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INTEGER LINEAR PROGRAMMING 

     

Objectives: 

     After studying this unit, students should be able to learn the limitations of 

simplex method in deriving integer solution to LPP. Apply cutting plane methods to 

obtain optimal integer solution value of variables in an LPP. Apply Branch and Bound 

method to solve integer LPP. Appreciate application of integer LPP problem in 

several areas of managerial decision-making.  
      Make distinction between linear programming and dynamic programming 

approaches for solving a problem. Develop recursive function based on Bellmain’s 

principle of optimality to get an optimal solution of any multi-stage decision problem. 

To learn various dynamic programming models and their applications in solving a 

decision-problem. Solve an LPP using the dynamic programming approach. 

 

1.1 Introduction 

     In linear programming each decision variable as well as slack or surplus 

variable is allowed to take any real value (fractional also). However, there are some 

real-life problems in which the fractional value of the decision variable has no 

significant. 

     For example, 1.5 men will be working on a project or 1.8 machine will be 

used in a workshop are meaningless. The integer solution to a problem can be 

obtained by the rounding off optimum solution of the variable. But this solution 

may not satisfy all the given constraints. Integer Linear Programming (ILP) 

deals with linear programme in which some or all of the variables assume 

integer values. 
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1.2 Types of Integer Programming Problem (ILPP) 

             ILPP can be classified in to three categories 

Pure Integer Programming Problem 

       An LPP, in which all decision variables are required to have integer values 

is called pure (all) integer programming problem. 

Mixed Integer Programming Problem 

     An LPP, in which some, but not all of the decision variables are required 

to have integer values is called a mixed integer programming problem. 

0-1 Integer Programming Problem 
 

     An LPP, in which all decision variables must have integer value of 0 or 1 

is called a zero – one integer programming problem. 

General Model of an ILPP 

𝑀𝑎𝑥 (𝑜𝑟) 𝑀𝑖𝑛𝑍 = 𝑐1𝑥1+𝑐2𝑥2+⋯+ 𝑐𝑛𝑥𝑛 

Subject to the constraints, 

𝑎𝑖1𝑥1+𝑎𝑖2𝑥2+⋯+𝑎𝑖𝑛𝑥𝑛 ≤ (𝑜𝑟) = (𝑜𝑟) ≥ 𝑏𝑖, ∀𝑖=1 𝑡𝑜 𝑚𝑥𝑗≥0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠, j =1 

𝑡𝑜 𝑛. 

1.3 Enumeration and Cutting Plane Solution Concept 

The Cutting- plane method to solve integer LP problem. This method is based on   

creating a sequence of linear inequalities called cuts. Such a cut reduces a part of 

the feasible region of the given LP problem, leaving out a feasible region of the 

integer LP problem. The hyper plane boundary of a cut is called the cutting plane. 

 Solution Procedure 

Relax the solution space of the integer problem by ignoring the integer restrictions. 

This step converts ILPP into a regular LPP. 

Solve the resulting relaxed LPP and identify its optimum point. 
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  Starting from the optimum point add special constraints  that  will iteratively 

force the optimum extreme point of the resulting LPP towards the integer 

restrictions. 

Methods to solve ILPP 

Gomory’s Cutting Plane Method – Branch and Bound Method 

1.4 Gomory’s All Integer Cutting Plane Method 

      (Or) Fractional Algorithm 

     Gomory’s Cutting Plane method was developed by R.E.Gomory in 1956 

to solve ILPP using dual – simplex method. This algorithm has the following 

properties: 

      Additional linear constraints never cut-off that portion of the original feasible 

solution space that contains the feasible integer solution to the original 

problem. 

Each new additional constraint cuts-off the current non–integer optimal solution 

to the LPP. 

Algorithm: 

Step-1: Solve the LPP by simplex method ignoring integer requirement of the 

variables. 

Step-2: Test for Optimality: 

Examine the optimal solution. If all the given variables have the integer 

values then the integer optimum solution is obtained and the procedure can 

be terminated. 

If one or more basic variables with integer requirement with fractional value 

then go to Step (3). 
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 Step-3: Generate Cutting Plane: 

   Choose row ‘𝑟' corresponding to a variable 𝑥𝑟 which has largest fractional    

   value 𝑓𝑟. 

  Let r t h  constraint equation be, 

 

    𝑥𝑟 + ∑ 𝑎𝑟𝑗𝑥𝑗𝑗≠𝑟 = 𝑏𝑟 …… (1) (j = 1 to n) 

 

  Decompose the coefficients of 𝑥j variables and 𝑏𝑟 of equation (1) into integer and     

  non-negative fractional part as follows: 

𝑥𝑟 +∑{[𝑎𝑟𝑗] + 𝑓𝑟𝑗}𝑥𝑗
𝑗≠𝑟

= [𝑏𝑟] + 𝑓𝑟 

 

The corresponding Gomory’s cutting Plane constraint is, 

𝑠𝑔 −∑𝑓𝑟𝑗𝑥𝑗
𝑗≠𝑟

= −𝑓𝑟 

Where 𝑆g is non-negative slack variable, 0<𝑓𝑟𝑗<1 𝑎𝑛𝑑 0<𝑓𝑟<1. 

 
Step-4: Obtain the New Solution: 

Add the cutting plane constraint at the bottom of the optimum simplex table. 

Find new optimal solution by using dual – simplex method. The process is 

repeated until all the basic variable with integer requirements assume non – 

negative integer values. 

Remark:  A basic requirement for the application of this algorithm is that all the 

coefficients and the R.H.S constants of each constraint must be integer .For 

example, the constraint, 

𝑥1 +
1

2
𝑥2 ≤

7

3
  should be transformed to  6𝑥1 + 3𝑥2 ≤ 14.    

Where no fractions are present. 
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Example1.4.1Find optimum integer solution to the following ILPP 

                         𝑀𝑎𝑥𝑍=2𝑥1+2x2 

𝑆𝑢𝑏j𝑒𝑐𝑡 𝑡𝑜, 5x1+3x2≤8 

                                       2x1+4x2≤8  

             𝑥1, 𝑥2 ≥ 0  &  integers. 

Solution: After ignoring the integer restrictions, the standard LPP is, 

 

                                       𝑀𝑎𝑥𝑍=2x1+2x2+0x3+0x4 

𝑆𝑢𝑏j𝑒𝑐𝑡 𝑡𝑜,  5𝑥1 + 3𝑥2 + 𝑥3 = 8 

                                2𝑥1 + 4𝑥2 + 𝑥4 = 8 

                                𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 

Applying simplex algorithm,
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 All 𝐶j−𝑍j≤0 𝑎𝑛𝑑 𝑥B≥0. Hence, solution is optimum and feasible. 

 
Optimum solution after ignoring integer restrictions, 

 

𝑥1 =
4

7
 ,𝑥2 =

12

7
 and 𝑍𝑚𝑎𝑥 =

32

7
 

 

Now,                                    𝑥1 =
4

7
= 0 +

4

7
(𝑓1)  and 𝑥2 =

12

7
= 1 +

5

7
(𝑓2) 

                                                          Max {𝑓1, 𝑓2} = 
5

7
 

The maximum fraction is  
5

7
 , corresponding to 𝑥2 . Consider 𝑥2 equation for fractional cut.  

The 𝑥2 equation is, 𝑥2 −
1

7
𝑥3 +

5

14
𝑥4 =

12

7
    𝑥2 + (−1 +

6

7
) 𝑥3 + (0 +

5

14
) 𝑥4 = 1 +

5

7

 

The corresponding fractional cut equation is, 𝑠1 −
6

7
𝑥3 −

5

14
𝑥4 = −

5

7
 

Including this constraint in the optimum table and applying dual simplex algorithm, 

we get,
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All Cj − Zj≤0 𝑎𝑛𝑑 𝑥𝐵≥0. Hence, solution is optimum and feasible. 

 
Optimum solution after ignoring integer restriction, 

𝑥1 =
1

3
 , 𝑥2 =

11

6
 , 𝑥3 =

5

6
 𝑎𝑛𝑑 𝑍𝑚𝑎𝑥 =

13

3
 

 
Still the basic variables are non–integer. 
 
 

Now,               

𝑥1 =
1

3
= 0 +

1

3
(𝑓1) 

𝑥2 =
11

6
= 1 +

5

6
(𝑓2) 

𝑥3 =
5

6
= 0 +

5

6
(𝑓3) 

Max  {𝑓1, 𝑓2, 𝑓3} =
5

6
 

The maximum fraction is  
5

6
 , corresponding to  x2 and x3 , consider x2 for fractional cut. 

The x2 equation is, 𝑥2 +
5

12
𝑥4 −

1

6
𝑠1 =

11

6
 

𝑥2 + (0 +
5

12
) 𝑥4 + (−1 +

5

6
) 𝑠1 = 1 +

5

6
 

The corresponding fractional cut equation is, 𝑠2 −
5

12
𝑥4 −

5

6
𝑠1 = −

5

6
 . Including this 

constraint in the optimum table and applying dual simplex algorithm, we get 

 

 𝐶j 2 2 0 0 0 0  

𝐶𝐵 B.V 𝑥1 𝑥2 𝑥3 𝑥4 𝑠1 𝑠2 𝑥𝐵 

2 𝑥1 1 0 0 
1 

−
3
 

1 
 

3 
0 

1 
 

3 

2 𝑥2 0 1 0 
5 

 

12 

– 1 
 

6 
0 

11 
 

6 

0 𝑥3 0 0 1 
5 

 

12 
−
7

6
 0 

5 
 

6 

0 𝑠2 0 0 0 −
5

12
 −

5

6
 1 −

5

6
 

𝑍j=𝐶𝐵𝑥j 2 2 0 
1 

 

6 

1 
 

3 0 
13 

 

3 

𝐶j−𝑍j 0 0 0 −
1

6
 −

7

3
 0 - 
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Ratio - - - 
2 

 

5 

2 
 

5 
- - 

2 𝑥1 1 0 0 −
1

2
 0 

2 
 

5 
0 

2 𝑥2 0 1 0 
1 

 

2 
0  

−
1

5
 

2 

0 𝑥3 0 0 1 1 0 −
7

5
 2 

0 𝑠1 0 0 0 
1 

 

2 
1 −

6

5
 1 

𝑍j=𝐶𝐵𝑥j 2 2 0 0 0 
2 

 

5 
4 

𝐶j−𝑍j 0 0 0 0 0 −
2

5
 - 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 

All Cj − Zj≤0 𝑎𝑛𝑑 𝑥𝐵≥0.Hence, solution is optimum and feasible. Also the basic 

variables are integers. 

Optimum integer solution is, 𝑋1 ,𝑋2 𝑎𝑛𝑑 Max 𝑍= 4 

 
Example1.4.2 Find optimum integer solution to the following ILPP 

 
𝑀𝑎𝑥𝑍=𝑥1+ 𝑥2 

𝑆𝑢𝑏j𝑒𝑐𝑡 𝑡𝑜, 3𝑥1 + 2𝑥2 ≤ 15 ; 𝑥3 ≤ 2;  𝑥1, 𝑥2 ≥ 0 & 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠. 

Solution: The standard LPP is, MaxZ = x1 + x2 + 0x3 + 0x4 

𝑆𝑢𝑏j𝑒𝑐𝑡 𝑡𝑜,                                 3𝑥1 + 2𝑥2 + 𝑥3 = 15 ; 

𝑥2 + 𝑥4 = 2 ; 

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ≥ 0 
 

 

 
Applying the simplex algorithm, after ignoring the integer restrictions, 
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All𝐶j− 𝑍j≤ 0, the present solution is optimum. Optimum solution after ignoring integer 

restrictions, 

x1 =
11

3
 , x2 = 2 and Zmax =

17

3
 

 

Now, x1 =
11

3
= 3 +

2

3
(𝑓1) and 𝑥2 = 2 

 
Consider 𝑥1 equation for fractional cut. 

The𝑥2equation is,   𝑥1 +
1

3
𝑥3 −

2

3
𝑥4 =

11

3
 

    x1 + (0 +
1

3
) x3 + (−1 +

1

3
) x4 = 3 +

2

3
 

 

The corresponding fractional cut equation is s1 −
1

3
x3 −

1

3
x4 = −

2

3
 

 

Including the constraint in the optimum table and applying dual simplex algorithm, we get
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All 𝐶j−𝑍j ≤ 0 𝑎𝑛𝑑 𝑥B ≥ 0. 

  

Hence, solution is optimum and feasible. Also the basic variables are 

integers.Optimum integer solution is, 𝑥1 = 3, 𝑥2 = 2 , 𝑎𝑛𝑑 Max 𝑍 = 5 

Let Us Sum Up 
 
    We have learned about Integer linear Programming problem and its types and also to 

find the solutions of ILPP by using Gomary’s all integer cutting plane method. 

 

Check Your Progress  

 

Find the optimum integer solution to the following ILPP 

1.       Max Z = 2𝑥1 + 3𝑥2 
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         Subject to,  5𝑥1 + 7𝑥2 ≤ 15 

                             4𝑥1 + 9𝑥2 ≤ 20 ; 

                                    𝑥1 , 𝑥2 ≥ 0  and  integers. 

2. Max Z = 2𝑥1 + 20𝑥2 − 10𝑥3 

Subject to,  2𝑥1 + 20𝑥2 + 4𝑥3 ≤ 15; 

                        6𝑥1 + 20𝑥2 + 4𝑥3 = 20 ; 

                                   𝑥1, 𝑥2, 𝑥3 ≥ 0 and  integers. 

3. Max Z = 7𝑥1 + 9𝑥2 

Subject to, −𝑥1 + 3𝑥2 ≤ 6 ; 

                     7𝑥1 + 𝑥2 ≤ 35;  

                                 𝑥1, 𝑥2 ≥ 0 and  integers. 

4. Max Z = 3𝑥1 + 12𝑥2 

Subject to,  2𝑥1 + 4𝑥2 ≤ 7 ;  

                   5𝑥1 + 3𝑥2 ≤ 15 

                          𝑥1 , 𝑥2 ≥ 0 and  integers. 
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1.5 Gomory’s Mixed Integer Programming Algorithm  

Step-1: Initialization 

Solve the LPP by Simplex Method after ignoring integer requirements of the variables. 

Step-2: Test for Optimality 
 

Examine the optimal solution. If all the integer restricted basic variable have integer 

value can terminate the procedure. 

If some of the integer restricted basic variables are not integers then go to step-3 

Step-3: Generate Cutting Plane 

Choose a row ‘𝑟' corresponding to a basic variable 𝑥𝑟 that has the largest fractional 

value 𝑓𝑟, among the integer restricted basic variables. 

Let the 𝑟𝑡ℎ constraint equation be, 

 

xr + ∑ arj xj
j∈R+

+ ∑ arj xj
j∈R−

= br = [br] + fr 

 
where, 𝑅+ = {j ∶ 𝑎𝑟𝑗 ≥ 0} = {𝑠𝑒𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑠 ′j′ 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑗 ≥ 0} 

 
               𝑅− = {j ∶ 𝑎𝑟𝑗 j < 0} = {𝑠𝑒𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑠 ′j′ 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑗 < 0} 

 
Corresponding the fractional cut equation is, 

Sg −∑ arj xjj∈R+ − (
fr

fr−1
)∑ arj xjj∈R− = −fr, where 0 < 𝑓𝑟 < 1, 

Step-4: Obtain the new solution 

Include the cutting plane generated in step-3 to the bottom of the simplex table. Find 

a new optimal solution by using dual simplex method. The process is repeated until 

all integer restricted basic variables are integers.  

Example 1.5.1 Solve Max Z =  −3x1 + x2 + 3x3 

                     Subject to, −𝑥1 + 2𝑥2 + 𝑥3 ≤ 4 ;  2𝑥2 −
3

2
𝑥3 ≤ 1 ; 𝑥1 − 3𝑥2 + 2𝑥3 ≤ 3 

                     𝑥1 , 𝑥2 ≥ 0  𝑎𝑛𝑑  𝑥3 is non – negative integer. 

Solution: The standard LPP is, 

  Max Z =  −3x1 + 𝑥2 + 3𝑥3 + 0𝑥4 + 0𝑥5 + 0𝑥6 

𝑆𝑢𝑏j𝑒𝑐𝑡 𝑡𝑜∶ −𝑥1 + 2𝑥2 + 𝑥3 + 𝑥4 = 4 ; 
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                                  2𝑥2 −
3

2
𝑥3 + 𝑥5 = 1 ; 

                         𝑥1 − 3𝑥2 + 2𝑥3 + 𝑥6 = 3;  

                    𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 ≥ 0 

 

Ignoring the integer restrictions then the simplex table, we get 

 

All 𝐶j − 𝑍j ≤ 0, the Optimum solution is, 

x1 = 0 , x2 =
5

7
 , x3 =

18

7
 , x4 = 0 , x5 =

24

7
 , Max Z =

59

7
  

Here, x3 is not an integer, hence consider x3 equation for fractional cut. 

x3 equation is, x3 −
1

7
x1 +

3

7
x4 +

2

7
x6 =

18

7
= 2 +

4

7
 

 𝐶j -3 1 3 0 0 0   

𝐶𝐵 B.V 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥𝐵 Ratio 

0 𝑥4 -1 2 1 1 0 0 4 4 

0 𝑥5 0 2 −3⁄2
 0 1 0 1 - 

0 𝑥6 1 -3 2 0 0 1 3 3⁄2
 

𝑍j = 𝐶𝐵𝑥j 0 0 0 0 0 0 0  

𝐶j − 𝑍j -3 1 3 0 0 0 

0 𝑥4 
−3⁄2

 7⁄2
 0 1 0 −1⁄2

 5⁄2
 5⁄7

 

0 𝑥5 
3⁄4

 −1⁄4
 0 0 1 3⁄4

 13⁄4
 - 

3 𝑥3 
1⁄2

 −3⁄2
 1 0 0 1⁄2

 3⁄2
 - 

𝑍j = 𝐶𝐵𝑥j 
3⁄2

 −9⁄2
 3 0 0 3⁄2

 9⁄2
  

𝐶j − 𝑍j 
−9⁄2

 11⁄2
 0 0 0 −3⁄2

 - 

1 𝑥2 
−3⁄7

 1 0 2⁄7
 0 −1⁄7

 5⁄7
  

0 𝑥5 
9⁄14 0 0 1⁄14 1 5⁄7

 24⁄7
 

3 𝑥3 
−1⁄7

 0 1 3⁄7
 0 2⁄7

 18⁄7
  

𝑍j = 𝐶𝐵𝑥j 
−6⁄7

 1 3 11⁄7
 0 5⁄7

 59⁄7
 

 

𝐶j − 𝑍j 
−15⁄7

 0 0 −11⁄7
 0 −5⁄7

 - 
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Here 𝑅+ = {4, 6} and 𝑅− = {1} 

 
The Gomory’s fractional cut equation is, 

                                           s1 −
3

7
x4 −

2

7
x6 − (

4

7
4

7
−1
) (−

1

7
x1) = −

4

7
 

𝑠1 −
3

7
𝑥4 −

2

7
𝑥6 + (

4

3
) (−

1

7
𝑥1) = −

4

7
 

𝑠1 −
3

7
𝑥4 −

2

7
𝑥6 −

4

21
𝑥1 = −

4

7
 

 
Put this equation in the optimum table as last row and applying dual simplex 

algorithm, we get, 

 

 𝐶j -3 1 3 0 0 0 0  

𝐶𝐵 B.V 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑠1 𝑥𝐵 

1 𝑥2 
−3⁄7

 1 0 2⁄7
 0 −1⁄7

 0 5⁄7
 

0 𝑥5 
9⁄14 0 0 1⁄14 1 5⁄7

 0 24⁄7
 

3 𝑥3 
−1⁄7

 0 1 3⁄7
 0 2⁄7

 0 18⁄7
 

0 𝑠1 
−4⁄21

 0 0 −3⁄7
 0 −2⁄7

 1 −4⁄7
 

𝑍j = 𝐶𝐵𝑥j 
6⁄7

 1 3 11⁄7
 0 5⁄7

 0 59⁄7
 

𝐶j − 𝑍j 
−15⁄7

 0 0 −11⁄7
 0 −5⁄7

 0 - 

Ratio 45⁄4
 - - 11⁄3

 - 5⁄2
 -  

1 𝑥2 
−1⁄3

 1 0 1⁄2
 0 0 

−1⁄2
 1 

0 𝑥5 
1⁄6

 0 0 −1 1 0 
5⁄2

 2 

3 𝑥3 
−1⁄3

 0 1 0 0 0 1 2 

0 𝑥6 
2⁄3

 0 0 3⁄2
 0 1 

−7⁄2
 2 

𝑍j = 𝐶𝐵𝑥j 
−4⁄3

 1 3 1⁄2
 0 0 

5⁄2
 7 

𝐶j − 𝑍j 
−5⁄3

 0 0 −1⁄2
 0 0 

−5⁄2
 

 
All 𝐶j − 𝑍j ≤ 0 𝑎𝑛𝑑 𝑥𝐵 ≥ 0.  
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Hence, solution is optimum and feasible. Also, the basic variable 𝑥3 is an integer. 

The Optimum solution is, x1 = 0 , x2 = 1 , x3 = 2 ,Max Z = 7. 
 
Example 1.5.2: Solve: Max Z = 4𝑥1 + 6𝑥2 + 2𝑥3 

Subject to, 4𝑥1 − 4𝑥2 ≤ 5 ;  

                 −𝑥1 + 6𝑥2 ≤ 5 ; 

           −𝑥1 + 𝑥2 + 𝑥3 ≤ 5; 

                              𝑥2 ≥ 0  & 𝑥1 , 𝑥3 are non-negative integers. 

Solution: 

The standard LPP is, Max Z = 4x1 + 6x2 + 2x3 + 0x4 + 0x5 + 0x6 

Subject to, 4𝑥1 − 4𝑥2 + 0𝑥3 + 𝑥4 = 5 

                               𝑥1 + 6𝑥3 + 𝑥5 = 5  

                      −𝑥1 + 𝑥2 + 𝑥3 + 𝑥6 = 5  

                    𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 ≥ 0 

Ignoring the integer restrictions and applying simplex method, we get 

 𝐶j 4 6 2 0 0 0   

𝐶𝐵 B.V 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥𝐵 Ratio 

0 𝑥4 4 -4 0 1 0 0 5 - 

0 𝑥5 -1 6 0 0 1 0 5 5/6 

0 𝑥6 -1 1 1 0 0 1 5 5⁄1
 

𝑍j = 𝐶𝐵𝑥j 0 0 0 0 0 0 0  

𝐶j − 𝑍j 4 6 2 0 0 0 

0 𝑥4 
10⁄3

 0 0 1 2/3 0 25⁄3
 5⁄2

 

 

6 𝑥2 
−1⁄6

 1 0 0 1/6 0 5⁄6
 - 

0 𝑥6 
−5⁄6

 0 1 0 -1/6 1 25⁄6
 - 

𝑍j = 𝐶𝐵𝑥j -1 6 0 0 1 0 5  

𝐶j − 𝑍j 5 0 2 0 -1 0 - 

4 𝑥1 1 0 0 3⁄10 1/5 0 5⁄2
  

6 𝑥2 0 1 0 1⁄20 1/5 0 5⁄4
 

0 𝑥6 0 0 1 1⁄4
 0 1 25⁄4
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𝑍j = 𝐶𝐵𝑥j 4 6 0 3/2 2 0 35⁄2
  

𝐶j − 𝑍j 0 0 2 − 3⁄2 -2 0 - 

4 𝑥1 1 0 0 3⁄10 1/5 0 5⁄2
  

6 𝑥2 0 1 0 1⁄20 1/5 0 5⁄4
 

2 𝑥3 0 0 1 1⁄4
 0 1 25⁄4

 

𝑍j = 𝐶𝐵𝑥j 4 6 2 2 2 2 30  

𝐶j − 𝑍j 0 0 0 -2 -2 -2 - 

 
All 𝐶𝑗 − 𝑍𝑗 ≤ 0, the Optimum solution, after ignoring integer restriction is, 

 

𝑥1 =
5

2
 , 𝑥2 =

5

4
 , 𝑥3 =

25

4
 , 𝑥4 = 0 , 𝑥5 = 0 , 𝑥6 = 0 , Max Z = 30 

Here, 𝑥1 & 𝑥3 are restricted to take integer values, here both are not integers. 

𝑥1 =
5

2
= 2 +

1

2
(𝑓1) 

𝑥3 =
25

4
= 6 +

1

4
(𝑓2) 

Max {𝑓1 , 𝑓2} = {
1

2
 ,
1

4
} =

1

2
 corresponding to 𝑥1 

Hence consider 𝑥1 equation for fractional cut. 

𝑥1 equation is, 𝑥1 +
3

10
𝑥4 +

1

5
𝑥5 =

5

2
= 2 +

1

2
 

Here 𝑅+ = {4 , 5} , 𝑅− = { } 

The Gomory’s fractional cut equation is, 𝑠1 −
3

10
𝑥4 −

1

5
𝑥5 = −

1

2
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Include this equation in the optimum table as last row and applying dual 

simplex algorithm, we get 

 

All  𝐶𝑗 − 𝑍𝑗 ≤ 0 𝑎𝑛𝑑 𝑥𝐵 ≥ 0. Hence, solution is optimum and feasible. 

x1 = 2 , x2 =
7

6
 , x3 =

35

6
 , x4 =

5

3
 , x5 = 0 , x6 = 0 ,Max Z =

80

3
  

Here, x1 & x3 are restricted to take integer values, but x3 is not integer.  

Hence consider x3 equation for fractional cut. 

x3 equation is, x3 −
1

6
x5 + x6 +

5

6
s1 =

35

6
= 5 +

5

6
 

Here 𝑅+ = {6 , 1} , 𝑅− = {5} 

The Gomory’s fractional cut equation is, s2 − {x6 +
5

6
s1} − (

5

6
5

6
−1
)(−

1

6
) x5 = −

5

6
 

Include this equation in the optimum table as last row and applying dual 

 𝐶j 4 6 2 0 0 0 0  

𝐶𝐵 B.V 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑠1 𝑥𝐵 

4 𝑥1 1 0 0 3⁄10 1/5 0 0 5⁄7
 

6 𝑥2 0 1 0 1⁄20 1/5 0 0 24⁄7
 

2 𝑥3 0 0 1 1⁄4
 0 1 0 18⁄7

 

0 𝑠1 0 0 0 −3⁄10
 -1/5 0 1 −1⁄2

 

𝑍j = 𝐶𝐵𝑥j 4 6 2 2 2 2 0 30 

𝐶j − 𝑍j 0 0 0 -2 -2 -2 0 - 

Ratio - - - −20⁄3
 -10 - -  

4 𝑥1 1 0 0 0 0 0 1 2 

6 𝑥2 0 1 0 0 1/6 0 1/6 7/6 

2 𝑥3 0 0 1 0 -1/6 1 5/6 35/6 

0 𝑥4 0 0 0 1 2/3 0 
−10⁄3

 
5/3 

𝑍j = 𝐶𝐵𝑥j 4 6 2 0 2/3 2 20⁄3
 80/3 

𝐶j − 𝑍j 0 0 0 0 -2/3 −2 
−20⁄3
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simplex algorithm, we get, 

 
 

The Optimum solution is, 𝑥1 = 2 , 𝑥2 = 1 , 𝑥3 = 6 and Max Z = 26. 
 
 
 
 
 
 
 
 
 
 
 

 𝐶j 4 6 2 0 0 0 0 0  

𝐶𝐵 B.V 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑠1 𝑠2 𝑥𝐵 

4 𝑥1 1 0 0 0 0 0 1 0 2 

           

6 𝑥2 0 1 0 0 1/6 0 1/6 0 7/6 

2 𝑥3 0 0 1 0 -1/6 1 5/6 0 35/6 

0 𝑥4 0 0 0 1 2/3 0 
−10⁄3

 0 5/3 

0 𝑠2 0 0 0 0 -5/6 -1 -5/6 1 -5/6 

𝑍j = 𝐶𝐵𝑥j 4 6 2 0 2/3 2 20⁄3
 0 80/3 

𝐶j − 𝑍j 0 0 0 0 -2/3 −2 
−20⁄3

 0 - 

Ratio - - - - -4/5 2 -8 -  

4 𝑥1 1 0 0 0 0 0 1 0 2 

6 𝑥2 0 1 0 0 0 0 0 1/5 1 

2 𝑥3 0 0 1 0 0 1 1 -1/5 6 

0 𝑥4 0 0 0 1 0 0 -4 4/5 1 

0 𝑥5 0 0 0 0 1 -6/5 1 -6/5 1 

𝑍j = 𝐶𝐵𝑥j 4 6 2 0 0 2 6 4/5    26 

𝐶j − 𝑍j 0 0 0 0 0 −2 -6 -4/5 
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Example 1.5.3 Find  optimum solution to the following ILPP 
 
Max Z = 7𝑥1 + 9𝑥2 

Subject to,  −𝑥1 + 3𝑥2 ≤ 6 ; 

                      7𝑥1 + 𝑥2 ≤ 35 ; 

                                 𝑥2 ≥ 0 & 𝑥1 is an integer. 

Solution:  

The standard LPP is, Max Z = 7𝑥1 + 9𝑥2 + 0𝑥3 + 0𝑥4 

Subject to, −𝑥1 + 3𝑥2 + 𝑥3 ≤ 6 ; 

                     7𝑥1 + 𝑥2 + 𝑥4 ≤ 35;  

                      𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ≥ 0 

Applying the simplex algorithm, after ignoring the integer restrictions, 

  

 𝐶j 7 9 0 0   

𝐶𝐵 B.V 𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝐵 Ratio 

0 𝑥3 -1 3 1 0 6 
6 

 

3 

0 𝑥4 7 1 0 1 35 35 

𝑍j = 𝐶𝐵𝑥j 0 0 0 0 0  

𝐶j − 𝑍j 7 9 0 0 

9 𝑥2 
−1⁄3

 
1 

1⁄3
 

0 2 -- 

0 𝑥4 
22⁄3

 
0 

−1⁄3
 

1 33 
9 

 

2 

𝑍j = 𝐶𝐵𝑥j -3 9 3 0 18  

𝐶j − 𝑍j 10 0 -3 0 

9 𝑥2 0 1 
7⁄22 

1⁄22 
7⁄2

  

7 𝑥1 1 0 −1⁄22
 

3⁄22 
9⁄2

 

𝑍j = 𝐶𝐵𝑥j 7 9 
28⁄11

 15⁄11
 

63 

 
 

 

𝐶j – 𝑍j 0 0 
−28⁄11

 −15⁄11
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All 𝐶j − 𝑍j ≤ 0,  the present solution is optimum. Optimum solution after ignoring 

integer restrictions, 

𝑥1 =
9

2
 ,    𝑥2 =

7

2
  𝑎𝑛𝑑  𝑍𝑚𝑎𝑥 = 63 

Now, 𝑥1 is restricted to take integer value, bet it is not integer. 

Consider 𝑥1 equation for fractional cut. 

The 𝑥1 equation is, 𝑥1 −
1

22
𝑥3 +

3

22
𝑥4 =

9

2
= 4+

1

2
 

The corresponding fractional cut equation is, 

𝑠1 −
3

22
𝑥4 − (

1
2

1
2 − 1

)(−
1

22
)𝑥3 = −

1

2
 

𝑠1 −
3

22
𝑥4 −

1

22
𝑥3 = −

1

2
 

 

Including this constraint in the optimum table and applying dual simplex 

algorithm, we get 

 

 
𝐶j 7 9 0 0 0  

𝐶𝐵 B.V 𝑥1 𝑥2 𝑥3 𝑥4 𝑠1 𝑥𝐵 

9 𝑥2 0 1 
7⁄22 

1⁄22 0 
7⁄2

 

7 𝑥1 1 0 −1⁄22
 

3⁄22 0 
9⁄2

 

0 𝑠1 0 0 
−1⁄22

 −3⁄22
 

1 
−1⁄2

 

𝑍j = 𝐶𝐵𝑥j 7 9 
28⁄11

 15⁄11
 

0 63 

𝐶j − 𝑍j 0 0 
−28⁄11

 −15⁄11
 

0 

Ratio - - 56 10 -  

9 𝑥2 0 1 
10⁄33

 
0 

1⁄3
 10⁄3

 

7 𝑥1 1 0 
−1⁄11

 
0 1 4 
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0 𝑥4 0 0 
1⁄3

 
1 

−22⁄3
 11⁄3

 

𝑍j = 𝐶𝐵𝑥j 7 9 
29⁄11

 
0 10 58 

𝐶j − 𝑍j 0 0 
−29⁄11

 
0 -10 - 

 

 

All 𝐶j − 𝑍j ≤ 0 𝑎𝑛𝑑 𝑥𝐵 ≥ 0.  

Hence, solution is optimum and feasible. Also the basic variables are integers. 

Optimum integer solution is, 𝑥1 = 4 , 𝑥2 =
10

3
  and Max Z = 58. 

 

Example 1.5.4 Solve Min Z = 2𝑥1 + 𝑥2 

Subject to, 3𝑥1 + 𝑥2 ≥ 3 ;  4𝑥1 + 3𝑥2 ≥ 6 ;  𝑥1 + 2𝑥2 ≤ 3 

𝑥1 , 𝑥2 ≥ 0 & 𝑥1 is an integer. 

Solution: This problem can easily be solved by dual simplex method.  

LPP in right type after ignoring integer restriction is: 

Max w = − 2𝑥1 − 𝑥2 

Subject to, − 3𝑥1 − 𝑥2 ≤ −3 ; − 4𝑥1 − 3𝑥2 ≤ −6 ;  𝑥1 + 2𝑥2 ≤ 3 ;  𝑥1 , 𝑥2 ≥ 0 

 

 𝐶j -2 -1 0 0 0  

𝐶𝐵 B.V 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥𝐵 

0 𝑥3 -3 -1 1 0 0 -3 

0 𝑥4 -4 -3 0 1 0 -6 

0 𝑥5 1 2 0 0 1 3 

𝑍j = 𝐶𝐵𝑥j 0 0 0 0 0 0 

𝐶j − 𝑍j -2 -1 0 0 0 - 

Ratio 1⁄2
 1⁄3

 - - - - 

0 𝑥3 
−5⁄3

 0 1 −1⁄3
 0 -1 

-1 𝑥2 
4⁄3

 1 0 −1⁄3
 0 2 

0 𝑥5 
−5⁄3

 0 0 2⁄3
 1 -1 

𝑍j = 𝐶𝐵𝑥j 
−4⁄3

 -1 0 1⁄3
 0 -2 
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𝐶j − 𝑍j 
−2⁄3

 0 0 −1⁄3
 0 - 

Ratio 2⁄5
 - - - - - 

0 𝑥3 0 0 1 -1 -1 0 

-1 𝑥2 0 1 0 1⁄5
 4⁄5

 6⁄5
 

-2 𝑥1 1 0 0 −2⁄5
 −3⁄5

 3⁄5
 

𝑍j = 𝐶𝐵𝑥j -2 -1 0 3⁄5
 2⁄5

 −12⁄5
 

𝐶j − 𝑍j 0 0 0 −3⁄5
 −2⁄5

 - 

  

All 𝐶𝑗 − 𝑍𝑗 ≤ 0 𝑎𝑛𝑑 𝑥𝐵 ≥ 0. 

 Hence, solution is optimum and feasible. 

𝑥1 =
3

5
 , 𝑥2 =

6

5
 , 𝑥5 = 0 , 𝑥4 = 0 , 𝑥5 = 0  𝑎𝑛𝑑  𝑀𝑎𝑥 𝑊 = −

12

5
. 

Here, 𝑥1 is restricted to take integer value, but 𝑥1 is not an integer.  

Hence consider 𝑥1 equation for fractional cut. 

𝑥1 equation is, x1 −
2

5
x4 −

3

5
x5 =

3

5
= 0+

3

5
 

Here 𝑅+ = {  }, 𝑅− = {4, 5} and 𝑓1 =
3

5
 

The Gomory’s fractional cut equation is, 

 

s1 − {(

3
5

3
5
− 1

) [−
2

5
x4 −

3

5
x5]} = −

3

5
 

s1 − {(−
3

2
) [−

2

5
x4 −

3

5
x5]} = −

3

5
 

𝑠1 −
3

5
𝑥4 −

9

10
𝑥5 = −

3

5
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Include this equation in the optimum table as last row and applying dual 

simplex algorithm, we get, 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
All 𝐶𝑗 − 𝑍𝑗 ≤ 0 𝑎𝑛𝑑 𝑥𝐵 ≥ 0. Hence, solution is optimum and feasible. 

𝑥1 = 1 , 𝑥2 =
2

3
 , Max W = −

8

3
 and Min Z = 

8

3
. 

 
 

Let us Sum Up 
 
         We have learned about mixed Integer linear Programming problem and  also to find 

the solutions of  mixed Integer linear Programming problem by  using Gomary’s mixed 

integer cutting plane  method. 

 
.  

 

 𝐶j -2 -1 0 0 0 0  

𝐶𝐵 B.V 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑠1 𝑥𝐵 

0 𝑥3 0 0 1 -1 -1 0 0 

-1 𝑥2 0 1 0 1⁄5
 4⁄5

 0 6⁄5
 

-2 𝑥1 1 0 0 −2⁄5
 −3⁄5

 0 3⁄5
 

0 𝑠1 0 0 0 −3⁄5
 −9⁄10

 1 −3⁄5
 

𝑍j = 𝐶𝐵𝑥j -2 -1 0 3⁄5
 2⁄5

 0 −12⁄5
 

𝐶j − 𝑍j 0 0 0 −3⁄5
 −2⁄5

 0 - 

Ratio - - - 1 4⁄9
 - - 

0 𝑥3 0 0 1 −1⁄3
 0 −10⁄9

 2⁄3
 

-1 𝑥2 0 1 0 −1⁄3
 0 8⁄9

 2⁄3
 

-2 𝑥1 1 0 0 0 0 −2⁄3
 1 

0 𝑥5 0 0 0 2⁄3
 1 −10⁄9

 2⁄3
 

𝑍j = 𝐶𝐵𝑥j -2 -1 0 1⁄3
 0 4⁄9

 −8⁄3
 

𝐶j − 𝑍j 0 0 0 −1⁄3
 0 −4⁄9

 - 
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Check Your Progress 

5. Solve:     𝑀𝑎𝑥 𝑍 = 𝒙𝟏 + 𝒙𝟐 

Subject to,  2x1 + 5x2 ≤ 16 ; 6x1 + 5x2 ≤ 30 ;  x1 , x2 ≥ 0, non – negative integer. 

6. Solve:     𝑀𝑖𝑛 𝑍 = 5x1 + 4x2 

Subject to, 4x1 + 2x2 ≥ 6 ; 2x1 + 3x2 ≥ 8 ; x1 , x2 ≥ 0, non – negative integer 

7. Solve:      Max Z = 3x1 + x2 + 3𝑥3 

Subject to, −𝑥2 + 2𝑥2 + 𝑥3 ≤ 4 ; 4𝑥2 − 3𝑥3 ≤ −2 ;  𝑥1 − 3𝑥2 + 2𝑥3 ≤ 3 

                  𝑥1 , 𝑥2 , 𝑥3 ≥ 0 and 𝑥1 , 𝑥3 are non – negative integers. 

8. Solve:      Max Z = 2x1 + x2 

Subject to, 10x1 + 10x2 ≤ 9 ; 10x1 + 5x2 ≥ 1 ; x1 , x2 ≥ 0 , non – negative integer. 
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1.6 BRANCH AND BOUND METHOD 

The Branch and Bound method developed first by A H Land and A G Doig is used to 

solve all-integer, mixed-integer and zero-one linear programming problems. The 

concept behind this method is to divide the feasible solution space of an LP problem 

into smaller parts called sub problems and then evaluate corner (extreme) points of 

each sub problem for an optimal solution. 

The branch and bound method starts by imposing bounds on the value of 

objective function that help to determine the sub problem to be eliminated from 

consideration when the optimal solution has been found. If the solution to a sub 

problem does not yield an optimal integer solution, a new sub problem is 

selected for branching. At a point where no more sub problem can be created, an 

optimal solution is arrived at. 

The branch and bound method for the profit-maximization integer LP problem 

can be summarized in the following steps: 

The Procedure 

Step 1: Initialization 

Consider the following all integer programming problem 

                             Maximize Z = 𝑐1𝑥1+𝑐2𝑥2 + . . . + 𝑐𝑛𝑥𝑛 

subject to the constraints 

𝑎11𝑥1 + 𝑎12𝑥2 + . . . +𝑎1𝑛𝑥𝑛 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 +  . . .  + 𝑐2𝑛𝑥𝑛 = 𝑏2 

   .                                    . 

.  .                     (LP – A) 

.                                      .                      

𝑎𝑚1𝑥1 +𝑎𝑚2𝑥2 + . . . +𝑎𝑚𝑛𝑥𝑛= 𝑏𝑚 

            and 𝑥𝑗  ≥ 0 and non-negative integers. 

Obtain the optimal solution of the given LP problem ignoring integer restriction on 

the variables. 

(i) If the solution to this LP problem (say LP-A) is infeasible or unbounded, the 

solution to the given all-integer programming problem is also infeasible or 



26 

 

unbounded, as the case may be. 

(ii) If the solution satisfies the integer restrictions, the optimal integer solution has 

been obtained. If one or more basic variables do not satisfy integer requirement, 

then go to Step 2. Let the optimal value of objective function of LP-A be Z1. This 

value provides an initial upper bound on objective function value and is denoted by 

ZU. 

(iii) Find a feasible solution by rounding off each variable value. The value of 

objective function so obtained is used as a lower bound and is denoted by ZL. 

Step 2: Branching step 

 

(i) Let 𝑥𝑘 be one basic variable which does not have an integer value and also 

has the largest fractional value. 

(ii) Branch (or partition) the LP-A into two new LP sub-problems (also called nodes) 

based on integer values of 𝑥𝑘 that are immediately above and below its non-integer 

value. That is, it is partitioned by adding two mutually exclusive constraints: 

𝑥𝑘 [ 𝑥𝑘 ]   and 𝑥𝑘  [ 𝑥𝑘 ] + 1 

to the original LP problem. Here [𝑥𝑘] is the integer portion of the current non-integer 

value of the variable 𝑥𝑘.This is obviously is done to exclude the non-integer value of 

the variable 𝑥𝑘. The two new LP sub-problems are as follows: 

LP sub-problem B                                        LP sub-problem C 

Max 𝑍 = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1                                         Max 𝑍 = ∑ 𝑐𝑗𝑥𝑗

𝑛
𝑗=1  

Subject to ∑ 𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖   
𝑛
𝑗=1                            Subject to ∑ 𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖   

𝑛
𝑗=1    

 𝑥𝑘 ≤ [𝑥𝑘]                                                     𝑥𝑘 ≤ [𝑥𝑘] + 1 

and         𝑥𝑗 ≥ 0                                            and         𝑥𝑗 ≥ 0 

 

Step 3: Bound step Obtain the optimal solution of sub problems B and C. Let the 

optimal value of the objective function of LP-B be Z2 and that of LP-C be Z3. The 

best integer solution value becomes the lower bound on the integer LP problem 

objective function value (Initially this is the rounded off value). Let the lower bound 

be denoted by ZL. 

Step 4: Fathoming step Examine the solution of both LP-B and LP-C 

(i) If a sub problem yields an infeasible solution, then terminate the branch. 
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(ii) If a sub problem yields a feasible solution but not an integer solution, then 

return to Step 2. 

(iii) If a sub problem yields a feasible integer solution, examine the value of the 

objective function. If this value is equal to the upper bound, an optimal solution has 

been reached. But if it is not equal to the upper bound but exceeds the lower 

bound, this value is considered as new upper bound and return to Step 2.  

Finally, if it is less than the lower bound, terminate this branch. 

Step 5: Termination The procedure of branching and bounding continues until no 

further sub-problem remains to be examined. At this stage, the integer solution 

corresponding to the current lower bound is the optimal all-integer programming 

problem solution. 

