative Laws: 

 
( )

( ) . .

xiv A B B A

xv A B B A

  


 

4. Associative Laws: 

 

( ) ( ) ( )

( )( ) ( )

( ) .( . ) ( . ).

xvi A B C A B C

xvii A B C D A B C D

xviii A B C A B C

    

      



 

Thus removal of brackets from logical expressions and regrouping of variables 

is allowed. 

5. Distributive Laws: 

 

( ) .( ) . .

( ) . ( ).( )

( ) .

xix A B C A B AC

xx A B C A B A C

xxi A A B A B

  

   

  

 

Thus factoring or multiplying out of expressions is permitted.  

6. Absorptive Laws: 

 

( ) .

( ) .( )

( ) .( )

xxii A A B A

xxiii A A B A

xxiv A A B AB

 

 

 
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 Each of these identities can be proved by substituting the two possible 

values of the variables i.e., 0 and 1, on each side of the identity.  In each case, 

the left hand side will come out to be equal to the right hand side. 

Example 1.  Prove that (A+B)(A+C)=A+BC 

Sol L.H.S. 

  ( )( )A B A C AA AC BA BC        …Distributive Law 

                         ( A.A=A)A AC AB BC     

    (1 )A B AC BC     

                                  ( 1+B=1)A AC BC    

    =A(1+C)+BC 

    =A+BC=R.H.S. 

Example 2.  Using Boolean Algebra show that 

    AC+ABC=AC  

Sol. L.H.S. 

    AC+ABC=AC(1+B)  

    =AC.1                                            ( 1+B=1)  

    AC=R.H.S                                     ( .1=C)C  

Example 3.  Using Boolean Algebra show that 

    A+ .A B A B   

Sol. L.H.S. 

   A+ . .1 .AB A AB            ( .1 )A A  

     1+B .A A B   

    .1 . .A A B AB     (Distributive law) 

    ( )A B A A       

     (Commutative law and distributive law) 

    .1A B   

    A B   

Example 4.  Reduce AB ABC AB ABC    using laws of Boolean algebra. 

Sol. L.H.S. AB ABC AB ABC    

    = AB ABC AB ABC    (Commutative law) 

    ( ) ( )B A A AC B B     

      (Distributive law and commutative law) 
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    .1 .1                                  ( A+ =B+ =1)B AC A B   

    =B+AC  

   AB+ABC+AB ABC B AC     

Example 5.  Prove that Boolean expression Y ABC ABC ABC    is equal to 

the Boolean expression Y=(B+C). 

Sol. L.H.S. 

   ( )ABC ABC ABC AC B B ABC      

                                      ( B+ =1)AC ABC B   

    ( )A C BC   

    ( )                                     ( C+ = )A B C BC C B    

Example 6.  Show that 

 
( )

( )

i AC ABC AC

ii A AB A

 

 
 

Sol. 

 
( ) (1 )                 ( 1+B=1)

( ) (1 )

i AC ABC AC B AC

ii A AB A B A

   

   
 

Example 7.  Show that 1.A A   

Sol.  This identity can be proved by substituting on both sides, the two possible 

values (0 and 1) of the variable, i.e., A. A can have only two values, 0 and 1. 

 When 0, 0 0 0 1 1.A A A        

 When 1, 1 1 1 0 1.A A A        

Hence 1A A   for all possible values of A. 

Example 8.  Prove the following Boolean identity 

 ( )( )( ) .A B A B A C AC     

Sol. L.H.S. 

  ( )( )( )A B A B A C    

  ( )( )AA AB BA BB A C      

  ( )( )                             ( B =0)A AB AB A C B     

  =[A(1+B)+ ( )AB A C  

  ( )( )                                     ( 1+B=1)A AB A C    
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  =A(1+ )( )B A C  

  ( .1)( )                                           ( 1+ =1)A A C B   

  A( )A C  

  AA AC  

  . .                                                ( A =0)AC R H S A  

5.8  De Morgan’s Theorem  

Theorem 1 

Statement:  The complement of the sum of two or more variables is equal to 

the product of the complements of the variables. 

 For two variables A and B, 

  .A B AB   

Proof:  This theorem can be proved by substituting the two permitted values of 

the variables i.e., 0 and 1 on both sides of the identity. 

 In each case, the left hand side will equal the right hand side, thus 

proving the theorem. 

 Case 1. When 0, 0A B   

    
. . 0 0 0 1.

. . . 0.0 1.1 1.

L H S A B

R H S A B

     

   
 

 Case 2. When  0, 1A B   

    
. . 0 1 1 0.

. . . 0.1 1.0 0.

L H S A B

R H S A B

     

   
 

 Case 3.  When 1, 0A B   

    
. . 1 0 1 0.

. . . 1.0 0.1 0.

L H S A B

R H S A B

     

   
 

 Case 4.  When 1, 1A B   

    
. . 1 1 1 0.

. . . 1.1 0.0 0.

L H S A B

R H S A B

     

   
 

 In every case, left hand side (L.H.S.) is equal to right hand side (R.H.S). 

Therefore, the theorem is proved. 

Theorem 2 

Statement:  The complement of the product of two or more variables is equal 

to the sum of the complements of the variables. 
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 For two variables A and B. 

    .AB A B   

Proof:  This theorem can be proved by substituting the two permitted values of 

the variables i.e., 0 and 1 on both sides of the identity. 

 In each case, the left hand side will equal the right hand side, thus 

proving this theorem. 

 Case 1.  When 0, 0A B   

    
. . . 0.0 0 1.

. . 0 0 1 1 1.

L H S A B

R H S A B

   

      
 

 Case 2.   When 0, 1A B   

    
. . . 0.1 0 1.

. . 0 1 1 0 1.

L H S A B

R H S A B

   

      
 

 Case 3.  When 1, 0A B   

    
. . . 1.0 0 1.

. . 1 0 0 1 1.

L H S A B

R H S A B

   

      
 

 Case 4.  When 1, 1A B   

    
. . . 1.1 1 0.

. . 1 1 0 0 0.

L H S A B

R H S A B

   

      
 

 In every case, left hand side of the expression is equal to right hand side 

of the expression.  Therefore, the theorem is proved. 

5.9  NAND Gates is a Universal gate 

 A NAND gate is known as a universal gate because it can be used to 

realize all the three basic logic functions of an OR gate, ANDN gate and Not 

gate.  Thus, in digital circuits, NAND gate serves as a building block. 

1.  As OR Gate:  OR gate can be made out of the three NAND gates (Fig. 1). 

 

Fig. 1 

However, the OR function may not be very clear from the figure because DE 

Morgan’s theorem is needed to prove that .AB A B   
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2.  As AND Gate: 

An AND gate can be produced by using two NAND gates (Fig. 2). 

 

Fig. 2 

3.  As NOT Gate: 

(i) If the two inputs of a NAND gate are connected together, then we get a 

NOT gate [Fig. 3]. 

 

Fig. 3.1 

(ii) When only single input is used, the circuit symbol of Fig. 3.1 is used. 

5.8.1  NOR gate is a universal gate 

 A NOR gate can be used to realize the basic logic functions: OR, AND 

and NOT.  So NOR gate is also called universal gate.  Thus, in digital circuits, 

NOR gate serves as a building block. 

1.  As OR gate:  An OR gate can be realized by connecting the ouput of a 

NOR gate to an inverter (Fig. 1). 

 

Fig. 1 

 The output of NOR gate is A B  which is inverted by inverter to give 

C = A + B.  This is the logic function of a normal OR gate. 

2. As AND gate:  Twp inverters and a NOR gate are used to get an AND gate 

(Fig. 2). 

 

Fig. 2 
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Here, two inverters are used, one for each input.  The inverted inputs A  and B  

are applied to the NOR gate. 

 The output of NOR is 

   A B AB   (By De Morgan’s Theorem) 

3. As NOT gate: 

(ii) The two inputs of NOR gate are tied together, as shown in Fig. 10.46 (a)  

 

Fig. 3 

The output is .A A  

By De Morgan’s Theorem, 

  A A A   

(ii)  When only single input is used, the circuit symbol of Fig. 10.46 (b) is 

widely used. 

5.10  Karnaugh Map 

 Though the method of factorization could be done by algebraic method, 

still a better method is being followed which is known as Karnaugh Map 

method.  Karnaugh map is a table in which the fundamental products 

corresponding to a truth table is displayed in rows and columns. 

Construction of Karnaugh Map 

(i) For two variables. 

 Consider the truth table shown here in which, the output 1 occurs for 

AB = 0 1 and AB = 1 0.  This indicates that the fundamental products 1AB   

and 1AB   and the Boolean equation is, Y AB AB   

Input Output 

A B Y 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

0 
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 To draw a Karnaugh map for the above given truth table, a diagram as 

shown in the figure IV(a) is drawn in which A  and A are entered in one 

column outside the figure and B and B   are centered in one row above the 

figure.  From the truth table, select the row which have the fundamental 

product value 1 and enter them in the figure.  In the present case, AB=1 and 

1AB   and these are shown in the figure IV(b).  The remaining columns are 

filled with 0s.  Figure IV(c) is the final form of the required Karnaugh map. 