Remark The above algorithm can be represented by an enumeration tree. Each 

node in the tree represents a sub problem to be evaluated. Each branch of the tree 

creates a new constraint that is added to the original problem. 

Example 1.6.1 

 Solve the following all integer programming problem using the branch and bound 

method. 

Maximize Z = 2x1 + 3x2  

subject to the constraints 

(i) 6x1 + 5x2  25, (ii) x1 + 3x2  10 

and x1, x2  0 and integers. 

 

Solution: 

             Relaxing the integer conditions, the optimal non-integer solution to the 

given integer LP problem obtained by graphical method as shown in Fig.1.61 is: x1 

= 1.92, x2 = 2.69 and max Z1 = 11.91. The value of Z1 represents initial upper 

bound  as: ZL = 11.91. Since value of variable x2 is non-integer, therefore selecting it 

to decompose (branching) the given problem into two sub-problems by adding two 

new constraints x2  2 and x2  3 to the constraints of original LP problem as 

follows: 
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         LP sub-problem B                                     LP sub-problem c                  

     Max 𝑍 = 2𝑥1 + 3𝑥2                                      Max 𝑍 = 2𝑥1 + 3𝑥2 

Subject to (i) 6𝑥1 + 5𝑥2 ≤ 25,                     Subject to (i) 6𝑥1 + 5𝑥2 ≤ 25,  

                 (ii) 𝑥1 + 3𝑥2 ≤ 10,                                       (ii) 𝑥1 + 3𝑥2 ≤ 10, 

                 (iii) 𝑥2 ≤ 2,                                                  (iii) 𝑥2 ≥ 3, 

       and      𝑥1, 𝑥2 ≥ 0 integer.                           and     𝑥1, 𝑥2 ≥ 0 integer. 

 

 

Fig. 1.6.1 

 

Sub-problem B and C are solved graphically as shown in Fig. 1.6.2.  

The feasible solutions are:  

                                                                                                  Sub-problem B : x1 = 2.5, x2 = 2 and Max Z2 = 11 

            Sub-problem C : x1 = 1,  x2 = 3 and Max Z3 = 11 

 

Fig. 1.6.2 

  The value of decision variables at one of the extreme point of feasible region 

(solution space) of LP sub-problem C, are: x1 = 1 and x2 = 3. Since these are integer 
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values, so there is no need to further decompose (branching) this sub-problem. The 

value of objective function, Max ZL = 11 becomes lower bound on the maximum 

value of objective function, Z for future solutions. 

 

Fig. 1.6.3 

LP sub-problem B is further subdivided into two LP sub-problems D and E ( 

shown in fig 1.6.3)  by taking variable x1 = 2.5. Adding two new constraints x1 ≤ 2 

and x1 ≥ 3 to sub-problem B. Also Max Z = 11 is also not inferior to the ZL = 11. 

 

LP sub-problem D                                            LP sub-problem E 

Max 𝑍 = 2𝑥1 + 3𝑥2                                           Max 𝑍 = 2𝑥1 + 3𝑥2 

Subject to (i) 6𝑥1 + 5𝑥2 ≤ 25,                           Subject to (i) 6𝑥1 + 5𝑥2 ≤ 25, 

                 (ii) 𝑥1 + 3𝑥2 ≤ 10,                                            (ii) 𝑥1 + 3𝑥2 ≤ 10, 

                (iii) 𝑥2 ≤ 2,                                                      (iii) 𝑥2 ≤ 2, 

               (iv) 𝑥1 ≤ 2                                                       (iv) 𝑥1 ≥ 3, 

         and  𝑥1, 𝑥2 ≥ 0 integer.                                and 𝑥1, 𝑥2 ≥ 0 integer. 

 

Sub-problems D and E are solved graphically as shown in Fig. 1.6.3.  

The feasible solutions are:   

Sub-problem D : x1 = 2, x2 = 2 and max Z4 = 10. 

Sub-problem E : x1 = 3, x2 = 1.4 and max Z5 = 10.2 

The solution of LP sub-problem D is satisfying integer value requirement of 

variables but is inferior to the solution of LP sub-problem E in terms of value of 
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objective function, Z5 = 10.2. Hence the value of lower bound ZL = 11 remains 

unchanged and sub-problem D is not considered for further decomposition. 

Since the solution of sub-problem E is non-integer, it can be further decomposed into 

two sub-problems by considering variable, x2. But the value of objective function 

(Z5 = 10.2) is inferior to the lower bound and hence this does not give a solution 

better than the one already obtained. The sub-problem E is also not considered for 

further branching. Hence, the best available solution corresponding to sub-problem 

C is the integer optimal solution: x1 = 1, x2 = 3 and Max Z = 11 of the given integer LP 

problem. The entire branch and bound procedure for the given Integer LP problem 

in Fig. 1.6.4 

 

Fig. 1.6.4. 

 

Example 1.6.2 Solve the following all-integer programming problem using the 

branch and bound method. Maximize 𝑍 = 3𝑥1 + 5𝑥2  

subject to the constraints 

                      (i) 2𝑥1 + 4𝑥2 ≤ 25,     (ii) 𝑥1 ≤ 8,     (iii)  2𝑥2 ≤ 10 and 𝑥1, 𝑥2 ≥ 0 and 

integers. 

Solution: 

 Relaxing the integer requirements, the optimal non-integer solution of the given 

Integer LP problem obtained by the graphical method, as shown in Fig. 1.6.5, is: 

x1 = 8, x2 = 2.25 and Z1 = 35.25. The value of Z1 represents the initial upper 

bound, ZU = 35.25 on the value of the objective function. This means that the 

value of the objective function in the subsequent steps should not exceed 35.25. 
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The lower bound ZL = 34 is obtained by the rounded off solution values to x1 = 

8 and x2 = 2. 

The variable x2 (= 2.25) is the non-integer solution value, therefore, it is 

selected for dividing the given LP-A problem into two sub problems LP-B and LP-

C by adding two new constraints:  𝑥2 ≤ 2 and 𝑥3 ≥ 3,  to the constraints of given 

LP problem as follows:     

 

Fig. 1.6.5 

LP sub-problem B                                              LP sub-problem C 

Max 𝑍 = 3𝑥1 + 5𝑥2                                           Max 𝑍 = 3𝑥1 + 5𝑥2 

Subject to (i) 2𝑥1 + 4𝑥2 ≤ 25,                           Subject to (i) 2𝑥1 + 4𝑥2 ≤ 25, 

                (ii) 𝑥1 ≤ 8,                                                         (ii) 𝑥1 ≤ 8, 

               (iii) 2𝑥2 ≤ 10 (redundant),                                  (iii) 2𝑥2 ≤ 10, 

               (iv) 𝑥2 ≤ 2                                                          (iv) 𝑥2 ≥ 3 

and     𝑥1, 𝑥2 ≥ 0 integer.                                and         𝑥1, 𝑥2 ≥ 0 integer. 

 

Fig. 1.6.6 
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Sub problems B and C are solved graphically as shown in Fig. 1.6.6.  

The feasible solutions are:  

Sub problem B : x1 = 8, x2 = 2, and Max Z2 = 34 

Sub problem C : x1 = 6.5, x2 = 3, and Max Z3 = 34.5 

     Since solution of the sub problem B is satisfying the integer value requirement of 

variables but value of objective function  𝑍2 < 𝑍3, therefore this problem is not 

considered for further branching. However,if 𝑍3 ≤ 𝑍2, then no further branching 

would have been possible for sub problem C. 

The sub problem C is now branched into two new sub problems: D and E, by 

taking variable, x1 = 6.5. Adding two new constraints  𝑥1 ≤ 6 and  𝑥1 ≤ 7 to sub 

problem C. The two sub problems D and E are stated as follows: 

         LP sub-problem D                                    LP sub-problem E             

     Max 𝑍 = 3𝑥1 + 5𝑥2                                      Max 𝑍 = 3𝑥1 + 5𝑥2 

Subject to (i) 2𝑥1 + 4𝑥2 ≤ 25,                     Subject to (i) 2𝑥1 + 4𝑥2 ≤ 25,  

                 (ii) 𝑥1 ≤ 8, (redundant)                               (ii) 𝑥1 ≤ 8, 

                 (iii) 2𝑥2 ≤ 10,                                              (iii) 2𝑥2 ≤ 10, 

                 (iv) 𝑥2 ≥ 3,                                                 (iv) 𝑥2 ≤ 3 

                 (v)  𝑥1 ≤ 6                                                  (v)  𝑥1 ≥ 7                                            

and         𝑥1, 𝑥2 ≥ 0 integer.                       and         𝑥1, 𝑥2 ≥ 0 integer. 

Sub problems D and E are solved graphically as shown in Fig. 1.6.7.  

The feasible solutions are: 

Sub problem D: x1 = 6, x2 = 3.25 and Max Z4 = 34.25. 

Sub problem E:  No feasible solution exists because constraints 𝑥1 ≥ 7 and 𝑥2 ≥ 3  

Do not satisfy the first constraint. So this branch is terminated. 
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Fig. 1.6.7 

The non-integer solution obtained at sub-problem D yields an upper bound of 

34.25 instead of 34.50  and also greater than Z2 (an upper bound for sub-

problem B). 

Once again we create sub-problems F and G from sub-problem D with two new    

constraints 𝑥2 ≤ 3 and 𝑥2 ≥ 4, as shown in Fig. 1.6.3. 

 

            LP sub-problem F                                   LP sub-problem G           

     Max 𝑍 = 3𝑥1 + 5𝑥2                                      Max 𝑍 = 3𝑥1 + 5𝑥2 

Subject to (i) 2𝑥1 + 4𝑥2 ≤ 25,                     Subject to (i) 2𝑥1 + 4𝑥2 ≤ 25,  

                 (ii) 𝑥1 ≤ 8,                                                        (ii) 𝑥1 ≤ 8, 

                 (iii) 2𝑥2 ≤ 10 (redundant)                          (iii) 2𝑥2 ≤ 10, 

                 (iv) 𝑥2 ≥ 3,                                                 (iv) 𝑥2 ≥ 3 (redundant) 

                 (v)  𝑥1 ≤ 6                                                  (v)  𝑥1 ≤ 6           

                 (vi) 𝑥2 ≤ 3                                                  (vi) 𝑥2 ≥ 4 

          and  𝑥1, 𝑥2 ≥ 0 integer.                               and 𝑥1, 𝑥2 ≥ 0 integer. 

The graphical solution to sub problems F and G as shown in Fig. 1.6.8 is as 

follows: 

        Sub problem F: x1 = 6, x2 = 3 and Max Z5 = 33. 

        Sub problem G: x1 = 4.25, x2 = 4 and Max Z6 = 33.5 
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Fig.1.6.8 

The solution at node G is non-integer, no additional branching is required from this 

node because Z6 < Z4. The branch and bound algorithm thus terminated and the 

optimal integer solution is: x1 = 8, x2 = 2 and Z = 34 yielded at node B. 

The branch and bound procedure for the given Integer LP problem is shown in 

Fig. 1.6.9 

 

                                                               Fig. 1.6.9 

Example 1.6.3. Solve the following all-integer programming problem using the 

branch and bound method. Minimize Z = 3𝑥1 + 2.5𝑥2  

subject to the constraints 

     (i) 𝑥1 + 2𝑥2 ≥ 20 (ii) 3𝑥1 + 2𝑥2 ≥ 50 

                       and 𝑥1, 𝑥2 ≥ 0 and integers. 

Solution: Relaxing the integer requirements, the optimal non-integer solution of the 

given integer LP problem, obtained by the graphical method, is: x1 = 15, x2 = 2.5 

and 

 Z1 = 51.25. This value of Z1 represents the initial lower bound, ZL = 51.25 on the 
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value of the objective function, i.e. the value of the objective function in the 

subsequent steps cannot be less than 51.25. 

 

     The variable x2 (= 2.5) is the only non-integer solution value and is therefore is 

selected for dividing the given problem into two sub problems: B and C. In order to 

eliminate the fractional part of x2 = 2.5, two new constraints 𝑥2 ≤ 2and 𝑥2 ≥ 3are 

created by adding in the given set of constraints as shown below: 

LP sub-problem B                                        LP sub-problem c 

Max 𝑍 =  3𝑥1 + 2.5𝑥2                                      Max 𝑍 = 3𝑥1 + 2.5𝑥2 

Subject to (i) 𝑥1 + 2𝑥2 ≥ 20,                         Subject to (i) 𝑥1 + 2𝑥2 ≥ 20, 

                 (ii) 3𝑥1 + 2𝑥2 ≥ 50                                       (ii) 3𝑥1 + 2𝑥2 ≥ 50, 

                 (iii) 𝑥2 ≤ 2,                                                  (iii) 𝑥2 ≥ 3, 

and         𝑥1, 𝑥2 ≥ 0 integer.                       and         𝑥1, 𝑥2 ≥ 0 integer 

Sub problems B and C are solved graphically. The feasible solutions are: 

              Sub problem B: x1 = 16,    x2 = 2 and Min Z2 = 53. 

     Sub problem C: x1 = 14.66, x2 = 3 and Min Z3 = 51.5. 

Since the solution of sub problem B is all-integer, therefore no further 

decomposition (branching) of this sub problem is required. The value of Z2 = 53 

becomes the new lower bound. A non-integer solution of sub- problem C and also 

Z3 < Z2 indicates that further decomposition of this problem need to be done in 

order to search for a desired integer solution. However, if 𝑍3 ≥ 𝑍2, then no 

further branching was needed from sub-problem C. The second lower bound 

takes on the value ZL = 51.5 instead of  ZL = 51.25 at node A. 

Dividing sub problem C into two new sub problems: D and E by adding 

constraints 𝑥1 ≤ 14 and 𝑥1 ≥ 15, as follows: 

        LP sub-problem D                                    LP sub-problem C                  

     Max 𝑍 =  3𝑥1 + 2.5𝑥2                                      Max 𝑍 = 3𝑥1 + 2.5𝑥2 

Subject to (i) 𝑥1 + 2𝑥2 ≥ 20,                     Subject to (i) 𝑥1 + 2𝑥2 ≥ 20,  

                 (ii) 3𝑥1 + 2𝑥2 ≥ 50                                     (ii) 3𝑥1 + 2𝑥2 ≥ 50, 

                 (iii) 𝑥2 ≥ 3,                                                 (iii) 𝑥2 ≥ 3, 

                 (iv) 𝑥1 ≤ 14                                                     (iv) 𝑥1 ≥ 15 

  and  𝑥1, 𝑥2 ≥ 0 integer.                            and    𝑥1, 𝑥2 ≥ 0 integer 
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Sub problems D and E are solved graphically. The feasible solutions are: 

                             Sub problem D: x1 = 14, x2 = 4 and Min Z4 = 52. 

                               Sub problem E: x1 = 15, x2 = 3 and Min Z5 = 52.5. 

The feasible solutions of both sub problems D and E are all-integer and 

therefore branch and bound procedure is terminated. The feasible solution of sub 

problem D is considered as optimal basic feasible solution because this solution 

is all-integer and the value of the objective function is the lowest amongst all    

such values. 

The branch and bound procedure for the given problem is shown in Fig.1.6.10. 

 

 
Fig. 1.6.10 

 

1.7 APPLICATIONS OF ZERO-ONE INTEGER PROGRAMMING 

A large number of real-world problems such as capital budgeting problem, fixed 

cost problem, sequencing problem, scheduling problem, location problem, 

travelling salesman problem, etc., require all or some of the decision variables to 

assume the value of either zero or one. A few such problems are discussed 

below. 

The zero-one integer programming problem is stated as: 

          Minimize 𝑍 = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=0  

Subject to the constraints 

                            ∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖;      𝑖 = 1, 2, … . . , 𝑚
𝑛
𝑗=1  

and                      𝑥𝑗 = 0 or 1. 
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1.7.1 Capital Budgeting Problem 

Such problems cover the problem of allocating limited funds to various 

investment portfolios in order to maximize the net gain. 

Example 1.7.1. A corporation is considering four possible investment 

opportunities. The following table presents information about the investment 

(in Rs thousand) profits: 

 

      

 

In addition, projects 1 and 2 are mutually exclusive and project 4 is contingent 

on the prior acceptance of project 3. Formulate an integer programming model 

to determine which projects should be accepted and which should be rejected 

in order to maximize the present value from the accepted projects. 

Model formulation: Let us define decision variables as: 

𝑥𝑗 = {
1  𝑖𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑗 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑
0  𝑖𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑗 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑  

  Integer LP model 

     Maximize (Total present value) Z = 6,500𝑥1 + 7,000𝑥2 + 2,250𝑥3  + 2,500𝑥4   

subject to the constraints 

(i) Expenditure in years 1, 2 and 3 

(i) 700𝑥1 + 850𝑥2 + 300𝑥3 + 350𝑥4   ≤ 1,200  

(ii) 550𝑥1 + 550𝑥2 + 150𝑥3 + 200𝑥4  ≤  700  

(iii) 400𝑥1 + 350𝑥2 + 100𝑥3    ≤  400 

  (iv) 𝑥1 + 𝑥2   ≥  1, 

   (v) 𝑥4 – 𝑥3    ≤  1 

                  and xj = 0 or 1. 
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1.7.2 Fixed Cost (or Charge) Problem 

In certain projects, while performing a particular activity or set of activities, the 

fixed costs (fixed charge or setup costs) are incurred. In such cases, the objective is 

to minimize the total cost (sum of fixed and variable costs) associated with an 

activity: 

  The general fixed cost problem can be stated as: 

                             Minimize 𝑍 = ∑ (𝑐𝑗𝑥𝑗 + 𝐹𝑗𝑦𝑗)
𝑛
𝑗=0  

 Subject to the constraints 

                            ∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖;      𝑖 = 1, 2, … . . , 𝑚
𝑛
𝑗=1  

                            𝑥𝑗 ≤ 𝑀𝑦𝑗 or 𝑥𝑗 −𝑀𝑦𝑗  ≤ 0; 𝑗 = 1, 2, …… , 𝑛 

   and                   𝑥𝑗 ≥ 0 for all 𝑗 , 𝑦𝑗 = 0 or 1 for all 𝑗 

 

Where  𝑀 = a large number so that 𝑥𝑗 ≤ 𝑀  

            𝑥𝑗 =  level of activity 𝑗 

            𝐹𝑗 =  fixed cost associated with activity 𝑥𝑗 > 0 

             𝑐𝑗 =  variable cost associated with activity 𝑥𝑗 > 0 

Example 1.7.2. Consider the following production data: 

 

Formulate an integer programming problem to determine the production schedule so 

as to maximize the total net profit. 

Model formulation: Let us define decision variables as:  

x1, x2 and x3 = number of units of products 1, 2 and 3, respectively to be 
produced  

                    yj = fixed cost (in Rs); j = 1, 2, 3. 

Integer LP model 

                  Maximize z = 8𝑥1 + 10𝑥2 + 7𝑥3 – 10,000𝑦1 – 20,000𝑦2 – 30,000𝑦3 
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                  subject to the constraints 

                  (i) 15 𝑥1 + 14𝑥2 + 17𝑥3 ≤ 20,000 𝑦1 + 40,000 𝑦2 + 70,000𝑦3 

(ii) 𝑦1 + 𝑦2 + 𝑦3 = 1 

                  and 𝑥𝑗 ≥ 0 for all 𝑗 , 𝑦𝑗 = 0 or 1, for  𝑗 = 1, 2, 3. 

 

1.7.3 Plant Location Problem 

Suppose there are m possible sites (locations) at which the plants could be 

located. Each of these plants produces a single commodity for n customers 

(markets or demand points), each with a minimum demand for bj units ( j = 1, 2, . 

. ., n). Suppose at 𝑖𝑡ℎ location, the fixed setup cost (expenses associated with 

constructing and operating a plant) of a plant is fi (i = 1, 2, . . . m). The 

production capacity of each plant is limited to ai units. The unit transportation 

cost from plant i to customer j is cij. The problem now is to decide the location of 

plants in such a way that the sum of the fixed setup costs and transportation 

cost is lowest (minimum). 

Let xij be the amount shipped from plant i to customer j, and yi be the new 

variable associated with each of the plant locations, such that 

𝑦𝑖 = {
1 , 𝑖𝑓 𝑝𝑙𝑎𝑛𝑡 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
0  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 

 

   The value of fi is assumed to be fixed and independent of the amount of 

xij shipped so long as xij > 0, i.e. for xij = 0, the value fi = 0. Thus, the 

objective is to minimize the total cost (variable + fixed) of settings up and 

operating the network of transportation routes. 

   The general mathematical 0–1 integer programming model of plant location 

problem          

   can be stated as follows:              
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Constraints (16) indicate that each customer’s demand is met. If all the 

shipping costs are positive, then it never pays to send more than the needed 

amount. In such a case replace the inequality sign by an equality sign. 

Inequality (17) indicates that there is no need to ship from a plant which is not 

operating. The capacity ui of plant i represent the maximum amount of 

commodity that may be shipped from it. Inequality (18) controls the production 

capacity of a plant, i to exceed beyond,  

 

1.8 DYNAMIC PROGRAMMING 

(MULTISTAGE PROGRAMMING) 

Dynamic Programming is a mathematical procedure designed primarily to 

improve the computational efficiency of select mathematical programming 

problem by decomposing them in to smaller and hence computationally simple 

sub-problem. Dynamic Programming typically solves the problem in stages, 

with each stage involving exactly one optimizing variable. The solution of the 

Dynamic Programming Problem (DPP) is achieved sequentially starting from 

one stage to the next till the final stage is reached. The computations at the 

different stages are linked through recursive computations in a manner that 

yields a feasible optimal solution to the entire problem. This technique was 

developed by Richared E. Bellman in 1950. 

Dynamic Programming differs from LPP in two ways: 
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i. In DP, there is no algorithm as in LP that can be used to solve all problems. GP is 

a technique that allows to break up the given problem in to a sequence of easier and 

smaller sub-problems which are then solved in stages. 

ii. LP gives one time period solution whereas GP considers decision making over 

time and solves each sub-problem optimally. 

 

1.9 Dynamic Programming terminology 

Stage: The DPP can be decomposed or divided in to a sequence of smaller 

sub-problems called stages. At each stage there are a number of decision 

alternatives and a decision is made by selecting the most suitable alternative. 

Stages very often represent different time periods in the planning period of the 

problem, places, people or other entities. For example, in replacement problem, 

each year is a stage; in the salesman allocation problem, each territory 

represents a stage; in an LPP each variable is a stage. 

State: Each stage in a DPP has a certain number of states associated with it. 

These states represent various conditions of the decision process at a stage. 

The variables which specify the condition of the decision process or describe the 

states of the system at a particular stage are called state variables. These 

variables provide information for analyzing the possible effects that the current 

decision could have upon future courses of action. At any stage of the decision-

making process there could be a finite or infinite number of states. For example, 

a specific city is referred to as a state variable in any stage of the shortest path 

problem. 

Return function: At each stage, a decision is made which can affect the 

state of the system at the next stage and help in arriving at the optimal solution at 

the current stage. Every decision that is made has its own merit in terms of worth 

of benefit associated with it and can be described in an algebraic equation form. 

Generally, this equation is called a return function. This return function in general 

depends on the state variable as well as the decision made at a particular stage. 

An optimal policy or decision at a stage yields optimal return for a given value of 

the state variable. 

For a multistage decision process, functional relationship among state, 
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stage and decision may be described as shown below: 

 

Where n = stage number. 

sn = State input to stage n from stage n+1. Its value is the states of the system 

resulting from the previous (n+1) stage decision. 

dn= decision variable at stage n (independent of previous stage). It represents 

the range of alternatives that can be selected from when making a decision at 

stage n. 

fn = rn (sn, dn) = return (objective) function for stage n. 

 

Transition function: Suppose that there are n stages at which a decision is 

to made.These n stages are all interconnected by the relation called transition 

function. It is defined by 

                             sn-1 = tn(sn, dn) = sn* dn 

     i.e., Output at stage n = (Input to stage n) * (Decision at stage n) 

Where * represent any mathematical operation namely addition, subtraction, 

division or multiplication. tn represents a state transformation function and its 

form depends on the particular problem to be solved. 

 

   1.10 Developing Optimal Decision policy 

 

Policy: A particular sequence of alternatives adopted by the Decision Maker 

(DM) in a multistage decision problem is called a policy. The optimal policy is 

the sequence of alternatives that achieves the decision maker’s objective. 

Bellman’s Principle of optimality: The solution of a DPP is based on 

Bellman’s principle of optimality, which states “The optimal policy must be one 
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such that regardless of how a particular state is reached, all later decisions 

(choices) proceeding from that state must be optimal”. 

Solution procedure: The solution procedure is based on (i) Backward 

induction process or (ii) Forward induction process. In the first process, the 

problem is solved by solving the problem in the last stage and working backwards 

towards the first stage, making optimal decisions at each stage of the problem. In 

certain cases, forward induction process is used to solve a problem by first solving 

the initial stage of the problem and working towards the last stage, making an 

optimal decision at each stage of the problem. 

The one stage return function is given by f1 = r1 (s1, d1) and the optimal 

value of f1 under the state variable s1 can be obtained by selecting a suitable 

decision variable d1. 

                         i.e.,   𝑓1
∗ ( 𝑠1) = {𝑟1𝑑1

𝑜𝑝𝑡 ( 𝑠1, 𝑑1) }  

The range of d1 is determined by s1, but s1 is determined by what has 

happened in stage 2. Then in stage 2, the return function will take the form 

             

By continuing the above logic recursively for a general n stage problem, we 

have 

             

The General Algorithm: 

Step-1: Identify the problem decision variables and specify objective function 

to be optimized under certain limitations, if any. 

Step-2: Divide the given problem in to a number of smaller sub-problems (or 

stages). Identify the state variable at each stage and write down the 

transformation function as a function of the state variable and decision variable 

at the next stage. 

Step-3: Write down a general recursive relationship for computing the optimal 

policy. Decide whether to follow the forward or the backward method to solve 

the problem. 

Step-4: Construct appropriate tables to show the required values of the return 
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2 
10 

5 
4 

4 
5 8 

8 
7 

3 3 

1 
6 

3 
8 

4 

6 
7 10 

3 
9 

6 8 9 

10 

4 
4 5 7 

Stage-5 Stage-3 Stage-4 Stage-1 Stage-2 

function at each stage. 

Step-5: Determine the overall optimal policy or decisions and its value at each 

stage. There may be more than one such optimal policy. 

 

1.11 Dynamic Programming under Certainty 

 

Model – 1: Shortest Route Problem 

Example 1.11.1 

A Salesman located in a city A decided to travel to city B. He knew the 

distances of alternative routes from city A to city B. He then constructs a 

highway network map as shown below. The city of origin A is city -1. The 

destination city B is city 10. Other cities through which the salesman will have 

to pass through are numbered 2 to 9. The arrow representing routes 

between cities and distances in kms are indicated on each route. The 

salesman’s problem is to find the shortest route that covers all the selected 

cities from A to B. 
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𝑛−1 

Solution: 

dn= Decision variable that define the immediate destinations when there are n 

stages to go (n = 1,2,3,4) 

sn = State variable describe a specific city at any stage. 

 , = Distance associated with the state variable, sn and decision variable, dn, for the 

current nth stage. 

fn (sn, dn ) = Minimum total distance for the last n stages, given that salesman is in state      

sn and selects dn as immediate destination. 

fn* (sn) = Optimal value of the path (minimum distance) when the salesman is in 

state sn with n more stages to go for reaching the final stage(destination). 

The forward recursion relationship for this problem is: 

       

Where 𝑓* (𝑑𝑛) is the optimal distance for the previous stages. 

 

 
Stage -1 

 

Decision d1 
State s1 

f1(s1, d1) = D s1, d1 Minimum distance 
𝑓1
∗ (s1 ) 

Optimal decision 
d1 10 

8 
9 

7 
9 

7 
9 

10 
10 

 

Stage -2 

 

𝐷𝑒𝑐i𝑠𝑖𝑜𝑛 𝑑2 
𝑆𝑡𝑎𝑡𝑒 𝑆2 

𝑓2(𝑠2, 𝑑2) = 𝐷𝑠 ,𝑑 + 𝑓*(𝑑2) 
2  2 1 Minimum 

distance 
  

𝑓2
∗ (s2) 

Optimal decision 

𝑑2 8 9 

5 4+7=11 8+9=17 11 8 

6 3+7=10 7+9=16 10 8 

7 8+7=15 4+9=13 13 9 

Continuing the process for stage -3 and 4, we get 
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Stage -3 

 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑑3 

𝑆𝑡𝑎𝑡𝑒 𝑆3 

𝑓3(𝑠3, 𝑑3) = 𝐷𝑠 ,𝑑 + 𝑓*(𝑑3) 
3  3 2 Minimum 

distance 

    𝑓3
∗ (s3 ) 

Optimal 

decision 
𝑑3 

5 6 7 

2 7+11=18 10+10=20 5+13=18 18 5 or 7 

3 3+11=14 8+10=18 4+13=17 14 5 

4 6+11=17 10+10=20 5+13=18 17 5 

 

Stage -4 

 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑑4 

𝑆𝑡𝑎𝑡𝑒 𝑆4 

𝑓4(𝑠4, 𝑑4) = 𝐷𝑠 ,𝑑 + 𝑓*(𝑑4) 
4  4 3 Minimum 

distance 

𝑓4
∗ (𝑠4)  

Optimal 

decision 

𝑑4 
2 3 4 

1 4+18=22 6+14=20 3+17=20 20 3 or 4 

 

There are two optimal paths: 1 – 3 – 5 – 8 – 10 and 1 – 4 – 5 – 8 – 10.  
The value of the path is 20 K.M. 

  

Model – 2: Single additive constraint, multiplicative separable return.  

Example 1.11.2 ( Optimal Sub-division problem) 

Divide quantity b in to n parts so as to maximize their product. Or    Let (𝑏) be the 

maximum value. Then show that 

maximizes it. 

Solution: 
 

    Let 𝑥j be the jth part of the quantity b (j = 1, 2, …, n). Then the problem becomes 

 

𝑀𝑎𝑥 (𝑏) = 𝑥1. 𝑥2. … 𝑥𝑛 

Subject to 𝑥1 + 𝑥2 + … + 𝑥𝑛 = 𝑏 

 

𝑥j > 0, j = 1, 2, … , n 

 

Here each part 𝑥j, (j = 1, 2, … , n) of b may be regarded as a stage.  
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The recursive equation can be obtained as follows: 

For n = 1: 𝑓1(𝑏) = 𝑥1 𝑜𝑟 𝑏 … … … (1) (True) 

For n = 2 (Stage-2):   

The quantity b is divided into two parts, say 𝑥1 = 𝑧 𝑎𝑛𝑑 𝑥2 = 𝑏 − 𝑧, 

 

For n = 3 (Stage-3): The maximum product of b divided into three parts, 

 

 

Similarly, for Stage-n: The recursive equation for n is, 

 

    Solution of the recursive equation: 

 

Let (𝑧) = 𝑧 (𝑏 − 𝑧) 

𝐹′(𝑧) = 0 ⇒ 𝑧. (−1) + (𝑏 − 𝑧) = 0 ⇒ −2𝑧 + 𝑏 = 0 ⇒ 𝑧 = 
𝑏

2
 

    𝐹′′(𝑧) = −1 + (−1) = −2 < 0 

Therefore, the function 𝑧 (𝑏 − 𝑧) attains its maximum value for z =  
𝑏

2
 , satisfying the 

condition 0 < z < b. Hence (2) ⟹ f2 (b) = 
𝑏

2
  (b -  

𝑏

2
  ) = (

𝑏

2
)2. 

Hence optimal policy is ( 
𝑏

2
 , 
𝑏

2
  ) &  f2 (b) = (

𝑏

2
)2. …… (5) 
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𝐹′(𝑧) = 0 ⇒
1

4
 [𝑧. 2(𝑏 − 𝑧)(−1) + (𝑏 − 𝑧)2] = 0 ⇒ (𝑏 − 𝑧)(−2𝑧 + 𝑏 − 𝑧) = 0 

𝐴𝑠 𝑏 ≠ 𝑧, 𝑏 − 3𝑧 = 0 ⇒ 𝑧 =
𝑏

3
. 

 

The maximum value of z.  (
𝑏−𝑧

2
)
2

  is attained for z =  
𝑏

3
 , satisfying the condition 0 < z < b.   

 

 

Hence optimal policy is ( 
𝑏

3
 , 
𝑏

3
 , 
𝑏

3
 ) &  f3 (b) = (

𝑏

3
)3. 

In general, for n stage problem the optimal policy is ( 
𝑏

𝑛
 , 
𝑏

𝑛
 ,…. 

𝑏

𝑛
 ) &  fn (b) = (

𝑏

𝑛
)n, n = 1,2,3.. 

Example 1.11.3 Determine the value of 𝑢1, 𝑢2 𝑎𝑛𝑑 𝑢3 so as to 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = 𝑢1. 𝑢2. 𝑢3 subject to 𝑢1 + 𝑢2 + 𝑢3 = 10; 𝑢1, 𝑢2, 𝑢3 ≥ 0 

 
Solution: 
 

Let 𝑢j be the jth part of the quantity b (10)(j = 1, 2, 3). Then the problem becomes: 

𝑀𝑎𝑥 (𝑏) = 𝑢1. 𝑢2. 𝑢3 

Subject to 𝑢1 + 𝑢2 + 𝑢3 = 10 = 𝑏 
 

𝑢j ≥ 0, j = 1, 2, 3 

Here each part 𝑢j, (j = 1, 2, 3) of b may be regarded as a stage.  

 

The recursive equation can be obtained as follows: 
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For n = 1: 𝑓1(𝑏) = 𝑢1 𝑜𝑟 𝑏 … … … (1) 
 
For n = 2 (Stage-2):  
 
The quantity b is divided into two parts, say 𝑢1 = 𝑧 𝑎𝑛𝑑 𝑢2 = 𝑏 − 𝑧, 

 

For n = 3 (Stage-3): The maximum product of b divided into three parts, 
 

 

Solution of the recursive equation: 

 

Let (𝑧) = (𝑏 − 𝑧) 

𝐹′(𝑧) = 0 ⇒ 𝑧. (−1) + (𝑏 − 𝑧) = 0 ⇒ −2𝑧 + 𝑏 = 0 ⇒ 𝑧 =
𝑏

2
 

𝐹′′(𝑧) = −1 + (−1) = −2 < 0 

Therefore, the function z (b - z) attains its maximum value for z = 
𝑏

2
 = 

10

2
 = 5, satisfying the 

condition 0 < 5 < 10. Hence (2) ⟹ f2 (b) = 
𝑏

2
  ( b -  

𝑏

2
  ) = (

𝑏

2
)2 = 25. 

    Hence optimal policy is ( 
𝑏

2
 , 
𝑏

2
  ) &  f2 (b) = (

𝑏

2
)2. 
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Therefore, 𝑢1 = 𝑢2 = 𝑢3 =
10

3
 and hence 𝑀𝑎𝑥{𝑢1, 𝑢2, 𝑢3} = (

10

3
)3. 

Another method: 

Let us define state variable 𝑥j, (j = 1, 2, 3) such that 

𝑥3 = 𝑢1 + 𝑢2 + 𝑢3 = 10 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 − 3 

𝑥2 = 𝑥3 − 𝑢3 = 𝑢1 + 𝑢2 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 − 2 
 
𝑥1 = 𝑥2 − 𝑢2 = 𝑢1 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 − 1 

 

The recursive equation is  

         𝑓3 ( 𝑥3 ) = {𝑢3𝑢3
𝑀𝑎𝑥 .𝑓2 ( 𝑥2 ) } …(1) 

    𝑓2 ( 𝑥2 ) = {𝑢2𝑢2
𝑀𝑎𝑥 .𝑓1 ( 𝑥1 ) } …(2) 

       𝑓1 ( 𝑥1 ) = 𝑢1 = 𝑥2 − 𝑢2  …. (3) 

Using (3) in (2), we get 
 

      𝑓2 ( 𝑥2 ) = {𝑢2𝑢2
𝑀𝑎𝑥 . ( 2 − 𝑢2  ) } …(4) 

 
Let f ( 𝑢2 ) = 𝑢2 ( 2 − 𝑢2 )  

𝑓′ (𝑢2) = 0 ⇒ 𝑢2 ( -1) + ( 𝑥2 − 𝑢2  ) = 0 ⇒ - 2 𝑢2 + 𝑥2 = 0 ⇒ 𝑢2 =   
𝑥2

2
 

(4) ⇒     𝑓2 ( 𝑥2 ) = 
𝑥2

2
 ( 2 -  

𝑥2

2
 )2   … (5) 
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Using (5) in (1),   𝑓3 ( 𝑥3 ) = { 𝑢3𝑢3
𝑀𝑎𝑥 .( 

𝑥2

2
 )2  } = { 𝑢3𝑢3

𝑀𝑎𝑥 .( 
𝑥3−𝑢3 

2
 )2  } …(6) 

Let g ( 𝑢3 ) = 
1

4
 𝑢3 ( 𝑥3 − 𝑢3 )

2 

 

 

 

 

Therefore, , 𝑢1 = 𝑢2 = 𝑢3 =
10

3
 and hence 𝑀𝑎𝑥{𝑢1, 𝑢2, 𝑢3} = (

10

3
)3. 

 

1.12 SOLVING LPP USING DYNAMIC PROGRAMMING 
 
 
           An LPP in n decision variable and m constraints can be converted in to an n-stage 

dynamic programming problem with m-state parameters. 

Consider the LPP               𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1   

 Subject to the constraints  ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑗 ,    𝑖 = 1 𝑡𝑜 𝑚𝑛
𝑗=1  

                                            𝑥𝑗 ≥ 0, 𝑗 = 1 𝑡𝑜 𝑛 

Let (𝑏1, 𝑏2, …… . . , 𝑏𝑚)be the state vector and 𝑓1 (𝑏1, 𝑏2, …… . . , 𝑏𝑚) be the optimal value of 

the objective function for stages 𝑗, 𝑗 + 1,…… , 𝑛 given the stage(𝑏1, 𝑏2, …… . . , 𝑏𝑚). Using 

backward recursive equation, we shall optimize the last stage first and then last but one 

etc. 

 

𝑓𝑛 = (𝑏1, 𝑏2, …… . . , 𝑏𝑚) = max
0≤𝑎𝑖𝑛𝑥𝑛≤𝑏𝑖

{𝑐𝑛𝑥𝑛},    𝑖 = 1 𝑡𝑜 𝑚 

𝑓𝑗 = (𝑏1, 𝑏2, …… . . , 𝑏𝑚) = max 0≤𝑎𝑖𝑗𝑥𝑗≤𝑏𝑗
𝑖=1 𝑡𝑜 𝑚,𝑗=1 𝑡𝑜 𝑛−1

{𝑐𝑗𝑥𝑗 + 𝑓𝑗+1(𝑏1 − 𝑎1𝑗 𝑥𝑗 , 𝑏2 − 𝑎2𝑗𝑥𝑗 , …… . . , 𝑏𝑚 −

𝑎𝑚𝑗𝑥𝑗)}. 

Similarly, we can use forward recursive equation, 

𝑓1 = (𝑏1, 𝑏2, …… . . , 𝑏𝑚) = max
0≤𝑎𝑖𝑛𝑥1≤𝑏𝑖

{𝑐𝑛𝑥𝑛},    𝑖 = 1 𝑡𝑜 𝑚 

𝑓𝑗 = (𝑏1, 𝑏2, …… . . , 𝑏𝑚) =  
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max
0≤𝑎𝑖𝑗𝑥𝑗≤𝑏𝑗

𝑖=1 𝑡𝑜 𝑚,𝑗=2 𝑡𝑜 𝑛

{𝑐𝑗𝑥𝑗 + 𝑓𝑗−1(𝑏1 − 𝑎1𝑗 𝑥𝑗 , 𝑏2 − 𝑎2𝑗𝑥𝑗 , …… . . , 𝑏𝑚 − 𝑎𝑚𝑗𝑥𝑗)} 

 

 

Example 1.12.1: Solve the following LPP using Dynamic Programming 

  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = 3𝑥1 + 2𝑥2 

Subject to  2𝑥1 + 𝑥2 ≤ 40; 𝑥1 + 𝑥2 ≤ 24; 2𝑥1 + 3𝑥2 ≤ 60; 𝑥1, 𝑥2 ≥ 0. 

Solution:  

   𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 2 ⇒  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒 = 2 

   𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = 3 ⇒  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 3 

Let (𝑏1, 𝑏2, 𝑏3) = (40, 24, 60) be the state vector and 𝑓𝑗(𝑏1, 𝑏2, 𝑏3) be the optimal value of 

the objective function. Now we are use to solve Backward recursive formula. 

Stage 𝒋 = 𝟐; 

 𝑓2(𝑏1, 𝑏2, 𝑏3) = Max 0 ≤𝑥2≤ 𝑏1
0 ≤𝑥2 ≤𝑏2
0 ≤3𝑥2 ≤𝑏3

{2𝑥2}  

                        = 2 Max
0 ≤𝑥2 ≤𝑏1
0 ≤𝑥2 ≤𝑏2

0 ≤𝑥2≤ 
𝑏3
3

{𝑥2} 

                         = 2 𝑀𝑖𝑛 {𝑏1, 𝑏2,
𝑏3

3
}   … (1) 

Stage 𝒋 = 𝟏; 

 𝑓1(𝑏1, 𝑏2, 𝑏3) = Max0 ≤2𝑥2≤ 𝑏1
0 ≤𝑥1≤ 𝑏2
0 ≤2𝑥1≤ 𝑏3

{3𝑥2 + 𝑓2(𝑏1 − 𝑎11𝑥1, 𝑏2 − 𝑎21𝑥1, 𝑏3 − 𝑎31𝑥1)}  

                         = Max
0≤𝑥1≤

𝑏1
2

0≤𝑥1≤𝑏2

0≤𝑥1≤
𝑏3
2

{3𝑥1 + 𝑓2(𝑏1 − 2𝑥1, 𝑏2 − 𝑥1, 𝑏3 − 2𝑥1)}      

                       = Max
0≤𝑥1≤

𝑏1
2

0≤𝑥1≤𝑏2

0≤𝑥1≤
𝑏3
2

{3𝑥1 + 2 𝑀𝑖𝑛(𝑏1 − 2𝑥1, 𝑏2 − 𝑥1,
𝑏3−2𝑥1

3
)}    … (2) 

𝑓1(40, 24, 60) = Max0≤𝑥1≤20
0≤𝑥1≤24
0≤𝑥1≤30

{3𝑥1 + 2 𝑀𝑖𝑛 {40 − 2𝑥1, 24 − 𝑥1,
60−2𝑥1

3
}}  … (3) 

Now Min0 ≤𝑥1≤ 20 {40 − 2𝑥1, 24 − 𝑥1,
60−2𝑥1

3
} =? (Intervals 0 ≤ 𝑥1 ≤ 24 𝑎𝑛𝑑 0 ≤ 𝑥1 ≤ 30 are 
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ignored) 

𝑥1 𝑥2 = 40 − 2𝑥1 𝑥2 =  24 − 𝑥1 𝑥2 =
60 − 2𝑥1

3
 

0 

10 

12 

15 

16 

20 

40 

20 

16 

10 

8* 

0* 

24 

14 

12* 

9* 

8* 

4 

20* 

40/3=13.3* 

12* 

10 

28/3=9.3 

20/3=6.6 

 

Hence Min0 ≤𝑥1≤ 20 {40 − 2𝑥1, 24 − 𝑥1,
60−2𝑥1

3
} = {

60−2𝑥1

3
, 0 ≤ 𝑥1 ≤ 12

24 − 𝑥1, 12 ≤ 𝑥1 ≤ 16 
40 − 2𝑥1, 16 ≤ 𝑥1 ≤ 20

} … (4) 

 𝑓1(40, 24, 60) = 𝑀𝑎𝑥 {

3𝑥1 + 2(
60−2𝑥1

3
) , 𝑖𝑓  0 ≤ 𝑥1 ≤ 12

3𝑥1 + 2(24 − 𝑥1), 𝑖𝑓  12 ≤ 𝑥1 ≤ 16

3𝑥1 + 2(40 − 2𝑥1), 𝑖𝑓 16 ≤ 𝑥1 ≤ 20

}  using (4) and (3) 

 𝑓1(40, 24, 60) = 𝑀𝑎𝑥 {
40 + (

5

3
) 𝑥1, 𝑖𝑓  0 ≤ 𝑥1 ≤ 12

48 + 𝑥1, 𝑖𝑓  12 ≤ 𝑥1 ≤ 16
80 − 𝑥1, 𝑖𝑓 16 ≤ 𝑥1 ≤ 20

} 

 𝑓1(40, 24, 60) = 𝑀𝑎𝑥 {
60 ,      𝑎𝑡  𝑥1 = 12
64 ,      𝑎𝑡  𝑥1 = 16
64 ,      𝑎𝑡  𝑥1 = 16

} 

 

 𝑓1
∗(40, 24, 60) =  64 ,      𝑎𝑡  𝑥1

∗ = 16 

 𝑥2
∗ = Min0 ≤𝑥1≤ 20 {40 − 2𝑥1

∗, 24 − 𝑥1
∗,
60−2𝑥1

∗

3
} = 𝑀𝑖𝑛 {8, 8,14} = 8. 