 

   Fig. IV  

(ii) For three variables. 

 Let us assume a truth table as shown here.  The fundamental product 

value 1 occurs for the combinations ABC = 1 0 0 and ABC = 1 1 0.  Thus, 

1ABC   and 1ABC  .  The sum of product is given by 

   Y ABC ABC   

This is the required Boolean equation.  

Input Output 

A B C y 

0 

0 

0 

1 

0 

1 

1 

1 

0 

0 

1 

0 

1 

1 

0 

1 

 

0 

1 

0 

0 

1 

0 

1 

1 

0 

0 

0 

1 

0 

1 

0 

0 

This could be simplified as 

  Y AC B B   

 AC   Since   1B B   
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The Karnaugh map is drawn for this problem in the following way: 

 ,AB  ,AB  AB and AB  are written in a vertical column outside the 

figure and C  and C are written in a horizontal row above the figure.  The four 

combinations of A and B or C and D are chosen in this order only as there is 

only one variable changes form complemented to uncomplemented form or 

vice versa.  This condition is necessary. 

 

  Fig V  

 The fundamental product value 1 is filled in the figure corresponding to 

ABC  and ABC .  The remaining spaces are filled with 0s.  Figure (c) is the 

final form of the required Karnaugh map.  

 By the same procedure Karnaugh map could be drawn for four variables 

also.  Karnaugh map is used to obtain the Boolean equation without actually 

simplifying the algebraic equation.  So, many complicated Boolean equations 

could be simplified by Karnaugh map method. 

5.10.1  Pairs, Quads and Octets 

 In the Karnaugh map shown above, two 1s occur one below the other 

corresponding of ABC and ABC.  In case two combinations, B varies form 

uncomplemented to complemented form.  Whenever such pair occurs it should 

be eliminated. 

Now,   Y ABC ABC   

   AC B B   

  AC  

 

Fig. VI  
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 This value Y AC  could easily be obtained by ignoring the variable 

(here, B) that changes from complemented to uncomplemented form of vice 

versa.  Thus, 

  Y AC  

 The same procedure may also be adopted for a pair occurring along a 

row.  For two 1s occurring diagonally, this procedure is not permitted. 

 In another Karnaugh map for four variables (assumed), two pairs of 1s 

occur for ABCD  & ABCD  and & .ABCD ABCD   The Boolean equation for 

this is given by 

  Y ABCD ABCD ABCD ABCD    . 

 

Fig. VII 

 In the pair occurring in the first row, C changes from complemented to 

uncomplemented form.  Hence, it is ignored.  The sum of product is reduced 

the form .ABD   In the pair occurring in the first column, B changes from 

uncomplemented to complemented form.  Ignoring B, we have the reduced 

form of the sum of products as ACD . 

Thus, the Boolean equation in the simplified form is  

  Y ABD ACD   

 Here, the actual process of going into the algebraic simplification is not 

necessary. 

 Just like the elimination of pairs, a quad could also be eliminated. A 

quad is a group of four 1s, all occurring either along a column or like a 2 X 2 

matrix (square form).  Wherever such a quad occurs it could be eliminated, for 

the reasons explained earlier, and a simple form of Boolean equation could be 

obtained quickly. 

Example :  In the Karnaugh map shown here, first the pair of 1s in the first and 

the second rows, B changes from complemented to uncomplemented form.  

Ignoring B, we get the Boolean equation as .Y ACD   Similarly, for the lower 

pair, ignoring B, the Boolean equation is .Y ACD   Hence, the combined 

Boolean equation is  

  Y ACD ACD   

  CD  
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Fig. VIII 

 Thus, in the case of the occurance of a quad the two changing variable 

lie along the 1s are ignored and the remaining variables is the Boolean equation. 

 In the case of square quad also, two variables that change from 

complemented to uncomplemented or vice versa are removed and a simple 

form of Boolean equation is obtained.  

 In the figure IX shown here, along the row D changes from 

complemented to uncomplemented form and along the column B changes from 

uncomplemented to complemented form.  Eliminating B and D, we have, 

   Y AC  

 

 

Fig. IX 

 An octet (group of 8 adjacent 1s) may also occur in a Kanaugh map.  In 

such a case 3 pairs of variables are removed and only one variable is therein the 

final form of the Boolean equation. 

 Here in the figure X along the column, A changes from complemented 

to uncomplemented form.  Along the row, C and D change from one to another 

form.  Thus, eliminating A, C and D we have the Boolean equation, 

 Y B  

 

Fig. IV - X 
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 It should be remembered that if the same problem is done by algebraic 

simplification it may be a laborious method. 

5.11  Half Adder 

 A logic circuit that adds two bits producing a sum and a carry to be used 

in the next higher positions is called a half-adder. 

 Fig. 5.11(a) shows the circuit of a half-adder.  It consists of an 

EXCLUSSIVE OR gate and an AND gate.  The output of the exclusive OR 

gate is called the SUM, while the output of the AND gate is called the CARRY.  

Fig. 5.11(b) shows the symbol of a half-adder. 

The two inputs A and B represents the bits to be added. 

S and C are the two outputs. 

S represents the output of EXCLUSIVE OR gate. 

C represents the CARRY bit.  It is the output of AND gate. 

With two inputs A and B, there are four distinct cases. 

(I) When A =0 and B =0, 

Carry C = AB =0 

Sum S = 0 0 0.A B     

 

Fig. 5.11 

(II) When A =0 and B =1, 

Carry C = AB = 0.1 = 0 

Sum S = 0 1 1.A B     

(III) When A = 1 and B =0, 

Carry C = AB = 1.0 = 0 

Sum S = 1 0 1.A B     
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(IV) When A = 1 and B =1, 

Carry C = AB =1.1 = 1 

Sum S = 1 1 0.A B     

The truth table for the Half-Adder operation is given in Table 1. 

Truth Table 1 

Input Output 

A B Sum (S) Carry (C) 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

0 

0 

0 

0 

1 

The sum column represents XOR operation. 

The carry column represent the AND operation. 

The Boolean expressions for half-adder operation may be written as, 

 Sum S = A B  

 Carry C = AB. 

2. Full Adder 

 We define full-adder as a logic circuit that adds three bits-two bits to be 

added and a carry bit from previous addition, which results in a sum and a carry. 

 The half-adder accomplishes the first step in the addition of bits.  Two 

half-adders are combined into a full adder, in order to add the carry bits to the 

bit sum.  Let us illustrate this operation by an example. 

  1 1 1 

          + 1 0 1 

  _____________ 

  11 0 0 

 In the least significant column, 

  1+1=10, Sum = 0, Carry =1. 

Thus for this operation, we need as half-adder. 

In the next column, we must add 3 bits because of carry, 

  1+0+1 = 10, Sum =0, Carry =1. 

By connecting two half-adders and an OR gate, we get a full adder (Fig. 

5.11(2)). 
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Fig. 5.11(2). 

It can add three bits at a time.  Fig. 3 shows the symbol of a full-adder.  

It has two inputs A and B, plus a third input C.  Input C is also called the 

CARRY IN (Ci).  In comes from a lower-order column.  There are two outputs, 

Sum and Carry.  The output carry is also called the CARRY OUT (Co). 

 

Fig. 5.11(3) 

It goes to the next higher column. 

The truth-table of a FA is given in Table 2. 

It has three inputs and two outputs. 

Truth Table 2 

Input Output 

A B Ci Sum (S) Carry (Co) 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

0 

1 

0 

0 

1 

0 

0 

0 

1 

0 

1 

1 

1 

 

Here Ci represents a carry from a preceding stage. 

Co represents the carry to be added to the next stage. 
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Working 

 To illustrate its operation, let us take two examples 

7. A =1, B =1, Ci=0 

Fig. 5.11(4) shows the full adder with these three inputs. 

 

Fig. 5.11(4) 

(i) The output of first half adder consists of a sum of 0 with a carry of 1. 

(ii) The sum 0 of first half adder and carry 0 when fed to the second half 

adder, give a sum of 0 with a carry of 0. 

(iii) The carry outputs of both the half adders is fed into the input of OR 

gate. 

The final output is SUM 0, CARRY 1. 

We get the same result from binary addition: 1+1+0 = 102. 

8. A =1, B=1, Ci=1. 

(i) The output of the first half adder is a sum of 0 with a carry 1 (Fig 

5.11(5)). 

(ii) The output of second half adder is a sum of 1 with a carry of 0. 

(iii) The final output is SUM 1 with a CARRY 1. 

We get the same result from binary addition: 1+1+1 = 112. 

 

Fig. 5.11(5) 

5.12  Half Subtractor 

 A logic circuit, which subtracts two binary bit is called a half subtractor.  