Optimal solution is 𝑥1
∗ = 16, 𝑥2

∗ = 8,  𝑧𝑚𝑎𝑥 = 64. 

 

 

 

Remark: We can also solve the same problem using forward recursive equation. 

Stage 𝒋 = 𝟏; 

  𝑓1(𝑏1, 𝑏2, 𝑏3) = Max0≤2𝑥1≤𝑏1
0≤𝑥1≤𝑏2
0≤2𝑥1≤𝑏3

{3𝑥1} 
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                        = 3 Max
0≤𝑥1≤

𝑏1
2

0≤𝑥1≤𝑏2

0≤𝑥1≤
𝑏3
3

{𝑥1} 

                      = 3 𝑀𝑖𝑛 {
𝑏1

2
, 𝑏2,

𝑏3

3
}  …  (1) 

Stage 𝒋 = 𝟐; 

 𝑓2(𝑏1, 𝑏2, 𝑏3) = Max 0≤𝑥2≤𝑏1
0≤𝑥1≤𝑏2
0≤3𝑥1≤𝑏3

{2𝑥2 + 𝑓1(𝑏1 − 𝑎12𝑥2, 𝑏2 − 𝑎22𝑥2, 𝑏3 − 𝑎32𝑥3)} 

 

                      = Max0≤𝑥2≤𝑏1
0≤𝑥2≤𝑏2

0≤𝑥2≤
𝑏3
2

{2𝑥1 + 𝑓1(𝑏1 − 𝑥2, 𝑏2 − 𝑥2, 𝑏3 − 3𝑥2)} 

                      = Max0≤𝑥2≤𝑏1
0≤𝑥2≤𝑏2

0≤𝑥2≤
𝑏3
2

{2𝑥2 + 2 𝑀𝑖𝑛(
𝑏1−𝑥2

2
, 𝑏2 − 𝑥2,

𝑏3−3𝑥2

2
)}    … (2) 

   𝑓2(40, 24, 60) = Max0≤𝑥1≤40
0≤𝑥1≤24
0≤𝑥1≤20

{2𝑥2 + 3 𝑀𝑖𝑛 {
40−𝑥2

2
, 24 − 𝑥2,

60−3𝑥2

2
}}  … (3) 

Now Min0≤𝑥2≤20 {
40−𝑥2

2
, 24 − 𝑥2,

60−3𝑥2

2
} =? (Intervals 0 ≤ 𝑥2 ≤ 24 𝑖𝑠 ignored) 

𝑥2 𝑥1 =
40 − 𝑥2
2

 
𝑥1 =  24 − 𝑥2 𝑥1 =

60 − 3𝑥2
2

 

0 

6 

8 

10 

12 

14 

20 

20* 

17 

16* 

15 

14 

13 

10 

24 

18 

16* 

14* 

12* 

10 

4 

30 

21 

18 

15 

12* 

9* 

0* 

 

Hence Min0≤𝑥2≤20 {
40−𝑥2

2
, 24 − 𝑥2,

60−3𝑥2

2
} = {

40−𝑥2

2
, 0 ≤ 𝑥2 ≤ 8

24 − 𝑥2, 8 ≤ 𝑥2 ≤ 12 
60−3𝑥2

2
, 12 ≤ 𝑥2 ≤ 20

}… (4) 
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𝑓2(40, 24, 60) = 𝑀𝑎𝑥

{
 

 2𝑥1 + 3(
40−𝑥2

2
) , 𝑖𝑓  0 ≤ 𝑥2 ≤ 8

2𝑥1 + 3(24 − 𝑥2), 𝑖𝑓  8 ≤ 𝑥2 ≤ 12

2𝑥1 + 3(
60−3𝑥2

2
) , 𝑖𝑓 12 ≤ 𝑥2 ≤ 20}

 

 

  using (4) and (3) 

 𝑓2(40, 24, 60) = 𝑀𝑎𝑥

{
 

 60 + (
1

2
) 𝑥2, 𝑖𝑓  0 ≤ 𝑥2 ≤ 8

72 − 𝑥2, 𝑖𝑓  8 ≤ 𝑥2 ≤ 12

90 − (
5

2
) 𝑥2, 𝑖𝑓 12 ≤ 𝑥2 ≤ 20}

 

 

  

𝑓2(40, 24, 60) = 𝑀𝑎𝑥 {
64 ,      𝑎𝑡  𝑥2 = 8
64 ,      𝑎𝑡  𝑥2 = 8
60 ,      𝑎𝑡  𝑥2 = 12

} 

 𝑓1
∗(40, 24, 60) =  64 ,      𝑎𝑡  𝑥2

∗ = 8 

 𝑥1
∗ = Min0 ≤𝑥2≤ 20 {

40−𝑥2
∗

2
, 24 − 𝑥2

∗,
60−3𝑥2

∗

3
} = 𝑀𝑖𝑛 {16,16, 18} = 16 

Optimal solution is 𝑥1
∗ = 16, 𝑥2

∗ = 8, 𝑧𝑚𝑎𝑥 = 64. 

 

Example 1.12.2 Solve the following LPP using Dynamic Programming 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = 3𝑥1 + 5𝑥2 

 Subject to 𝑥1 ≤ 4; 𝑥2 ≤ 6; 3𝑥1 + 2𝑥2 ≤ 18; 𝑥1, 𝑥2 ≥ 0 

Solution:  

   𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 2 ⇒  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒 = 2 

   𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = 3 ⇒  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 3 

Let (𝑏1, 𝑏2, 𝑏3) = (4, 6, 18) be the state vector and 𝑓𝑗(𝑏1, 𝑏2, 𝑏3) be the optimal value of the 

objective function. Now we are use to solve Backward recursive formula. 

Stage 𝒋 = 𝟐; 

 𝑓2(𝑏1, 𝑏2, 𝑏3) = max 0≤𝑥2≤𝑏2
0≤2𝑥2≤𝑏3

{5𝑥2}  

                    = 5 max
0≤𝑥2≤𝑏2

0≤2𝑥2≤
𝑏3
2

{𝑥2} 

                    = 5 𝑀𝑖𝑛 {𝑏2,
𝑏3

3
}… (1) 

Stage 𝒋 = 𝟏; 

 𝑓1(𝑏1, 𝑏2, 𝑏3) = max 0≤𝑥1≤𝑏1
0≤3𝑥1≤𝑏3

{3𝑥1 + 𝑓2(𝑏1 − 𝑥1, 𝑏2, 𝑏3 − 3𝑥1)} 

                    = max 0≤𝑥1≤𝑏2
0≤2𝑥1≤

𝑏3
2

{3𝑥1 + 5 𝑀𝑖𝑛(𝑏2,
𝑏3−3𝑥1

2
)}     
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𝑓1(4, 6, 18) = max 0≤𝑥1≤4
0≤𝑥1≤

18

3

{3𝑥1 + 5 𝑀𝑖𝑛 {6,
18−3𝑥1

2
}}  … (2) 

Min0≤𝑥1≤4 {6,
18−3𝑥1

2
} =? , (Intervals 0 ≤ 𝑥1 ≤ 18/3 𝑖𝑠 ignored) 

 

𝑥1 𝑥2 = 6 
𝑥2 =

18 − 3𝑥1
2

 

0 

1 

2 

3 

4 

6* 

6* 

6* 

6 

6 

9 

15/2=7.5 

6* 

4.5* 

3* 

         

          

 

 Min0≤𝑥1≤4 {6,
18−3𝑥1

2
} = {

6, 𝑖𝑓 0 ≤ 𝑥1 ≤ 2
18−3𝑥1

2
, 𝑖𝑓 2 ≤ 𝑥1 ≤ 4

} … (3) 

𝑓1(4,6,18) = 𝑀𝑎𝑥 {
3𝑥1 + 5(6) 𝑖𝑓 0 ≤ 𝑥1 ≤ 2

3𝑥1 + 5(
18−3𝑥1

2
), 𝑖𝑓 2 ≤ 𝑥1 ≤ 4

}  using (3) and (2) 

 𝑓1(4,6,18) =  𝑀𝑎𝑥 {
3𝑥1 + 30 𝑖𝑓 0 ≤ 𝑥1 ≤ 2

45 −
9

2
𝑥1, 𝑖𝑓 2 ≤ 𝑥1 ≤ 4

} 

 𝑓1(4,6,18) =  𝑀𝑎𝑥 {
36,      𝑎𝑡 𝑥1 = 2 
36,      𝑎𝑡 𝑥1 = 2 

} = 36 

 𝑓1
∗(4,6,18) =  36 ,      𝑎𝑡  𝑥1

∗ = 2 

 𝑥2
∗ = Min0≤𝑥1≤4 {6,

18−3𝑥1
∗

2
} = 𝑀𝑖𝑛 {6,6} = 6 

  Optimal solution is 𝑥1
∗ = 2, 𝑥2

∗ = 6, 𝑧𝑚𝑎𝑥 = 36. 

 
Let Us Sum Up 
 
               We have learned about branch and bound method which is used to solve all 

integer, mixed integer and zero-one linear programming problems. Also learned about 

characteristics of Dynamic programming problems and how to solve it. 
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Check Your Progress 

9. Solve the following LPP using Dynamic Programming 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = 4𝑥1 + 14𝑥2 

 Subject to 2𝑥1 + 7𝑥2 ≤ 21; 7𝑥1 + 2𝑥2 ≤ 21; 𝑥1, 𝑥2 ≥ 0 

10. Solve the following LPP using Dynamic Programming. 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = 3𝑥1 + 2𝑥2 + 5𝑥3 

 Subject to                                    𝑥1 + 2𝑥2 + 𝑥3 ≤ 430; 

 3𝑥1 + 2𝑥3 ≤ 460; 

                                                             𝑥1 + 4𝑥2 ≤ 420; 

𝑥1, 𝑥2, 𝑥3 ≥ 0 

 

Unit Summary 

   

     In this unit, an extension of linear programming, referred to as integer linear 

programming, was introduced where few or all variables must be an integer. If all variables 

of a problem are integers, then such problems are referred to as all-integer linear 

programming problems. If some, but not necessarily all, variables are integers,  then  such 

problems are referred to as mixed integer linear programming problems. Most integer 

programming applications involve 0-1 variables.   

    The number of applications of integer linear programming continues to grow rapidly due 

to the availability of integer linear programming software packages. The study of integer 

linear programming is helpful when fractional values for the variables are not permitted 

and rounding off their values may not provide an optimal integer solution; Integer LP 

programming facilitates developing mathematical models with variables assume either 

value 0 or 1. Capital budgeting, fixed cost, plant location, etc., are few examples where  

0-1 integer programming techniques are extensively used to find an optimal solution.. 

   Dynamic programming is an approach in which the problem is broken down into a 

number of smaller sub problems called stages. These sub problems are then solved 

sequentially until the original problem is finally solved.  A particular sequence of 

alternatives (courses of action) adopted by the decision-maker in a multistage decision 

problem is called a policy.   

    The optimal policy, therefore, is the sequence of alternatives that achieves the decision-

maker’s objective. The solution of a dynamic programming problem is based upon 
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Bellman’s principle of optimality (recursive optimization technique), which states: The 

optimal policy must be one such that, regardless of how a particular state is reached, all 

later decisions proceeding from that state must be optimal. Based on this principle of 

optimality, the best policy is derived by solving one stage at a time, and then sequentially 

adding a series of one-stage-problems are solved until the overall optimum of the initial 

problem is obtained.  

    The solution procedure is based on a backward induction process and forward induction 

process. In the first process, the problem is solved by solving the problem in the last stage 

and working backwards towards the first stage, making optimal decisions at each stage of 

the problem.  

 

Glossary 

 LPP- Linear programming problem 

 ILPP- Integer Linear programming problem 

 MIPP- Mixed integer programming problem 

 DPP- Dynamic programming problem 

 

 

Self – Assessment Questions 

True or False 

1. When a new constraint is added to a non-integer optimal simplex table, the new table 

represents an infeasible solution because of the negative value in the xB column of the 

new constraint.  

2. The branch and bound terminates where the upper and lower bounds are identical and 

that value is the solution to the problem.  

3. One disadvantage of the cutting plane integer programming method is that each new 

cut includes an artificial variable.  

4. While using branch and bound method, decision regarding which subproblem needs 

decomposition is heuristic rule.  

5. Integer programming always require more iterations of the simplex method than 

corresponding linear programming 
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ACTIVITIES 

 

True or False 

1. In integer programming, any non-integer variable can be picked up to enter the 

solution.  

2. The branch and bound method is a modified form of enumeration method because in a 

maximization LP problem, all solutions that will result in return greater than the current 

upper bound are not considered.  

3. Along a branch and bound minimization tree, the lower bound do not increase 

objective function value.  

4. Alternate optimal solutions do not occur in integer programming.  

5. While adding additional constraint to an integer linear programming a feasible integer 

solution is not eliminated. 

  

Suggested Readings 

1. J. K. Sharma, Operations Research, Theory and Applications, Third 
Edition (2007) Macmillan India Ltd 

2. Hamdy A. Taha, Operations Research, (seventh edition) Prentice - 
Hall of India Private Limited, New Delhi, 1997. 

3. F.S. Hillier & J.Lieberman Introduction to Operation Research (7th 
Edition) Tata- McGraw Hill ompany, New Delhi, 2001. 

4. Beightler. C, D.Phillips, B. Wilde ,Foundations of Optimization (2nd 
Edition) Prentice Hall Pvt Ltd., New York, 1979 
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CLASSICAL OPTIMIZATION METHODS 
  



61 

 

 

CLASSICAL OPTIMIZATION METHODS 

Objectives: 

     After studying this unit, students should able to use differential calculus-based 

methods to obtain an optimal solution of problems that involve continuous and differential 

functions. Derive necessary and sufficient conditions for obtaining an optimal solution for 

unconstrained and constrained, single and multivariable, optimization problems, with 

equality and inequality constraints.  

     Make distinction between local, global and inflection extreme points. Derive and use 

Kuhn-Tucker conditions necessary for an optimal value of an objective function subject to 

inequality constraints. Use graphical method to solve a non-linear programming model. 

Appreciate the use of some of the non-linear programming techniques such as quadratic 

programming, separable programming, geometric programming, stochastic programming, 

etc., for solving non-linear programming problems. 

 

2.1 Introduction 

 The classical optimization methods are used to obtain an optimal solution of certain 

types of problems that involve continuous and differentiable functions. These methods are 

analytical in nature and make use of differential calculus to find points of maxima and 

minima for both unconstrained and constrained continuous objective functions. In this 

chapter, we shall discuss the necessary and sufficient conditions for obtaining an optimal 

solution of 

(i) Unconstrained single and multiple variable optimization problems and 

(ii) Constrained multivariable optimization problems with equality and inequality 

constraints. 

 

2.2 UNCONSTRAINED OPTIMIZATION 

2.2.1 Optimizing Single – Variable Functions 

 

 Figure 2.1 depicts the graph of a continuous function y = f(x) of single independent 

variable x in the domain (a,b). The domain is the range of values of x. The domain limits 

(or end points) are generally called stationary (or critical) points. There are two categories 
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of stationary points: 

(i) Inflection points 

(ii) Extreme points 

Extreme points are further classified as  (a) local (or relative) extreme 

       (b) global (or absolute) extreme 

Local extreme points represent the maximum or minimum values of the function in 

the given range of values of the variable. In figure 2.1, points a, x1, x2, x3, x4, x5 and b are 

all extrema of f(x). The classical approach to the theory of maxima and minima does not 

provide a direct method of obtaining global (or absolute) maximum (or minimum) value of 

a function. It only provides the method for determining the local (or relative) maximum and 

minimum values. 

 Mathematically, a function y = f(x) is said to achoeve its maximum value at a point, 

x = x0 if f(x0 + h) – f(x0) < 0 or f(x0 + h) < f(x0) 

where h is a sufficiently small number in the neighbourhood of the point x = x0. In other 

words, the point x0 is a local minimum if the value of f(x) at every point in the 

neighbourhood of x0 does not exceed f(x0). 

Similarly, a function f(x) is said to achieve its minimum value at a point x = x0 if 

f(x0 + h) – f(x0) > 0 or f(x0 + h) > f(x0). 

 

 When a function has several local maximum and minimum values, the global 

minimum (in case of cost minimization) or global maximum (in case of profit maximization) 

is obtained bu comparing the values of the function at various extreme points (including 

the limits of the domian). The global minimum value of a function is the minimum value 

among all local minimum values of the function in the domain. Similarly, the global 

minimum value of a function is the maximum value among all local maximum values of the 

function in the domain. In figure 2.1, the point E i.e., f(x4) represents the global maximum, 

whereas the point F i.e., f(x5) represents the global minimum. 
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Figure 2.1: Local and Global Optimum 

The global maximum (or minimum) of a function over the larger interval can also 

occur at an end point of the interval rather than at any local (relative) maximum or 

minimum point. It is possible for a local maximum value of a function to be less than a 

local minimum value of the function. 

 

2.2.2 Conditions for Local Minimum and Maximum Value 

 

Theorem 2.1: (Necessary condition): A necessary condition for a point x0 to be the local 

extrema (local maximum and minimum) of a function y = f(x)  defined in the interval a ≤ x ≤ 

b is that the first derivative of f(x) exists as a finite number at x = x0 and f ’(x0) = 0. 

Proof: Let y = f(x) be a given function that can be expanded in the neighbourhood of x = 

x0 by Taylor’s theorem. Let at x = x0 the value of f(x) be f(x0). 

  Consider two values of x, namely +h and –h in the neighbourhood and either side 

of x = x0 (h being very small). If maximum is at x = x0, then from definition,             f(x0) > 

f(x0 + h) and f(x0) > f(x0 – h). i.e., f(x0 + h) – f(x0) and f(x0 – h) – f(x0) are both negative for 

maximum at x = x0. Further, if minimum is at x = x0, then f(x0) < f(x0 + h) and f(x0) < f(x0 – 

h). i.e., f(x0 + h) – f(x0) and f(x0 – h) – f(x0) are both positive for minimum at x = x0. By 

using Taylor’s theorem, we have: 

𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) + ℎ 𝑓
′(𝑥0) +

ℎ2

2!
 𝑓′′(𝑥0) + ⋯+

ℎ𝑛

𝑛!
 𝑓𝑛(𝑥0) + 𝑅𝑛(𝑥0 + 𝜃ℎ) ;     0 < 𝜃 < 1 or 

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) = ℎ 𝑓
′(𝑥0) +

ℎ2

2!
 𝑓′′(𝑥0) + ⋯+

ℎ𝑛

𝑛!
 𝑓𝑛(𝑥0) + 𝑅𝑛(𝑥0 + 𝜃ℎ)       (1) where 

𝑅𝑛(𝑥0 + 𝜃ℎ) =
ℎ𝑛+1

(𝑛+1)!
 𝑓𝑛+1(𝑥0 + 𝜃ℎ) and is called the remainder. 

 The expressions 𝑓′(𝑥0) and 𝑓′′(𝑥0) represent the first and second derivative of 𝑓(𝑥) 
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at x = 𝑥0. Similarly, 𝑓(𝑥0 − ℎ) = 𝑓(𝑥0) − ℎ 𝑓
′(𝑥0) +

ℎ2

2!
𝑓′′(𝑥0) − ⋯ 

                                       𝑓(𝑥0 − ℎ) − 𝑓(𝑥0) = −ℎ 𝑓′(𝑥0) +
ℎ2

2!
𝑓′′(𝑥0) − ⋯      (2) 

If h is very small, then neglecting the terms of higher order, we get, 

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) = ℎ 𝑓
′(𝑥0)  (3) and 

𝑓(𝑥0 − ℎ) − 𝑓(𝑥0) = −ℎ 𝑓
′(𝑥0)   (4) 

For x = x0 to be a local maximum or minimum value, the sign of 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) and 

𝑓(𝑥0 − ℎ) − 𝑓(𝑥0) must be the same for all x = x0 ± h. Thus from Equations (3) and (4) if 

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) and 𝑓(𝑥0 − ℎ) − 𝑓(𝑥0) have the same sign, then 𝑓′(𝑥0) should be zero; 

otherwise they will have different signs. Hence the necessary condition for ant function f(x) 

to have local optimum value at any extreme poiny x = x0 is that its first derivative 

 𝑓′(𝑥0) = 0.  

Remark: The distinction between a local minimum and local maximum can also be seen 

by examining the direction of change of first derivative. 𝑓′(𝑥0) at x = x0. 

(i) If the sign of 𝑓′(𝑥0) changes from positive to negative as x increases in the 

neighbourhood of x = x0, then the value of f(x) will be a local maximum. 

(ii) If the sign of 𝑓′(𝑥0) changes from negative to positive as x increases in the 

neighbourhood of x = x0, then the value of f(x) will be a local minimum. 

 

Theorem 2.2 (Sufficient condition) If an extreme point x = x0 of f(x), the first (n – 1) 

derivatives of it become zero, i.e., 𝑓′(𝑥0) = 𝑓
′′(𝑥0) = ⋯ = 𝑓𝑛−1(𝑥0) = 0 and   𝑓(𝑛)(𝑥0) ≠ 0, 

then: 

(i) Local maximum of f(x) occurs at x = x0, if 𝑓(𝑛)(𝑥0) < 0, for n even, 

(ii) Local minimum of f(x) occurs at x = x0, if 𝑓(𝑛)(𝑥0) > 0, for n even, 

(iii) Point of inflection occurs at x = x0 if 𝑓(𝑛)(𝑥0) ≠ 0, for n odd. 

Proof: From theorem 2.1 at an extreme point x = x0, 𝑓′(𝑥0) = 0. Then from equations (1) 

and (2), we have  

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) =
ℎ2

2!
 𝑓′′(𝑥0)  (5) and 

𝑓(𝑥0 − ℎ) − 𝑓(𝑥0) =
ℎ2

2!
 𝑓′′(𝑥0)  (6) 

neglecting powers of h higher than second. Here, the following three possible cases may 

arise: 
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Case 1: If 𝑓′′(𝑥0) > 0, then both 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) and 𝑓(𝑥0 − ℎ) − 𝑓(𝑥0) are positive and 

hence local minimum value of f(x) exists at x = x0. 

Case 2: If 𝑓′′(𝑥0) < 0, then both 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) and 𝑓(𝑥0 − ℎ) − 𝑓(𝑥0) are negative and 

hence local maximum value of f(x) exists at x = x0. 

Case 3: If 𝑓′′(𝑥0) = 0, then no information is obtained about the maximum or minimum 

value of f(x). i.e., in this case, the function f(x) may have a local maximum, a local 

minimum or a point of inflection. Hence, if If 𝑓′′(𝑥0) = 0, then we examine successively 

higher order derivatives of f(x) at x = x0 until we find a derivative such that If      𝑓(𝑛)(𝑥0) ≠

0, n ≥ 2. 

 If If 𝑓(𝑛)(𝑥0) < 0, for n even, then f(x) has local maximum value at x = x0. If If 

𝑓(𝑛)(𝑥0) > 0, for n even, then f(x) has local minimum value at x = x0. If n is odd, then   x = 

x0 is the point of inflection (or saddle point). 

 The necessary and sufficient conditions for the existence of local maximum, local 

minimum and point of inflection are summarized in Table 2.1. The entire preceding 

discussion is summarized in fig 2.2. 

Necessary 

condition 
Sufficient Condition 

Nature of 

Function 
Conclusion 

𝑓′(𝑥0) = 0 𝑓′(𝑥0) = 𝑓
′′(𝑥0) = ⋯ = 𝑓𝑛−1(𝑥0) = 0 

and 𝑓(𝑛)(𝑥0) < 0, n even 

Concave Local maximum 

at x = x0 

𝑓′(𝑥0) = 0 𝑓′(𝑥0) = 𝑓
′′(𝑥0) = ⋯ = 𝑓𝑛−1(𝑥0) = 0 

and 𝑓(𝑛)(𝑥0) > 0, n even 

Convex Local minimum 

at  x = x0 

𝑓′(𝑥0) = 0 𝑓′(𝑥0) = 𝑓
′′(𝑥0) = ⋯ = 𝑓𝑛−1(𝑥0) = 0 

and 𝑓(𝑛)(𝑥0) ≠ 0, n odd 

- Point of inflection 

at x = x0 

 

 

Figure 2.2: Determination of Critical Point 
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 It becomes easy to find the maximum or minimum values when the function is 

either convex or concave. If a function is convex, the first derivative set equal to zero must 

give at least one local minimum. The value of the function at the end points of the domain 

may still be the global minimum. Similarly, if a function is concave, the first derivative set 

equal to zero must give at least one local maximum. It is due to this reason that functions 

most commonly found in business are assumed to be either concave or convex. 

Summary of the procedure: The procedure to determine the global minimum or 

maximum is summarized in the following steps: 

1) Compute first derivative, 
𝑑𝑦

𝑑𝑥
 and equate it with zero. 

2) Solve the equation 
𝑑𝑦

𝑑𝑥
 = 0 for x = x0. 

3) Substitute the value x = x0, x = a and x = b in the original equation and determine 

f(x0), f(a) and f(b). 

4) Compare these values to determine global minimum and maximum respectively. 

Remarks: 

1) A local minimum of a convex function on a convex set is also a global minimum of 

that function. 

2) A local maximum of a concave function on a convex set is also a global maximum 

of that function. 

3) A local minimum of a strictly convex function on a convex set is also a unique 

global minimum of that function. 

4) A local maximum of a strictly concave function on a convex set is also a unique 

global maximum of that function. 

 

Example 2.1 A trader receives x units of an item at the beginning of each month. The 

cost of carrying x units per month is given by: 

𝐶(𝑥) =
𝑐1𝑥

2

2𝑛
+
𝑐2(20𝑛 − 𝑥)

2

2𝑛
 

where c1 = cost per day of carrying a unit of item in stock (= Rs 10) 

 c2 = cost per day of shortage of a unit of item (= Rs 150) 

 n = number of units of item to be supplied per day (= 30) 

Determine the order quantity x that would minimize the cost of inventory. 
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Solution:  

             The necessary condition for a function to have either minimum or maximum value 

at a point is that its first derivative should be zero. Thus, 

𝑑𝐶(𝑥)

𝑑𝑥
=
𝑐1𝑥

𝑛
−
𝑐2(20𝑛 − 𝑥)

𝑛
= 0 

Therefore, 𝑥 =
20𝑛𝑐2

𝑐1+𝑐2
=

(20)(30)(150)

10+150
= 562.5 

The nature of the extreme point given by x is determined by considering the second 

derivative. 

𝑑2𝐶(𝑥)

𝑑𝑥2
=
𝑐1
𝑛
+
𝑐2
𝑛
> 0 

Since the value of the second derivative is positive, therefore, x = 562.5 is a local 

minimum point. By substituting the value of x in the objcetive function C(x), we get 

C(x = 562.5) = Rs. 56,249.37 ; C(x = 0) = Rs. 9,00,000 

lim𝑥→∞ 𝐶(𝑥) = ∞  

It follows that, a global minimum value for C(x) occurs at x = 562.5. 

 

Example 2.2 A firm has a total revenue function, R = 20x – 2x2, and a total cost function, c 

= x2 – 4x + 20, where x represents the quantity. Find the revenue maximizing output level 

and the corresponding vaue of profit, price and total revenue. 

Solution: The necessary condition for a revenue function R to have maximum value at a 

point is that: 
𝑑𝑅

𝑑𝑥
= 0 and 

𝑑2𝑅

𝑑𝑥2
< 0. 

Since R = 20x – 2x2, therefore 
𝑑𝑅

𝑑𝑥
 = 0 gives 20 – 4x = 0 (or) x = 5. Also 

𝑑2𝑅

𝑑𝑥2
= − 4 (< 0). 

Since the value of second derivative is negative, the revenue will be maximum at an 

output level, x = 5. 

The profit function is given by: 𝜋 = R – C = (20x – 2x2) – (x2 – 4x + 20) = 24x – 3x2 – 20 

Thus, the total profit at x = 5 will be: P = 24(5) – 3(52) – 20 = 25 

The price of a product is given by P = 
𝜋

𝑥
 = 20 – 2x = 10, at x = 5. The maximum revenue at 

x = 5, is R = 20(5) – 2(52) = 50. 

 

Example 2.3 The total profit y, in rupees, of a drug comoany from the manufacturing and 

sale of x drug bottles is given by, y = – 
𝑥2

400
 + 2x – 80. 

(a) How many drug bottles must the company sell in order to achieve the maximum profit  
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(b) What is the profit per druf bottle when this maximum is achieved ? 
 

Solution: Given: y = – 
𝑥2

400
 + 2x – 80. Therefore, 

𝑑𝑦

𝑑𝑥
= −

2𝑥

400
+ 2 = −

𝑥

200
+ 2 

The first order condition for maximum value of y is 
𝑑𝑦

𝑑𝑥
= 0, i.e., −

𝑥

200
+ 2 = 0 (or)  x = 400. 

Since 
𝑑2𝑦

𝑑𝑥2
= −

1

200
 (< 0), therefore the company must sell x = 400 drug bottles in order to 

achieve the maximum profit, which is equal to 𝑦 = −
4002

400
+ 2(400) − 80 = Rs. 320. 

 
Example 2.4 The efficiency E of a small manufacturing concern depends on the workers 

W and is given by 10E = −
w3

40
+ 30W − 392. Find the strength of the workers that would 

give the maximum efficiency. 

Solution: Given: 10E = −
w3

40
+ 30W − 392 (or) E = −

w3

400
+ 3W− 39.2. Therefore, 

𝑑𝐸

𝑑𝑊
= −

3𝑊2

400
+ 3 

The first order condition for maximum value of E is 
𝑑𝐸

𝑑𝑊
= 0, i.e., −

3𝑊2

400
+ 3 = 0 (or)         W 

= ± 20. (neglecting W = –20 because workers cannot be negative in number). Also 

𝑑2𝐸

𝑑𝑊2 = −
6𝑊

400
 (< 0) at W = 20 (a second order condition for maxima), therefore the efficiency 

of the workers shall be maximum when they are W = 20 in number. 

 

Example 2.5 The cost of fuel for running a train is proportional to the cube of the speed 

generated in kilo meter per hour. When the speed is 12 km/h, the cost of fuel is Rs. 64 /h. 

If the other charges are fixed, namely Rs. 2000 /h, find the most economical speed of the 

train for running a distance of 100 km. 

Solution: Let x km/h be the speed of the train. Then the cost of fuel = kx3, where k is 

constant of proportionality. 

Given that it costs Rs. 64 per hour at 12km/hr. Therefore, 64 = k(123). 

 k = 
64

123
= 0.037. Hence, cost of fuel = Rs. 0.037(x3) per hour. The fuel for running a 

distance of 100 km is: 0.037(x3) (
100

𝑥
) = 3.7x2. 

Also, the fixed cost = 2000 (
100

𝑥
).  

If C is the cost of running 100 km, then, c = 3.7x2 + 2000 (
100

𝑥
) 

𝑑𝐶

𝑑𝑥
= 7.4𝑥 − 2000 (

100

𝑥2
) and 

𝑑2𝐶

𝑑𝑥2
= 7.4 + 2000 (

200

𝑥3
) 
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Solving the first equation above, we get x = 30. For this value of x, 
𝑑2𝐶

𝑑𝑥2
 > 0, i.e., C is 

minimum. Thus, the most economic speed of the train should be 30 km/hr. 

 

Example 2.6 The production function of a commodity is given by: Q = 40F + 3F2 - (
𝐹3

3
), 

where Q is the total output and F is the units of inputs. 

(a) Find the number of units of input required to give the maximum output. 

(b) Find the maximum value of marginal product. 

(c) Verify that when the average product is maximum, it is equal to marginal product. 

Solution: (a) We have, Q = 40F + 3F2 - (
𝐹3

3
) ; F ≥ 0. 

For maximum or minimum input level, 
𝑑𝑄

𝑑𝐹
= 40 + 6𝐹 − 𝐹2 

Now,  
𝑑𝑄

𝑑𝐹
= 0  40 + 6𝐹 − 𝐹2 = 0  F = 4 (or) –10. 

𝑑2𝑄

𝑑𝐹2
= 6 − 2𝐹  

For F = 4, 
𝑑2𝑄

𝑑𝐹2
= 6 − 2𝐹 = –2 (< 0) and for F = –10, 

𝑑2𝑄

𝑑𝐹2
= 6 − 2𝐹 = 14 (> 0). 

Thus, the output Q is maximum when F = 4 units of inout are used. 

(b) The marginal product is given by, MP = 
𝑑𝑄

𝑑𝐹
 = 40 + 6F – F2 

For maximum or minimum value of marginal product, 
𝑑

𝑑𝐹
(𝑀𝑃) = 6 – 2F = 0  F = 3. 

Also 
𝑑2

𝑑𝐹2
(𝑀𝑃) = −2 (< 0), i.e., MP is maximum at F = 3. 

(c) The average product is given by: AP = 
𝑄

𝐹
=

1

𝐹
(40𝐹 + 3𝐹2 −

𝐹3

3
) = 40 + 3𝐹 −

𝐹2

3
 

For maximum or minimum value of average product, 

𝑑

𝑑𝐹
(𝐴𝑃) = 3 −

2

3
𝐹 = 0. i.e., F = 

9

2
.  

Also 
𝑑2

𝑑𝐹2
(𝐴𝑃) = −

2

3
 (< 0), i.e., AP is maximum at F = 

9

2
. 

Maximum value of AP at F = 
9

2
 is40 + 3 (

9

2
) −

1

3
(
9

2
)
2

=
187

4
 and maximum value of MP at F = 

9

2
 is also 

187

4
. 

This shows that when AP is maximum, it is equal to MP. 
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2.2.3 Optimizing Multivariable Functions 
 
 To optimize a multivariable function, we use the concept ofpartial derivatives. This 

is because partial derivatives measure the change in the dependent variable due to unit 

change in one of the independent variables, while keeping constant the effect of all other 

independent variables. The necessary and sufficient conditions for local optimum 

(maximumor minimum) of constrained multivariable functions may be described as 

follows: 

 

Taylor’s series expansion of a multivariable function:  

           Let f(x) be a real valued continuous and differentiable function of x in En. Ket (x + h) 

be a point in the neighbourhood of x such that: h = (h1, h2, …, hn)
T  and                                                                        

x + h = (x1 + h1, x2 + h2, … xn + hn)
T where x = (x1, x2, …, xn)

T. Then f(x) can be expressed 

as a power series involving the differentials of f(x) itself to Taylor’s series. 

f(x + h) = f(x1 + h1, x2 + h2, … xn + hn) 

            = f(x) + ∑ (
𝜕𝑓

𝜕𝑥𝑖
) ℎ𝑖 +

1

2!
∑ ∑ (

𝜕2𝑓

𝜕𝑥𝑖 𝜕𝑥𝑗
)ℎ𝑖ℎ𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝑛
𝑖=1                         (7) 

Now we define the gradient vector of f(x) , denoted by ∇ f(x), as folloes. The nth gradient 

vector whoes components are the partial derivatives of f(x) and Hessian matrix H(x) of 

order n evaluted at x + 𝜃h (0 < 𝜃 < 1) are as follows: 

∇𝑓(𝑥) = [
𝜕𝑓(𝑥)

𝜕𝑥1
,
𝜕𝑓(𝑥)

𝜕𝑥2
, … ,

𝜕𝑓(𝑥)

𝜕𝑥𝑛
]
𝑇

 and 𝐻(𝑥) =

[
 
 
 
 
 
∂2f(x)

∂x1
2

∂2f(x)

∂x1 ∂x2
…

∂2f(x)

∂x2 ∂x1

∂2f(x)

∂x2
2 …

∂2f(x)

∂xn ∂x1

∂2f(x)

∂xn ∂x2
…

   

∂2f(x)

∂x1 ∂xn

∂2f(x)

∂x2 ∂xn

∂2f(x)

∂xn
2 ]
 
 
 
 
 

 

Using the above definitions, we can write: 

f(x + h) – f(x) = ∇ f(x) h + 
1

2!
 hT H(x) h ; x + 𝜃h (0 < 𝜃 < 1)  (8) 

 

Theorem 2.3: The necessary condition for the continuous function f(x) to have an extreme 

point at x = x0 is that gradient ∇ f(x0) = 0. i.e., 
𝜕𝑓(𝑥0)

𝜕𝑥1
=

𝜕𝑓(𝑥0)

𝜕𝑥2
= ⋯ =

𝜕𝑓(𝑥0)

𝜕𝑥𝑛
= 0. 

Proof: Putting x = x0 in (8), we get: : f(x0 + h) – f(x0) = ∇ f(x0) h + 
1

2!
 hT H(x0) h ;                       

x = x0 + 𝜃h (0 < 𝜃 < 1). 

As we know that the term hT H(x0) h contains terms of order h2 and hence the term     hT 

H(x0) h tends to zero as h  0. Thus, the sign of f(x0 + h) – f(x0) depends upon ths sign of 
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∇ f(x) h. Again, the sign of ∇ f(x0) h depends upon the sign of h. Hence,               f(x0 + h) – 

f(x0) will be positive or negative according to whether h is positive or negative, 

respectively. This contradicts our assumption that x0 is an extreme point. It follows that for 

x0 to be an extreme point it is necessary that ∇ f(x0) = 0. In other words, the partial 

derivatives of f(x) with respect to xi (i = 1, 2, …, n) must be zero at the exterme point x0. 

 

Theorem 2.4: A sufficient condition for a stationary point x0 to be an extreme point is that 

the Hessian matrix H(x), evaluted at x0 is: 

(a) positive definite when x0 is a minimum point and 

(b) negative definite when x0 is a maximum point. 
 

Proof: Putting x = x0 in (8), we get: : f(x0 + h) – f(x0) = ∇ f(x0) h + 
1

2!
 hT H(x0) h      (9)   

x = x0 + 𝜃h (0 < 𝜃 < 1). 

Since x0 is a stationary point, therefore from Theorem 2.2 we have ∇ f(x0). Thus (9) 

becomes f(x0 + h) – f(x0) = 
1

2
 hT H(x0) h  at x = x0 + 𝜃h (0 < 𝜃 < 1). 

Now the sign of f(x0 + h) – f(x0)  depends upon the sign of the quadratic expression      
1

2
 hT 

H(x0) h whereas the sign of 
1

2
 hT H(x0) h varies with the choice of h. Let the extreme point 

x0 be a local minimum. Then by definition, f(x0 + h) – f(x0) will be positive. Hence for x0 to 

be a local minimum, the expression 

1

2
 hT H(x0) h = ∑ ∑ (

𝜕2𝑓

𝜕𝑥𝑖 𝜕𝑥𝑗
)ℎ𝑖ℎ𝑗

𝑛
𝑗=1

𝑛
𝑖=1  ; x = x0 + 𝜃h is positive. 

Since the second partial derivative is continuous, i.e., 
∂2f(x)

∂xi ∂xj
=

∂2f(x)

∂xj ∂xi
 for all i, j = 1, …, n in 

the neighbourhood of the point x0, it will have the same sign for all sufficiently small h in 

the neighbourhood of x0 + 𝜃h. The quadratic expression hT H(x0) h is positive only if the 

Hessian matrix H(x0) is positive definite at x = x0. It follows that a sufficient condition for a 

stationary point x0 to be a local minimum is that the Hessian matrix evaluated at the same 

point to be positive definite. 

Similarly, it can also be proved that H(x0) is negative definite for a maximization case. 

Remarks:  

(1) The different types of test can also be used to identify local maxima or minima by 

examining the minors of the matrix H(x). 

(a) H(x) is positive definite if all its leading principal minors pf order 1 x 1 are positive. In 
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this case the extreme point is a local minimum. A principal minor of H(x) is the determinant 

of a square submatrix whose elements lie on the diagonal of H(x), whereas leading 

principal minor is one whose (1,1) element is the (1,1) element of H(x). 

(b) H(x) is negative definite, if the signs of all even leading principal mirros is positive. 

(c) If signs of determinants do not meet conditions (i) and (ii), then the extreme point may 

either a maximum or a minimum or neither. In this case the matrix H(x) is termed as semi 

– definite or indefinite. 

(2) Summary of results: 

Necessary Condition Sufficient Condition Conclusion 

∇ f(x0) = 0 H(x0) is positive definite Local minimum at x = x0 

∇ f(x0) = 0 H(x0) is negative 

definite 

Local maximum at x = x0 

∇ f(x0) = 0 H(x0) is indefinite Point of inflection at x = x0 

 

 

Example 2.7 Find the second order Taylor’s series approximation of the function: 

𝑓(𝑥1, 𝑥2) = 𝑥1
2𝑥2 + 5𝑥1𝑒

𝑥2 about the point x0 = [1, 0]T 

Solution: The second order Taylor’s series approximation of the function       𝑓(𝑥1, 𝑥2) =

𝑥1
2𝑥2 + 5𝑥1𝑒

𝑥2 is: 

     𝑓(𝑥1, 𝑥2) = 𝑓 [
1
0
] + ∇𝑓 [

1
0
] ℎ +

1

2!
ℎ𝑇𝐻(𝑥)ℎ, where x = x0 + 𝜃h, and 

                h = [
ℎ1
ℎ2
] = [

𝑥1
𝑥2
] − [

1
0
] = [

𝑥1 − 1
𝑥2

] 

       x0 + 𝜃h = [
1
0
] + 𝜃 [

𝑥1 − 1
𝑥2

] = [
1 + 𝜃𝑥1 − 𝜃

𝜃𝑥2
] 

         ∇ f(x0) = [
𝜕𝑓

𝜕𝑥1
 ,
𝜕𝑓

𝜕𝑥2
] = (2𝑥1𝑥2 + 5𝑒

𝑥2  , 𝑥1
2 + 5𝑥1𝑒

𝑥2) 

For x0 = [1,0]T, the value of ∇ f(x0) = [5,6] 

  H(x) = [

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2

] = [
2𝑥2 2𝑥1 + 5𝑒

𝑥2

2𝑥1 + 5𝑒
𝑥2 5𝑥1𝑒

𝑥2
] 

Substituting the values in 𝑓(𝑥1, 𝑥2), we get: 

𝑓(𝑥1, 𝑥2) = 5 + [5,6] [
𝑥1 − 1
𝑥2

] +
1

2!
[
𝑥1 − 1
𝑥2

]
𝑇

[
2𝑥2 2𝑥1 + 5𝑒

𝑥2

2𝑥1 + 5𝑒
𝑥2 5𝑥1𝑒

𝑥2
] [
𝑥1 − 1
𝑥2

] 
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Example 2.8 Consider the function 𝑓(𝑥) = 𝑥1 + 2𝑥2 + 𝑥1𝑥2 − 𝑥1
2 − 𝑥2

2. Determine the 

maximum or minimum point (if any) of the function. 

Solution: The necessary condition for local optimum (maximum or minimum) value is that 

gradient ∇𝑓(𝑥) = [
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
] = 0 

i.e., 
𝜕𝑓

𝜕𝑥1
= 1 + 𝑥2 − 2𝑥1 = 0 and 

𝜕𝑓

𝜕𝑥2
= 2 + 𝑥1 − 2𝑥2 = 0. The solution of these simultaneous 

equations is: 𝑥0 = (
4

3
,
5

3
). 

Ths sufficient condition can be verified by considering the Hessian matric as follows: 

H(x) = [

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2

] = [
−2 1
1 −2

] 

Det 𝐴1 = |
𝜕2𝑓

𝜕𝑥1
2| = −2 and Det 𝐴2 = |

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2

| = 3 

Since the signs of the principal minor determinants of H(x) are alternating, matrix H(x) 

is negative definits and the point x0 = (
4

3
,
5

3
)  is the local maximum of the function f(x). 

 

 

Let Us Sum Up 

          We have learned about single- optimizing variable function, conditions for local 

extrema of a function defined in an interval related concepts, examples. And also 

optimizing multi variable functions by using the concept of partial derivatives. 

 

 
Check Your Progress 

11. Examine the following function for extreme points: 

                (a) 𝑓(𝑥1, 𝑥2) = 3𝑥1
2 + 𝑥2

2 − 10 

                (b) 𝑓(𝑥1, 𝑥2) = 100(𝑥1 − 𝑥2
2)2 + (1 − 𝑥1)

2 

               (c) 𝑓(𝑥1, 𝑥2) = 𝑥1
3 + 𝑥2

3 + 2𝑥1
2 + 4𝑥2

2 

12. Show that a cube curve whose equation is of the form: 𝑦 = 𝑎𝑥3+ 𝑏𝑥2 + 𝑐𝑥 + 𝑑, 

where 𝑎, 𝑏, 𝑐, 𝑑 ≠ 0, has one and only one point of inflection. 
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13. The demand function for a particular commodity is, ρ= 15𝑒
−𝑥

3⁄ , where 𝜌 is the price 

per unit and 𝑥 is the number of units demanded. Determine the price and the 

quantity for which the revenue (R) is maximum. 

14. If the total revenue (R) and total cost (C) function of a firm are given by  

          𝑅 = 30𝑥 − 𝑥2 and 𝐶 = 20 + 4𝑥, where 𝑥 is the output, find the equilibrium level    

          output of the firm. What is the maximum profit ?  

15. There are 60 newly built apartments. All these would be occupied at rent of Rs.  

4,500 per month. But one apartment is likely to remain vacant for every Rs. 150 

increase in rent. An occupied apartment requires Rs. 6 month for maintenance. 

Find the relationship between profit and the number of unoccupied apartments. 

What is the number of vacant apartments for which the profit is maximum? 
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2.3 CONSTRAINED MULTIVARIABLE OPTIMIZATION WITH 

EQUALITY CONSTRAINTS 

 In this section, we shall discuss the problem of optimizing a continuous and 

differentiable function subject to equality constraints. 

          Optimize (max or min)  Z = f(x1, x2, …, xn) subject to the constraints    

𝑔𝑖(𝑥) = 0 ; i = 1, 2, …, m      (10) 

where x = (x1, x2 , …, xn)      (11)  and 𝑔𝑖(𝑥) = ℎ𝑖(𝑥) − 𝑏𝑖 ; 𝑏𝑖 is a constant. 

Here, it is assumed that m < n to get the solution. 

 There are various methods for solving the above defined problem. But in this 

section, we shall discuss only two methods: 

(i) Direct Substitution Method  (ii) Lagrange Multipliers Method 

 

2.3.1 Direct Substitution Method 

Since the constraint set 𝑔𝑖(𝑥) is also continuous and differentiable, any 

variable in the constraint set can be expressed in terms of the remaining variables. 

Then it is substituted into the objective function. The new objective function, so 

obtained, is not subjected to any constraints and hence its optimum value can be 

obtained by the unconstrained optimization method, discussed in the previous 

section. 

 Sometimes this method is not convenient, particularly when there are more 

than two variables in the objective function and are subject to constraints. 

 

Example 2.9 Find the optimum solution of the following constrained multivariable 

problem. Minimize Z = 𝑥1
2 + (𝑥2 + 1)

2 + (𝑥3 − 1)
2 subject to the constraint   x1 + 5x2 – 

3x3 = 6 and x1, x2, x3 ≥ 0 

Solution: Since the given problem has three variables and one equality constraint, 

any one of the variables can be removed from Z with the help of the equality 

constraint. Let us choose variable x3 to be eliminated from Z. Then, from the equality 

constraint, we have: 𝑥3 =
𝑥1+5𝑥2−6

3
 

Substituting the value of x3 in the objective function, we get: 

Z (or) f(x) = 𝑥1
2 + (𝑥2 + 1)

2 +
1

9
(𝑥1 + 5𝑥2 − 9)

2 
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The necessary condition for minimum of Z is that the gradient 

∇𝑓(𝑥) = [
𝜕𝑓

𝜕𝑥1
 ,
𝜕𝑓

𝜕𝑥2
] = 0 

𝜕𝑍

𝜕𝑥1
= 2𝑥1 +

2

9
(𝑥1 + 5𝑥2 − 9) = 0   (12) 

𝜕𝑍

𝜕𝑥2
= 2(𝑥1 + 1) +

10

9
(𝑥1 + 5𝑥2 − 9) = 0  (13) 

On solving these equations, we get 𝑥1 =
2

5
 and 𝑥1 = 1. 

 

 To find whether the solution, so obtained, is minimum or not, we must apply 

the sufficiency condition by forming a Hessian matrix. The Hessian matrix for the 

given objective function is H(x1 , x2) = [

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2

] = [

20

9

10

9
10

9

20

9

] 

Since the matric is symmetric and principal diagonal elements are positive, H(x1 , x2) 

is positive definite and the objective function is convex. Hence, the optimum solution 

to the given problem is, 𝑥1 =
2

5
, 𝑥1 = 1, 𝑥1 = −

1

5
 and Min Z = 

28

5
 

 

2.3.2 Lagrange Multipliers Method 

In this method an additional variable in each of the given constraints is added. Thus, 

if the problem has n variables and m equality constraints, then m is additional 

variables are to be added so that the problem would have n + m variables. Before 

discussing the general method, let us illistrate its salient features through the 

following simple problem that involves onlt three variables: 

Necessary condition for a problem with n = 3 and m = 1 

Consider the NLP problem: 

Optimize (max or min) Z = f(x1, x2, x3)        (14) 

subject to the constraint g(x1, x2, x3) = 0       (15) 

Let an optimum value of Z occur at a point (x1, x2, x3) = (a, b, c) at which at least one 

of the partial derivatives 
𝜕𝑔

𝜕𝑥1
,
𝜕𝑔

𝜕𝑥2
,
𝜕𝑔

𝜕𝑥3
 does not vanish. Thus, we may proceed as 

follows: 

(i) Choose one variable say x3 in constraint (15) and express it in terms of the 

remaining two variabes such that x3 = h (x1 , x2) 

(ii) Substitute the value of x3 into the objective function (14), we get: 
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Z = f {(x1 , x2) , h (x1 , x2)} 

From unconstrained optimization methods, we know that the necessary condition for 

local optimum is that all first derivatives with respect to x1 and x2 must be zero; i.e., 

𝜕𝑍

𝜕𝑥𝑗
= 0 ; j = 1, 2          (16) 

Applying the chain rule for differentiation on (16) we get: 

𝜕𝑍

𝜕𝑥𝑗
=

𝜕𝑓

𝜕𝑥𝑗
+

𝜕𝑓

𝜕𝑥3
.
𝜕ℎ

𝜕𝑥𝑗
 ; j = 1, 2 

But from (15), we have:   
𝜕𝑔

𝜕𝑥𝑗
+

𝜕𝑔

𝜕𝑥3
.
𝜕ℎ

𝜕𝑥𝑗
= 0 ; j = 1, 2 

    
𝜕ℎ

𝜕𝑥𝑗
= −

𝜕𝑔

𝜕𝑥𝑗

𝜕𝑔

𝜕𝑥3

 ; 
𝜕𝑔

𝜕𝑥3
≠ 0 ; j = 1, 2 

at the point (x1, x2, x3) = (a, b, c) 

 since optimum occurs at the point (a, b, c), we have: 

𝜕𝑍

𝜕𝑥𝑗
=

𝜕𝑓

𝜕𝑥𝑗
− [

𝜕𝑓

𝜕𝑥3
. {

𝜕𝑔

𝜕𝑥𝑗

𝜕𝑔

𝜕𝑥3

}] = 0 at (x1, x2, x3) = (a, b, c)     (17) 

As 
𝜕𝑔

𝜕𝑥3
≠ 0, we define a quantity λ, called Lagrange multiplier as given below. The 

value of λ represents theamount of change in the objective function due to the per 

unit change in the constraint li,it. i.e., 

𝜕𝑓

𝜕𝑥3
− 𝜆

𝜕𝑔

𝜕𝑥3
= 0 𝑎𝑡 (𝑥1, 𝑥2, 𝑥3) = (𝑎, 𝑏, 𝑐) 

(𝑜𝑟)                                         𝜆 =

𝜕𝑓
𝜕𝑥3
𝜕𝑔
𝜕𝑥3

 

Equation (17) can now be written as: 

𝜕𝑍

𝜕𝑥𝑗
=

𝜕𝑓

𝜕𝑥𝑗
− 𝜆

𝜕𝑔

𝜕𝑥𝑗
= 0 ; 𝑗 = 1, 2     (18) 

at (x1, x2, x3) = (a, b, c) and the constraint equation g (x1, x2, x3) = 0    (19) 

is also satisfied at the extreme (or critical) points, x1 = a, x2 = b and x3 = c. The 

conditions (18) and (19) are called necessary conditions for a local optimum, 

provided not all 
𝜕𝑔

𝜕𝑥𝑗
 , j = 1, 2 become zero at the extreme points. 

 The necessary conditions given by (18) and (19) can be obtained very easily 

by forming a function L, called the Lagrange function, as: 

𝐿(𝑥𝑗  , 𝜆) = 𝑓(𝑥𝑗) − 𝜆 𝑔(𝑥𝑗), j = 1, 2, 3    (20) 
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We must, then, partially differentiate 𝐿(𝑥𝑗  , 𝜆) with respect to xj (j = 1, 2, 3) and λ and 

equate them with zero. The following equations provide the necessary conditions for 

local optimum: 

𝜕𝐿

𝜕𝑥𝑗
=

𝜕𝑓

𝜕𝑥𝑗
− 𝜆

𝜕𝑔

𝜕𝑥𝑗
= 0 ; j = 1, 2, 3    (21) 

𝜕𝐿

𝜕𝜆
= 𝑔(𝑥𝑗) = 0 ; j = 1, 2, 3 

These equations can be solved for the unkown xj (j = 1, 2, 3) and λ. 

 

Remark: The necessary conditions, so obtained, become sufficient conditions for a 

maximum (or minimum) if f(x) is concave (or convex), with equality constraints. 

 

Example 2.10  Obtain the necessary condition for the optimum solution of the 

following problem: Minimize 𝑓(𝑥1 , 𝑥2) = 3𝑒2𝑥1+1 + 2𝑒𝑥2+5 subject to the constraint  

g(x1 , x2) = x1 + x2 – 7 = 0 and x1 , x2 ≥ 0 

 

Solution: Forming the Lagrangian function, we obtain 

𝐿(𝑥1 , 𝑥2 , 𝜆) = 𝑓(𝑥1 , 𝑥2) − 𝜆 𝑔(𝑥1 , 𝑥2) = 3𝑒2𝑥1+1 + 2𝑒𝑥2+5 − 𝜆 (𝑥1 + 𝑥2 − 7) 

The necessary conditions for the minimum of 𝑓(𝑥1 , 𝑥2) are given by: 

𝜕𝐿

𝜕𝑥1
= 6𝑒2𝑥1+1 − 𝜆 = 0 (𝑜𝑟)  𝜆 = 6𝑒2𝑥1+1  

𝜕𝐿

𝜕𝑥2
= 2𝑒𝑥2+5 − 𝜆 = 0 (𝑜𝑟)  𝜆 = 2𝑒𝑥2+5 

𝜕𝐿

𝜕𝜆
= −(𝑥1 + 𝑥2 − 7) = 0 

On solving these three equations in three unknowns, we obtain: 

𝑥1 = (
1

3
) (11 − log 3) and 𝑥1 = 7 − (

1

3
) (11 − log 3). 

 

Necessary conditions for a general problem:  

Consider the non – linear programming problem: 

Optimize Z = f (x) subject to the constraint ℎ𝑖(𝑥) = 𝑏𝑖 or 𝑔𝑖(𝑥) = ℎ𝑖(𝑥) − 𝑏𝑖 = 0 where 

i = 1, 2, …, m and m ≤ n ; x 𝜖 En. 

The necessary conditions (21) for a function to have a local optimum at 

the given points can be extended to the case of a general problem with n 

variables and m  equality constraints. 
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Multiply each constraint with an unknown variable λ i  (i = 1, 2, . . ., m) and 

subtract each from the objective function, f (x) to be optimized. The new objective 

function now becomes: 

𝐿(𝑥 , 𝜆) = 𝑓(𝑥) −∑ 𝜆𝑖𝑔𝑖(𝑥)
𝑚

𝑖=1
 ; 𝑥 = (𝑥1 , 𝑥2 , … , 𝑥𝑛)

𝑇 

where m < n. The function L(x, λ) is called the Lagrange function. 

The necessary conditions for an unconstrained optimum of L (x , λ), i.e. the first 

derivatives, with respect to x and λ of L(x, λ) must be zero, are also necessary 

conditions for the given constrained optimum of f(x), provided that the matrix of 

partial derivatives 
𝜕𝑔𝑖

𝜕𝑥𝑗
 has rank m at the point of optimum. 

The necessary conditions for an optimum (max or min) of L (x , λ) or f (x) are 

the m + n equations to be solved for m + n unknown (x1, x2, …, xn ; λ1, λ2, …, λm) 

𝜕𝐿

𝜕𝑥𝑗
=
𝜕𝑓

𝜕𝑥𝑗
−∑ 𝜆𝑖

𝜕𝑔𝑖
𝜕𝑥𝑗

𝑚

𝑖=1
= 0 ; 𝑗 = 1, 2, … , 𝑛 

𝜕𝐿

𝜕𝑥𝑗
= −𝑔𝑖 ;                                    𝑗 = 1, 2, … ,𝑚 

These (m + n) necessary conditions also become sufficient conditions for a 

maximum (or minimum) of the objective function f (x), in case it is concave (or 

convex) and the constraints are equalities, respectively. 

Sufficient conditions for a general problem: Let the Lagrangian function for a 

general NLP problem, involving n variables and m (< n) constraints, be 

𝐿(𝑥 , 𝜆) = 𝑓(𝑥) −∑ 𝜆𝑖𝑔𝑖(𝑥)
𝑚

𝑖=1
 

Further, the necessary conditions 

𝜕𝐿

𝜕𝑥𝑗
= 0 𝑎𝑛𝑑 

𝜕𝐿

𝜕𝜆𝑖
= 0 ; 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗 

for an extreme point to be local optimum of f (x) is also true for optimum of L(x, λ). 

Let there exist points x and l that satisfy the equations 

∇𝐿(𝑥 , 𝜆) = ∇𝑓(𝑥) − ∑ 𝜆𝑖𝑔𝑖(𝑥)
𝑚
𝑖=1 = 0 and 𝑔𝑖(𝑥) = 0 ; i = 1, 2, …, m 
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Then the sufficient condition for an extreme point x to be a local minimum (or local 

maximum) of f (x) subject to the constraints g i(x) = 0 (i = 1, 2, ..., m) is that the 

determinant of the matrix (also called Bordered  Hessian matrix) 

𝐷 = [
𝑄 𝐻

𝐻𝑇 0
]
(𝑚+𝑛)×(𝑚+𝑛)

 

is positive (or negative), where 

𝑄 = [
𝜕2𝐿(𝑥 , 𝜆)

𝜕𝑥𝑖𝜕𝑥𝑗
]
𝑛Ϋ𝑛

; 𝐻 = [
𝜕𝑔𝑖(𝑥)

𝜕𝑥𝑗
]
𝑚×𝑛

 

Conditions for maxima and minima: The sufficient condition for the maxima and 

minima is determined by the signs of the last (n – m) principal minors of matrix D. 

i.e., 

(1) If starting with principal minor of order (m + 1), the extreme point gives the 

maximum value of the objective function when signs of last (n – m) principal 

minors alternate, starting with (– 1)m + n sign. 

(2) If starting with principal minor of order (2m + 1), the extreme point gives the 

maximum value of the objective function when all signs of last (n – m) 

principal minors are the same and are of ( – 1)m type. 

 

Example 2.11 Solve the following problem by using tge method of Lagrangian 

multipliers. Minimize Z = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 subject to the constraints     (i) x1 + x2 + 3x3 = 2

  (ii) 5x1 + 2x2 + x3 = 5 and x1, x2 ≥ 0. 

  

Solution: The Lagrangian function is 

𝐿(𝑥 , 𝜆) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 − 𝜆1(𝑥1 + 𝑥2 + 3𝑥3 − 2) − 𝜆2(5𝑥1 + 2𝑥2 + 𝑥3 − 5) 

The necessary conditions for the minimum of Z give us the following: 

𝜕𝐿

𝜕𝑥1
= 2𝑥1 − 𝜆1 − 5𝜆2 = 0 ;  

𝜕𝐿

𝜕𝑥2
= 2𝑥2 − 𝜆1 − 2𝜆2 = 0 ;

𝜕𝐿

𝜕𝑥3
= 2𝑥3 − 3𝜆1 − 𝜆2 = 0   

𝜕𝐿

𝜕𝜆1
= −(𝑥1 + 𝑥1 + 3𝑥3 − 2) = 0 ;  

𝜕𝐿

𝜕𝜆2
= −(5𝑥1 + 2𝑥1 + 𝑥3 − 5) = 0 

The solution of these simultaneous equations gives: 

𝑥 = (𝑥1 , 𝑥2 , 𝑥3) = (
37

46
 ,
16

46
 ,
13

46
) ;  𝜆 = (𝜆1 , 𝜆2) = (

2

23
 ,
7

23
)  𝑎𝑛𝑑 𝑍 =

193

250
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To see that this solution corresponds to the minimum of Z, apply the sufficient 

condition with the help of a matrix: 

𝐷 =

[
 
 
 
 
2 0 0
0 2 0
0 0 2

     
1 5
2 2
3 1

1 1 3
5 2 1

     
0 0
0 0]

 
 
 
 

  

Since m = 2, n = 3, so n – m = 1 and 2m + 1 = 5, only one minor of D of order 5 

needs to be evaluted and it must have a positive sign; (–1)m = (–1)2 = 1. Since |D| = 

460 > 0, the extreme point, x = (x1, x2, x3) corresponds to the minimum of Z. 

 

Necessary and sufficient conditions when concavity (convexity) of 

objective function is not known, with single equality constraint: 

Let us consider the non – linear programming problem that involves n decision 

variables and a single constraint: Optimize Z = g(x) subject to the constraint g(x) = 

h(x) – b = 0 ; x = (x1 , x2, …, xn)
T ≥ 0 

 Multiply each constraint by Lagrange multiplier λ and sibtract it from the 

objective function. The new unconstrained objective function (Lagrange function) 

becomes: L(x, λ) = f(x) – λ g(x) 

 The necessary conditions for an extreme point to be an optimum (max or min) 

point are: 

𝜕𝐿

𝜕𝑥𝑗
=
𝜕𝑓

𝜕𝑥𝑗
− 𝜆

𝜕𝑔

𝜕𝑥𝑗
= 0 ; 𝑗 = 1, 2, … , 𝑛 

𝜕𝐿

𝜕𝜆
= −𝑔(𝑥) = 0 

From the first condition we obtain the value of λ as: λ = 

𝜕𝑓

𝜕𝑥𝑗

𝜕𝑔

𝜕𝑥𝑗

 ; 𝑗 = 1, 2, … , 𝑛 

The sufficient conditions for determining whether theoptimal solution, so obtained, is 

either maximum or minimum, need computation of the value of (n – 1) principal 

minors, of the determinant, for each extreme point, as follows: 
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 If the signs of minors ∆3 , ∆4 , ∆5 are alternatively positive and negative, then 

the extreme point is a local maximum. But if signs of all minors ∆3 , ∆4 , ∆5 are 

negative, then the extreme point is a local minimum. 

Example 2.12 Use the method of Lagrangian multipliers to solve the following NLP 

problem. Does the solution maximize or minimize the objective function ? 

Optimize Z = 2𝑥1
2 + 𝑥2

2 + 3𝑥3
2 + 10𝑥1 + 8𝑥2 + 6𝑥3 − 100 subject to the constraint        

g(x) = x1 + x2 + x3 = 20 and x1, x2, x3 ≥ 0.  

 

Solution: Lagrangian function can be formulated as: 

𝐿(𝑥 , 𝜆) = 2𝑥1
2 + 𝑥2

2 + 3𝑥3
2 + 10𝑥1 + 8𝑥2 + 6𝑥3 − 100 − 𝜆(𝑥1 + 𝑥2 + 𝑥3 − 20) = 0 

The necessary conditions for maximum or minimum are: 

𝜕𝐿

𝜕𝑥1
= 4𝑥1 + 10 − 𝜆 = 0 ; 

𝜕𝐿

𝜕𝑥2
= 2𝑥2 + 8 − 𝜆 = 0 ;  

𝜕𝐿

𝜕𝑥1
= 4𝑥1 + 10 − 𝜆 = 0 ;  

𝜕𝐿

𝜕𝜆
= −(𝑥1 + 𝑥2 + 𝑥3 − 20) = 0 

Putting the value of x1, x2, x3 in the last equation and solving for λ, we get λ = 30. 

Substituting the value of λ in the other three equations, we get an extreme point:          

(x1, x2, x3) = (5, 11, 14). 

To prove the sufficient condition of whether the extreme point solution gives 

maximum or minimum value of the objective function we evalute (n – 1) principal 

minors as follows: 

∆3= |
0 1 1
1 4 0
1 0 2

| = −6 
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∆4= |

0 1 1
1 4 0
1 0 2

     
1
0
0

1 0 0     6

| = 48 

Since the sign of ∆3 𝑎𝑛𝑑 ∆4 are alternative, therefore extreme point: (x1, x2, x3) = (5, 

11, 14) is a local maximum. At this point the value of objective function is Z = 281. 

 

Interpretation of the Lagrange Multiplier 

The value of Lagrange multiplier, which was introduced as an additional variable, can 

be used to provide valuable information about the sensitivity of an optimal value of 

the objective function to changes in resource levels (right – hand – side values of the 

constraints). 

 

Let Us Sum Up 

     We have studied about constrained multi-variable optimization with equality 

constraints from the interpretation of the Lagrange multiplier. 

 

 

Check Your Progress 

Obtain the solution of the following problems by using the method of Lagrangian 

multipliers: 

16. Min 𝑍 =  −2𝑥1
2 + 5𝑥1𝑥2 − 4𝑥1

2 + 18𝑥1  

      Subject to 𝑥1 + 𝑥2 = 7 and 𝑥1, 𝑥2  ≥ 0 . 

17. Min 𝑍 =  3𝑥1
2 + 𝑥2

2 + 𝑥3
2 

      Subject to 𝑥1 + 𝑥2 + 𝑥3 = 2 and 𝑥1, 𝑥2, 𝑥3  ≥ 0 . 

18. Max 𝑍 =  4𝑥1 + 6𝑥2 − 2𝑥1
2 − 2𝑥1𝑥2 − 2𝑥2

2  

      Subject to 𝑥1 + 2𝑥2 = 2 and 𝑥1, 𝑥2  ≥ 0 . 

 19. Max 𝑍 = 7𝑥1 − 0.3𝑥1
2 + 8𝑥2 − 0.4𝑥2

2 

       Subject to 4𝑥1 + 5𝑥2 = 100 and 𝑥1, 𝑥2  ≥ 0 . 
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20. Find the dimension of the rectungular parallelepiped with the largest volume 

whose sides are parallel to the cordinates planes, to be inscribed in the elipsoid 

 𝑔(𝑥, 𝑦, 𝑧 ) =  
𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
− 1 = 0 
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2.4 CONSTRAINED MULTIVARIABLE OPTIMIZATION WITH 

INEQUALITY CONSTRAINTS 

In this section the necessary and sufficient conditions for a local optimum of the 

general non – linear programming problem, with both equality and inequality 

constraints will be derived. The Kuhn – Tucker conditions (necessary as well as 

sufficient) will be used to derive optimality conditions. Consider the following general 

non – linear LP problem: 

 

2.4.1 Kuhn – Tucker Necessary Condition 

 

Optimize Z = f(x) subject to the constraints 𝑔𝑖(𝑥) ≤ 0𝑓𝑜𝑟 𝑖 = 1, 2, … ,𝑚 𝑤ℎ𝑒𝑟𝑒 𝑥 =

(𝑥1 , 𝑥2 , … , 𝑥𝑛)
𝑇 𝑎𝑛𝑑 𝑔𝑖(𝑥) = ℎ𝑖(𝑥) − 𝑏𝑖. 

 Add non – negative slack variables si (i = 1, 2, …, m) in each of the constraints 

to convert them to equality constraints. The problem can then be related as: 

Optimize Z = g (x) subject to the constraints 𝑔𝑖(𝑥) + 𝑠𝑖
2 = 0, i = 1, 2, . . ., m  

The 𝑠𝑖
2 has only been added to ensure non-negative value (feasibility requirement) of 

si and to avoid adding si ≥ 0 as an additional side constraint. 

The new problem is the constrained multivariable optimization problem with equality 

constraints with  

n + m variables. Thus, it can be solved by using the Lagrangian multiplier method. 

For this, let us form the Lagrangian function as:  

𝐿(𝑥 , 𝑠 , 𝜆) = 𝑓(𝑥) −∑ 𝜆𝑖[𝑔𝑖(𝑥) + 𝑠𝑖
2]

𝑚

𝑖=1
 

where λ = ( λ1, λ2, …, λm)T  is the vector of Lagrange multiplier.  

The necessary conditions for an extreme point to be local optimum (max or min) can 

be obtained by: solving the following equations: 

The equation 
𝜕𝐿

𝜕𝜆𝑖
= 0 gives us back the original set of constraints: 𝑔𝑖(𝑥) + 𝑠𝑖

2 =

0. If a constraint is satisfied with equality sign, 𝑔𝑖(𝑥) = 0 at the optimum point x, then 
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it is called an active (binding or light) constraint, otherwise it is known as an inactive 

(slack) constraint.  

The equation 
𝜕𝐿

𝜕𝑠𝑖
= 0, provides us the set of rules for finding the unconstrained 

optimum. The condition 𝜆𝑖𝑠𝑖= 0 implies that either 𝜆𝑖 = 0 (or) 𝑠𝑖 = 0. If 𝑠𝑖 = 0 and 𝜆𝑖 > 

0, then equation 
𝜕𝐿

𝜕𝜆𝑖
= 0  gives 𝑔𝑖(𝑥) = 0. This means either 𝜆𝑖 = 0 (or) 𝑔𝑖(𝑥) = 0, and 

therefore we may also write 𝜆𝑖𝑔𝑖(𝑥) = 0. 

Since 𝑠𝑖
2 has been taken to be a non-negative (≥ 0) slack variable, therefore 

𝑔𝑖(𝑥) ≥ 0. Hence, the equation 𝜆𝑖𝑔𝑖(𝑥) = 0 implies that when 𝑔𝑖(𝑥) < 0, 𝜆𝑖 = 0 and 

when 𝑔𝑖(𝑥) = 0, 𝜆𝑖> 0. However 𝜆𝑖 is unrestricted in sign corresponding to 𝑔𝑖(𝑥) = 0. 

But if 𝜆𝑖 = 0 and 𝑠𝑖
2 > 0, then the ith constraint is inactive (i.e., this constraint will 

not change the optimum value of Z* because l = 
𝜕𝑍

𝜕𝑏𝑖
 = 0) and hence can be discarded.  

Thus the Kuhn-Tucker necessary conditions (when active constraints are 

known) to be satisfied at a local optimum (max or min) point can be stated as follows: 

𝜕𝑓

𝜕𝑥𝑖
−∑ 𝜆𝑖

𝜕𝑔𝑖
𝜕𝑥𝑗

𝑚

𝑖=1
= 0 ; 𝑗 = 1, 2, … , 𝑛 

𝜆𝑖𝑔𝑖(𝑥) = 0 

𝑔𝑖(𝑥) ≤ 0 , 𝜆𝑖 ≥ 0 ; 𝑖 = 1, 2, … ,𝑚 

Remark: If the given problem is of minimization or if the constraints are of the form 

𝑔𝑖(𝑥) ≥ 0, then 𝜆𝑖 ≤ 0. On the other hand if the problem is of maximization with 

constraints of the form 𝑔𝑖(𝑥) ≤ 0, then  𝜆𝑖 ≥ 0. 

 

2.4.2 Kuhn – Tucker Sufficient Condition 

Theorem 2.5: The Kuhn – Tucker necessary conditions for the problem Maximize         

Z = f(x) subject to the constraints 𝑔𝑖(𝑥) ≤ 0 𝑓𝑜𝑟 𝑖 = 1, 2, … ,𝑚 is also the sufficient 

condition if f(x) is concave and all 𝑔𝑖(𝑥) are convex functions of x. 

 

Proof: The Lagrangian Function of the problem Maximize Z = f(x) subject to the 

constraints 𝑔𝑖(𝑥) ≤ 0 ; 𝑖 = 1, 2, … ,𝑚  

can be written as 𝐿(𝑥 , 𝑠 , 𝜆) = 𝑓(𝑥) − ∑ 𝜆𝑖[𝑔𝑖(𝑥) + 𝑠𝑖
2]𝑚

𝑖=1  

If 𝜆𝑖 ≥ 0, then 𝜆𝑖𝑔𝑖(𝑥) is convex and – 𝜆𝑖𝑔𝑖(𝑥) is concave. Further, since 𝜆𝑖𝑠𝑖 = 

0, we get 𝑔𝑖(𝑥) + 𝑠𝑖
2 = 0. Thus, it follows that 𝐿(𝑥 , 𝑠 , 𝜆) is a concave function. We 

have derived that a necessary condition for f(x) to be a relative maximum at an 
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extreme point is that 𝐿(𝑥 , 𝑠 , 𝜆) also have the same extreme point. However, if 

𝐿(𝑥 , 𝑠 , 𝜆) is concave, its first derivative must be zero only at one point, and obviously 

this point must be an absolute maximum for f(x). 

 

Example 2.13 Find the optimum value of the objective function when separately 

subject to the following three sets of constraints: 

Maximize Z = 10𝑥1 − 𝑥1
2 + 10𝑥2 − 𝑥2

2 subject to the constraints 

(a) 𝑥1 + 𝑥2 ≤ 14 , −𝑥1 + 𝑥2 ≤ 6 𝑎𝑛𝑑 𝑥1 , 𝑥2 ≥ 0 

(b) 𝑥1 + 𝑥2 ≤ 8 , −𝑥1 + 𝑥2 ≤ 5 𝑎𝑛𝑑 𝑥1 , 𝑥2 ≥ 0 

(c) 𝑥1 + 𝑥2 ≤ 9 , 𝑥1 − 𝑥2 ≥ 6 𝑎𝑛𝑑 𝑥1 , 𝑥2 ≥ 0 

 

Solution: (a) Here the constraints are: 

𝑔1(𝑥) = 𝑥1 + 𝑥2 + 𝑠1
2 − 14 = 0 ;  𝑔2(𝑥) = −𝑥1 + 𝑥2 + 𝑠2

2 − 6 = 0 

The Lagrangian function is formulated as: 

𝐿(𝑥, 𝑠, 𝜆) = (10𝑥1 − 𝑥1
2 + 10𝑥2 − 𝑥2

2) − 𝜆1(𝑥1 + 𝑥2 + 𝑠1
2 − 14) − 𝜆2(−𝑥1 + 𝑥2 + 𝑠2

2 − 6) 

The Kuhn – Tucker necessary conditions for a maximization problem are: 

𝜕𝐿

𝜕𝑥1
= 10 − 2𝑥1 − 𝜆1 + 𝜆2 = 0 ; 

𝜕𝐿

𝜕𝑥2
= 10 − 2𝑥2 − 𝜆1 − 𝜆2 = 0 

𝜕𝐿

𝜕𝜆1
= −(𝑥1 + 𝑥2 + 𝑠1

2 − 14) = 0 ;  
𝜕𝐿

𝜕𝜆1
= −(−𝑥1 + 𝑥2 + 𝑠2

2 − 6) = 0 

𝜕𝐿

𝜕𝑠1
= −2𝜆1𝑠1 = 0 ; 

𝜕𝐿

𝜕𝑠2
= −2𝜆2𝑠2 = 0 

The unconstrained solution (i.e., 𝜆1 = 𝜆1 = 0) obtained by solving the first four 

equations is: 𝑥1 = 5, 𝑥2 = 5, 𝑠1
2 = 4, 𝑠2

2 = 6 and Max Z = 50 

Since both 𝑠1
2 and 𝑠2

2 are positive, the solution is feasible. As the solution, so 

obtained, is unconstrained, therefore in order to find whether or not the solution is 

maximum, we test the Hessian matrix for the given objective function as: 

𝐻 = [

𝜕2𝑍

𝜕𝑥1
2

𝜕2𝑍

𝜕𝑥1𝜕𝑥2

𝜕2𝑍

𝜕𝑥2𝜕𝑥1

𝜕2𝑍

𝜕𝑥2
2

] = [
−2 0
0 −2

] and det 𝐴1 = |
𝜕2𝑍

𝜕𝑥1
2| = −2 ; det 𝐴2 = |𝐻| = 4 

Since signs of the principal minors of H are alternating, matrix H is negative definite 

and the point           x = (4, 4) gives the local maximum of the objective function Z. 

(b) Here the constraints are: 

𝑔1(𝑥) = 𝑥1 + 𝑥2 + 𝑠1
2 − 8 = 0 ; 𝑔2(𝑥) = −𝑥1 + 𝑥2 + 𝑠2

2 − 5 = 0 
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The Lagrangian function is formulated as: 

𝐿(𝑥, 𝑠, 𝜆) = (10𝑥1 − 𝑥1
2 + 10𝑥2 − 𝑥2

2) − 𝜆1(𝑥1 + 𝑥2 + 𝑠1
2 − 8) − 𝜆2(−𝑥1 + 𝑥2 + 𝑠2

2 − 5) 

The Kuhn – Tucker necessary conditions for a maximization problem are: 

𝜕𝐿

𝜕𝑥1
= 10 − 2𝑥1 − 𝜆1 + 𝜆2 = 0 ; 

𝜕𝐿

𝜕𝑥2
= 10 − 2𝑥2 − 𝜆1 − 𝜆2 = 0 

𝜕𝐿

𝜕𝜆1
= −(𝑥1 + 𝑥2 + 𝑠1

2 − 8) = 0 ; 
𝜕𝐿

𝜕𝜆1
= −(−𝑥1 + 𝑥2 + 𝑠2

2 − 5) = 0 

𝜕𝐿

𝜕𝑠1
= −2𝜆1𝑠1 = 0 ; 

𝜕𝐿

𝜕𝑠2
= −2𝜆2𝑠2 = 0 

 

The unconstrained solution (i.e., 𝜆1 = 𝜆1 = 0) obtained by solving the first four 

equations is: 

                   𝑥1 = 5, 𝑥2 = 5, 𝑠1
2 = −2, 𝑠2

2 = 5 and Max Z = 50. 

Since 𝑠1
2 = −2, the solution is infeasible. By agaon solving these equations for 

𝑠1 = 𝜆2 = 0 (violated first constraint), we get 𝑥1 = 4, 𝑥2 = 4, 𝑠2
2 = 5, 𝜆1 = 2, Max Z = 

48. This solution satisfies both the constraints and conditions 𝜆1𝑠1 = 𝜆2𝑠2 = 0 are also 

satisfied. Therefore the point x = (4, 4) gives the maximum of objective function Z. 

(c) Here the constraints are: 

𝑔1(𝑥) = 𝑥1 + 𝑥2 + 𝑠1
2 − 9 = 0 ; 𝑔2(𝑥) = −𝑥1 + 𝑥2 + 𝑠2

2 + 6 = 0 

The Lagrangian function is formulated as: 

𝐿(𝑥, 𝑠, 𝜆) = (10𝑥1 − 𝑥1
2 + 10𝑥2 − 𝑥2

2) − 𝜆1(𝑥1 + 𝑥2 + 𝑠1
2 − 9) − 𝜆2(−𝑥1 + 𝑥2 + 𝑠2

2 − 6) 

The Kuhn – Tucker necessary conditions for a maximization problem are: 

𝜕𝐿

𝜕𝑥1
= 10 − 2𝑥1 − 𝜆1 + 𝜆2 = 0 ; 

𝜕𝐿

𝜕𝑥2
= 10 − 2𝑥2 − 𝜆1 − 𝜆2 = 0 

𝜕𝐿

𝜕𝜆1
= −(𝑥1 + 𝑥2 + 𝑠1

2 − 9) = 0 ; 
𝜕𝐿

𝜕𝜆1
= −(−𝑥1 + 𝑥2 + 𝑠2

2 − 6) = 0 

𝜕𝐿

𝜕𝑠1
= −2𝜆1𝑠1 = 0 ; 

𝜕𝐿

𝜕𝑠2
= −2𝜆2𝑠2 = 0 

The unconstrained solution (i.e., 𝜆1 = 𝜆1 = 0) obtained by solving the first four 

equations is:  

                 𝑥1 = 8, 𝑥2 = 2, 𝑠1
2 = −1, 𝑠2

2 = −6 and Max Z = 50. 

Since both 𝑠1
2, 𝑠1

2 are negative, the solution is infeasible. By again solving these 

equations for 

 𝑠2 = 𝜆1 = 0 (violated second constraint), we get                        

                     𝑥1 = 2, 𝑥2 = 8, 𝑠1
2 = −1, 𝜆2 = 6, Max Z = 32.  
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This solution is also infeasible as 𝑠1
2 is negative. By again solving these equations for 

 𝑠1 = 𝑠2 = 0 (i.e., 𝜆1 = 𝜆1 ≠ 0) we get: 𝑥1 = 7.5, 𝑥2 = 1.5, 𝜆1 = 1, 𝜆2 = 6 and Max Z = 

31.50. 

Since this solution does not violate any of the conditions, therefore the point       

                 x = (7.5, 1.5) gives the maximum of objective function Z. 

 

Example 2.14  Determine 𝑥1 and 𝑥2 so as to  

Maximize Z = 12𝑥1 + 21𝑥2 + 2𝑥1𝑥2 − 2𝑥1
2 − 2𝑥2

2 subject to the constraints 

(i) 𝑥2 ≤ 8  (ii) 𝑥1 + 𝑥2 ≤ 10   and 𝑥1 , 𝑥2 ≥ 0 

 

Solution: Here 𝑓(𝑥1 , 𝑥2) = 12𝑥1 + 21𝑥2 + 2𝑥1𝑥2 − 2𝑥1
2 − 2𝑥2

2 

𝑔1(𝑥1 , 𝑥2) = 𝑥2 − 8 ≤ 0 ;  𝑔1(𝑥1 , 𝑥2) = 𝑥1 + 𝑥2 − 10 ≤ 0 

The Lagrangian function is formulated as: 

𝐿(𝑥, 𝑠, 𝜆) = 𝑓(𝑥) − 𝜆1[𝑔1(𝑥) + 𝑠1
2] − 𝜆2[𝑔2(𝑥) + 𝑠2

2] 

The Kuhn – Tucker necessary conditions for a maximization problem are: 

(i) 
𝜕𝑓

𝜕𝑥𝑗
− ∑ 𝜆𝑖

𝜕𝑔𝑖

𝜕𝑥𝑗

2
𝑖=1  ; 𝑗 = 1, 2 (ii)  𝜆𝑖𝑔𝑖(𝑥) = 0 ; 𝑖 = 1, 2 

12 + 2𝑥2 − 4𝑥1 − 𝜆2 = 0   𝜆1(𝑥2 − 8) = 0 

21 + 2𝑥1 − 4𝑥2 − 𝜆1 − 𝜆2 = 0   𝜆2(𝑥1 + 𝑥2 − 10) = 0 

     (iii)      𝑔𝑖(𝑥) ≤ 0    (iv) 𝜆𝑖 ≥ 0 ; 𝑖 = 1, 2 

      𝑥2 − 8 ≤ 0 

      𝑥1 + 𝑥2 − 10 ≤ 0 

There may arise four cases: 

Case 1: If 𝜆1 = 0 , 𝜆2 = 0, then from condition (i), we have: 

12 + 2𝑥2 − 4𝑥1 = 0 𝑎𝑛𝑑 21 + 2𝑥1 − 4𝑥2 = 0 

Solving these equations, we get 𝑥1 =
15

2
 , 𝑥2 = 9. However, this solution violates 

condition (iii) and therefore it should be discarded. 

Case 2: If 𝜆1 ≠ 0 , 𝜆2 ≠ 0, then from condition (ii), we have: 

𝑥2 − 8 = 0 →→ 𝑥2 = 8 

𝑥1 + 𝑥2 − 10 = 0 →→ 𝑥1 = 2 

Substituting these values in condition (i), we get 𝜆1 = −27 and 𝜆2 = 20. However, the 

solution violates the condition (iv) and therefore it should be discarded. 

Case 3: If 𝜆1 ≠ 0 , 𝜆2 = 0, then from conditions (ii) and (i), we have: 
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𝑥1 + 𝑥2 = 10 

2𝑥2 − 4𝑥1 = −12 

2𝑥1 − 4𝑥2 = 12 + 𝜆1 

Solving these equations, we get 𝑥1 = 2 , 𝑥2 = 8 and 𝜆1 = −16. However, this solution 

violated the condition (iv) and therefore it should be discarded. 

Case 4: If 𝜆1 = 0 , 𝜆2 ≠ 0, then from conditions (i) and (ii), we have: 

2𝑥2 − 4𝑥1 = −12 + 𝜆2 

2𝑥1 − 4𝑥2 = 21 + 𝜆2 

𝑥1 + 𝑥2 = 10 

Solving these equation, we get 𝑥1 =
17

4
 , 𝑥2 =

23

4
 , 𝜆2 =

13

4
. This solution does not 

violate any of the Kuhn – Tucker conditions and therefore must be accepted. 

 

Hence the optimum solution of the given problem is 𝑥1 =
17

4
 , 𝑥2 =

23

4
 , 𝜆1 = 0 , 𝜆2 =

13

4
 

and Max Z = 
1734

16
. 

 

 

Let Us Sum Up 

              We have studied about constrained multi-variable optimization with 

inequality constraints from the Kuhn-tucker sufficient condition. 

 

Check Your Progress  

Use the Kuhn – Tucker condition to solve the following non – linear programming 

problems: 

21.. Max 𝑍 = 2𝑥1
2 + 12𝑥1𝑥2 − 7𝑥2

2  

    Subject to 2𝑥1 + 5𝑥2 ≤ 98, and 𝑥1, 𝑥2  ≥ 0. 

 

22. Max 𝑍 = −𝑥1
2 − 𝑥2

2 − 𝑥3
2 + 4𝑥1 + 6𝑥2  

    Subject to (i) 𝑥1 + 𝑥2 ≤ 2, (𝑖𝑖)2 𝑥1 + 3𝑥2 ≤ 12 and 𝑥1, 𝑥2  ≥ 0. 