It contains two inputs and two outputs (Difference and Borrow).  The truth 

table of half subtractor is shown in the fig. 5.12 (a) 

A B Diff. Borrow 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

0 

0 

1 

0 

0 
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(a) truth table 

 

Fig. 5.12(a) Half subtractor 

 From the truth table, the difference and borrow will be written in the 

form of “sum of products” as. 

 Difference = AB  + AB  A B   

 Borrow = AB  

The logic diagram for half subtractor is shown in fig. 5.12 (b) 

Full Subtractor 

A B C Diff Bo 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

0 

1 

0 

0 

1 

0 

1 

1 

1 

0 

0 

0 

1 

(a) truth table 

 

(b) Fig. 5.12 Logic Diagram 
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Fig. Full subtractor 

A logic circuit, which subtracts three binary bits is called full subtractor.  

It contains three inputs and two outputs.  The truth table of full subtractor is 

shown in the Fig 5.14 (a) 

From the truth table, the Difference and Borrow will be written in the 

form of “sum of products” as follows. 

 Difference = ABC ABC ABC ABC    

  .A B C    

 Borrow = ABC ABC ABC ABC    

   =  ABC ABC BC A A      ( A+ =1)A  

   ( )A BC BC BC    

   ( )A B C BC    

 The logic diagram of full subtractor is shown in the fig. 5.14  

 The difference output is 0 whenever the inputs A and B are the same; 

the difference output is 1 whenever A and B are different.  So, we can use an 

exclusive-OR gate to produce the difference output.  Second, the borrow output 

is 1 only when A is 0 and B is 1.  We can get this borrow output by ANDing A  

and B. 

 Figure 5-13 shows one way to build a half-subtractor, a circuit that 

subtracts one binary digit from anotherYou can see there will be a borrow only 

when A =0 and B =1.  Further, the difference output will be correct for each of 

the four possible A – B combinations. 

 The half-subtractor handles only 2 bits at a time and can be used for the 

least significant column of a subtraction problem.  To take care of a higher-

order column, we need a full-subtractor.  Fig. 5.14 shows a full-subtractor; it 

uses two half-subtractors and an OR gate. 

 Half-and full – subtractors are analogous to half- and full – adders; by 

cascading half- and full-subtractors as shown in Fig. 5.14, we have a system 

that directly subtracts B3B2B1B0 from A3A2A1A0. 

 

Fig. 5-13 Half-subtractor 
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Fig. 5-14.  Full subtractor. 

 

Fig. 5.15. Parallel 4-bit binary subtractor. 

 The adders and subtractors give us the basic circuits needed for binary 

arithmetic; multiplication and division can be done by repeated additions and 

subtractions (discussed in later chapters, after we have studied registers). 

Questions 

1. Explain the construction and working of a FET? 

2. How will you determine the drain characteristics of FET?  What do they 

indicate? 

3. Briefly describe some practical applications of FET? 

4. Write short notes on the advantages of FET? 

5. Explain the construction and working of an SCR? 

6. Draw the V-I characteristics of an SCR.  What do you infer from them? 

7. Explain the action of an SCR as a switch.  What are the advantages of 

SCR switch over a mechanical or electro-mechanical switch? 

8. Discuss some important applications of SCR? 

9. Explain the construction and working of a UJT? 

10. Discuss UJT working from the circuit. 

11. Describe some important application of a UJT? 

12. What is binary number system?  How does it differ from decimal 

number system?  Why is the binary number system used in computers? 

13. What are binary numbers?  Explain with illustrations the methods of 

conversion from decimal to binary and binary to decimal numbers. 
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14. What are octal and hexadecimal number system? 

15. What is Boolean algebra?  Mention its unique feature.  Discuss the 

fundamental laws of Boolean algebra. 

16. Write and explain the Boolean expressions for OR, AND and NOT 

circuits. 

17. State and prove De Morgan’s theorems.  

18. State the rules for binary multiplication. 

19. What is a multivibrator? Explain the principle on which it works. 

20. With a neat sketch, explain the working of (i) astable multivibrator (ii) 

monostable multivibrator (iii) bistable multivibrator. 

21. What is the basic difference among the three types of multivibrators? 

22. What is Karnaugh map?  Explain how is it constructed for (i) 2 

variables (ii) 3 variables and 4 variables. 

23. Explain the terms pairs, quads and octets. Explain their use in Karnaugh 

mapping. 

24. Explain NAND, NOR gates as universal building blocks? 
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