 

23. Max 𝑍 = 8𝑥1 + 10𝑥2 − 𝑥1
2 − 𝑥2

2  

    Subject to 3𝑥1 + 2𝑥2 ≤ 6, and 𝑥1, 𝑥2  ≥ 0. 
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24. Max 𝑍 = 7𝑥1
2 − 6𝑥1 + 5𝑥2

2  

    Subject to (i) 𝑥1 + 2𝑥2 ≤ 10, (𝑖𝑖)𝑥1 − 3𝑥2 ≤ 9 and 𝑥1, 𝑥2  ≥ 0. 

 

25. Define a convex programming problem. What is the Lagrangian function 

associated              with it? Solve the non – linear programming problems: 

     Min 𝑍 = − log 𝑥1 − log 𝑥2 

     Subject to 𝑥1 + 𝑥2 ≤ 2, and 𝑥1, 𝑥2  ≥ 0. 
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2.5 NON-LINEAR PROGRAMMING METHODS  

Linear programming is usefull for solving decision problems that involve linear 

relationship among decision variables. Any non-linear change in the input variable 

values either in objective function or constraints, restrict the use of usual simplex 

method to solve the decision problem. Hence, decision-makers use non-linear 

programming methods to solve such decision problems. 

The Lagrange multiplier method to determine the optimum value of a function 

of two or more variables, subject to one inequality constraint, can be modified to 

optimize an objective function of two or more variables, subject to more than one 

inequality (or equality) constraint. In general, conditions necessary for an optimum 

value of a function subject to inequality constraints are known as Kuhn-Tucker 

conditions, as discussed in Chapter 23. For ready reference, the Kuhn-Tucker 

necessary conditions to achieve relative maximum for the LP problem 

Maximize z = f(x) subject to the constraints 𝑔𝑖(𝑥) = 0 ; I = 1, 2, …, m and x ≥ 0 for all i 

can be summarized as follows: 

(i) 
𝜕𝑓(𝑥)

𝜕𝑥𝑗
− ∑ 𝜆𝑖

𝜕𝑔𝑖(𝑥)

𝜕𝑥𝑗

𝑚
𝑖=1 = 0 ; j = 1, 2, …, n (ii) 𝜆𝑖𝑔𝑖(𝑥) = 0 ; i = 1, 2, …, m 

(iii)      𝑔𝑖(𝑥) ≤ 0      (iv) 𝜆𝑖 ≥ 0 

These conditions are also applicable to the minimization LP problems, with the 

exception that λ ≤ 0. The λ’s are unrestricted in sign, corresponding to equality 

constraints in both the maximization and the minimization LP problems. 

In deriving conditions (i) to (iv), the non-negativity conditions x ≥ 0 were not taken into 

consideration. Now if non-negativity conditions are also considered as one of the 

constraints, then Kuhn-Tucker conditions for the following maximization LP problem 

may to be derived: 

Maximize Z = f (x) subject to the constraints 𝑔𝑖(𝑥) ≤ 0 and –x ≤ 0, i = 1, 2, …, m 

where x = [x1, x2, …, xn]. 

In this LPP problem there are m + n inequality constraints. Introducing m + n squared 

slack variables 𝑠𝑖
2(i = 1, 2, …, m, m + 1, …, m + n) in the respective inequalities to 

convert them into the following equations: 

𝑔𝑖(𝑥) + 𝑠𝑖
2 = 0 ; i = 1, 2, …, m 

−𝑥𝑖 + 𝑠𝑚+𝑗
2 = 0 ; j = 1, 2, …, n 

The Kuhn-Tucker necessary conditions for the maximum of f (x) can be obtained as 

follows:  



93 

 

Step 1: Formulating the Lagrangian function as 

𝐿(𝑥 , 𝑠 , 𝜆) = 𝑓(𝑥) −∑ 𝜆𝑖[𝑔𝑖(𝑥) + 𝑠𝑖
2]

𝑚

𝑖=1
−∑ 𝜆𝑚+𝑗[−𝑥𝑗 + 𝑠𝑚+𝑗

2 ]
𝑛

𝑗=1
 

Step 2: Differentiate 𝐋(𝐱 , 𝐬 , 𝛌) partially with respect to x, s and 𝛌 and equate 

them with zero 

Step 3: Simplify these equations to get the following Kuhn – Tucker conditions 

These Kuhn-Tucker necessary conditions also become sufficient conditions if f (x) is 

concave and gi (x) is convex in x. Similarly for the minimization case, f (x) and gi (x) 

must be convex and concave in x, respectively. 

 

Example 2.15 An engineering company has received a rush order for a maximum 

number of two types of items that can be produced and transported during a two-

week-period. The profit in thousand rupees on this order is related to the number of 

each type of item manufactured by the company and is given by                                 

12𝑥1 + 10𝑥2 − 𝑥1
2 − 𝑥2

2 + 61 where x1 is the number of units (in thousands) of type I 

item and x2 is the number of units (in thousands) of type II item. 

 Because of other commitments over the next two weeks, the company has only 

60 hours available in its shifting and packing department. It is estimated that every 

thousand units of type I and type II items will require 20 hours and 30 hours, 

respectively, in the shifting and packing departments. Given the above information, 

how many units of each type of item should the company produce in order to 

maximize profit ? 
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Model Formulation: The mathematical model of the problem can be stated as 

follows:  

Maximize Z = 12𝑥1 + 10𝑥2 − 𝑥1
2 − 𝑥2

2 + 61 subject to the constraint 20𝑥1 + 30𝑥2 ≤ 60 

and 𝑥1 , 𝑥2 ≥ 0 

In this model, the objective function is non-linear while the constraint is linear. Thus, 

it is a non-linear programming problem. 

 

Example 2.16 A company sells two types of items A and B. Item A sells for Rs. 25 

per unit. No quantity discount is given. The sales revenue for item B decreases as 

the number of its units sold increases. It is given by: Sales revenue = (30 – 0.30 𝑥2
2) 

where 𝑥2 is the number of units sold of item B. 

The marketing department has only 1200 hours available for distributing these items 

in the next year. Further, the company estimates the sales time function is non-

linear and is given by: Sales time = 𝑥1 + 0.2𝑥1
2 + 3𝑥2 + 0.35𝑥2

2 

The company can only procure 6000 units of item A and B for sales in the next 

year. Given the above information, how many units of item A and B should the 

company procure in order   to maximize its total revenue? 

Model Formulation: The mathematical model of the problem can be stated as 

follows: 

Maximize Z =  25𝑥1 + 30𝑥2 − 0.30𝑥2
2 subject to the constraints 

(i) 𝑥1 + 0.2𝑥1
2 + 3𝑥2 + 0.35𝑥2

2 ≤ 1200 

(ii) 𝑥1 + 𝑥2 ≤ 6000 and 𝑥1 , 𝑥2 ≥ 0 

In this model, the objective function and one of the constraints is non-linear. 

Therefore, this is a non- linear programming problem. 
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2.6 THE GENERAL NON-LINEAR PROGRAMMING 

PROBLEM 

The general non-linear programming problem can be stated in the following form: 

Optimize (max or min) Z = 𝑓(𝑥1 , 𝑥2 , … , 𝑥𝑛) subject to the constraints 

𝑔𝑖(𝑥1 , 𝑥2 , … , 𝑥𝑛){≤,=,≥} 𝑏𝑖 ; 𝑖 = 1, 2, … ,𝑚 and  𝑥𝑖 ≥ 0 for all j = 1, 2, …, n 

where 𝑓(𝑥1 , 𝑥2 , … , 𝑥𝑛)  and 𝑔𝑖(𝑥1 , 𝑥2 , … , 𝑥𝑛) are real valued function of n decision 

variables, and at least one of these is non-linear. 

Several methods have been developed for solving non-linear programming 

problems. In this chapter we will discuss the methods for solving quadratic 

programming problems, separable programming problems, geometric programming 

problems and stochastic programming problems. 

 

2.7 GRAPHICAL SOLUTION METHOD 

As we know, the optimal solution of an LP problem is obtained at one of the extreme 

points of the feasible solution space. However, in case of non-linear programming, 

the optimal solution may not be obtained at the extreme point of its feasible region. 

This is illustrated through Examples 2.15 and 2.16. 

Example 2.17 Solve graphically the following NLP problem: 

Maximize Z = 2𝑥1 + 3𝑥2 subject to the constraints 

(i) 𝑥1
2 + 𝑥2

2 ≤ 20  (ii) 𝑥1. 𝑥2 ≤ 8   and 𝑥1 , 𝑥2 ≥ 0 

 

Solution In the given NLP problem, the objective function is linear, and 

constraints are non-linear. Plot the given constraints on the graph by the usual 

method, as shown in Fig. 2.3. 
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Figure 2.3: Graphical Solution 

 

 The constraint 𝑥1
2 + 𝑥2

2 = 20 represents a xircle whoes radius and centre are: a = 

√20; (h, k) = (0, 0) respectively and 𝑥1. 𝑥2 = 8 represents a rectangular hyperbola 

whoes asymptotes are represented by the x – axis and y – axis. 

 Solving the two equations: 𝑥1
2 + 𝑥2

2 = 20 and 𝑥1. 𝑥2 = 8, we get (𝑥1 , 𝑥2) = (4, 2) 

and (𝑥1 , 𝑥2) = (2, 4). These solution points, which also satisfy both the constraints, 

may be obtained within the shaded non – convex region OABCD, also called the 

feasible region. 

 Now we need to find a point (𝑥1 , 𝑥2) within the convex region OABCD where the 

value of the given objective function Z = 2𝑥1 + 3𝑥2 is maximum. Such a point can be 

located by the iso-profit function approach. i.e., draw parallel objective function               

2𝑥1 + 3𝑥2 = k lines for different constant values of k, and stop the process when a line 

touches the extreme boundary point of the feasible region for some value of k. 

Starting with k = 6 and so on we find that the iso-profit line with k = 16 touches the 

extreme boundary point C (2, 4) where the value of Z is maximum. Hence the optimal 

solution is: 𝑥1 = 2, 𝑥2 = 4 and Max  Z = 16. 
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Example 2.18 Graphically solve the following NLP problem: 

Maximize Z = 8𝑥1 − 𝑥1
2 + 8𝑥2 − 𝑥2

2 subject to the constraints 

(i) 𝑥1 + 𝑥2 ≤ 12  (ii) 𝑥1 − 𝑥2 ≥ 4 and 𝑥1 , 𝑥2 ≥ 0 

 

Solution: In this NLP problem, the objective function is non-linear whereas the 

constraints are linear. Plot  the given constraints on the graph by the usual method, 

as shown in the Fig. 2.4. 

Figure 2.4: Graphical Solution 

 The feasible region is shown by the shaded region in Fig. 2.4. Thus, in the 

feasible region the optimal point (𝑥1 , 𝑥2) must be that at which a side of the convex 

region is tangent to the circle,  

                                      Z = 8𝑥1 − 𝑥1
2 + 8𝑥2 − 𝑥2

2. 

 The gradient of the tangent to the circle can be obtained by differentiating the 

equation of the circle, Z with respect to 𝑥1 as follows: 

                              Z = 8𝑥1 − 𝑥1
2 + 8𝑥2 − 𝑥2

2 

8 − 2𝑥1 + 8
𝑑𝑥2

𝑑𝑥1
− 2𝑥2

𝑑𝑥2

𝑑𝑥1
= 0 (or) 

𝑑𝑥2

𝑑𝑥1
=

2𝑥1−8

8−2𝑥2
      (22) 

The gradient of the line 𝑥1 + 𝑥2 = 12 𝑎𝑛𝑑 𝑥1 − 𝑥2 = 4 is: 

{𝑑𝑥1 + 𝑑𝑥2 = 0 (or) 
𝑑𝑥2

𝑑𝑥1
= −1 and 𝑑𝑥1 − 𝑑𝑥2 = 0 (or) 

𝑑𝑥2

𝑑𝑥1
= 0}    (23) 

respectively. 
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If the line 𝑥1 + 𝑥2 = 12 is the tangent to the circle, then substituting 
𝑑𝑥2

𝑑𝑥1
= −1 from (23) 

in (22), we get: 𝑥1 = 𝑥2 and hence for 𝑥1 + 𝑥2 = 12 gives (𝑥1, 𝑥2) = (6, 6). This means 

the tangent of the line 

 𝑥1 + 𝑥2 = 12 at (6, 6). But this does not satisfy all the constraints. 

 Similarly, if the line 𝑥1 − 𝑥2 = 4  is the tangent to the circle, then substituting   

𝑑𝑥2

𝑑𝑥1
= 1 from (23) in (21), we get: 𝑥1 + 𝑥2 = 8, and hence for 𝑥1 + 𝑥2 = 8, the equation 

𝑥1 − 𝑥2 = 4  gives (𝑥1, 𝑥2) = (6, 2). This means the tangent of the circle to the line     

𝑥1 − 𝑥2 = 4 is at (6, 2). This point lies in the feasible region and also satisfies both the 

constraints. Hence, the optimal solution is: 𝑥1 = 6, 𝑥2 = 2 and 

 Max Z = 24. 

 

Example 2.19 Solve graphically the following NLP problem: 

Minimixe Z = 𝑥1
2 + 𝑥2

2 subject to the constraints 

(i) 𝑥1 + 𝑥2 ≥ 8 (ii) 𝑥1 + 2𝑥2 ≥ 10  (iii) 2𝑥1 + 𝑥2 ≥ 10 and 𝑥1 , 𝑥2 ≥ 0 

 

Solution: Since in the given NLP problem all constraints are linear, plotting them on 

the graphs as usual. The shaded solution space bounded by convex region ABCD is 

shown fig. 2.4. The objective function is non – linear and represents a circle. If r is the 

radius of the circle, Z = (r) = 𝑥1
2 + 𝑥2

2. Then the objective is to determine the minimum 

value of r, so that the circle woth center (0, 0) and radius, r just touches the solution 

space. As shown in fig. 2.4, the solution point (4, 4) lies on the line 𝑥1 + 𝑥2 = 8, and 

the line is tangent to the circle at this point. 

 Since the circle touches one of the sides of the convex region, one of the side 

the convex solution space would be tangent to the circle. Thus the solution can also 

be obtained by differentiating the equation: Z = 𝑥1
2 + 𝑥2

2 with respect to 𝑥1, i.e., 

2𝑥1𝑑𝑥1 + 2𝑥2𝑑𝑥2 = 0 (or) 
𝑑𝑥1

𝑑𝑥2
= −

𝑥1

𝑥2
. 

 Differentiate the constraint equations which form the sides of the convex 

space as follows: 𝑑𝑥1 + 𝑑𝑥2 = 0 (or) 
𝑑𝑥2

𝑑𝑥1
= −1,  

                  𝑑𝑥1 + 𝑑𝑥2 = 0 (or) 
𝑑𝑥2

𝑑𝑥1
= −

1

2
 , and 

                  𝑑𝑥1 + 𝑑𝑥2 = 0 (or) 
𝑑𝑥2

𝑑𝑥1
= −2.  
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Figure 2.5: Graphical solution 

 

Three alternative solutions which can now be obtained are: 

(i) Taking equations first and second and the constraint 𝑥1 + 𝑥2 = 8, we have 

𝑑𝑥2

𝑑𝑥1
= −

𝑥1

𝑥2
= −1, which gives 𝑥1 = 𝑥2 = 4. This solution satisfies all the 

constraint equations and so is feasible.  

(ii)  Taking equations first and third and the constraint 𝑥1 + 2𝑥2 = 10, we have 

𝑑𝑥2

𝑑𝑥1
= −

𝑥1

𝑥2
= −

1

2
 , which gives 𝑥1 = 2 and 𝑥2 = 4. This solution does not 

satisfy all the constraints and is discarded.  

(iii) Taking equations first and third and the constraint 2𝑥1 + 𝑥2 = 10, we have 

𝑑𝑥2

𝑑𝑥1
= −

𝑥1

𝑥2
= −2, which gives 𝑥1 = 4 and 𝑥2 = 2. This solution, does not 

satisfy all the constraints and is discarded.  

Hence optimal solution is: 𝑥1 = 4, 𝑥2 = 4, and Min Z = 32. 

 

Example 2.20 Solve graphically the followings NLP problem:  

Maximize Z = 𝑥1 + 2𝑥2, subject to the constraints  

(i) 𝑥1𝑥2 − 2𝑥2 ≥ 3  (ii) 3𝑥1 + 2𝑥2 ≤ 24 and 𝑥1, 𝑥2 ≥ 0.  

 



100 

 

Solution: In this NLP problem the objective function is linear, while one of the 

constraints is non-linear. Plotting the constraint: 𝑥1𝑥2 − 2𝑥2 ≥ 3 on the graph 

assuming that it is an equation: 𝑥1𝑥2 − 2𝑥2 = 3. Thus, for 𝑥2 ≥ 0, the value of 𝑥1 

cannot be less than 2. 

 For different values of 𝑥1, the corresponding values of 𝑥2 which satisfy the 

equation: 𝑥1𝑥2 − 2𝑥2 = 3 are given below:  

𝑥1 2.1 2.2 2.4 2.6 3.0 3.5 4.0 5.0 6.0 7.0 8.0 12.0 

𝑥2 30 15 7.5 5 3 2 1.5 1 0.75 0.6 0.5 0.3 

 

 When these points are plotted as usual, the graph of the line 𝑥1𝑥2 − 2𝑥2 = 3, is 

shown in Fig. 2.6. Also plotting the constraint, 3𝑥1 + 2𝑥2 = 24, on the graph. The 

different values of 𝑥2  and 𝑥2 are, 𝑥1 = 0, 𝑥2 = 12 and 𝑥1 = 8, 𝑥2 = 0. The solution 

space bounded by two lines is shown by shaded area in Fig. 2.6. 

 

The objective function line, Z = 𝑥1 + 𝑥2 inclined at 45°, when moved away from the 

origin. The farthest point through which it passes gives optimal solution: 𝑥2 = 8.45, 𝑥1 

= 2.35 and Max Z = 10.81 
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Figure 2.6: Graphical solution 

 

Let us sum up 

              We have learned about general non-linear programming problem and to 

solve it by using graphical method. 

 

Check Your Progress 

26. Solve the following non – linear Programmimg problems graphically. 

     (a) Max 𝑍 =  𝑥1  

          Subject to (1 − 𝑥1)
2 − 𝑥2  ≥ 0 

          And                          𝑥1, 𝑥2 ≥ 0. 

      (b) Max 𝑍 = 𝑥1  

          Subject to (3 − 𝑥1)
3 − (𝑥2 − 2)  ≥ 0 

                           (3 − 𝑥1)
2 − (𝑥2 − 2)  ≥ 0 

          And                                    𝑥1, 𝑥2 ≥ 0. 

     Also show that the Khun – Tucker necessary condition for maxima do not hold. 

What do you conclude? 

 

27..  (a) Min 𝑍 = 𝑥1
2 + 𝑥2

2 

           Subject to 𝑥1 + 𝑥2 ≥ 4 

                            2𝑥1 + 𝑥2 ≥ 5 

          And                   𝑥1, 𝑥2 ≥ 0. 
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      (b) Min 𝑍 =  (𝑥1 − 1)
2 + (𝑥2 − 2)

2 

            Subject to         𝑥1 ≤ 2 

                                     𝑥2 ≤ 1 

        And                   𝑥1, 𝑥2 ≥ 0. 

 

28. (a) Max 𝑍 = 100𝑥1 − 𝑥1
2 + 100𝑥2 − 𝑥2 

         Subject to          𝑥1 + 𝑥2 ≥ 80 

                                   𝑥1 + 2𝑥2 ≤ 100 

                And                   𝑥1, 𝑥2 ≥ 0. 

 

     (b) Min 𝑍 = (𝑥1 − 2)
2 + (𝑥2 − 1)

2 

         Subject to          −𝑥1 + 𝑥2 ≥ 0 

                                   𝑥1 + 𝑥2 ≤ 2 

                And                   𝑥1, 𝑥2 ≥ 0. 

 

29.. A company manufactures two products, A and B. It takes 30 minutes to process 

one unit of product A and 15 minutes to process each unit of B. The maximum 

machine time available is 35 hours per week. Products A and B require 2 kg and 

3 kg of raw material per unit, respectively. The available quantity of raw material is 

envisaged to be 180 kg per week. 

       The products A and B, which have unlimited market potential, sell for Rs 200 

and Rs 500 per unit, respectively. If the manufacturing costs for products A and B 

are 2x2 and 3y2, respectively, find how much of each product should be produced per 

week, where x and y represent the quantity of products A and B to be produced, 

respectively. 
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2.8 QUADRATIC PROGRAMMING  

 

Among several non-linear programming methods available for solving NLP problems, 

we shall discuss in this section, an NLP problem with non-linear objective function 

and linear constraints. Such an NLP problem is called quadratic programming 

problem. The general mathematical model of quadratic programming problem is as 

follows: 

Optimize (Max or Min) Z = {∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 +

1

2
∑ ∑ 𝑥𝑗𝑑𝑗𝑘𝑥𝑘

𝑛
𝑘=1

𝑛
𝑗=1 } subject to the constraints 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏𝑖 and 𝑥𝑗 ≥ 0 for all i and j. 

In matrix notations, QP problem is written as: 

Optimize (Max or Min) Z = cx + 
1

2
 xT Dx subject to the constraints Ax ≤ b and x ≥ 0 

where x = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 ; c = (𝑥1, 𝑥2, … , 𝑥𝑛) ; b = (𝑥1, 𝑥2, … , 𝑥𝑛)

𝑇 

D = [𝑑𝑗𝑘] is an n x n symmetric matrix ; A = [𝑎𝑖𝑗] is an m x n matrix. 

 If the objective function in QP problem is of minimization, then matrix D is 

symmetric and positive definite (i.e., the quadratic term xT Dx in x is positive for all 

values of x except at x = 0) and objective function is strictly convex in x. But, if the 

objective function is of maximization, then matrix D is symmetric and negative-definite 

(i.e., xT Dx < 0 for all values of x except for x = 0) and objective function is strictly 

concave in x. If matrix, D is null, then the QP problem reduces to the standard LP 

problem. 

2.8.1 Kuhn – Tucker conditions 

The necessary and sufficient Kuhn-Tucker conditions to get an optimal solution to the 

maximization QP problem subject to linear constraints can be derived as follows:  

Step 1: Introducing slack variables 𝑠𝑖
2 and 𝑟𝑗

2 to constraints, the QP problem 

becomes: 

Max f(x) = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 −

1

2
∑ ∑ 𝑥𝑗𝑑𝑗𝑘𝑥𝑘

𝑛
𝑘=1

𝑛
𝑗=1  subject to the constraints 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛

𝑗=1
+ 𝑠𝑖

2 = 𝑏𝑖 ; 𝑖 = 1, 2, … ,𝑚 

−𝑥𝑗 + 𝑟𝑗
2 = 0 ; 𝑗 = 1, 2, … , 𝑛 

Step 2: Forming the Lagrange function as follows: 

𝐿(𝑥 , 𝑠 , 𝑟 , 𝜆 , 𝜇) = 𝑓(𝑥) −∑ 𝜆𝑖{𝑎𝑖𝑗𝑥𝑗 + 𝑠𝑖
2 − 𝑏𝑖}

𝑛

𝑗=1
−∑ 𝜇𝑗{−𝑥𝑗 + 𝑟𝑗

2}
𝑛

𝑗=1
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Step 3: Differentiate 𝐿(𝑥, 𝑠, 𝑟, 𝜆, 𝜇) partially with respect to the components of 

𝑥, 𝑠, 𝑟, 𝜆 𝑎𝑛𝑑 𝜇. Then equate these derivatives with zero in order to get the required 

Kuhn – Tucker necessary condition. i.e., 

(i) 𝑐 −
1

2
(2𝑥𝑇𝐷) − 𝜆𝐴 + 𝜇 = 0 (or) 𝑐𝑗 −∑ 𝑥𝑘𝑑𝑗𝑘

𝑛
𝑘=1 − ∑ 𝜆𝑖𝑎𝑖𝑗 + 𝜇𝑗

𝑚
𝑖=1 = 0 ; 

for all 𝑗 = 1,2, … , 𝑛 

(ii) −2𝜆𝑠 = 0 (or) 𝜆𝑖𝑠𝑖
2 = 0 (or) 𝜆𝑖{∑ 𝑎𝑖𝑗𝑥𝑗 − 𝑏𝑗

𝑛
𝑗=1 } = 0 for all 𝑖 = 1,2, … ,𝑚 

(iii) −2𝜇𝑟 = 0 (or) 𝜇𝑗𝑟𝑗 = 0 for all 𝑗 = 1,2, … , 𝑛 

(iv) 𝐴𝑥 + 𝑠2 − 𝑏 = 0 (or) ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏𝑖 for all 𝑖 = 1,2, … ,𝑚 

(v) −𝑥 + 𝑟2 = 0 (or) 𝑥𝑗 ≥ 0 for all 𝑗 = 1,2, … , 𝑛 

(vi) 𝜆𝑖 , 𝜇𝑗  , 𝑥𝑗  , 𝑠𝑖 , 𝑟𝑗 ≥ 0 

These conditions, except (ii) and (iii), are linear constraints involving 2 (n + m) 

variables. The condition 𝜇𝑗𝑥𝑗 = 𝜆𝑖𝑠𝑖 = 0 implies that both 𝑥𝑗 and 𝜇𝑖 as well as 𝑠𝑖 and 

𝜆𝑖 cannot be basic variables at a time in a non – degenerate basic feasible solution. 

The conditions 𝜇𝑗𝑥𝑗 = 0 and 𝜆𝑖𝑠𝑖 = 0 are also called complementary slackness 

conditions. 

 

2.8.2. Wolfe’s Modified Simplex Method 

The Wolf ’s method for solving a quadratic programming problem can be summarized 

in the following steps: 

Step 1: Introduce artificial variables Aj (j = 1, 2, …, n) in the Kuhn – Tucker condition 

(i). Then we have  

𝑐𝑗 −∑ 𝑥𝑘𝑑𝑗𝑘
𝑛

𝑘=1
−∑ 𝜆𝑖𝑎𝑖𝑗

𝑚

𝑖=1
+ 𝜇𝑗 + 𝐴𝑗 = 0 

For a starting basic feasible solution we shall have 𝑥𝑗 = 0 , 𝜇𝑗 = 0 , 𝐴𝑗 = −𝑐𝑗  , 𝑠𝑖
2 = 𝑏𝑖. 

However, this solution would be desirable if and only if 𝐴𝑗 = 0 for all j. 

Step 2: Apply Phase I of the simplex method to check the feasibility of the constraints 

Ax ≤ b. If there is no feasible solution, then terminate the solution procedure, 

otherwise get an initial basic feasible solution for Phase II. To obtain the desired 

feasible solution solve the following problem: 

Minimize Z = ∑ 𝐴𝑗
𝑛
𝑗=1  subject to the constraints 

∑ 𝑥𝑘𝑑𝑗𝑘
𝑛

𝑘=1
+∑ 𝜆𝑖𝑎𝑖𝑗

𝑚

𝑖=1
− 𝜇𝑗 + 𝐴𝑗 = −𝑐𝑗 ; 𝑗 = 1, 2, … , 𝑛 
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∑ 𝑎𝑖𝑗𝑥𝑗
𝑛

𝑗=1
+ 𝑠𝑖

2 = 𝑏𝑖 ; 𝑖 = 1, 2, … ,𝑚 

and    𝜆𝑖 , 𝑥𝑗  , 𝜇𝑗  , 𝑠𝑖 , 𝐴𝑗 ≥ 0    for all i and j 

   {
𝜆𝑖𝑠𝑖 = 0
𝜇𝑗𝑥𝑗 = 0

} Complement slackness conditions 

Thus, while deciding for a variable to enter into the basis at each iteration, the 

complementary slackness conditions must be satisfied.  

 This problem has 2(m + n) variables and (m + n) linear constraints, together 

with           (m + n) complementary slackness conditions. 

Step 3: Apply Phase II of the simplex method to get an optimal solution to the 

problem given in Step 2. The solution, so obtained, will also be an optimal solution of 

the quadratic programming problem. 

 

Example 2.21 Use Wolfe’s method to solve the quadratic programming problem: 

Maximize Z = 4𝑥1 + 6𝑥2 − 2𝑥1
2 − 2𝑥1𝑥2 − 2𝑥2

2 subject to the constraint 𝑥1 + 2𝑥2 ≤ 2 

and 𝑥1 , 𝑥2 ≥ 0. 

 

 

Solution: Consider non-negativity conditions 𝑥1 , 𝑥2 ≥ 0 as inequality constraints. Add 

slack variables to all inequality constraints in order to express them as equations. 

The standard form of QP problem becomes: 

Maximize Z = 4𝑥1 + 6𝑥2 − 2𝑥1
2 − 2𝑥1𝑥2 − 2𝑥2

2 subject to the constraints 

(i) 𝑥1 + 2𝑥2 + 𝑠1
2 = 2 (ii) −𝑥1 + 𝑟1

2 = 0  (iii) −𝑥2 + 𝑟2
2 = 0 and 

𝑥1 , 𝑥2 , 𝑠1 , 𝑟1 , 𝑟2 ≥ 0 

To obtain the necessary conditions, we construct the Lagrange function as follows: 

 𝐿(𝑥1 , 𝑥2 , 𝑠1 , 𝜆1 , 𝜇1 , 𝜇2 , 𝑟1 , 𝑟2) = (4𝑥1 + 6𝑥2 − 2𝑥1
2 − 2𝑥1𝑥2 − 2𝑥2

2) 

                                                  −𝜆1(𝑥1 + 2𝑥2 + 𝑠1
2 − 2) − 𝜇1(−𝑥1 + 𝑟1

2) − 𝜇2(−𝑥2 + 𝑟2
2) 

The necessary and sufficient conditions for the maximum of L and hence of Z are: 

𝜕𝐿

𝜕𝑥1
= 4 − 4𝑥1 − 2𝑥2 − 𝜆1 + 𝜇1 = 0 ;  

𝜕𝐿

𝜕𝑥2
= 6 − 2𝑥1 − 4𝑥2 − 2𝜆1 + 𝜇2 = 0 

                      
𝜕𝐿

𝜕𝜆1
= 𝑥1 + 2𝑥2 + 𝑠1

2 − 2 = 0 ;  
𝜕𝐿

𝜕𝑠1
= 2𝜆1𝑠1 = 0 

                                   
𝜕𝐿

𝜕𝜇1
= −𝑥1 + 𝑟1

2 = 0 ;  
𝜕𝐿

𝜕𝜇2
= −𝑥2 + 𝑟2

2 = 0 

                                         
𝜕𝐿

𝜕𝑟1
= 2𝜇1𝑟1 = 0 ;  

𝜕𝐿

𝜕𝑟2
= 2𝜇2𝑟2 = 0 
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After simplifying these conditions, we get: 

(i)  4𝑥1 + 2𝑥2 + 𝜆1 − 𝜇1 = 4  (ii) 2𝑥1 + 4𝑥2 + 2𝜆1 − 𝜇2 = 6 

(iii) 𝑥1 + 2𝑥2 + 𝑠1
2 = 2 

{
𝜆1𝑠1 = 0

𝜇1𝑥1 = 𝜇2𝑥2 = 0
} (Complementray conditions) and 𝑥1 , 𝑥2 , 𝜆1 , 𝜇1 , 𝜇2 , 𝑠1 ≥ 0 

Introducing artificial variables 𝐴1 and 𝐴2 in the first two constraints respectively. Then 

the modified LP problem becomes:  

Minimize Z* = 𝐴1 + 𝐴2 subject to the constraints 

(i)  4𝑥1 + 2𝑥2 + 𝜆1 − 𝜇1 + 𝐴1 = 4 (ii) 2𝑥1 + 4𝑥2 + 2𝜆1 − 𝜇2 + 𝐴2 = 6 

(iii) 𝑥1 + 2𝑥2 + 𝑠1
2 = 2 

and 𝑥1 , 𝑥2 , 𝜆1 , 𝜇1 , 𝜇2 , 𝑠1 , 𝐴1 , 𝐴2 ≥ 0 

The initial basic feasible solution to this LP problem is shown in Table 2.2 

Table 2.2: Initial Solution 

Iteration 1: In Table 2.2, the largest negative values among 𝑐𝑗 − 𝑧𝑗 values is – 6 

corresponding to 𝑥1 and 𝑥2 columns. This means either of these two variables can be 

entered into the basis. Since 𝜇1 = 0 (not in the basis), 𝑥1 is considered to enter into 

the basis. It will replace 𝐴1 in the basis. The new solution is shown in Table 2.3. 
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Table 2.3: First Iteration 

Iteration 2: In Table 2.3 𝜇2 = 0, (not in the basis), therefore 𝑥2 can be introduced into 

the basis to replace 𝑠1, in the basis. The new solution is shown in Table 2.4. 

Table 2.4: Second Iteration 

Iteration 3: In table 2.4, 𝑠1 = 0 (not in the basis), therefore 𝜆1 can be entered into the 

basis to replace 𝐴2. The new solution is shown in Table 2.5. 

Table 2.5: Third Iteration 

In table 2.5, since all 𝑐𝑗 − 𝑧𝑗 = 0, an optimal solution for Phase I is reached. The 

optimal solution is: 𝑥1 =
1

3
 , 𝑥2 =

5

6
 , 𝜆1 = 1 , 𝜆2 = 0 , 𝜇1 = 𝜇2 = 0 , 𝑠1 = 0 

This solution also satisfies the complementary conditions: 𝜆1𝑠1 = 0 ;  𝜇1𝑥1 = 𝜇2𝑥2 = 0 
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and the restriction on the signs of Lagrange multipliers, 𝜆1, 𝜇1 𝑎𝑛𝑑 𝜇2. 

Further, as Z* = 0, this implies that the current solution is also feasible. Thus, the 

maximum value of the given quadratic programming problem is: 

Max Z = 4𝑥1 + 6𝑥2 − 2𝑥1
2 − 2𝑥1𝑥2 − 2𝑥2

2  

           = 4 (
1

3
) + 6 (

5

6
) − 2 (

1

3
)
2

− 2(
1

3
) (

5

6
) − 2 (

5

6
)
2

=
25

6
. 

 

Example 2.22 Use Wolfe’s method to solve the quadratic programming problem: 

Maximize Z = 2𝑥1 + 𝑥2 − 𝑥1
2 subject to the constraint  

(i) 2𝑥1 + 3𝑥2 ≤ 6   (ii)  2𝑥1 + 𝑥2 ≤ 4 and 𝑥1 , 𝑥2 ≥ 0. 

 

Solution: Consider non-negativity conditions 𝑥1 , 𝑥2 ≥ 0 as inequality constraints. Add 

slack variables to all inequality constraints in order to express them as equations. 

The standard form of QP problem becomes: 

Maximize Z = 2𝑥1 + 𝑥2 − 𝑥1
2 subject to the constraints 

(i) 2𝑥1 + 3𝑥2 + 𝑠1
2 = 6 (ii)  2𝑥1 + 𝑥2 + 𝑠2

2 = 4  

(iii)  −𝑥1 + 𝑟1
2 = 0  (iv) −𝑥2 + 𝑟2

2 = 0  

To obtain the necessary conditions, we construct the Lagrange function as follows: 

 𝐿(𝑥, 𝑠, 𝜆, 𝑟, 𝜇) = (2𝑥1 + 𝑥2 − 𝑥1
2) − 𝜆1(2𝑥1 + 3𝑥2 + 𝑠1

2 − 6) − 𝜆2(2𝑥1 + 𝑥2 + 𝑠2
2 − 4) −

                                 𝜇1(−𝑥1 + 𝑟1
2) − 𝜇2(−𝑥2 + 𝑟2

2) 

The necessary and sufficient conditions for the maximum of L and hence of Z are: 

          
𝜕𝐿

𝜕𝑥1
= −2 − 2𝑥1 − 2𝜆1 − 2𝜆2 + 𝜇1 = 0 ;  

𝜕𝐿

𝜕𝑥2
= 1 − 3𝜆1 − 𝜆2 + 𝜇2 = 0 

                      
𝜕𝐿

𝜕𝜆1
= 2𝑥1 + 3𝑥2 + 𝑠1

2 − 6 = 0 ; 
𝜕𝐿

𝜕𝜆2
= 2𝑥1 + 𝑥2 + 𝑠2

2 − 4 = 0 

                                     
𝜕𝐿

𝜕𝜇1
= −𝑥1 + 𝑟1

2 = 0 ;  
𝜕𝐿

𝜕𝜇2
= −𝑥2 + 𝑟2

2 = 0 

                                        
𝜕𝐿

𝜕𝑟1
= −2𝜇1𝑟1 = 0 ;  

𝜕𝐿

𝜕𝑟2
= −2𝜇2𝑟2 = 0 

                                        
𝜕𝐿

𝜕𝑠1
= −2𝜆1𝑠1 = 0 ; 

𝜕𝐿

𝜕𝑠2
= −2𝜆2𝑠2 = 0 

After simplifying these conditions, we get: 

(i)  2𝑥1 + 2𝜆1 + 2𝜆2 − 𝜇1 = 2  (ii) 3𝜆1 + 𝜆2 − 𝜇2 = 1 

(iii) 2𝑥1 + 3𝑥2 + 𝑠1
2 = 6   (iv) 2𝑥1 + 𝑥2 + 𝑠2

2 = 4 

{
𝜆1𝑠1 = 𝜆1𝑠1 = 0
𝜇1𝑥1 = 𝜇2𝑥2 = 0

} (Complementray conditions) and 𝑥1 , 𝑥2 , 𝐴1 , 𝐴2 , 𝜇1 , 𝜇2 , 𝑠1 , 𝑠2 ≥ 0 

Introducing artificial variables 𝐴1 and 𝐴2 in the first two constraints respectively. Then 
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the modified LP problem becomes:  

Minimize Z* = 𝐴1 + 𝐴2 subject to the constraints 

(i)  2𝑥1 + 2𝜆1 + 2𝜆2 − 𝜇1 + 𝐴1 = 2 (ii) 3𝜆1 + 𝜆2 − 𝜇2 + 𝐴2 = 1 

(iii) 2𝑥1 + 3𝑥2 + 𝑠1
2 = 6   (iv) 2𝑥1 + 𝑥2 + 𝑠2

2 = 4 

and 𝑥1 , 𝑥2 , 𝜆1 , 𝜇1 , 𝜇2 , 𝑠1 , 𝐴1 , 𝐴2 ≥ 0 

The initial basic feasible solution to this LP problem is shown in Table 2.6 

Table 2.6: Initial Solution 

Iteration 1: In Table 2.6, the largest negative values among 𝑐𝑗 − 𝑧𝑗 values is – 5, but 

we cannot enter 𝜆1 (or 𝜆2) in the basis of the complementary conditions 𝜆1𝑠1 = 𝜆2𝑠2 =

0. Since 𝜇1 = 0, 𝑥1 can be entered into the basis with 𝐴1 as the leaving variable. The 

new solution is shown in Table 2.7. 

Table 2.7: First Iteration 

Iteration 2: Again, we cannot enter 𝜆1, 𝜆2 and 𝜇1 in the basis in Table 2.7 because 

𝑠1, 𝑠2 and 𝑥1, respectively, are already in the basis. Entering 𝑥2 into the basis with 𝑠1 

as the leaving variable because 𝜇2 = 0. The new solution is shown in Table 2.8. 
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Table 2.8: Second Iteration 

 

Iteration 3: Since 𝑠1 = 0, 𝜆1 can be entered into the basis in Table 2.8, with 𝐴2 as the 

leaving variable. The new solution is shown in Table 2.9. 

Table 2.9: Third Iteration 

 

 

In table 2.9, since all 𝑐𝑗 − 𝑧𝑗 = 0, an optimal solution for Phase I is reached. The 

optimal solution is: 𝑥1 =
2

3
 , 𝑥2 =

14

9
 , 𝜆1 =

1

3
 , 𝜆2 = 0 , 𝜇1 = 𝜇2 = 0 , 𝑠1 = 0 , 𝑠2 =

10

9
 

This solution also satisfies the complementary conditions:                                                

𝜆1𝑠1 = 𝜆2𝑠2 = 0 ;  𝜇1𝑥1 = 𝜇2𝑥2 = 0 and the restriction on the signs of Lagrange 

multipliers, 𝜆1, 𝜆2, 𝜇1 𝑎𝑛𝑑 𝜇2. 

Further, as Z* = 0, this implies that the current solution is also feasible. Thus, the 

maximum value of the given quadratic programming problem is: 

Max Z = 2𝑥1 + 𝑥2 − 𝑥1
2 = 2(

2

3
) + (

14

9
) − (

2

3
)
2

=
22

9
. 
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2.8.3. Beale’s Method 

 

            In this method, instead of Kuhn-Tucker conditions, results based on calculus 

are used for solving a given quadratic programming problem. Let the general 

quadratic programming (QP) problem be of the form 

Minimize Z = cx + 
1

2
 xT Dx          (24)  

subject to the constraints Ax = b         (25) 

and x ≥ 0            (26)  

where, x ∈ En, b ∈ Em, c ∈ En, D is a symmetric n × n matrix and A is an m × n matrix. 

 Beale’s method starts with the partitioning of n variables in QP problem into 

basic and non-basic variables at each iteration of the solution process, and 

expressing the basic variables as well as objective function in terms of non-basic 

variables. Let B be any m × m non – singular matrix that contains columns of A 

corresponding to the basic variables, 𝑥𝐵 ∈ Em. Let N be an m × (n – m) matrix that 

contains columns of A corresponding to non-basic variables, 𝑥𝑁 ∈ En – m. Equation 

(25) can then be written as: 

[𝐵 , 𝑁] [
𝑥𝐵
𝑥𝑁
] = 𝑏 (𝑜𝑟) 𝐵𝑥𝐵 + 𝑁𝑥𝑁 = 𝑏 

(or) 𝑥𝐵𝑖 = 𝑦𝑖0 − ∑ 𝑦𝑖𝑗𝑥𝑁𝑗
𝑛−𝑚
𝑗=1  ; 𝑖 = 1, 2, … ,𝑚       (27) 

where 𝑦𝑖0 = (𝑦10, 𝑦20, … , 𝑦𝑚0)
𝑇 = 𝐵−1𝑏 and 𝑦𝑖𝑗 = 𝐵

−1𝑁 

For the current basic feasible solution 𝑥𝑁𝑗 = 0 (j = 1, 2, …, n – m), we have 𝑥𝐵𝑖 = 𝑦𝑖0, 

(i = 1, 2, …, m). Assuming that 𝑦𝑖0 ≥ 0, 

The objective function (24) in terms of 𝑥𝐵 and 𝑥𝑁 can be written as: 

𝑍 = [𝑐𝐵 , 𝑐𝑁] [
𝑥𝐵
𝑥𝑁
] +

1

2
[𝑥𝐵
𝑇 , 𝑥𝑁

𝑇] [
𝑑11 𝑑12
𝑑21 𝑑22

] [
𝑥𝐵
𝑥𝑁
] 

Expressing Z in terms of the remaining (n – m) non – basic variables 𝑥𝑁 only, and 

simplifying, we get: 

𝑍 = 𝑍0 + 𝛼𝑥𝑁 + 𝑥𝑁
𝑇𝐺𝑥𝑁          (28) 

where 𝑍0 = value of objective function Z when 𝑥𝑁 = 0 and 𝑥𝐵𝑖 = 𝑦𝑖0 

           G = symmetric matrix of order (n – m) x (n – m) 

           𝛼 = 𝛼1, 𝛼2, … , 𝛼𝑛−𝑚 (Constant). 
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The Procedure: 

Step 1: Evaluate the partial derivatives of Z with respect to non-basic variables, 

𝑥𝑁 = 0. Thus, from equation (28) we get: 

𝜕𝑍

𝜕𝑥𝑁𝑗
= 𝛼𝑗 + 2∑ 𝑔𝑗𝑘𝑥𝑛𝑘

𝑛−𝑚
𝑘=1  ; 𝑗 = 1, 2, … , 𝑛 − 𝑚       (29) 

Step 2: See the nature of |
𝜕𝑍

𝜕𝑥𝑁𝑗
|
𝑥𝑁=0

= 𝛼𝑗  ; 𝑘 = 1, 2, … , 𝑛 − 𝑚 

(a) If 𝛼𝑗 < 0, for all j, then the current solution is also an optimal solution 

(b) But if at least one 𝛼𝑗 > 0, then one of the non-basic variables, which is currently at 

zero level, corresponding to the largest positive value of 𝛼𝑗, will be selected to enter 

the basis. 

Step 3: |
𝜕𝑍

𝜕𝑥𝑁𝑗
|
𝑥𝑁=0

= 𝛼𝑟 (largest), then choose non-basic variable 𝑥𝑟 for entering the 

basis. For this it will be profitable to go on increasing its value from zero till a point 

where either: 

 (a) any one of the present basic variables becomes negative, or 

 (b) 
𝜕𝑍

𝜕𝑥𝑁𝑗
 reduces to zero and is about to become negative. 

Step 4: For maintaining the feasibility of the solution we must consider only that 

value of non-basic variable 𝑥𝑟, say β1, which has only a positive coefficient. In this 

case, the first basic variable selected to leave the basis should satisfy the usual 

minimum ratio rule of the simplex method and will be given by: 

𝛽1 = {
𝑀𝑖𝑛 {

𝑦𝑖0

𝑦𝑖𝑗
 ;  𝑦𝑖𝑗 > 0}                                                        

∞                                  ;  𝑦𝑖𝑗 ≤ 0 ; 𝑗 = 1, 2, … , 𝑛 − 𝑚
}     (30) 

where 𝑦𝑖0 = 𝑥𝐵𝑖 

Since it is not desirable to increase the value of the non-basic variable 𝑥𝑟 beyond the 

point where 
𝜕𝑍

𝜕𝑥𝑁𝑗
 becomes zero, the critical value of 𝑥𝑟 say β2, at which 

𝜕𝑍

𝜕𝑥𝑁𝑗
 becomes 

zero is given by: 

𝛽2 = {

|𝛼𝑗|

2𝑔𝑗𝑗
 ;  𝑔𝑗𝑗 > 0

∞      ;  𝑔𝑗𝑗 ≤ 0

} 

where 𝑔𝑗𝑗 is the element of matrix G. 
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Hence the value of non-basic variable xr must be determined by taking the minimum 

between β1 and β2, that is,𝑥𝑟 = 𝑀𝑖𝑛 {𝛽1, 𝛽2}. However, if β1 = β2 = ∞, the value of 𝑥𝑟 

can be increased indefinitely without violating either the conditions (a) or (b) of Step 3 

and the condition that QP problem must have an unbounded solution. Moreover, 

(i) If the entering variable 𝑥𝑟 is increased up to only β1 and at least one basic variable 

is reduced to zero, then a new basic feasible solution can be obtained by the usual 

simplex method. But if by entering 𝑥𝑟 into the basis two or more basic variables are 

reduced to zero, then the new solution, so obtained, will be degenerate and thus 

cycling can occur. 

(ii) If the entering variable is increased up to β2 (< ∞), then we may have more than m 

variables at positive level at any iteration. This stage comes when the new (non-

basic) feasible solution occurs where 
𝜕𝑍

𝜕𝑥𝑁𝑗
=0. At this stage we define a new variable 

(unrestricted) 𝑢𝑗 as:  

𝑢𝑗 =
𝜕𝑍

𝜕𝑥𝑟
= 𝛼𝑗 + 2 ∑ 𝑔𝑗𝑘𝑥𝑁𝑘

𝑛−𝑚

𝑘=1

 

The variable 𝑢𝑗 is also called free variable. Clearly, we now have m + 1 non – zero 

variables and m + 1 constraints. These variables form a basic feasible solution to the 

new set of constraints: 

𝐴𝑥 = 𝑏 𝑎𝑛𝑑 𝑢𝑗 − 2 ∑ 𝑔𝑗𝑘𝑥𝑁𝑘

𝑛−𝑚

𝑘=1

= 𝛼𝑗 

The variable 𝑢𝑗 is introduced in the set of constraints only for computational purposes 

and its value is zero at the next basic feasible solution. Now, the variables 𝑥𝐵 and 𝑢𝑗 

are treated as basic variables. The new set of constraints is again expressed in terms 

of non-basic variables for obtaining the new basic feasible solution. 

Step 5: Go to Step 1 and repeat the entire procedure of getting a new basic feasible 

solution until no further improvement in the objective function can be obtained by 

making any permitted changes in one of the non – basic variables. The permitted 

changes here include increase in all variables and decrease in free variables. In other 

words, the procedure terminates when: 

𝜕𝑍

𝜕𝑥𝑁𝑗
{
≤ 0, 𝑖𝑓 𝑥𝑁𝑗  𝑖𝑠 𝑎 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

= 0, 𝑖𝑓 𝑥𝑁𝑗  𝑖𝑠 𝑎 𝑓𝑟𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
}       (31) 

The necessary conditions (31) for terminating the procedure are also sufficient for a 



114 

 

global minimum if D is positive semi – definite or positive definite. 

Remarks: 

1) While evaluating 
𝜕𝑍

𝜕𝑢𝑗
, both increase and decrease must be checked, as 𝑢𝑗 is 

unrestricted in sign. 

2) If at any iteration a free variable becomes a basic variable and is non – zero, then 

drop the new constraint containing it. This should be done because it is a free 

variable, and therefore, will neither be chosen to leave the basis nor will appear in the 

selection of leaving variable. 

 

Example 2.23 Use Beale’s method to solve the following QP problem: 

Minimize Z = −4𝑥1 + 𝑥1
2 − 2𝑥1𝑥2 + 2𝑥2

2 subject to the constraints 

(i) 2𝑥1 + 𝑥2 ≥ 6  (ii) 𝑥1 − 4𝑥2 ≥ 0 and 𝑥1, 𝑥2 ≥ 0 

 

Solution: Introducing surplus variables 𝑠1 and 𝑠2, the constraint equations becomes: 

(i) 2𝑥1 + 𝑥2 − 𝑠1 = 6 and (ii) 𝑥1 − 4𝑥2 − 𝑠2 = 0. 

Also, converting the minimization objective function into a maximization, we have 

Maximize Z = 4𝑥1 − 𝑥1
2 + 2𝑥1𝑥2 − 2𝑥2

2 

Making 𝑠1 and 𝑠2 basic variables in the initial solution and expressing these in terms 

of non – basic variables 𝑥1 and 𝑥2 as follows: 

(i)   −6 + 2𝑥1 + 𝑥2 = 𝑠1 (ii) 𝑥1 − 4𝑥2 = 𝑠2 and (iii) 𝑍 = 4𝑥1 − 𝑥1
2 + 2𝑥1𝑥2 − 2𝑥2

2 

Thus, 𝑥𝐵 = (𝑠1, 𝑠2) = (−6, 0) and 𝑥𝑁 = (𝑥1, 𝑥2) = (0, 0) 

At the current solution 𝛼1 = 4 and 𝛼2 = 0. Since both of these are positive, therefore 

we choose 𝑥1 (due to most positive value of 𝛼1) to enter into the basis. The critical 

value 𝛽1 of 𝑥1 is given by 

𝑀𝑖𝑛 {
−6

|2|
,
0

|1|
} = −3 

The variable 𝑠1 is eligible to leave the basis. Expressing the new basic variables 𝑥1, 𝑠2 

and Z in terms of new non – basic variables 𝑥1 and 𝑠2 as follows: 

(i)   𝑥1 = 3 −
1

2
𝑥2 +

1

2
𝑠1 (ii) 𝑠2 = 3 −

3

2
𝑥2 +

1

2
𝑠1 and  

(iii) 𝑍 = 4 (3 −
1

2
𝑥2 +

1

2
𝑠1) − (3 −

1

2
𝑥2 +

1

2
𝑠1)

2

+ 2(3 −
1

2
𝑥2 +

1

2
𝑠1) 𝑥2 − 2𝑥2

2 

= 9 + 𝑥2 − 𝑠1 +
3

2
𝑥2𝑠1 −

13

4
𝑥2
2 −

1

4
𝑠1
2                                                                               

Again, differentiating Z with respect to 𝑥2 and 𝑠1, we have 
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|
𝜕𝑍

𝜕𝑥2
|
𝑥2=0
𝑠1=0

= 1 +
3

2
𝑠1 −

13

2
𝑥2 = 1 ;  |

𝜕𝑍

𝜕𝑠1
|
𝑥2=0
𝑠1=0

= −1 +
3

2
𝑥2 −

1

2
𝑠1 = −1 

The variable 𝑥2 is eligible to enter the basis. Again compute the ration 

𝑀𝑖𝑛 {
3

|(−1 2⁄ )|
,

3

|(−3 2⁄ )|
} = 2 

Since the minimum ration corresponds 𝛽2, we introduce a non – basic free variable 

𝑢1, defined by 

𝑢1 =
1

2

𝜕𝑍

𝜕𝑥2
=
1

2
+
3

4
𝑠1 −

13

4
𝑥2 

Now we have 𝑥𝐵 = (𝑥1, 𝑠2, 𝑥2) and 𝑥𝑁 = (𝑠1, 𝑢1). Expressing basic variables and Z in 

terms of non – basic variables, we have: 

(i)   𝑥1 =
38

13
−

3

26
𝑠1 +

2

13
𝑢1  (ii)  𝑥1 =

2

13
+

3

13
𝑠1 −

4

13
𝑢1 

(iii) 𝑠2 =
30

13
−
27

26
𝑠1 +

18

13
𝑢1 

(iv) 𝑍 = 9 +
1

13
(2 + 3𝑠1 − 4𝑢1) − 𝑠1 +

3

26
𝑠1(2 + 3𝑠1 − 4𝑢1) −

1

52
(2 + 3𝑠1 − 𝑢1)

2 −
1

4
𝑠1
2 

Again, |
𝜕𝑍

𝜕𝑠1
|𝑠1=0
𝑢1=0

=
3

13
− 1 +

3

26
(2 − 4𝑢1) +

18

26
𝑠1 −

6

52
(2 + 3𝑠1 − 4𝑢1) −

1

2
𝑠1 = −

9

13
 

           |
𝜕𝑍

𝜕𝑠1
|𝑠1=0
𝑢1=0

= −
4

13
−
12

26
𝑠1 +

8

52
(2 + 3𝑠1 − 4𝑢1) = 0 

Since both 𝛼𝑗 < 0, the optimal value of Z is obtained by setting 𝑢1 = 0, 𝑠1 = 0 in the 

current value of the objective function: 

𝑍∗ = 9 +
2

13
−
2

52
=
474

52
 

Hence, the optimum solution to the given QP problem is 𝑥1 =
38

13
 and 𝑥2 =

2

13
 with   

Min Z = 9.115. 

Example 2.24 The operations Research team of the ABC Company has come up 

with the mathematical data (daily basis) needed for two products which the firm 

manufactures. It also has determined that this is a non-linear programming problem, 

having linear constraints and objective function which is the sum of a linear and a 

quadratic form. The pertinent data, gathered by the OR team are: 

Maximize (Contribution) = 12x + 21y + 2xy – 2x2 – 2y2 subject to the constraints 

(i) 8 – y ≥ 0  (ii) 10 – x – y ≥ 0 and x, y ≥ 0 

Find the maximum contribution and number of units that can be expected for these 

two products which are a part of the firm’s total output. (x and y represent the number 
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of units of the two products.) 

 

Solution: The problem can be written as 

Maximize Z = 12x + 21y + 2xy – 2x2 – 2y2 subject to the constraints 

(i) 8 – y ≥ 0  (ii) 10 – x – y ≥ 0 and x, y ≥ 0 

Introducing slack variables s1, s2 and treating x, y as the basic variables, we express 

the basic variables and Z in terms of non-basic variables s1, s2 as follows: 

(i)   y = 8 – s1;   (ii) x = 2 – s1 – s2 and 

(iii) Z = 12(2 – s1 – s2) + 21(8 – s1) + 2(1 – s1)(2 – s1 – s2) – (2 – s1 – s2)
2 – 2(8 – s1)

2 

         = 224 – 53s1 – 28s2 + 2s1 s2 + 2s1
2 – 2(2s1 – s2)

2 – 2(8 – s1)
2 

Thus, 
𝜕𝑍

𝜕𝑠1
= –53 + 2s2 + 4(2 – s1 – s2) + 4(8 – s1) ; |

𝜕𝑍

𝜕𝑠1
|𝑠1=0
𝑠2=0

= −13 

          
𝜕𝑍

𝜕𝑠2
= –28 + 2s1 + 4(2 – s1 – s2) ; |

𝜕𝑍

𝜕𝑠2
|𝑠1=0
𝑠2=0

= −20 

Since both the partial derivatives are negative, the current solution is optimum. Thus 

the optimum solution is: x = 2, y = 8, with Max Z = 88. Hence, in order to have a 

maximum contribution of Rs. 88, the ABC company must expect 2 and 8 units of the 

two products, respectively. 

 

 

Let us sum up 

     We have learned about Quadratic programming problem, to find it solution by 

using Kuhn-Tucker conditions, Wolfe’s Modified simplex method and Beale’s method. 

 

Check your progress  

Use Wolfe’s method for solving the following quadratic programming problems: 
 

30. Max Z = 2𝑥1 + 3𝑥2 − 2𝑥1
2 

             Subject to,  𝑥1 + 4𝑥2 ≤ 4 ; 

                    𝑥1 + 𝑥2 ≤ 2 ; 

                                  𝑥1, 𝑥2 ≥ 0 
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31. Max Z = 8𝑥1 + 10𝑥2 − 𝑥1
2 − 𝑥2

2 

             Subject to,  3𝑥1 + 2𝑥2 ≤ 6 ; 

                               𝑥1, 𝑥2 ≥ 0 

 

Use Beale’s method to solve the following quadratic programming problems: 

 

32. Max Z = 2𝑥1 + 3𝑥2 − 𝑥1
2 

             Subject to,  𝑥1 + 2𝑥2 ≤ 4 ; 

                        𝑥1, 𝑥2 ≥ 0 

 

Unit Summary 

 
      The classical optimization methods are used to obtain an optimal solution of 

certain types of problems that involve continuous and differentiable function. These 

methods are analytical in nature and make use of differential calculus in order to find 

points of maxima and minima for  

           (a) an constrained single and multiple variable continuous function, and  

           (b) constrained multivariable functions with equality and inequality constraints.  

    In this unit conditions for local as well as global minimum and maximum value of 

an unconstrained objective function have been derived followed by numerical 

exercises. Direct substitution method, Lagrange’s multipliers method and Kuhn-

Tucker method have also been discussed to find optimal value of an objective 

function with equality and inequality constraints, respectively 

      Linear programming requires the objective function and constraints to be linear. 

However, if either of these are not linear, then non-linear programming methods are 

used to find optimal value of the objective function with or without constraints. In the 

more general procedure, conditions necessary for an optimum value of a function 

subject to inequality constraints, are known as Kuhn-Tucker conditions. Beale’s and 

Wolf’s methods have also been demonstrated to solve quadratic programming 

problems.  

         In case the objective function and constraints are separable, the separable 

programming technique is used for solving a NL programming problem. Sometimes, 

functions that are not separable can be made separable by using the approximation 

method.  
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         Geometric programming is used to solve NL programming problems that 

involve special type of functions called polynomials. The GP approach first finds the 

optimal value of the objective function by solving its dual problem and then 

determines the solution to the given NLP problem from the optimal solution of the 

dual. 

 

Glossary 

 NLPP-Non-linear programming problem 

 QPP-Quadratic programming problem 

 
Self – Assessment  Questions 

1.State and prove Kuhn-Tucker necessary and sufficient conditions in non-linear 

programming.  

2.Obtain the Kuhn-Tucker conditions for a solution of the problem: 

Max Z = 𝑐𝑥 +
1

2
𝑥𝑇𝑑𝑥 

             Subject to,  𝐴𝑥 = 𝑏 ; 

                            and   𝑥 ≥ 0 

3. Explain what is meant by Kuhn-Tucker conditions. 

4. What is meant by quadratic programming? How does a quadratic programming 

problem differ from a linear programming problem? Give an example. 

5. Briefly mention Wolfe’s algorithm for solving a quadratic programming problem: 

    Max Z = 𝑐𝑥 +
1

2
𝑥𝑇𝑞𝑥 

             Subject to,  𝐴𝑥 ≤ 𝑏 ; 

                            and   𝑥 ≥ 0 

 

Activities 

1. Derive the Kuhn-Tucker necessary conditions for an optimal solution to a quadratic 

programming problem. 

2. What is quadratic programming? Explain Wolfe’s method of solving it. 

3. Discuss the economic interpretation of Lagrangian multipliers, the duality theory, 

and derive the Kuhn-Tucker conditions for the non-linear programming problem:  Max 

Z = f (x) subject to the constraints 𝑔𝑗(𝑥)  ≤ 𝑏𝑖 ; i = 1, 2, . . ., m. 
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4. Is it correct to say that in a quadratic programming problem the objective function 

and the constraints both should be quadratic? If not, give your own comments. 
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THEORY OF SIMPLEX METHOD 

Objectives: 
 

    After studying this unit, students should be able to learn both canonical and 

standard forms of LP model and their characteristics. To know the importance and 

interpretation of slack and surplus variables. To identify an alternative optimal 

solution and an unbounded solution of any LP model. To resolve certain 

complications, viz. unrestricted variables, degeneracy, etc., that may arise in 

applying the simplex method. 

 

3.1 INTRODUCTION 

 

    The graphical method is applicable only to solve two-variable LP problems. 

Finding and evaluating all basic feasible solutions of an LP problem with more than 

two variables and many constraints is very difficult. Thus, an efficient computational 

procedure is required to solve the general mathematical model of LP problem. In this 

chapter we shall discuss an iterative method (or procedure) called the simplex 

method developed by G.B. Dantzig in 1947 for solving an LP problem with more than 

two variables. The simplex method is referred as an iterative procedure because it is 

based on the procedure of moving from one extreme (corner) point to another of the 

solution space (or feasible region) that is formed by the constraints and non-

negativity conditions of the linear programming problem. Since the number of 

extreme points (corners or vertices) of a solution space is finite, the method leads to 

find an extreme point in a finite number of steps where either LP problem has 

optimal solution or there exists an unbounded solution. 

 

3.2 CANONICAL AND STANDARD FORM OF LP PROBLEM 

Canonical form: If the general mathematical model of an LP problem is 

expressed as: Maximize Z = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1  subject to the constraints 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏𝑗  ; 𝑖 = 1, 2, … ,𝑚 and 𝑥𝑗 ≥ 0 ; 𝑗 = 1, 2, … , 𝑛 

Then it is called the canonical form of an LP problem. The characteristics of this form 

are:  
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(i) The objective function should be of maximization type. If not, then it should be 

changed to the same by applying the method discussed earlier. 

(ii) All constraints should be of ≤ type except for the non-negativity conditions. An 

inequality of ≥ type can be changed to an inequality of ≤ type by multiplying it with –1 

on both sides. 

(iii) All variables must have non-negative values. If any variable, say 𝑥𝑗 , is 

unrestricted in sign (i.e., positive, negative or zero), then it can be replaced by: 

𝑥𝑗 = 𝑥𝑗
′ − 𝑥𝑗

′′ where 𝑥𝑗
′ 𝑎𝑛𝑑 𝑥𝑗

′′ are both non-negative. 

(iv) The right-hand side of each constraint should be positive.  

 

Standard form: 

     If the general formulation of an LP problem is expressed as:    

Maximize Z = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1    

subject to the constraints  ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 = 𝑏𝑗  ; 𝑖 = 1, 2, … ,𝑚 and 𝑥𝑗 ≥ 0 ; 𝑗 = 1, 2, … , 𝑛 

Then it is called the standard form of the LP problem. The characteristics of this form 

are: 

(i) All the constraints should be expressed as equations. 

(ii) The right-hand side of each constraint should be made non-negative. If it is not 

so, this should be done by multiplying both sides of the resulting constraints by –1. 

(iii) The objective function should be of maximization type.  

The standard form can also be written in matrix notation as follows:  

                         Maximize Z = cx       (1) 

subject to the constraints Ax = b,                           (2)  

                                    and x ≥ 0                  (3) 

 where 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛) is the row vector; 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 and  

𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑚)
𝑇   are column vectors and A is m × n coefficients matrix of rank m. 

The LP problem can also be represented in terms of column vectors, 𝑎1, 𝑎2, … , 𝑎𝑛 of 

matrix A as follows: 

Maximize Z = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1  subject to the constraints 

∑ 𝑎𝑗𝑥𝑗
𝑛
𝑗=1 = 𝑏 and 𝑥𝑗 ≥ 0 ; 𝑗 = 1, 2, … , 𝑛 

Remarks:  

1) A minimization problem can also be in canonical form if all variables are non-

negative and all the constraints are of ≥ type. 
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2) Any maximization LP problem can be converted into an equivalent minimization 

LP problem and vice versa by multiplying the given objective function by –1, without 

making any change in the constraints. For example, the objective function:  

Maximize Z = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 = 𝑀𝑖𝑛 𝑍∗ = ∑ (−𝑐𝑗)

𝑛
𝑗=1 𝑥𝑗 

 

3.3 SLACK AND SURPLUS VARIABLES 

 

   In the general LP problem each constraint may take one of the three possible 

forms,  ≤ , =, or ≥. Inequality constraints of the LP problem are converted into 

equalities by adding additional non-negative variables called slack and surplus 

(negative slack) variables:  

Case 1: The constraints with ≤ inequality sign, i.e., 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏𝑖 can be converted to the equality 

 ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 + 𝑠𝑖 = 𝑏𝑖 ;  𝑖 = 1, 2, … ,𝑚        (4) 

by adding non – negative variable 𝑠𝑖, called slack variables. 

Case 2: The constraints with ≥ inequality sign, i.e., 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏𝑖 can be converted to the equality 

 ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 − 𝑠𝑖 = 𝑏𝑖 ;  𝑖 = 1, 2, … ,𝑚        (5) 

by subtracting non – negative variable 𝑠𝑖, called surplus variables. 

The general LP problem that involves mixed constraints can be stated as: 

Optimize (Max or Min) Z = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1         (6) 

subject to the constraints ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏𝑖 ; 𝑖 = 1, 2, … , 𝑟 

                                         ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏𝑖 ; 𝑖 = 𝑟 + 2, 𝑟 + 2,… , 𝑠    (7) 

                                         ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 = 𝑏𝑖 ; 𝑖 = 𝑠 + 1, 𝑠 + 2,… ,𝑚 

                                        and 𝑥𝑗 ≥ 0 ; 𝑗 = 1, 2, … , 𝑛 

Constraints with ≤ inequality sign can be converted to form (4) and those with ≥ 

inequality sign to form (5). Those having an equality sign remain unchanged. The 

general LP problem can be stated as: 

Optimize Z = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 + ∑ 0. 𝑠𝑖

𝑟
𝑖=1 +∑ 0. 𝑠𝑖

𝑠
𝑖=𝑟+1  subject to the constraints 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 + 𝑠𝑖 = 𝑏𝑖 ; 𝑖 = 1, 2, … , 𝑟  

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 − 𝑠𝑖 = 𝑏𝑖 ; 𝑖 = 𝑟 + 2, 𝑟 + 2,… , 𝑠  
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∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 = 𝑏𝑖 ; 𝑖 = 𝑠 + 1, 𝑠 + 2,… ,𝑚 and 𝑥𝑗 ≥ 0 ; 𝑗 = 1, 2, … , 𝑛 

 

Remark:  

   The coefficients of slack and surplus (negative slack) variables are zero in the 

objective function due to the reason that they represent unused capacity (or 

resource). 

 

3.3.1 Basic Solution 

 

    Constraints, Ax = b of an LP problem are written as a system of m simultaneous 

linear equations in n (n > m) unknown, where A is an m × n matrix and rank (A) = m. 

Let B be an m × m non-singular submatrix of A obtained by reordering the column of 

A, and N an m × (n – m) matrix such that A = (B, N). Let x be partitioned as [𝑥𝐵 , 𝑥𝑁]
𝑇 

where 𝑥𝐵
𝑇 ∈ 𝐸𝑚 and 𝑁 ∈ 𝐸𝑛−𝑚 be the vector of variables associated with columns of 

matrix B and N, respectively. Then constraints, Ax = b can be rewritten as:  

[𝐵, 𝑁] [
𝑥𝐵
𝑥𝑁
] = 𝑏 (or) 𝐵𝑥𝐵 + 𝑁𝑥𝑁 = 𝑏 (or) 𝑥𝐵 = 𝐵−1𝑏 − 𝐵−1𝑁𝑥𝑁 

 

    If all the (n – m) variables not associated with the columns of matrix B are set 

equal zero, i.e., 𝑥𝑁 = 0, the solution to the resulting system of equations, i.e., 

[
𝑥𝐵
𝑥𝑁
] = [𝐵

−1

0
] ; 𝑥𝐵 = (𝑥𝐵1, 𝑥𝐵2, … , 𝑥𝐵𝑚) 

is called the basic solution to the given system of equations. The m variables that 

can be different from zero are called the basic variables. If all these variables also 

satisfy the non-negativity conditions, x ≥ 0, then the basic solution constituted by 

them is called a basic feasible solution. Again if these satisfy all the constraints Ax = 

b, then the solution is known as a feasible solution. The remaining n – m variables, 

i.e., the components of 𝑥𝑁 are called non-basic variables. The matrix B is called the 

basis matrix (or simply the basis) having m linear independent columns selected 

from A. Let 𝛽1, 𝛽2, … , 𝛽𝑚 be the columns of basis matrix B that form a basis. Then we 

can write B = [𝛽1, 𝛽2, … , 𝛽𝑚]. The column 𝑎𝑗 of A can be expressed as a linear 

combination of columns of B as: 

𝑎𝑗 = 𝑦𝑖𝑗𝛽1 + 𝑦2𝑗𝛽2 +⋯+ 𝑦𝑚𝑗𝛽𝑚 

                    = (𝛽1, 𝛽2, … , 𝛽𝑚)(𝑦1𝑗, 𝑦2𝑗 , … , 𝑦𝑚𝑗) = 𝐵𝑦𝑗 
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                                                      or 𝑦𝑗 = 𝐵
−1𝑎𝑗 

where 𝑦𝑗 = (𝑦1𝑗 , 𝑦2𝑗 , … , 𝑦𝑚𝑗) are the scalars. Obviously the vector 𝑦𝑗 will change with 

the change in the columns of A that are part of basis matrix B. 

If the value of the objective function Z can be increased or decreased with 

change in the values of basic variables, then such a solution is said to be 

unbounded. 

 

3.3.2 Degenerate Solution 

 

    A basic feasible solution 𝑥𝐵 = 𝐵
−1𝑏 b is said to be degenerate if at least one 

component of 𝑥𝐵 (basic variables) is zero. If all components of 𝑥𝐵 are non-zero(𝑥𝐵 >

0), then it is called a non-degenerate basic feasible solution. For a system of m 

equations with n variables (n > m) the total number of basic feasible solutions is less 

than or equal to the total number of combinations, nCm = 
𝑛!

𝑚!(𝑛−𝑚)!
 

 

3.3.3 Cost (or Price) Vector 

 

        Let the cost vector c, associated with the variables in objective function Z, of an 

LP problem be partitioned as𝑐 = (𝑥𝐵, 𝑥𝑁), where 𝑐𝐵 and 𝑐𝑁 are the coefficients of 

basic variables 𝑥𝐵 and non-basic variables 𝑥𝑁 , respectively. The objective function 

can then be written as:  

𝑍 = 𝑐𝑥 = [𝑐𝐵, 𝑐𝑁] [
𝑥𝐵
𝑥𝑁
] = 𝑐𝐵𝑥𝐵 + 𝑐𝑁𝑥𝑁 

Since for the basic feasible solution the value of all the non-basic variables become 

zero, i.e., 𝑥𝑁 = 0, therefore the value of the objective function for basic feasible 

solution is given by Z = 𝑐𝐵𝑥𝐵, where 𝑐𝐵 = (𝑐𝐵1, 𝑐𝐵2, … , 𝑐𝐵𝑚). The vector, 𝑐𝐵 =

(𝑐𝐵1, 𝑐𝐵2, … , 𝑐𝐵𝑚) associated with the basic variable, 

 𝑐𝐵 = (𝑥𝐵1, 𝑥𝐵2, … , 𝑥𝐵𝑚) is called cost (or price) vector. 

 

Example 3.1 Find all the basic feasible solutions to the system of linear equations ? 

(i) 𝑥1 + 2𝑥2 + 𝑥3 = 4  (ii) 2𝑥1 + 𝑥2 + 5𝑥3 = 5. Are the solutions degenerate ? 

 

Solution: The given system of equations can be written in the Ax = b form as 
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follows: 

[
1 2 1
2 1 5

] [

𝑥1
𝑥2
𝑥3
] = [

4
5
] where 𝐴 = [

1 2 1
2 1 5

] ; 𝑥 = [

𝑥1
𝑥2
𝑥3
] ; 𝑏 = [

4
5
] 

Since, rank (A) = 2, there are two linearly independent columns of A. Therefore, any 

of the following 3[3C2 = 3] submatrices of order 2 can be considered as the basis 

matrix B because following determinants of order 2 are not equal to zero. 

[
1 2
2 1

] ; [
1 1
2 5

] and [
2 1
1 5

] 

Since each of these submatrices is non-singular, by putting variables not associated 

with the columns of B equal to zero, all possible basic feasible solution can be 

obtained. Let us consider the case where 𝑥2 = 0, i.e., it is not associated with the 

columns of B. We then have: 

                                                               [
1 1
2 5

] [
𝑥1
𝑥2
] = [

4
5
] 

                                                                   [
𝑥1
𝑥2
] = [

1 1
2 5

]
−1

[
4
5
]   (because 

𝑥𝐵 = 𝐵−1𝑏) 

                                                                                =
1

3
[
5 −1
−2 1

] [
4
5
] 

                                                                                =
1

3
[
15
−3
]    

                                                                               = [
3
−1
]                               

(since 𝐴−1 =
𝑎𝑑𝑗 𝐴

|𝐴|
) 

                                               (or) 𝑥1 = 3 and 𝑥3 = −1 

We now set 𝑥1 = 0 and solve the system of equations. The resulting matrix is non – 

singular. Then, 

                            [
2 1
1 5

] [
𝑥2
𝑥3
] = [

4
5
]  

                           [
𝑥2
𝑥3
] = [

2 1
1 5

]
−1

[
4
5
]  

                                  =
1

9
[
5 −1
−1 2

] [
4
5
]  

                                 =
1

9
[
15
6
]    

                                = [
5 3⁄

2 3⁄
]  

                                                     (or) 𝑥2 =
5

3
 and 𝑥3 =

2

3
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Next we set 𝑥3 = 0 and solve the system of equations. Thus, 

                          [
1 2
2 1

] [
𝑥1
𝑥2
] = [

4
5
]  

                          [
𝑥1
𝑥2
] = [

1 2
2 1

]
−1

[
4
5
]  

                                 = −
1

3
[
1 −2
−2 1

] [
4
5
]  

                                = −
1

3
[
−6
−3
]    

                               = [
2
1
]  

                                                      (or) 𝑥1 = 2 and 𝑥2 = 1 

The summary of the solution is given below: 

 

Here it may be noted that all these solutions are non – degenerate. 

 

Example 3.2  Compute all the basic feasible solutions to the system of linear 

equations. (i) 4𝑥1 + 2𝑥2 + 𝑥3 = 7  (ii) −𝑥1 + 4𝑥2 + 2𝑥3 = 14 

 

Solution: By setting 𝑥1 = 0, the resulting square matrix of coefficients of 𝑥2 and 𝑥3 

is: 

𝐴 = [
2 1
4 2

] 

This matrix is singular because |𝐴| = 0. It cannot be a basis matrix because the 

columns are not linearly independent. 

Since 𝑥2 = 0, the resulting square matrix of coefficients of 𝑥1 and 𝑥3 is: 

𝐴 = [
4 1
−1 2

] 

This matrix is a basis matrix, B because |𝐴| ≠ 0 and so 
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𝑥𝐵 = 𝐵
−1𝑏 =

1

9
[
2 −1
1 4

] [
7
14
] =

1

9
[
0
63
] = [

0
7
] 

(or) 𝑥1 = 0 and 𝑥3 = 7. 

Here it may be noted that 𝑥1, although not a non – basic variable, still has a zero 

value in this solution. 

Finally, setting 𝑥3 = 0, we get a coefficient matrix of 𝑥1 and 𝑥2, which mat serve as a 

basis: 

𝐴 = [
4 2
−1 4

] 

Thus, 𝑥𝐵 = 𝐵
−1𝑏 =

1

18
[
4 −2
1 4

] [
7
14
] =

1

18
[
0
63
] = [

0
63 18⁄

] 

(or) 𝑥1 = 0 and 𝑥2 =
63

18
=

7

2
 

and again a basic variable, 𝑥1 has a zero value. 

 

 

Example 3.3 Compute all the basic feasible solutions to the LP problem. 

Maximize Z = 2𝑥1 + 3𝑥2 + 4𝑥3 + 7𝑥4 subject to the constraints 

(i) 2𝑥1 + 3𝑥2 − 𝑥3 + 4𝑥4 = 8 (ii) 𝑥1 − 2𝑥2 + 6𝑥3 − 7𝑥4 = −3 

and 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 

 

Solution: The maximum number of basic feasible solutions to the given LP problem 

are 4C2 = 4. 

(i) Putting 𝑥3 = 𝑥4 = 0 in the constraints, we get 2𝑥1 + 3𝑥2 = 8 and 𝑥1 − 2𝑥2 = −3. 

Solving these equations for 𝑥1 and 𝑥2 by using matrix inversion method, we get a 

basic feasible solution to the given LP problem: 

(i)   Basic variable: 𝑥1 = 1, 𝑥2 = 2  Non – basic variable: 𝑥3 = 𝑥4 = 0 

(ii)  Basic variable: 𝑥1 =
22

9
, 𝑥4 =

7

9
  Non – basic variable: 𝑥2 = 𝑥3 = 0 

(iii) Basic variable: 𝑥2 =
45

16
, 𝑥3 =

7

16
 Non – basic variable: 𝑥1 = 𝑥4 = 0 

(iv) Basic variable: 𝑥3 =
44

17
, 𝑥4 =

45

17
 Non – basic variable: 𝑥1 = 𝑥2 = 0 

The value of objective function Z at each of these solutions is given by: 

(i)   Z = 2(1) + 3(2) + 4(0) + 7(0) = 7 

(ii)  Z = 2(22/9) + 3(0) + 4(0) + 7(7/9) = 93/9 

(iii) Z = 2(0) + 3(45/16) + 4(7/16) + 7(0) = 19/2 
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(iv) Z = 2(0) + 3(0) + 4(44/17) + 7(45/17) = 144/5 

The maximum value of objective function Z = 144/5 occurs at the basic feasible 

solution, 𝑥1 = 𝑥2 = 0, 𝑥3 = 44 17⁄ , 𝑥4 = 45 17⁄ . 

 

Let us sum up  

                  We have learned about both canonical and standard forms of LP model, 

notion of slack and surplus variable. Also find its basic solution. 

 

Check Your Progress 

 

33.  Find the basic feasible solution for the system of equations given below: 

     (a)               2𝑥1 + 6𝑥2 + 2𝑥3 + 𝑥4 = 3 

                        6𝑥1 + 4𝑥2 + 4𝑥3 + 6𝑥4 = 2 

                          𝑥𝑗 ≥ 0,   𝑗 = 1, 2, 3, 4 

     (b)        (i) 3𝑥1 + 𝑥2 − 𝑥3 = 8,        (ii) 𝑥1 + 𝑥2 + 𝑥3 = 4 

                        𝑥1, 𝑥2, 𝑥3  ≥ 0 

34.  Show that the following system of linear equation has a degenerate solution: 

      (i) 2𝑥1 + 𝑥2 − 𝑥3 = 2                          (ii) 3𝑥1 + 2𝑥2 − 𝑥3 = 3 

 

35.  Compute all the non-degenerate basic feasible solution of the following 

equation: 

       (i) 𝑥1 + 2𝑥2 − 𝑥3 + 𝑥4 = 2                  (ii) 𝑥1 + 2𝑥2 + 0.5𝑥3 + 𝑥5 = 2 

    Is the solution (1, ½, 0, 0, 0) a basic solution? 
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3.4 REDUCTION OF FEASIBLE SOLUTION TO A 

BASIC FEASIBLE SOLUTION 

 

Theorem 3.1:  A collection of all feasible solutions (if they exist) of an LP problem 

constitute a convex set. 

 

Proof: The LP problem in its standard form is written as:  

Optimize (Max or Min) Z = cx subject to the constraints Ax = b, and x ≥ 0. 

Let S be the set of all feasible solutions of the system Ax = b, x ≥ 0. Now if S 

contains only one element, then obviously S is a convex set and hence the 

statement of the theorem is true. However, if x', x'' ∈ S such that x' ≠ x'' then we 

have:  

Ax' = b, x' ≥ 0, and Ax'' = b, x'' < 0 

Let there exists a point x''' such that x''' = λx' + (1 – λ)x'', 0 ≤ λ ≤ 1. In order to show 

that S is convex, we have to show that x''' ∈ S. In other words, the point x''' must 

satisfy the system Ax = b, x ≥ 0. Thus,  

Ax''' = A {λx' + (1 – λ)x'' } = λ Ax' + (1 – λ) Ax''  

       = λ b + (1 – λ) b       = b  

Since x', x'' ≥ 0 and 0 ≤ λ ≤ 1, we have x''' ≥ 0. Hence x''' ∈ S and the set S is convex. 

 

Theorem 3.2 A necessary and sufficient condition for a vector x in a convex set S to 

be an extreme point is that x is a basic feasible solution satisfying the system Ax = b, 

x ≥ 0. In other words, a point is a basic feasible solution to Ax = b if and only if it is an 

extreme point of the convex set of the feasible solution. 

 

Proof: Consider the following LP problem: 

Minimize Z = cx subject to the constraints Ax = b and x ≥ 0 where A is an m x n 

matrix of rank m. 

(a) Basic solution: Let x be an extreme point of the feasible region of the convex 

polyhedron. Let the first p (≤ n) components 𝑥𝑗 (j = 1, 2, …, p) of x be positive. Then: 

                                      𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑝𝑥𝑝 = 𝑏      (6) 

where 𝑎𝑗 (j = 1, 2, …, p) are the columns of A. 
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to prove that x is a basic feasible solution, we should prove that the vectirs 

𝑎1, 𝑎2, … , 𝑎𝑝 associated with the positive components of x are linearly independent. 

And we shall do so by contradiction. Suppose the vectors 𝑎1, 𝑎2, … , 𝑎𝑝 are not linearly 

independent, then there must exist scalars 𝜆1, 𝜆2, … , 𝜆𝑝 not all zero, such that: 

𝜆1𝑎1 + 𝜆2𝑎2 +⋯+ 𝜆𝑝𝑎𝑝 = 0            (7) 

Let there exist two distinct feasible solutions x' and x'' such that x = x' + x'', which 

violate the assumption that x is an extreme point. Let x' and x'' be defined as: 

 

Since 𝑥𝑗 > 0 (j = 1, 2, …, p), it is possible to select any arbitary 𝛿 > 0 such that: 

𝑥𝑗 + 𝛿𝜆𝑗 ≥ 0 𝑎𝑛𝑑 𝑥𝑗 − 𝛿𝜆𝑗 ≥ 0. Furthermore, 

𝐴𝑥′ =∑ 𝑎𝑗𝑥𝑗
′

𝑝

𝑗=1
=∑ 𝑎𝑗

𝑝

𝑗=1
(𝑥𝑗 ± 𝛿𝜆𝑗) =∑ 𝑎𝑗𝑥𝑗

𝑝

𝑗=1
+ 𝛿∑ 𝑎𝑗

𝑝

𝑗=1
𝜆𝑗 = 𝑏 + 0 = 𝑏 

Similarly, Ax'' = b. Thus, the two points x' and x'' satisfy the system of equations             

Ax = b. Hence x' and x'' are two different feasible solutions. It can also be seen that 

inequalities are true if: 

0 < 𝛿 < 𝑀𝑖𝑛 {
𝑥𝑗

|𝜆𝑗|
 ;  𝜆𝑗 ≠ 0 ; 𝑗 = 1, 2, … , 𝑝} 

i.e., the first p-components of x' and x'' will always be positive. Now, 

                                    x' + x'' =2(𝑥1, 𝑥2, … , 𝑥𝑝, 0, 0, … , 0) (or) 𝑥 =
1

2
𝑥′ +

1

2
𝑥′′ 

This shows that an extreme point x can be expressed as a linear combination of two 

distinct feasible points different from x, which cannot be true. Hence vectors 

𝑎1, 𝑎2, … , 𝑎𝑝 are linearly independent. Since rank of A = m, therefore (m – p) 

additional column vectors from 𝑎𝑝+1, 𝑎𝑝+2, … , 𝑎𝑛 of A can be added with their 

corresponding variables, together with 𝑎1, 𝑎2, … , 𝑎𝑝, to form a linearly independent set 

of column vectors. If needed, after rearranging the columns, let the new column 

vectors be 𝑎𝑝+1, 𝑎𝑝+2, … , 𝑎𝑚. Let B = (𝑎1, 𝑎2, … , 𝑎𝑝, 𝑎𝑝+1, 𝑎𝑝+2, … , 𝑎𝑚) be the new basis 

matrix whose columns are linearly independent. Further, 𝑥𝑁 = 0 and 𝑥𝐵 =

(𝑥1, 𝑥2, … , 𝑥𝑝, 0, 0, … , 0)
𝑇
. Since Ax = b, x is a feasible solution. 

(b) Extreme-point Correspondence: Let x be a basic feasible solution to the system 
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of equations Ax = b, x ≥ 0, such that x = (𝑥𝐵, 0)
𝑇, where 𝑥𝐵 = 𝐵−1𝑏, for a non-

singular matrix B called basis matrix (or basis). 

Let there exist two distinct points x' and x'' satisfying Ax = b (feasible solution) such 

that:  

x = λx' + (1 – λ)x'' ; 0 < λ < 1         (9)  

Now to prove that x is an extreme point it is sufficient to show that x' = x'' = x. Let 

𝑥′ = [
𝑥𝐵
′

𝑥𝑁
′ ]  𝑎𝑛𝑑 𝑥

′′ = [
𝑥𝐵
′′

𝑥𝑁
′′] 

It may be notes that 𝑥𝑁
′ ≥ 0 and 𝑥𝑁

′′ ≥ 0. Then substituting in equation (9), we get 

[
𝑥𝐵
0
] = λ [

𝑥𝐵
′

𝑥𝑁
′ ] + (1 + λ) [

𝑥𝐵
′′

𝑥𝑁
′′] 

                                            𝑥𝐵 = λ𝑥𝐵
′ + (1 − λ)𝑥𝐵

′′       

   (10) 

                                     0 = λ𝑥𝑁
′ + (1 − λ)𝑥𝑁

′′       

   (11) 

Since 0 < λ < 1 and 𝑥𝑁
′ , 𝑥𝑁

′′ ≥ 0, from equation (11) we have 𝑥𝑁
′ = 𝑥𝑁

′′ = 0. Again since 

x' and x'' satisfy Ax' = b and Ax'' = b, we have, 𝑥𝐵
′ = 𝑥𝐵. 

Similarly 𝑥𝐵
′′ = 𝑥𝐵. It follows that x = x' = x''. This is a contradiction for x' ≠ x''. Hence, 

x is an extreme point. 

 

Theorem 3.3  

 

(a) If the convex set of the feasible solutions of the system of equations Ax = b, x ≥ 0, 

is a convex polyhedron, then at least one of the extreme points gives an optimal 

solution. 

(b) If the optimal solution occurs at more than one extreme point, then the value of 

the objective function will be the same for all convex combinations of these extreme 

points. 

 

Proof: (a) Let the points 𝑥1, 𝑥2, … , 𝑥𝑝 represent the extreme points of the feasible 

region of the convex polyhedron of the LP problem: 

Maximize Z = cx subject to the constraints Ax = b, and x ≥ 0 

Suppose x' be an extreme point among 𝑥1, 𝑥2, … , 𝑥𝑝, at which the maximum value of 

the objective function Z occurs. Let it be Z* = cxi. Let x' be any point of the feasible 
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region and Z' be the value of objective function at x'. Then Z' = cx'. Since x' is not an 

extreme point, there exist scalars 𝜆1, 𝜆2, … , 𝜆𝑝 not all zero such that: 

𝑥′ = 𝜆1𝑥1 + 𝜆2𝑥2 +⋯+ 𝜆𝑝𝑥𝑝 

where ∑ 𝜆𝑗
𝑝
𝑗=1 = 1 ;  𝜆𝑗 ≥ 0 ; 𝑗 = 1, 2, … , 𝑝 

Substituting for x' in Z' = cx', we get: Z' = 𝑐{𝜆1𝑥1 + 𝜆2𝑥2 +⋯+ 𝜆𝑝𝑥𝑝} 𝑐𝑥
𝑖, i.e., 𝑍′ ≤ 𝑍∗ 

This result shows that at the optimum solution, the extreme point solution is better 

than any other feasible solution. 

(b) Let 𝑥1, 𝑥2, … , 𝑥𝑘 (𝑘 ≤ 𝑝) be the extreme points of the feasible region at which 

objective function has equal and optimum value. i.e., 

𝑍∗ = 𝑐𝑥1 = 𝑐𝑥2 = ⋯ = 𝑐𝑥𝑘 

Further, let 𝑥 = 𝜆1𝑥1 + 𝜆2𝑥2 +⋯+ 𝜆𝑘𝑥𝑘 where ∑ 𝜆𝑗
𝑘
𝑗=1 = 1 ; 𝜆𝑗 ≥ 0 ; 𝑗 = 1, 2, … , 𝑘 

Then, 𝑐𝑥 = {𝑐𝜆1𝑥1 + 𝜆2𝑥2 +⋯+ 𝜆𝑘𝑥𝑘} = 𝜆1𝑐𝑥1 + 𝜆2𝑐𝑥2 +⋯+ 𝜆𝑘𝑐𝑥𝑘 

               = (𝜆1 + 𝜆2 +⋯+ 𝜆𝑘)𝑍
∗           = 𝑍∗ 

Hence, the theorem is proved. 

 

Theorem 3.4 

     If a standard LP problem with constraints Ax = b, x ≥ 0, where A is an m × n 

matrix of rank m (£ n) has a feasible solution, then it also has a basic feasible 

solution. 

 

Proof: Suppose that 𝑥𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 be a feasible solution to the system Ax = b. 

We rearrange the components of x such that the first p (≤ n) components 𝑥𝑗 (j = 1, 2, 

…, p) of x are positive and the remaining n – p components are zero. The feasible 

solution can then be written as: 

∑ 𝑎𝑗𝑥𝑗
𝑝

𝑗=1
= 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑝𝑥𝑝 = 𝑏 

Where 𝑎1, 𝑎2, … , 𝑎𝑝 are the first p – column of A associated with the positive variables 

𝑥1, 𝑥2, … , 𝑥𝑝. Two cases arise about the vectors 𝑎𝑗 (j = 1, 2, …, p). 

Case 1: Column Vectors 𝑎1, 𝑎2, … , 𝑎𝑝 are Linearly Independent. If vectors 𝑎1, 𝑎2, … , 𝑎𝑝 

are linearly independent, then p ≤ m. If p = m (i.e., rank of matrix A), then the given 

solution is a unique non-degenerate basic feasible solution. On the other hand if              

p < m, then there are m – p additional column of A, which together with 𝑎1, 𝑎2, … , 𝑎𝑝 

columns, form a basis (i.e., linearly independent system) for Em. Thus, a degenerate 
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basic feasible solution can be formed assigning zero value to the m – p variables, 

i.e., 𝑥𝑝+1 = 𝑥𝑝+2 = ⋯ = 𝑥𝑚 = 0, corresponding to selected m – p columns of A. 

Case 2: Column Vectors 𝑎1, 𝑎2, … , 𝑎𝑝 are Linearly Dependent. If column vectors 

𝑎1, 𝑎2, … , 𝑎𝑝 are linearly dependent, then p > m. Thus we have to reduce the number 

of positive variables step by step until the columns associated with the positive 

variables are linearly independent. If 𝑎1, 𝑎2, … , 𝑎𝑝 are linearly dependent, then there 

exist scalars 𝜆1, 𝜆2, … , 𝜆𝑝, with at least one 𝜆𝑗 positive such that                                       

𝜆1𝑎1 + 𝜆2𝑎2 +⋯+ 𝜆𝑝𝑎𝑝 = 0. Let 𝑥𝑟 be the variable selected first to be reduced to 

zero. Thus, the vector 𝑎𝑟 amongst p vectors, for which λr ≠ 0, can be expressed in 

terms of the remaining p – 1 vectors as follows: 

𝜆𝑟𝑎𝑟 = −∑ 𝜆𝑗𝑎𝑗
𝑝

𝑗≠𝑟
 ; 𝑗 = 1, 2, … , 𝑝 

(or)                                       𝑎𝑟 = −∑ (
𝜆𝑗

𝜆𝑟
) 𝑎𝑗

𝑝
𝑗≠𝑟  ; 𝑗 = 1, 2, … , 𝑝       (12) 

We substitute expression 𝑎𝑟 from equation (12) in the expression: 

−∑ 𝜆𝑗𝑎𝑗
𝑝

𝑗≠𝑟
= 𝑏 ;  𝑥𝑗 > 0 

and obtain               −∑ (𝑥𝑗 − 𝑥𝑟 (
𝜆𝑗

𝜆𝑟
)) 𝑎𝑗

𝑝
𝑗≠𝑟 = 𝑏 ; 𝑗 = 1, 2, … , 𝑝       (13) 

In this manner a feasible solution with at the most p – 1 positive variables is 

obtained. To ensure that these p – 1 variables be non-negative, we choose a column 

vector 𝑎𝑟 in such a way that: 

𝑥𝑗 − 𝑥𝑟 (
𝜆𝑗

𝜆𝑟
) ≥ 0 ; 𝑗 = 1, 2, … , 𝑝 ; 𝑗 ≠ 𝑟 

Obviously, for any j for which 𝜆𝑗 = 0, the above condition is satisfied. But if 𝜆𝑗 ≠ 0, 

then we get: 

𝑥𝑗

𝜆𝑗
−
𝑥𝑟

𝜆𝑟
≥ 0 ;  𝜆𝑗 > 0           (14a) 

and 
𝑥𝑗

𝜆𝑗
−
𝑥𝑟

𝜆𝑟
≤ 0 ;  𝜆𝑗 < 0          (14b) 

These two inequalities provide a method of selecting the vector ar such that p – 1 

variables in equation (13) are non-negative. The maximum value of 
𝑥𝑟

𝜆𝑟
, for which 

equation (14) is satisfied and which will help in selecting 𝑎𝑟, is given by: 

𝑥𝑟
𝜆𝑟
= 𝑀𝑖𝑛 {

𝑥𝑗

𝜆𝑗
, 𝜆𝑗 > 0} 
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For this positive value of 
𝑥𝑟

𝜆𝑟
, each variable in equation (13) will be non-negative and a 

feasible solution can be obtained that has at most (p – 1) positive variables. 

If the columns corresponding to these positive variables are linearly independent, 

then the current solution is a basic feasible solution. Otherwise, the process of 

eliminating the positive variables one by one is carried out till a feasible solution is 

obtained, such that columns of A corresponding to the positive variables are linearly 

independent. Then, Case I would apply and we would have a basic feasible solution. 

 

Working Rule: 

1) Compute all 
𝑥𝑟

𝜆𝑟
 ( j = 1, 2, . . ., p) for which 𝜆𝑗 > 0 and choose the minimum value. 

2) Reduce to zero the value of the variable corresponding to the minimum ratio 
𝑥𝑟

𝜆𝑟
 by 

using the relationship  

𝑎𝑟 =∑ (
𝜆𝑗

𝜆𝑟
)𝑎𝑗

𝑝

𝑗≠𝑟
 ;  𝜆𝑟 ≠ 0 

Here at least one 𝜆𝑗 must be positive; however, if all 𝜆𝑗 ≤ 0, then multiply the 

equation: 𝜆1𝑎1 + 𝜆2𝑎2 +⋯+ 𝜆𝑝𝑎𝑝 = 0 by – 1 and obtain new values of 𝜆𝑗 ≥ 0. 

3) The values of the new variables are given by 𝑥𝑗
′ = 𝑥𝑗 − (

𝑥𝑟

𝜆𝑟
) 𝜆𝑗. 

 

Example 3.4 Let 𝑥1 = 2, 𝑥2 = 4 𝑎𝑛𝑑 𝑥3 = 1 be a feasible solution to the system of 

equations: (i) 2𝑥1 − 𝑥2 + 2𝑥3 = 2  (ii) 𝑥1 + 4𝑥2 = 18 

Reduce the given feasible solution to a basic feasible solution. 

 

Solution: We first write the system of equations in matrix notation as: 

[
2 −1 2
1 4 0

] [

𝑥1
𝑥2
𝑥3
] = [

2
18
] 

where 𝐴 = [
2 −1 2
1 4 0

] ; 𝑏 = [
2
18
]  𝑎𝑛𝑑 𝑥 = [

𝑥1
𝑥2
𝑥3
] 

This system of equations can also be expressed as: 

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 𝑏 

Since it is given that 𝑥1 = 2, 𝑥2 = 4 𝑎𝑛𝑑 𝑥3 = 1, we have 2𝑎1 + 4𝑎2 + 𝑎3 = 𝑏 

where 𝑎1 = [
2
1
] ;  𝑎2 = [

−1
4
]  𝑎𝑛𝑑 𝑎3 = [

2
0
] are column vactors of A. 
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Since rank (A) = 2, only two out of three column vectors 𝑎1, 𝑎2 𝑎𝑛𝑑 𝑎3 are linearly 

independent. Assuming that these vectors are linearly dependent, we express one of 

them as a linear combination of the remaining two as: 

𝑎3 = 𝜆1𝑎1 + 𝜆2𝑎2 

[
2
0
] = 𝜆1 [

2
1
] + 𝜆2 [

−1
4
] 

This gives 2 = 2𝜆1 − 𝜆2 and 0 = 𝜆1 + 4𝜆2 where 𝜆1 and 𝜆2 are scalars, not all zero. 

On solving these two equations, we get 𝜆1 =
8

9
 𝑎𝑛𝑑 𝜆2 = −

2

9
 . Substituting values of 

𝜆1 and 𝜆2 in the linear combination, we get: 

𝑎3 = 𝜆1𝑎1 + 𝜆2𝑎2 =
8

9
𝑎1 −

2

9
𝑎2 (or) 

8

9
𝑎1 −

2

9
𝑎2 − 𝑎3 = 0 

where 𝜆1 =
8

9
, 𝜆2 = −

2

9
 𝑎𝑛𝑑 𝜆3 = −1. 

To reduce the number of positive variables, the vector to be removed is chosen in 

accordance with  

𝑥𝑟
𝜆𝑟
= 𝑀𝑖𝑛 {

𝑥𝑗

𝜆𝑗
, 𝜆𝑗 > 0} = 𝑀𝑖𝑛 {

𝑥1
𝜆1
,
𝑥2
𝜆2
,
𝑥3
𝜆3
} = 𝑀𝑖𝑛 {

2

8 9⁄
,

4

−2 9⁄
,
1

−1
} =

9

4
 

Since 
𝑥𝑟

𝜆𝑟
=

9

4
 corresponds to a vector 𝑎1, it should be removed in order to obtain a 

new solution with two non – negative variables. The values of the new variables are 

given by: 

𝑥𝑗
′ = 𝑥𝑗 −

𝑥𝑟
𝜆𝑟
(𝜆𝑗) 

This gives 𝑥1
′ = 𝑥1 −

𝑥𝑟

𝜆𝑟
(𝜆1) = 2 − (

9

4
) (

8

9
)     = 0 

                 𝑥2
′ = 𝑥2 −

𝑥𝑟

𝜆𝑟
(𝜆2) = 4 − (

9

4
) (−

2

9
) =

9

2
 

                 𝑥3
′ = 𝑥3 −

𝑥𝑟

𝜆𝑟
(𝜆3) = 1 − (

9

4
) (−1) =

13

4
 

The new solution (0, 9/2, 13/4), so obtained, is also a feasible solution. As the two 

column vectors 𝑎2 and 𝑎3 associated with non-zero variables 𝑥2 and 𝑥3 are linearly 

independent, therefore, the required basic feasible solution is: 𝑥1 = 0, 𝑥2 =
9

2
, 𝑥3 =

13

4
. 

This result can be verified by substituting the values of 𝑥1, 𝑥2 and 𝑥3 in the equation, 

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 𝑏. 

 

Exapmle 3.5 Show that the feasible solution: 𝑥1 = 1, 𝑥2 = 0, 𝑥3 = 1 and Z = 6 to the 

system of equations: 𝑥1 + 𝑥2 + 𝑥3 = 2 and 𝑥1 − 𝑥2 + 𝑥3 = 2 with  Max Z = 2𝑥1 +



 

137 

 

3𝑥2 + 4𝑥3 is not a basic feasible solution. 

 

Solution: We first write the system of equations in matrix notation as: 

[
1 1 1
1 −1 1

] [

𝑥1
𝑥2
𝑥3
] = [

2
2
] 

where 𝐴 = [
1 1 1
1 −1 1

] ; 𝑏 = [
2
2
]  𝑎𝑛𝑑 𝑥 = [

𝑥1
𝑥2
𝑥3
] 

This system of equations can also be expressed as: 

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 𝑏 

Since it is given that 𝑥1 = 1, 𝑥2 = 0 𝑎𝑛𝑑 𝑥3 = 1, we have 𝑎1 + 𝑎3 = 𝑏 

where 𝑎1 = [
1
1
] ;  𝑎3 = [

1
1
] are column vactors of A. 

Since rank (A) = 2, only two out of three column vectors 𝑎1, 𝑎2 𝑎𝑛𝑑 𝑎3 are linearly 

independent. Assuming that these vectors are linearly dependent, we express one of 

them as a linear combination of the remaining two as: 

𝑎3 = 𝜆1𝑎1 + 𝜆2𝑎2 

[
1
1
] = 𝜆1 [

1
1
] + 𝜆2 [

1
−1
] 

This gives 1 = 𝜆1 + 𝜆2 and 1 = 𝜆1 − 𝜆2 where 𝜆1 and 𝜆2 are scalars, not all zero. 

On solving these two equations, we get 𝜆1 = 1 𝑎𝑛𝑑 𝜆2 = 0. Substituting values of 𝜆1 

and 𝜆2 in the linear combination, we get: 

𝑎3 = 𝜆1𝑎1 + 𝜆2𝑎2 = 𝑎1 

(a) We take 𝑎1 − 𝑎3 = 0, where 𝜆1 = 1, 𝜆2 = 0 𝑎𝑛𝑑 𝜆3 = −1. To reduce the number of 

positive variables, the vector to be removed ischosen in accordance with the 

theorem 3.4,  

 

i.e., 

𝑥𝑟
𝜆𝑟
= 𝑀𝑖𝑛 {

𝑥𝑗

𝜆𝑗
, 𝜆𝑗 > 0} = 𝑀𝑖𝑛 {

𝑥1
𝜆1
,
𝑥2
𝜆2
,
𝑥3
𝜆3
} = 𝑀𝑖𝑛 {

1

1
,
1

−1
} = 1 

Since 
𝑥𝑟

𝜆𝑟
= 1 corresponds to the vector 𝑎1, it should be removed to obtain a new 

solution with not more than two non – negative variables. The vlues of the new 

variables are given by: 

𝑥𝑗
′ = 𝑥𝑗 −

𝑥𝑟
𝜆𝑟
(𝜆𝑗) 
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This gives 𝑥1
′ = 𝑥1 −

𝑥𝑟

𝜆𝑟
(𝜆1) = 1 − 1(1)    = 0 

                 𝑥2
′ = 𝑥2 −

𝑥𝑟

𝜆𝑟
(𝜆2) = 0 − 1(0)    = 0 

                 𝑥3
′ = 𝑥3 −

𝑥𝑟

𝜆𝑟
(𝜆3) = 1 − 1(−1) = 2 

(b) By taking 𝑎3 − 𝑎1 = 0, we shall have 𝜆1 = 1, 𝜆2 = 0 𝑎𝑛𝑑 𝜆3 = 1. In this case: 

𝑥𝑟
𝜆𝑟
= 𝑀𝑖𝑛 {

𝑥𝑗

𝜆𝑗
, 𝜆𝑗 > 0} = 1 

Thus, the vector 𝑎3 can be removed to obtain a new solution with not more than two 

non – negative variables. The vlues of the new variables are given by: 

                 𝑥1
′ = 𝑥1 −

𝑥𝑟

𝜆𝑟
(𝜆1) = 1 − 1(−1) = 2 

                 𝑥2
′ = 𝑥2 −

𝑥𝑟

𝜆𝑟
(𝜆2) = 0 − 1(0)    = 0 

                 𝑥3
′ = 𝑥3 −

𝑥𝑟

𝜆𝑟
(𝜆3) = 1 − 1(1)   = 0 

The new solutions (0, 0, 2) and (2, 0, 0), so obtained, have two linearly independent 

column vectors, and hence both of these solutions are basic feasible. However, 

these two solutions are different from the given (1, 0, 1) solution. Thus, the given 

solution is not basic. 

 

3.5 ALTERNATIVE OPTIMAL SOLUTIONS 

 

    The optimal value of the objective function of an LP problem is always unique but 

the set of basic variables yielding this optimal value need not be unique. There may 

be two or more basic feasible solutions that give the same value of the objective 

function. 

 

Theorem 3.5: Given an optimal basic feasible solution to an LP problem and for 

some column 𝑎𝑗 of A but not in B, 𝑐𝑗 − 𝑧𝑗 = 0, 𝑦𝑖𝑗 ≤ 0 for all i = 1, 2, ..., m or 𝑦𝑖𝑗 > 0 

for at least one i, then 𝑎𝑗 may be inserted into the basis to yield an alternative optimal 

solution. 

Proof: Left as an exercise for the reader. 

 

Remark: For selecting the column vector ar of A but not in B to enter into the basis, 

the following formula may be used: 
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(i)  𝑐𝑟 − 𝑧𝑟 = 𝑀𝑎𝑥 {𝑐𝑗 − 𝑧𝑗} for maximization problem 

(ii) 𝑐𝑟 − 𝑧𝑟 = 𝑀𝑖𝑛 {𝑐𝑗 − 𝑧𝑗} for minimization problem. 

 

3.6 UNBOUNDED SOLUTION 

 

Theorem 3.6: Given any basic feasible solution to an LP problem. If for this solution 

there is some column aj in A but not in B for which 𝑐𝑗 − 𝑧𝑗 > 0 and 𝑦𝑖𝑗 ≤ 0  (i = 1, 2, . . 

., m), then the problem has an unbounded solution, if the objective function is to be 

maximized. 

 

Proof: If we introduce any column vector 𝑎𝑗 of A for which all 𝑦𝑖𝑗 ≤ 0 (i = 1, 2, ..., m) 

into the basis matrix B, then 𝑎𝑗 must enter into the basis either at a negative level or 

at the zero level. Thus, a new basic feasible solution will be infeasible, unless a𝑎𝑗 

enters at a zero level. Let 𝑥𝐵 be the basic feasible solution to the given LP problem 

so that: 

                                  𝐵𝑥𝐵 = 𝑏 (𝑜𝑟) ∑ 𝑥𝐵𝑖𝛽𝑖
𝑚
𝑖=1 = 𝑏                (15) 

The value of the bojective function at this solution is given by: 

𝑍 = 𝑐𝐵𝑥𝐵 =∑𝑐𝐵𝑖𝑥𝐵𝑖

𝑚

𝑖=1

 

By adding and subtracting 𝜆𝑎𝑗 in equation (15), where λ be any scalar and 𝑎𝑗 the 

vector entering the basis, we have: 

∑ 𝑐𝐵𝑖𝛽𝑖 + 𝜆𝑎𝑗 − 𝜆𝑎𝑗
𝑚
𝑖=1                 = 𝑏  

     ∑ 𝑥𝐵𝑖𝛽𝑖 + 𝜆𝑎𝑗 − 𝜆∑ 𝑦𝑖𝑗𝛽𝑖
𝑚
𝑖=1

𝑚
𝑖=1 = 𝑏 

∑ (𝑥𝐵𝑖 − 𝜆𝑦𝑖𝑗)𝛽𝑖 + 𝜆𝑎𝑗
𝑚
𝑖=1            = 𝑏    (16) 

Equation (16) represents a new solution and is given by: 

𝑥̂𝐵𝑖 = 𝑥𝐵𝑖 − 𝜆𝑦𝑖𝑗 𝑎𝑛𝑑 𝑥̂𝐵𝑚+1 = 𝜆 ; 𝑖 = 1, 2, … ,𝑚 

Since all 𝑦𝑖𝑗 ≤ 0, we get 𝑥̂𝐵𝑖 ≥ 0 when 𝜆 > 0. Thus equation (16) is a feasible solution 

in which m + 1 variables may be at a positive level. But in general, this may not be 

the basic solution because there are more positive variables than constraints. 

The new value of the objective function Z for this solution is given by: 

𝑍̂ =∑ 𝑐𝐵𝑖𝑥̂𝐵𝑖
𝑚

𝑖=1
=∑ 𝑐𝐵𝑖(𝑥𝐵𝑖 − 𝜆𝑦𝑖𝑗)

𝑚

𝑖=1
+ 𝜆𝑐𝑗 
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=∑ 𝑐𝐵𝑖𝑥𝐵𝑖
𝑚

𝑖=1
+ 𝜆 (𝑐𝑗 −∑ 𝑐𝐵𝑖𝜆𝑦𝑖𝑗

𝑚

𝑖=1
)        

= 𝑍 +  𝜆(𝑐𝑗 − 𝑧𝑗) ;  𝜆 =
𝑥𝐵𝑟
𝑦𝑟𝑗

                                

For a sufficiently large value of λ and 𝑐𝑗 − 𝑧𝑗 > 0, the value of Z can be increased up 

to infinity. Similarly, in the case of a minimization LP problem we make λ sufficiently 

small so that the value of Z can be decreased up to infinity, for 𝑐𝑗 − 𝑧𝑗 < 0. Such a 

solution is unbounded. 

 

3.7 OPTIMALITY CONDITION 

 

In this section we shall develop the criterion of optimality of an LP problem solution, 

i.e., when the iterative procedure of solving an LP problem may be stopped. 

 

Theorem 3.7: Given a basic feasible solution to the LP problem, 𝑥𝐵 = 𝐵
−1𝑏 =

(𝑥𝐵1 , 𝑥𝐵2 , … , 𝑥𝐵𝑚) and Z = Z* such that 𝑐𝑗 − 𝑧𝑗 ≤ 0 for every column 𝑎𝑗 in A but not in 

B. Then Z is the maximum value of objective function Z and 𝑥𝐵 is an optimal basic 

feasible solution. 

 

Proof:  Let 𝑥𝐵 = 𝐵
−1𝑏 be a feasible solution to the given LP problem and 𝑍 = 𝑐𝐵𝑥𝐵 

be the corresponding value of objective function. 

Let 𝑥𝑗 ≥ 0 (j = 1, 2, …, n) be any feasible solution to the same LP problem. Then the 

system Ax = b can be expressed in terms of column vectors of A as: 

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎𝑛𝑥𝑛 = 𝑏        (17) 

The value of the objective function at this solution is given by: 

Z* = cx = 𝑐1𝑥1 + 𝑐2𝑥2 +⋯+ 𝑐𝑛𝑥𝑛 

Any column vector 𝑎𝑗 of A can be expressed as linear combination of column vectors 

𝛽𝑖 of B. i.e., 𝑎𝑗 = ∑ 𝑦𝑖𝑗𝛽𝑖
𝑚
𝑖=1  

Substituting value of 𝑎𝑗 (j = 1, 2, …, n) in equation (18), we have: 

𝑥1∑ 𝑦𝑖1𝛽𝑖
𝑚

𝑖=1
+ 𝑥2∑ 𝑦𝑖2𝛽𝑖

𝑚

𝑖=1
+⋯+ 𝑥𝑛∑ 𝑦𝑖𝑛𝛽𝑖

𝑚

𝑖=1
= 𝑏 

{∑ 𝑥𝑗𝑦1𝑗
𝑚

𝑖=1
} 𝛽1 + {∑ 𝑥𝑗𝑦2𝑗

𝑚

𝑖=1
} 𝛽2 +⋯+ {∑ 𝑥𝑗𝑦𝑚𝑗

𝑚

𝑖=1
} 𝛽𝑚 = 𝑏 
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Let for every column 𝑎𝑗 in A but not in B, 𝑐𝑗 − 𝑧𝑗 ≤ 0. Now we prove that Z is more 

than value of the objective function Z* for any other feasible solution. For all columns 

vector of A in B, i.e., 𝑎𝑗 ∈ 𝐵, we have: 

𝑦𝑗 = 𝐵
−1𝑎𝑗 = 𝐵

−1𝛽𝑖 = 𝑒𝑖 (unit vector) provided 𝑎𝑗 is in column i for B. Then: 

𝑐𝑗 − 𝑧𝑗 = 𝑐𝑗 − 𝑐𝐵𝑦𝑗 = 𝑐𝑗 − 𝑐𝐵𝑒𝑖 = 𝑐𝑗 − 𝑐𝑗 = 0 

Thus 𝑐𝑗 − 𝑧𝑗 = 0 for all columns of A in B. Applying the assumption that 𝑐𝑗 − 𝑧𝑗 ≤ 0 for 

all columns in A, then from equation (17), we have: 

∑ (𝑐𝑗 − 𝑧𝑗)𝑥𝑗
𝑚
𝑖=1 ≤ 0  

         ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 ≤ ∑ 𝑧𝑗𝑥𝑗

𝑛
𝑗=1                                          = ∑ 𝑥𝑗

𝑛
𝑗=1 {∑ 𝑐𝐵𝑖𝑦𝑖𝑗

𝑚
𝑖=1 }  

 

 

                       = {∑ 𝑥𝑗𝑦1𝑗
𝑛
𝑗=1 }𝑐𝐵1 + {∑ 𝑥𝑗𝑦2𝑗

𝑛
𝑗=1 }𝑐𝐵2 +⋯+ {∑ 𝑥𝑗𝑦𝑚𝑗

𝑛
𝑗=1 }𝑐𝐵𝑚 

                       = 𝑥𝐵1𝑐𝐵1 + 𝑥𝐵2𝑐𝐵2 +⋯+ 𝑥𝐵𝑚𝑐𝐵𝑚 = 𝑍 

                      (or) Z* ≤ Z 

 This complets the proof of the theorem. 

 

 

3.8 SOME COMPLICATIONS AND THEIR RESOLUTION 

 

    In this section we will discuss some of the complications that may arise in applying 

the simplex method, and their resolution. 

 

3.8.1 Unrestricted Variables 

 

    In many situations, one or more of the variables can have either positive, negative 

or zero value. Such variables are called unrestricted variables. Since the use of the 

simplex method requires that all the decision variables must be non-negative at each 

iteration, therefore in order to convert an LP problem that involves unrestricted 

variables into an equivalent problem having only restricted variables, we have to 

express each of unrestricted variables as the difference of two non-negative 

variables. 
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Suppose variable 𝑥𝑟 be unrestricted in sign. We define two new variables say 𝑥𝑟
′  and 

𝑥𝑟
′′ such that: 𝑥𝑟 = 𝑥𝑟

′ − 𝑥𝑟
′′ ;  𝑥𝑟

′ , 𝑥𝑟
′′ ≥ 0 

If 𝑥𝑟
′ ≥ 𝑥𝑟

′′, then 𝑥𝑟 ≥ 0 and if 𝑥𝑟
′ ≤ 𝑥𝑟

′′ , then 𝑥𝑟 ≤ 0. Also if 𝑥𝑟
′ = 𝑥𝑟

′′, then 𝑥𝑟 = 0. 

Hence, depending on the values of 𝑥𝑟
′  and 𝑥𝑟

′′, 𝑥𝑟 can have any sign. 

The unrestricted variable must be replaced by the two new variables, both in the 

objective function and the constraints set of an LP problem. That is, if we have the 

following LP problem: 

Maximize Z = ∑ 𝑐𝑗𝑥𝑗 + 𝑐𝑟𝑥𝑟
𝑛
𝑗≠𝑟  subject to the constraints  

∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑎𝑖𝑟𝑥𝑟
𝑛
𝑗≠𝑟 = 𝑏𝑖 ; 𝑖 = 1, 2, … ,𝑚 and 𝑥𝑗 ≥ 0, 𝑥𝑟 unrestricted in sign ; j = 1, 2, …, 

n, j ≠ r, then it can be converted into equivalent standard form as follows: 

Maximize Z = ∑ 𝑐𝑗𝑥𝑗 + 𝑐𝑟(𝑥𝑟
′ − 𝑥𝑟

′′)𝑛
𝑗≠𝑟 = subject to the constraints  

∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑎𝑖𝑟(𝑥𝑟
′ − 𝑥𝑟

′′)𝑛
𝑗≠𝑟 = 𝑏𝑖 ; 𝑖 = 1, 2, … ,𝑚 and 𝑥𝑗 , 𝑥𝑟

′ , 𝑥𝑟
′′ ≥ 0 ; j = 1, 2, …, n, j ≠ r. 

Since the vectors corresponding to the variables 𝑥𝑟
′  and 𝑥𝑟

′′ are linearly dependent, 

both of them cannot simultaneously appear in the basis. Thus, any of the following 

three cases may arise at the optimal solution: 

(i)   𝑥𝑟
′   = 0           →  𝑥𝑟 = −𝑥𝑟

′′ 

(ii)  𝑥𝑟
′′ = 0           →  𝑥𝑟 = 𝑥𝑟

′  

(iii) 𝑥𝑟
′   = 𝑥′′ = 0 → 𝑥𝑟 = 0 

This indicates that the value of 𝑥𝑟 is determined by 𝑥𝑟
′  and 𝑥𝑟

′′. 

 

3.8.2 Degeneracy and its Resolution 

 

    While applying the simplex method for solving an LP problem, the minimum ratio 

is calculated at each iteration in order to decide the basic variable to leave the basis. 

Sometimes this ratio is not uniquely determined or values of one or more basic 

variables in the solution values column become zero. This situation raises the 

problem of degeneracy. 

    Degeneracy may occur either at the first iteration, or at some subsequent iteration. 

The simplex method always starts with basis matrix B, the initial basic feasible 

solution is given by𝑥𝐵 = 𝐵−1𝑏 = 𝐼𝐵 = 𝑏. Thus, the degeneracy may occur at the first 

iteration, only if at least one basic variable appears with zero value in 𝑥𝐵 column. 

The degeneracy at the subsequent iteration will occur only if the minimum ratio 
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{
𝑥𝐵𝑖

𝑦𝑖𝑘
 ;  𝑦𝑖𝑘 > 0} is same for two or more current basic variables. Let the minimum ratio 

values: 

 

𝑥𝐵1
𝑦1𝑘

=
𝑥𝐵2
𝑦2𝑘

= ⋯ =
𝑥𝐵𝑝

𝑦𝑝𝑘
 

be the same. Then an outgoing vector cannot be uniquely determined. If we select 

any of the basic variable as an outgoing variable, then the remaining ( p – 1) 

variables appear with zero value at the next iteration and, therefore, an arbitrary 

choice of the outgoing variable may cause the next solution to be degenerate. Also, 

in this case the value of Z remains unimproved. 

Suppose 𝑎𝑘 is the key column vector in the simplex table in which at least one 

𝑦𝑖𝑘 ≥ 0 and 𝑐𝑗 − 𝑧𝑗 > 0 (maximization case), then in the next solution we shall obtain 

an improved value of objective function Z and the solution shall be non-degenerate, 

provided 𝑥𝐵𝑖 = 0, for some 𝑦𝑖𝑘 ≤ 0. But 𝑥𝐵𝑖 = 0 for some 𝑦𝑖𝑘 > 0, then the next 

solution would be degenerate with unimproved value of Z, i.e., 

𝑍̂ = 𝑍 +
𝑥𝐵𝑟

𝑦𝑟𝑘
(𝑐𝑘 − 𝑧𝑘) = 𝑍, since 

𝑥𝐵𝑟

𝑦𝑟𝑘
= 0 for some r. 

 

Cycling: If at any subsequent iteration the value of two or more basic variables is 

zero (i.e., 𝑥𝐵𝑖 = 0 for some i) and 𝑦𝑖𝑘 > 0, then the minimum ratio will be zero 

corresponding to these variables. This may cause the simplex method to cycle 

indefinitely. That is, the solution obtained in one iteration may appear again after few 

more iterations and, therefore, no optimal solution will actually be arrived at. 

 

Resolution of degeneracy: 

There are two methods of resolving degeneracy: 

1) Perturbation Method, and 

2) Generalized Simplex Method 

 

Perturbation Method: 

Let us consider the following linear programming problem: Maximize Z = cx subject 

to Ax = b; and x ≥ 0 where c, xT ∈ En , b is an (m × 1) matrix and A is an (m × n) 

matrix. 
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If 𝑥𝐵𝑖 (i = 1, 2, ..., m) represents a basic feasible solution of the given LP problem, 

then for some basis formed from the columns 𝑎𝑖 in A, we have:  

𝑏 =∑ 𝑥𝐵𝑖𝑎𝑖
𝑚

𝑖=1
 

This solution will be degenerate only if at least one 𝑥𝐵𝑖 = 0. This degeneracy occurs 

because of some basis formed from the columns of A. We need not have positive 

value of each basis vector in order to write b as a linear combination of 𝑥𝐵𝑖. In other 

words, vector b that lies on an edge of the convex cone, determined by its vectors 

and the corresponding solution, would be non-degenerate once the vector b lies 

inside the convex cone. Hence, if b is slightly changed (perturbed) to b(𝜀), in such a 

way that it lies inside the convex cone determined by its basis, the corresponding 

solution would be non-degenerate. 

Let B be the basis matrix at any iteration. The solution at this iteration would be given 

by 𝑥𝐵 = 𝐵
−1𝑏. Suppose that we replace b > 0 of the given LP problem by: 

𝑏 = 𝑏(𝜀) +∑ 𝑎𝑗𝜀
𝑗

𝑛

𝑗=1
 

where 𝜀 > 0 is an arbitrary small positive number and 𝑎𝑗 are the columns of A. Then 

the number e is chosen in such a way that it gives a non-degenerate basic feasible 

solution to the following perturbed LP problem: 

Maximize Z = cx subject to Ax = b(𝜀); and x ≥ 0 

For breaking the tie, it will be necessary to have an explicit value of 𝜀. However, it is 

assumed that 0 < 𝜀 < 𝜀𝑚𝑎𝑥, where 𝜀𝑚𝑎𝑥 denotes the maximum permissible value of 

𝜀, depending on the nature of problem. After solving the LP problem if e is equated 

zero, then the solution to original LP problem can be obtained. 

If the basis B of the original problem is retained and b is replaced by b(𝜀), then the 

basic feasible solution to the perturbed LP problem is given by: 

𝑥𝐵(𝜀) = 𝐵
−1𝑏(𝜀) = 𝐵−1 (𝑏 +∑ 𝑎𝑗𝜀

𝑗
𝑛

𝑗=1
) = 𝐵−1𝑏 +∑ 𝐵−1𝑎𝑗𝜀

𝑗
𝑛

𝑗=1
= 𝑥𝐵 +∑ 𝑦𝑗𝜀

𝑗
𝑛

𝑗=1
 

Let the basis matrix B consist of the first m columns of A denoted by 𝑦𝑗 ( j = 1, 2, ..., 

m). Then, 𝑦𝑗 obviously represents a unit vector 𝑒𝑗 with 1 at jth position. Thus,  

𝑥𝐵(𝜀) = 𝑥𝐵 +∑ 𝜀𝑗𝑒𝑗
𝑚

𝑗=1
+∑ 𝑦𝑗𝜀

𝑗
𝑛

𝑗=𝑚+1
 

Thus, it is possible to have 𝑥𝐵𝑖(𝜀) > 0, even if 𝑥𝐵𝑖 = 0 because 𝜀𝑗 is positive and its 

higher order terms in 𝜀 cannot exceed 𝜀𝑗 and therefore cannot be less than zero. 
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Given a non-degenerate basic feasible solution to the perturbed problem 𝑥𝐵(𝜀) >

0, 0 < 𝜀 < 𝜀𝑚𝑎𝑥 , the value of objective function 𝑍(𝜀) for the given solution is given 

by𝑍(𝜀) = 𝑐𝐵𝑥𝐵(𝜀). Substituting the value of 𝑥𝐵(𝜀), we get: 

𝑍(𝜀) = 𝑐𝐵𝑥𝐵 + 𝑐𝐵∑ 𝜀𝑗𝑒𝑗
𝑚

𝑗=1
+ 𝑐𝐵∑ 𝑦𝑗𝜀

𝑗
𝑛

𝑗=𝑚+1
 

Here, it may be noted that only b was perturbed and not A, therefore, there will be no 

change in 𝑦𝑗 = 𝐵−1𝑎𝑗. Also there is no change in the cost vector c. Hence                       

𝑐𝑗 − 𝑧𝑗 = 𝑐𝑗 − 𝑐𝐵𝑦𝑗 are the same for the perturbed problem as well as the original LP 

problem. At any iteration, simplex table in both the cases differ only in 𝑥𝐵 column. 

Thus, once the optimal basic feasible solution to the perturbed LP problem has been 

obtained, the same can also be obtained to the original LP problem by letting 𝜀 = 0.  

 

Selection of the vector leaving the basis: If 𝑎𝑘 is the key column and all 

𝑦𝑗𝑘 ≤ 0, then there is an unbounded solution to the perturbed LP problem and also to 

the original LP problem. But if at least one 𝑦𝑗𝑘 > 0, then the column vector to be 

removed from the basis is selected by calculating the ratio: 

𝑥𝐵𝑟
𝑦𝑟𝑘

= 𝑀𝑖𝑛 {
𝑥𝐵𝑖(𝜀)

𝑦𝑖𝑘
, 𝑦𝑖𝑘 > 0} = 𝑀𝑖𝑛 {

𝑥𝐵𝑖(𝜀)

𝑦𝑖𝑘
+
𝑒𝑖

𝑦𝑖𝑘
+∑ 𝜀𝑒𝑗

𝑛

𝑗=𝑚+1
(
𝑦𝑖𝑗

𝑦𝑖𝑘
) ;  𝑦𝑖𝑘 > 0} 

 

 

Let us sum up 

        We have learned about the reduction of any  feasible to a basic feasible  

solution, alternative optimal solution, unbounded solution,optimality condition ,some 

complications and their resolution. 

 

Check Your Progress  

 

36. Obtain all the basic feasible solution of the following system of linear equation: 

              𝑥1 + 2𝑥2 + 𝑥3 = 4   and 2𝑥1 + 𝑥2 + 5𝑥3 = 5 

37.. What do you mean by an optimal basic feasible solution to an LP problem? Is 

the         solution: 𝑥1 = 1, 𝑥2 =
1

2
, 𝑥3 = 𝑥4 = 𝑥5 = 0, a basic solution of the equation. 

38. Consider the system of equation: (i) 𝑥1 + 2𝑥2 + 4𝑥3 + 𝑥4 = 7; 
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 (ii) 2𝑥1 − 𝑥2 + 3𝑥3 − 2𝑥4 = 4.Here 𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 1 and 𝑥4 = 0 is a feasible 

solution. Reduce this feasible solution to two different basic fusible solution. 

39. If 𝑥1 = 2, 𝑥2 = 3, 𝑥3 = 1 be a feasible solution of the following LP problem, then 

find the feasible solution:                        𝑀𝑎𝑥 𝑍 = 𝑥1 + 2𝑥2 + 4𝑥3 

Subject to         2𝑥1 + 𝑥2 + 4𝑥3 = 11 

                         3𝑥1 + 𝑥2 + 5𝑥3 = 14 

and                         𝑥1, 𝑥2, 𝑥3  ≥ 0 

 

 

Unit Summary 

       Finding and evaluating all basic feasible solutions of an LP problem with more 

than two variables by using graphical method becomes difficult and complicated. 

Thus, an efficient method called the simplex method was developed by G.B. Dantzig 

in 1947 for solving a general class of LP model. This method is an iterative 

procedure of moving from one extreme point to another of the solution space. It 

leads to the optimal solution point and/or indicates that there exists an unbounded 

solution, in a finite number of steps.  

       we discussed as to how an LP model can be stated in its canonical and 

standard form, along with certain important theorems that help to understand the 

procedure of  

(i) reducing a feasible solution to a basic feasible solution,  

(ii) improving a basic feasible solution, 

(iii)  conditions of an alternative and unbounded solution,  

(iv) optimality condition, and  

(v)  certain complications while applying the simplex method and their 

resolution 

 

Glossary 

 𝜀𝑚𝑎𝑥 -  the maximum permissible value of 𝜀. 

 Optimize - maximize or minimize 
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Self- Assessment Questions 

 

1. What is meant by a basic solution of an LP problem?   

2. What is meant by a basic solution to the system of m linear non homogeneous 

equations in n unknowns (m < n) Ax = b?  

3. When is a basic solution to Ax = b said to be degenerate?  

4. Explain the meaning of basic feasible solution. 

 5. Define: Basic feasible solution, optimum solution, optimum basic feasible solution. 

 6. Define (i) Feasible solution; (ii) Basic solution; (iii) Basic feasible solution; (iv) 

Unbounded solution. 

7. (a) Define a basic solution to a given system of m simultaneous linear equations in 

n unknowns.  

     (b) How many basic feasible solutions are there to a given system of 3 

simultaneous linear equations  in 4 unknowns. 

8. What are slack and surplus variables? 

9. What is the effect of converting the inequalities in the constraints into equalities by 

adding slack and surplus variables in the objective function?  

10. Write the standard form of an LP problem in the matrix form. 

 

ACTIVITIES 

1. Prove that the set of all feasible solutions to an LP problem is a convex set. 

2. Establish that every vertex of the convex set of feasible solutions is a basic 

feasible solution. 

3. Show that every basic feasible solution to an LP problem corresponds to an 

extreme point of the convex set of the feasible solutions. 

4. Prove that the objective function of an LP problem assumes its optimum value at 

an extreme point of the convex set generated by the set of all feasible solutions. 

5. Prove that if the objective function assumes its optimal value at more than one 

extreme points, then every convex combination of these extreme points also gives 

the optimal value. 
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REVISED SIMPLEX METHOD 

Objectives: 

         After studying this unit students should learn to derive two standard forms of 

the revised simplex method and their computational procedure. Develop a 

knowledge base about relevant information required at each iteration of the revised 

simplex method. Appreciate the use of revised simplex method in comparison to the 

usual simplex method. 

       Use modified simplex method to solve any LP problem in which basic variables 

value is restricted with both lower and upper bounded value. Appreciate certain 

modifications required in the feasibility condition of the simplex method before 

solving any bounded variables LP problem. 

 

4.1 INTRODUCTION 

The revised simplex method is another efficient method, developed by G B 

Dantzig, for solving LP problems. It is efficient in the sense that at each iteration, we 

need not recompute values of all the variables, namely: 𝑦𝑗 , 𝑐𝑗 − 𝑧𝑗 ,  𝑥𝐵 and Z while 

moving from one iteration to next in search of an improved solution of an LP 

problem. In simplex method, at each iteration it was necessary to calculate 𝑐𝑗 − 𝑧𝑗 

corresponding to non basic variable columns in order to decide whether the current 

solution is optimal or not. If not, then in order to select the non-basic variable to enter 

into the basis matrix B, we first need to know 𝑦𝑗 = 𝐵−1𝑎𝑗, where 𝑦𝑗 refers to the 

updated column 𝑎𝑗 in the simplex table. If all 𝑦𝑗 ≤ 0, then the optimal solution is 

unbounded. Otherwise, apply the minimum ratio rule to decide which basic variable 

should leave the basis. Update, the basis matrix B by replacing an outgoing vector 

with an incoming vector.  

  In the revised simplex method we only need to recompute values of 𝐵−1,

𝑥𝐵,  𝑐𝐵𝐵
−1 and Z. Value of all these variables can be computed directly from their 

definition provided 𝐵−1 is known. At each iteration, 𝐵−1 is calculated from its previous 

value when only one yj is changed at each iteration for which the non basic variable 

is entered into the basis. Thus, the relevant information to be known at each iteration 
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of the revised simplex method are:  

(i) Coefficient of non-basic variables in the objective function, and  

(ii) Coefficient of the variable to be entered into the basis in the set of constraints. 

 

4.2 STANDARD FORMS FOR REVISED SIMPLEX METHOD 

            There are two standard forms of the revised simplex method.  

Standard form I: In this form, it is assumed that an identity matrix is available after 

adding slack variables and thus there is no need of adding artificial variables.  

Standard form II: In this form artificial variables are also added in order to have 

identity matrix. Thus, a two-phase simplex method is used to handle artificial 

variables. 

 

4.2.1 Revised Simplex Method in Standard Form I 

        In standard form I of the revised simplex method, the objective function is also 

treated as another constraint. With the result, we deal with (m + 1) dimensional basis 

matrix B instead of m-dimensional. The reason for doing so is explained in the later 

part of this chapter. 

Consider the LP problem in its standard form: 

Max Z = 𝑐1𝑥2 + 𝑐2𝑥2 +⋯+ 𝑐𝑛𝑥𝑛 + 0. 𝑥𝑛+1 + 0. 𝑥𝑛+2 +⋯+ 0. 𝑥𝑛+𝑚   (1) 

subject to the constraints 

       𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 + 𝑥𝑛+1 = 𝑏1 

                                         𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 + 𝑥𝑛+2 = 𝑏2   (2) 

                                         … 

                                         … 

                                         … 

                                         𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 + 𝑥𝑛+𝑚 = 𝑏𝑚  
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 and  𝑥1, 𝑥2, … , 𝑥𝑛+𝑚 ≥ 0                                      (3) 

        In order to solve LP problem (3) using revised simplex method, the objective 

function (1) is also considered as one of the constraints equation in which value of Z 

can be made as large as possible and unrestricted in sign. Thus, the set of 

constraints can be written as: 

           𝑍 − 𝑐1𝑥1 − 𝑐2𝑥2 −⋯− 𝑐𝑛𝑥𝑛 − 0. 𝑥𝑛+1 − 0. 𝑥𝑛+2 −⋯− 0. 𝑥𝑛+𝑚         = 0 

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 + 0. 𝑥𝑛+1                                                    = 𝑏1 

               𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 +                        𝑥𝑛+2                            = 𝑏1         (4) 

  …… 

  …… 

  …… 

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 +                                    𝑥𝑛+𝑚        = 𝑏𝑚 

and 𝑥1, 𝑥2, … , 𝑥𝑛+𝑚 ≥ 0 

In matrix notations, the system of equations (4) can be expressed as: 

        Z – cx = 0 

        Ax = b and x ≥ 0 

 In the system of equations (4), there are (m + 1) simultaneous linear 

equations in (n + m +1) variables (Z, x1, x2, …, xn + m). The aim now is to solve (4) 

such that Z is as large as possible and unrestricted in sign, subject to the conditions 

x1, x2, …, xn + m ≥ 0. By rewriting equation (4) in a more symmetric notations as 

follows, we get: 

    1. 𝑥0 + 𝑎01𝑥1 + 𝑎02𝑥2 +⋯+ 𝑎0𝑛𝑥𝑛 + 𝑎0,𝑛+1𝑥𝑛+1 − 𝑎0,𝑛+2𝑥𝑛+2 −⋯− 𝑎0,𝑛+𝑚𝑥𝑛+𝑚  = 0 

    0. 𝑥0 + 𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 +           𝑥𝑛+1                                                   = 𝑏1 

    0. 𝑥0 + 𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 +                                               𝑥𝑛+2                                              =

𝑏2 

……… 
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……… 

……… 

    0. 𝑥0 + 𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 +                                                                                     𝑥𝑛+𝑚  = 𝑏𝑚  

where Z = 𝑥0 and −𝑐𝑗 = 𝑎0 𝑗 (j = 1, 2, …, n + m). In matrix notations it may also be 

written as: 

 

(or) [
1 𝑎0
0 𝐴

] [
𝑥0
𝑥
] = [

0
𝑏
] where 𝑎0 = (𝑎01, 𝑎02, … , 𝑎0 𝑛+𝑚). 

      Using the matrix notations the system of equations (4) can be written in original 

notation as: 

[
1 −𝑐
0 𝐴

] [
𝑧
𝑥
] = [

0
𝑏
] ; 𝑥 ≥ 0 

      It may be noted that for standard from I in (4) all column vectors now have m + 1 

components instead of m components, and basis matrix B os of order (m + 1) rather 

than m. Then, corresponding to each column 𝑎𝑗 of matrix A, a new (m + 1) 

component vector [𝑎0𝑗, 𝑎1𝑗, 𝑎2𝑗 , … , 𝑎𝑚𝑗] is defined as: 

𝑎𝑗
(1) = [−𝑐𝑗, 𝑎1𝑗, 𝑎2𝑗 , … , 𝑎𝑚𝑗] 

                                                      = [−𝑐𝑗, 𝑎𝑗] = [𝑎0𝑗 , 𝑎𝑗]       j = 1, 2, …, n 

        Similarly, corresponding to the m – component vector b in Ax = b, (m +1) – 

component vector b(1) can be written as: 

  b(1) = [o, b1, b2, …, bm] = [0, b] 

       The column corresponding to Z (i.e., x0) is the (m + 1) – component unit vector 

and is denoted by e(1). It will always be the first column of the basis matrix B1. The 

basis matrix B1 of order (m + 1) in terms of e(1) and the remaining mcolumns 𝑎𝑗
(1)

 can 

be expressed as: 
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𝐵1 = [𝑒
1, 𝛽1

(1), 𝛽2
(1), … , 𝛽𝑚

(1)] = [𝛽0
(1), 𝛽1

(1), 𝛽2
(1), … , 𝛽𝑚

(1)] 

where 𝑒(1) = 𝛽0
(1), 𝛽𝑖

(1)
 (i = 1, 2, …, m) are m linearly independent vectors of 𝑎𝑗

(1)
 

corresponding to 𝑎𝑗. Obviously B1 in the partitionrd form of the matrices, which can 

be written as:  

 

𝐵1 = [
1 −𝑐𝐵
0 𝐵

] == [𝛽0
(1), 𝛽1

(1), 𝛽2
(1), … , 𝛽𝑚

(1)]           (6) 

B = (𝛽1, 𝛽2, … , 𝛽𝑚) is the basis matrix for the system Zx = b containing those columns 

𝑎𝑗 of A that are also the column 𝑎𝑗
(1)

 of basis matrix B1 and 𝑐𝐵 = (𝑐𝐵1 , 𝑐𝐵2 , … , 𝑐𝐵𝑚) are 

the coefficient of basic variables 𝑥𝐵𝑖 (i = 1, 2, …, m) in the equation,                                     

𝑍 − 𝑐1𝑥1 − 𝑐2𝑥2 −⋯− 𝑐𝑛𝑥𝑛 = 0. Equation (6) shows the conversion process of basis 

matrix B of Ax = b to the basis matrix B1 of equation (5) and vice versa. 

Calculation of Inverse of 𝑩𝟏
−𝟏:   

        Since B is invertible and is known, therefore inverse of matrix B1 is given by: 

𝐵1
−1 = [

1 𝑐𝐵𝐵
−1

0 𝐵−1
] 

      The elements, 𝐵−1, 𝑐𝐵𝐵
−1 of matrix 𝐵1

−1 are known. Therefore, 𝐵1
−1 is also known. 

Further it may be verified that BB –1 = Im + 1. 

     Since vector 𝑎𝑗
(1)

, not in the basis matrix B1, can be expressed as the linear 

combination of the column vectors, 𝛽0
(1), 𝛽1

(1), 𝛽2
(1), … , 𝛽𝑚

(1)
 in B1, therefore, 

𝑎𝑗
(1) = 𝑦0𝑗𝛽0

(1) + 𝑦1𝑗𝛽1
(1) + 𝑦2𝑗𝛽2

(1) +⋯+ 𝑦𝑚𝑗𝛽𝑚
(1)

 

            = [𝑦0𝑗, 𝑦1𝑗 , 𝑦2𝑗 , … , 𝑦𝑚𝑗][𝛽0
(1), 𝛽1

(1), 𝛽2
(1), … , 𝛽𝑚

(1)] 

                                     = 𝑦𝑗
(1)𝐵1 
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Thus, 𝑦𝑗
(1)
= 𝐵1

−1𝑎𝑗
(1)
= [

1 𝑐𝐵𝐵
−1

0 𝐵−1
] [
−𝑐𝑗
𝑎𝑗
] ; 𝑗 = 1, 2, … , 𝑛 

                 = [
−𝑐𝑗 + 𝑐𝐵𝐵

−1𝑎𝑗

𝐵−1𝑎𝑗
] = [

𝑧𝑗 − 𝑐𝑗
𝑦𝑗

] 

       Here it may be noted that the first component of 𝑦𝑗
(1)

 is 𝑧𝑗 − 𝑐𝑗 (it is used as 

optimality criterion) and the last m components constitute the vector                                                      

𝑦𝑗 = 𝐵
−1𝑎𝑗 = (𝑦1𝑗 , 𝑦2𝑗 , … , 𝑦𝑚𝑗). 

Remark:  

       One advantage of treating objective function Z as one of the constraints is that 

𝑧𝑗 − 𝑐𝑗 for any column 𝑎𝑗, not in the basis, can be calculated by taking the product of 

the first row of 𝐵1
−1 with 𝑎𝑗

(1)
, not in the basis B1, 

𝑧𝑗 − 𝑐𝑗 = {𝐹𝑖𝑟𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝐵1
−1}{𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑗

(1) 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑠𝑖𝑠 𝐵1} 

Further the (m + 1) components of 𝑥𝐵
(1)

 can also be defined as: 

𝑥𝐵
(1) = 𝐵1

−1𝑏(1) = [
1 𝑐𝐵𝐵

−1

0 𝐵−1
] [
0
𝑏
] = [

𝑐𝐵𝐵
−1𝑏

𝐵−1𝑏
] = [

𝑍
𝑥𝐵
] 

       Thus, 𝑥𝐵
(1)

 represents the basic solution (but not necessarily feasible) of LP 

problem (4), where the first component represents the value of the objective function 

Z and the remaining m – components, 𝑥𝐵𝑖 represents the basic solution for system of 

constraints Ax = b, corresponding to the basis matrix B. 

 

4.3 COMPUTATIONAL PROCEDURE FOR STANDARD 

FORM I 

         For the initial basis matrix in revised simplex method, the columns 𝑎𝑗
(1)

 which 

form the initial identity matrix I are used. Since simplex method always start with an 

initial basis (identity) matrix B of order m, therefore, for the revised simplex method 

the inverse of the initial basis matrix can be written as: 
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𝐵1
−1 = [

1 𝑐𝐵𝐵
−1

0 𝐵−1
] = [

1 𝑐𝐵
0 𝐼𝑚

] ; 𝐵 = 𝐼𝑚 = 𝐵−1              (7) 

        Further, if columns of matrix A form an initial basis matrix of order m that 

corresponds to the slack or surplus variables, then 𝑐𝐵𝑖 = 0 (i = 1, 2, . . ., m). Thus Eq. 

(7) reduces to the form: 

𝐵1
−1 = [

1 0
0 𝐼𝑚

] = = 𝐼𝑚+1  

 

        This implies that the inverse of initial basis matrix B1 will be Im + 1 to start the 

revised simplex procedure. The initial basic solution to equation (4) is given by: 

𝑥𝐵
(1) = [

1 0
0 𝐼𝑚

] [
0
𝑏
] = [

𝑜
𝑏
] 

       This solution is feasible because the last m-components are non-negative, and 

the first component Z can have any sign. 

       After obtaining a basic feasible solution of equation (4) and the inverse (= Im + 1) 

of the initial basis matrix, 𝐵1
−1, we need to improve the solution by using the revised 

simplex method. For this, we first calculate 𝑐𝑗 − 𝑧𝑗 for each column 𝑎𝑗
(1)

 not in the 

basis B1, by taking scalar product of the first row of 𝐵1
−1 with each 𝑎𝑗

(1)
 as explained 

earlier. The vector 𝑎𝑘
(1)

 to enter the basis is determined by the criterion. 

𝑐𝑘 − 𝑧𝑘 = Max {𝑐𝑗 − 𝑧𝑗 ∶  𝑐𝑗 − 𝑧𝑗 > 0}, for all j 

          Since 𝑥0 (= Z ) is always desired in the basis, the first column 𝛽0
(1)(= 𝑒(1)) of 

the initial basis matrix inverse 𝐵1
−1 = Im + 1 will never be removed from the basis at 

any iteration. The vector to be removed from the basis is determined by the criterion: 

𝑥𝐵𝑟

𝑦𝑟𝑘
= 𝑀𝑖𝑛 {

𝑥𝐵𝑖

𝑦𝑖𝑘
, 𝑦𝑖𝑘 > 0}, for all i where 𝑦𝑖𝑘 (i = 1, 2, …, m) are the components of 

vector 𝑦𝑘
(1)

, and 𝑦𝑘
(1) = 𝐵1

−1𝑎𝑘
(1) = [

𝑧𝑘 − 𝑐𝑘
𝑦𝑘

] 

         Since we start with an identity matrix B1, the new inverse denoted by 𝐵0
−1 shall 

be obtained by multiplying the basis matrix inverse 𝐵1
−1 at the previous iteration by 

an elementary matrix E, where E is the inverse of an identity matrix with rth column 
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replaced 𝑦𝑘.  

Remarks:  

1)  If there is a tie in the selection of the key column, then choose the column from 

left to right (i.e. smallest index j ).  

2)  A tie in selecting the outgoing vector can be broken by any of the methods 

discussed earlier. 

 

4.3.1 Steps of the Procedure 

The revised simplex method can be summarized in the following steps:  

Step 1: Express the given problem in standard form. Express the given problem 

in the revised simplex form by considering the objective function as one of the 

constraints, and adding the slack and surplus variables, if needed, to the inequalities 

in order to convert them into equalities.  

Step 2: Obtain initial basic feasible solution. Start with initial basis matrix B = Im 

and then find 𝐵1
−1 and 𝐵1

−1𝑏 to form the initial revised simplex table as shown in 

Table 4.1. 

 

Table 4.1:  Initial Revised Simplex Table 

 

Step 3: Select a variable to enter into the basis (key column).  For each non – 

basic variable, calculate 𝑐𝑗 − 𝑧𝑗 by using the formula: 
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𝑐𝑗 − 𝑧𝑗 = 𝑐𝑗 − 𝑐𝐵𝐵1
−1𝑎𝑗

(1)
 

where 𝐵1
−1𝑎𝑗

(1)
 represents the product of the first row of 𝐵1

−1 and successive columns 

of A not in 𝐵1
−1. 

(i) If all 𝑐𝑗 − 𝑧𝑗 ≤ 0, then the currect basic solution is optimal. Otherwise go to step 4. 

(ii) If one or more 𝑐𝑗 − 𝑧𝑗 are positive, then the variable to enter into the basis may be 

selected by using the formula: 𝑐𝑗 − 𝑧𝑗 = 𝑀𝑎𝑥 {𝑐𝑗 − 𝑧𝑗 ∶  𝑐𝑗 − 𝑧𝑗 > 0}. 

Step 4: Select a variable to leave the basis (key row).  

         Calculate 𝑦𝑘
(1) = 𝐵1

−1𝑎𝑘
(1) = 𝑎𝑘

(1) ; (𝑘 = 1) where 𝑎𝑘
(1) = [−𝑐𝑗, 𝑎𝑘]. If all 𝑦𝑖𝑘 ≤ 0, the 

optimal solution is unbounded. But if at least one 𝑦𝑖𝑘 > 0, then the variable to be 

removed from the basis is determined by calculating the ratio: 

𝑥𝐵𝑟

𝑦𝑟𝑘
= 𝑀𝑖𝑛 {

𝑥𝐵𝑖

𝑦𝑟𝑖
 ;  𝑦𝑖𝑘 > 0}. 

i.e., the vector 𝛽𝑟
(1)

 is selected to leave the basis and go to step 5. 

        If the minimum ratio is not unique, i.e. the ratio is same for more than one row, 

then the resulting basic feasible solution will be degenerate. To avoid cycling from 

taking place, the usual method of resolving the degeneracy is applied. 

Step 5: Update the current solution.  

      Update the initial table by introducing a non – basic variable 𝑥𝑘(= 𝑎𝑘
(1)) into the 

basis and removing basic variable 𝑥𝑘(= 𝛽𝑟
(1)) from the basis.  

     Repeat Steps 3 to 5 until an optimal solution is obtained or there is an indication 

for an unbounded solution. 

Example 4.1  

Use the revised simplex method to solve the following LP problem: 

Maximize Z = 2𝑥1 + 𝑥2 subject to the constraints 

(i) 3𝑥1 + 4𝑥2 ≤ 6  (ii) 6𝑥1 + 𝑥2 ≤ 3 and 𝑥1, 𝑥2 ≥ 0 

Solution: 
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 Step 1: By introducing slack variables 𝑠1 𝑎𝑛𝑑 𝑠2 to constraints in order to convert 

them to equations and by considering the objective function as one of the 

constraints, the given LP problem can be rewritten as: 

(i) 𝑍 − 𝑥1 − 𝑥2 = 0,  (ii) 3𝑥1 + 4𝑥2 + 𝑠1 = 6, (iii) 6𝑥1 + 𝑥2 + 𝑠2 = 3 and 

𝑥1, 𝑥2, 𝑠1, 𝑠2 ≥ 0 

This new system of constraints equations can be expressed in the matrix forms as 

follows: 

 

(or) [1 −𝑐
0 𝐴

] [
𝑍
𝑥
] = [

0
𝑏
] ; 𝑥 ≥ 0 

where 𝑒(1) = 𝛽0
(1), 𝑎3

(1) = 𝛽1
(1) 𝑎𝑛𝑑 𝑎4

(1) = 𝛽2
(1)

 

Step 2: The basis matrix B1 of order (2 + 1) = 3 can be expressed as: 

𝐵1 = [𝛽0
(1), 𝛽1

(1), 𝛽2
(1)] = [

1 0 0
0 1 0
0 0 1

] 

Then 𝐵1
−1 = [

1 𝑐𝐵𝐵
−1

0 𝐵−1
] = 1 ; 𝐵 = [

1 0
0 1

] = [𝛽1
(1), 𝛽2

(1)] ;  𝑐𝐵 = [0, 0] 

The initial basic feasible solution: 𝑠1 = 6, 𝑠2 = 3 and Max Z = 0, is shown in Table 4.2. 

Table 4.2 
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Iteration 1: 

Step 3: To select the vector corresponding to a non – basic variable to enter into the 

basis, we compute: 

𝑐𝑘 − 𝑧𝑘 = 𝑀𝑎𝑥{(𝑐𝑗 − 𝑧𝑗) > 0 ; 𝑗 = 1, 2}  

            = 𝑀𝑎𝑥 {−(𝐹𝑖𝑟𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝐵1
−1)(𝐶𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑗

(1) 𝑛𝑜𝑡 𝑖𝑛 𝑏𝑎𝑠𝑖𝑠, 𝐵1)} 

            = 𝑀𝑎𝑥 {−(1, 0, 0) [
−2 −1
3 4
6 1

]} 

            = 𝑀𝑎𝑥{−(−2,−1)} 

            = 2 (corresponds to 𝑐1 − 𝑧1) 

Thus, vector 𝑎1
(1)(= 𝑥1) is selected to enter into the basis, for k = 1. 

Step 4: To select a basic variable to leave the basis, given the entering non – basic 

variable 𝑥1, we compute 𝑦𝑘
(1)

 for k = 1, as follows: 

𝑦1
(1) = 𝐵1

−1𝑎1
(1) = 𝑎1

(1) = [
−2
3
6
], for k = 1 and 𝑥𝐵

(1) = 𝐵1
−1𝑏 = 𝑏 = [

0
6
3
] 

After having selected the non-basic variable 𝑥1 to enter into the basis, we shall 

calculate the minimum ratio to select the basic variable to leave the basis. 

                      
𝑥𝐵𝑟

𝑦𝑟𝑘
= 𝑀𝑖𝑛 {

𝑥𝐵𝑖

𝑦𝑟𝑖
 ;  𝑦𝑖𝑘 > 0} 

            = 𝑀𝑖𝑛 {
𝑥𝐵1

𝑦11
,
𝑥𝐵2

𝑦21
} ;k = 1 

                            = 𝑀𝑖𝑛 {
6

3
,
3

6
} 

                            =
3

6
 (corresponds to (

𝑥𝐵2

𝑦21
)) 

Thus, vector 𝛽2
(1)(= 𝑠2) for r = 2 is selected to leave the basis. 

      Table 4.2 is again reproduced with the new entries in column 𝑦1
(1)

 and the 

minimum ratio, as shown in Table 4.3 
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Table 4.3 

Step 5: The initial basic feasible solution shown in Table 4.3 is now updated by 

replacing variable 𝑠2 with the variable 𝑥1 in the basis. For this we apply the following 

row operations in the same way as in the simplex method. 

 

 

While determining the entries of the new table for an improved solution, it should be 

remembered that column 𝛽0
(1)

 will never change. Thus, entries in 𝑥𝐵
(1), 𝑦1

(1), 𝛽1
(1), 𝛽2

(1)
 

columns will be changed due to the above mentioned row operations. The improved 

solution is shown in Table 4.4. 
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Table 4.4 

The column vectors not in the basis and new basis matrix, as shown in Table 4.4 

are: 

𝑎2
(1) = [

−1
4
1
] and 𝑎4

(1) = [
0
0
1
] and 𝐵1

−1 =

[
 
 
 
 1 0

1

3

0 1 −
1

2

0 0
1

6 ]
 
 
 
 

 

Iteration 2:  Repeat Steps 3 to 5 to get the new improved solution. 

Step 3: To select the vector corresponding to a non – basic variable to enter into the 

basis in Table 4.4, we compute: 

𝑐𝑘 − 𝑧𝑘 = 𝑀𝑎𝑥{(𝑐𝑗 − 𝑧𝑗) > 0 ; 𝑗 = 2, 4}  

            = 𝑀𝑎𝑥 {−(𝐹𝑖𝑟𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝐵1
−1)(𝐶𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑗

(1) 𝑛𝑜𝑡 𝑖𝑛 𝑏𝑎𝑠𝑖𝑠)} 

            = 𝑀𝑎𝑥 {−(1, 0,
1

3
) [
−1 0
4 0
1 1

]} 

            = 𝑀𝑎𝑥 {−(−1 +
1

3
,
1

3
)} 

            =
2

3
 (corresponds to 𝑐2 − 𝑧2) 

Thus, vector 𝑎2
(1)(= 𝑥2) is selected to enter into the basis, for k = 2. 

Step 4: In order to find the vector 𝛽𝑟
(1)

 corresponding to basic variables to leave the 

basis, we first compute 𝑦𝑘
(1)

 for k = 2, as follows: 
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𝑦2
(1) = 𝐵1

−1𝑎2
(1) = 𝑎2

(1) =

[
 
 
 
 
 1 0

1

3

0 1 −
1

2

0 0
1

6 ]
 
 
 
 
 

[
−1
4
1
] =

[
 
 
 
 
 −
2

3
7

2
1

6 ]
 
 
 
 
 

 

The values 𝑦2
(1)

 are shown in Table 4.4. 

The minimum ration for a predetermined value of k (= 2) is given by: 

𝑥𝐵𝑟
𝑦𝑟𝑘

= 𝑀𝑖𝑛 {
𝑥𝐵𝑖
𝑦𝑖2
 ;  𝑦𝑖2 > 0} 

      = 𝑀𝑖𝑛 {
𝑥𝐵1

𝑦12
,
𝑥𝐵2

𝑦22
} ;k = 1 

= 𝑀𝑖𝑛 {
9
2⁄

7
2⁄
,
1
2⁄

1
6⁄
} 

               =
9

7
 (corresponds to (

𝑥𝐵2

𝑦12
)) 

Thus, vector 𝛽1
(1)(= 𝑠1) for r = 1 is selected to leave the basis, as shown in Table 4.4. 

Step 5: The solution shown in Table 4.4 is now updated by replacing variable 𝑠1 with 

the variable 𝑥2 into the basis. For this we apply the following row operations in the 

same way as in iteration 1: 

 

The improved solution is shown in Table 4.5. 
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Table 4.5 

The column vectors not in the basis as shown in Table 4.5 are: 

𝑎3
(1) = [

0
1
0
] and 𝑎4

(1) = [
0
0
1
] and 𝐵1

−1 =

[
 
 
 
 1

4

21

5

21

0
2

7
−
1

7

0 −
2

21

4

21 ]
 
 
 
 

 

Iteration 3:  Repeat Steps 3 to 5 to get the new improved solution. 

Step 3: To select the vector corresponding to a non – basic variable to enter into the 

basis in Table 4.5, we compute: 

𝑐𝑘 − 𝑧𝑘 = 𝑀𝑎𝑥{(𝑐𝑗 − 𝑧𝑗) > 0 ; 𝑗 = 3, 4}  

            = 𝑀𝑎𝑥 {−(𝐹𝑖𝑟𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝐵1
−1)(𝐶𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑗

(1) 𝑛𝑜𝑡 𝑖𝑛 𝑏𝑎𝑠𝑖𝑠)} 

            = 𝑀𝑎𝑥 {−(1,
4

24
,
5

21
) [
0 0
1 0
0 1

]} 

            = 𝑀𝑎𝑥 {−(
4

21
,
5

21
)} 

Since all 𝑐𝑗 − 𝑧𝑗 < 0 (j = 3, 4), the current solution shown in Table 4.5 is optimal.  

Thus, the optimal solution is: 𝑥1 =
2

7
, 𝑥2 =

9

7
 and Max Z = 

13

7
 . 

 

Remark:  Once the revised simplex method for solving an LP problem is fully 

understood there is no need of giving details about the steps of the algorithm. This is 

illustrated in the following two examples. 
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Example 4.2 Use the revised simplex method to solve the following LP problem: 

Maximize Z = 3𝑥1 + 5𝑥2 subject to the constraints 

(i) 𝑥1 ≤ 4 (ii) 𝑥2 ≤ 6 (iii) 3𝑥1 + 2𝑥2 ≤ 18 and 𝑥1, 𝑥2 ≥ 0 

Solution: We express the given LP problem in the standard form I of the revised 

simplex method as follows: 

(i) 𝑍 − 3𝑥1 + 5𝑥2 = 0 (ii) 𝑥1 + 𝑠1 = 4 (iii) 𝑥2 + 𝑠2 = 6 

(iv) 3𝑥1 + 2𝑥2 + 𝑠3 = 18 and 𝑥1, 𝑥2, 𝑠1, 𝑠2, 𝑠3 ≥ 0 

Now we represent the new system of constraints equations in the matrix form as 

follows: 

 

where 𝑒(1) = 𝛽0
(1), 𝑎3

(1) = 𝛽1
(1), 𝑎4

(1) = 𝛽2
(1) 𝑎𝑛𝑑 𝑎5

(1) = 𝛽3
(1)

 

The basis matrix B1 of order (3 + 1) = 4 can be expressed as: 

𝐵1 = [𝛽0
(1), 𝛽1

(1), 𝛽2
(1), 𝛽3

(1)] = [

1 0 0
0 1 0
0 0 1

     
0
0
0

0 0 0     1

] 

Then, 𝐵1
−1 = [

1 𝑐𝐵𝐵
−1

0 𝐵−1
] = 1 ; 𝐵 = [

1 0 0
0 1 0
0 0 1

] = [𝛽1
(1), 𝛽2

(1), 𝛽3
(1)] ;  𝑐𝐵 = [0,0] 

   The initial basic feasible solution is shown in Table 4.6.        
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Table 4.6 

Iteration 1: To select the vector corresponding to a non – basic variable to enter into 

the basis, we compute: 

𝑐𝑘 − 𝑧𝑘 = 𝑀𝑎𝑥{(𝑐𝑗 − 𝑧𝑗) > 0 ; 𝑗 = 1, 2}  

            = 𝑀𝑎𝑥 {−(𝐹𝑖𝑟𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝐵1
−1)(𝐶𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑗

(1) 𝑛𝑜𝑡 𝑖𝑛 𝑏𝑎𝑠𝑖𝑠)} 

            = 𝑀𝑎𝑥 {−(1, 0, 0,0) [

−3 −5
1 0
0 1
3         2

]} 

            = 𝑀𝑎𝑥{−(−3,−5)} 

            = 5 (corresponds to 𝑐2 − 𝑧2) 

Thus, vector 𝑎2
(1)(= 𝑥2) is selected to enter into the basis, for k = 2. 

To select the basic variable to leave the basis, we compute: 

𝑦𝑘
(1) = 𝐵1

−1𝑎𝑘
(1) = 𝑎𝑘

(1) = [

−5
0
1
2

] ; k = 2 and 𝑥𝐵
(1) = 𝐵1

−1𝑏 = 𝑏 = [

0
4
6
18

] 

After having selected the non-basic variable, 𝑥2, to enter the basis, we shall calculate 

the minimum ratio in order to select the basic variable to leave the basis: 

𝑥𝐵𝑟
𝑦𝑟𝑘

= 𝑀𝑖𝑛 {
𝑥𝐵𝑖
𝑦𝑖2
 ;  𝑦𝑖2 > 0} 

                                                      = 𝑀𝑖𝑛 {
𝑥𝐵1

𝑦12
,
𝑥𝐵2

𝑦22
,
𝑥𝐵3

𝑦32
 } ;k = 2 
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= 𝑀𝑖𝑛 {
4

0
,
6

1
,
18

2
} 

                                                       = 6 (corresponds to (
𝑥𝐵2

𝑦22
)) 

Thus, vector 𝛽2
(1)(= 𝑠2) for r = 2 is selected to leave the basis. 

Table 4.6 is again reproduced with the new entries in column 𝑦𝑘
(1)

 and minimum ratio, 

as shown in Table 4.7. 

 

       

 

Table 4.7 

The initial basic feasible solution shown in Table 4.7 is now updated by introducing 

variable 𝑥2 into the basis and removing 𝑠2 from the basis. 
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For this we apply the following row operations: 

𝑅3(𝑛𝑒𝑤) → 𝑅3(𝑜𝑙𝑑) ÷ 1(𝑘𝑒𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡) ;  𝑅4(𝑛𝑒𝑤) → 𝑅4(𝑜𝑙𝑑) − 𝑅3(𝑛𝑒𝑤) ;  

𝑅1(𝑛𝑒𝑤) → 𝑅1(𝑜𝑙𝑑) + 5𝑅3(𝑛𝑒𝑤)  

The improved solution is shown in Table 4.8. 

 

Table 4.8 

The column vectors not in the basis and new basis matrix are given below. These 

are also shown in Table 4.8. 

𝑎1
(1) = [

−3
1
0
3

] ;  𝑎4
(1) = [

0
0
1
0

] ;  𝐵1
−1 = [

1 0 5
0 1 0
0 0 −2

     
0
0
0

0 0 −2     1

] 

Iteration 2: Again to select the vector corresponding to non – basis vectors 𝑎1
(1)

 and 

𝑎4
(1)

 to enter into the basis, we compute: 

𝑐𝑘 − 𝑧𝑘 = 𝑀𝑎𝑥{(𝑐𝑗 − 𝑧𝑗) > 0 ; 𝑗 = 1, 4}  

            = 𝑀𝑎𝑥 {−(𝐹𝑖𝑟𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝐵1
−1)(𝐶𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑗

(1) 𝑛𝑜𝑡 𝑖𝑛 𝑏𝑎𝑠𝑖𝑠)} 

            = 𝑀𝑎𝑥 {−(1, 0, 5,0) [

−3 0
1 0
0 1
3       0

]} 

            = 𝑀𝑎𝑥{−(−3, 5)} 

            = 3 (corresponds to 𝑐1 − 𝑧1) 

Thus, vector 𝑎1
(1)(= 𝑥1) is selected to enter into the basis, for k = 1. 

To select the basic variable to leave the basis, we compute: 
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𝑦𝑘
(1) = 𝐵1

−1𝑎𝑘
(1) = [

1 0 5
0 1 0
0 0 −2

     
0
0
0

0 0 −2     1

] [

−3
1
0
3

] = [

−3
1
0
3

] ; k = 1 

The values of 𝑦1
(1)

 are shown in Table 4.8. 

The minimum ratio for predetermined value of k (= 1) is given by: 

𝑥𝐵𝑟
𝑦𝑟𝑘

= 𝑀𝑖𝑛 {
𝑥𝐵𝑖
𝑦𝑖1
 ;  𝑦𝑖1 > 0} 

                                                         = 𝑀𝑖𝑛 {
𝑥𝐵1

𝑦11
,
𝑥𝐵2

𝑦21
,
𝑥𝐵3

𝑦31
 } 

= 𝑀𝑖𝑛 {
4

1
,
6

0
,
6

3
} 

                                                        =
6

3
 (corresponds to (

𝑥𝐵3

𝑦31
)) 

Thus, vector 𝛽3
(1)(= 𝑠3) for r = 3 is selected to leave the basis, as shown in Table 4.8. 

The solution shown in Table 4.8 is now updated by introducing variable 𝑥1 into the 

basis and removing variables 𝑠3 from the basis. 

 

For this we apply the following row operations: 

𝑅4(𝑛𝑒𝑤) → 𝑅4(𝑜𝑙𝑑) ÷ 3(𝑘𝑒𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡) ;  𝑅3(𝑛𝑒𝑤) → 𝑅3(𝑜𝑙𝑑) − 𝑅4(𝑛𝑒𝑤) ;  

𝑅1(𝑛𝑒𝑤) → 𝑅1(𝑜𝑙𝑑) + 3𝑅4(𝑛𝑒𝑤) 
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The improved solution is shown in Table 4.9. 

            

 

Table 4.9 

 

The columns vectors not in the basis and the basis matrix, as shown in Table 4.9 

are: 

𝑎4
(1) =

[
 
 
 
 
3
2
3⁄

1

−2 3⁄ ]
 
 
 
 

 ;  𝑎5
(1) =

[
 
 
 
 
1

−1 3⁄

0
1
3⁄ ]
 
 
 
 

 ;  𝐵1
−1 =

[
 
 
 
 
1 0 3

0 1 2
3⁄

0 0 1

     

1

−1 3⁄

0

0 0 −2 3⁄     1 3⁄ ]
 
 
 
 

 

 

Iteration 3: The procedure illustrated in iterations 1 and 2 is repeated to update the 

solution as shown in Tabl2 4.9 

First to select the vector to enter into the basis, we compute: 

𝑐𝑘 − 𝑧𝑘 = 𝑀𝑎𝑥{(𝑐𝑗 − 𝑧𝑗) > 0 ; 𝑗 = 3, 4}  

            = 𝑀𝑎𝑥 {−(𝐹𝑖𝑟𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝐵1
−1)(𝐶𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑗

(1) 𝑛𝑜𝑡 𝑖𝑛 𝑏𝑎𝑠𝑖𝑠)} 

            = 𝑀𝑎𝑥 {−(1, 0, 3,1) [

0 0
0 0
1 0
0     1

]} 

            = 𝑀𝑎𝑥{−(3, 1)} 

Since all 𝑐𝑘 − 𝑧𝑘 < 0, the current solution shown in Table 4.9 is optimal.  
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Thus, the optimal solution is: 𝑥1 = 2, 𝑥2 = 6 and Max Z = 36. 

 

Example 4.3 Use the revised simplex method to solve the following LP problem: 

Maximize Z = 𝑥1 + 𝑥2 + 3𝑥3 subject to the constraints 

(i) 3𝑥1 + 2𝑥2 + 𝑥3 ≤ 3 (ii) 2𝑥1 + 𝑥2 + 2𝑥3 ≤ 2 and 𝑥1, 𝑥2, 𝑥3 ≥ 0 

Solution: Introduce slack variables 𝑠1 and 𝑠2 to the constraints in order to convert 

them into equations and consider objective function as one of the constraints. The 

LP problem can be written as: 

(i) 𝑍 − 𝑥1 − 𝑥2 − 𝑥3 = 0 (ii) 2𝑥1 + 𝑥2 + 2𝑥3 + 𝑠1 = 3  

(iii) 2𝑥1 + 𝑥2 + 2𝑥3 + 𝑠2 = 2 and 𝑥1, 𝑥2, 𝑥3, 𝑠1, 𝑠2 ≥ 0 

The initial basis matrix B1 is given by: 

𝐵1 = [𝛽0
(1), 𝛽1

(1), 𝛽2
(1)] = [

1 0 0
0 1 0
0 0 1

] 

The initial basic feasible solution: 𝑠1 = 3, 𝑠2 = 2 and Z = 0 is shown in Table 4.10. 

         

 

Table 4.10 

Iteration 1: To select a non – basic variable out of 𝑥1, 𝑥2 𝑎𝑛𝑑 𝑥3 to enter into the 

basis, we compute: 

𝑐𝑘 − 𝑧𝑘 = 𝑀𝑎𝑥{(𝑐𝑗 − 𝑧𝑗) > 0 ; 𝑗 = 1, 2, 3}  

            = 𝑀𝑎𝑥 {−(𝐹𝑖𝑟𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝐵1
−1)(𝐶𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑗

(1) 𝑛𝑜𝑡 𝑖𝑛 𝑏𝑎𝑠𝑖𝑠)} 
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            = 𝑀𝑎𝑥 {−(1, 0, 0) [
−1 −1 −3
3 2 1
2 1 1

]} 

            = 𝑀𝑎𝑥{−(1, 1, 3)} 

            = 3 (corresponds to 𝑐3 − 𝑧3) 

Thus, vector 𝑎3
(1)(= 𝑥3) is selected to enter into the basis, for k = 3. 

 

Now, to select the basic variable to leave the basis, we compute: 

𝑦3
(1) = 𝐵1

−1𝑎3
(1) = [

1 0 0
0 1 0
0 0 1

] [
−3
1
2
] = [

−3
1
2
] ; k = 3 and 𝑥𝐵

(1) = 𝐵1
−1𝑏 = [

1 0 0
0 1 0
0 0 1

] [
0
3
2
] =

[
0
3
2
] 

The values of 𝑦3
(1)

 and 𝑥𝐵
(1)

 are shown in Table 4.11. 

          

 

Table 4.11 

Vector to be removed from the basis is determined by applying the minimum ratio 

rule shown in Table 4.11. 

𝑥𝐵𝑟
𝑦𝑟𝑘

= 𝑀𝑖𝑛 {
𝑥𝐵𝑖
𝑦𝑖𝑘

 ;  𝑦𝑖𝑘 > 0} 

= 𝑀𝑖𝑛 {
𝑥𝐵1
𝑦13

,
𝑥𝐵2
𝑦23

 } 

= 𝑀𝑖𝑛 {
3

1
,
2

2
} 
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                                                        = 1 (corresponds to (
𝑥𝐵2

𝑦23
)) 

i.e., r = 2 and therefore basic variable 𝑠2 is to be removed from the basis and the 

updated solution is shown in Table 4.12. 

          

 

Table 4.12 

The column vectors not in the basis are: 

𝑎1
(1) = [

−1
3
2
] ;  𝑎2

(1) = [
−1
2
1
] ;  𝑎5

(1) = [
0
0
1
] 

Iteration 2: Again repeat Steps 3 to 5 to get te new improved solution, if possible. 

𝑐𝑘 − 𝑧𝑘 = 𝑀𝑎𝑥 {−(𝐹𝑖𝑟𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝐵1
−1)(𝐶𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑗

(1) 𝑛𝑜𝑡 𝑖𝑛 𝑏𝑎𝑠𝑖𝑠)}  

            = 𝑀𝑎𝑥 {−(1, 0,
3

2
) [
−1 −1 0
3 2 0
2 1 1

]} 

            = 𝑀𝑎𝑥 {−(−2, −
1

2
, −

3

2
)} 

Since all 𝑐𝑘 − 𝑧𝑘 < 0, the current basic feasible solution is optimal as shown in Table 

4.12. Thus, the required optimal solution is: 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 1 and Max Z = 3. 
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4.4 COMPARISON OF SIMPLEX METHOD AND REVISED  

     SIMPLEX METHOD 

Consider an LP problem with constraints Ax = b, where A is a matrix of order  

 m × n. If initially artificial variables are not added for obtaining the initial basis matrix, 

then for solving LP problem by the simplex method we need to transform n + 1 

columns (n corresponding to columns of A and the last corresponding to 𝑥𝐵 column) 

at each iteration. Also, at each iteration one variable is introduced into the basis and 

one is removed from it. Thus, this increase computational time because procedure 

involves evaluation of n – m + 1 columns. Furthermore, for each of these columns, 

we need to transform m + 1 elements (m corresponding to 𝑦𝑗 and the last 

corresponding to (𝑐𝑗 − 𝑧𝑗). For moving from one iteration to another we also need to 

calculate the minimum ratio 
𝑥𝐵𝑖

𝑦𝑖𝑘
 . Hence, in all, we have to perform multiplication (m + 

1) (n – m + 1) times and addition m (n – m + 1) times.  

In the revised simplex method, there are m + 1 rows and m + 2 columns. So 

for moving from one iteration to another we have to make (m + 1)2 multiplication 

operations in order to get an improved solution in addition to m (n – m) operations for 

calculating (𝑐𝑗 − 𝑧𝑗)’s.  

1. In the revised simplex method we need to make (m +1) × (m + 2) entries in each 

table, while in the simplex method there are (m + 1) (m + 1) entries in each table.  

2. If the number of variables, n, is significantly larger than the number of constraints 

m, then the computational efforts of the revised simplex method is smaller than that 

of the simplex method.  

3. Revised simplex method reduces the cumulative round-off error while calculating 

(𝑐𝑗 − 𝑧𝑗)’s and updated column 𝑦𝑘 due to the use of original data.  

4. The inverse of the current basis matrix is obtained automatically.  

       One disadvantage of the revised simplex method is that while updating the table 

to move from one solution to another, an additional table of original non-basic 

variable, not in the basis, is required. This may cause some computational errors. 
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Let us sum up  

     We have learned to derive two standard forms of the revised simplex method and 

their computational procedure. Developed a knowledge base about relevant 

information required at each iteration of the revised simplex method. 

 

Check Your Progress 

Use the revised simplex method to solve the following LP problems:  

40.    𝑀𝑎𝑥 𝑍 = 𝑥1 + 2𝑥2 

       Subject to     (i)    𝑥1 + 𝑥2 ≤ 3 

                            (ii)  𝑥1 + 2𝑥2 ≤ 5 

                            (iii) 3𝑥1 + 𝑥2 ≤ 6 

       and                       𝑥1, 𝑥2   ≥ 0 

41.   𝑀𝑎𝑥 𝑍 = 2𝑥1 + 𝑥2 

       Subject to     (i)    3𝑥1 + 4𝑥2 ≤ 6 

                            (ii)  6𝑥1 + 𝑥2 ≤ 3 

       and                       𝑥1, 𝑥2   ≥ 0 

42.   𝑀𝑎𝑥 𝑍 = 𝑥1 + 𝑥2 

       Subject to     (i)    3𝑥1 + 3𝑥2 ≤ 6 

                               (ii)  𝑥1 + 4𝑥2 ≤ 4 

       and                       𝑥1, 𝑥2   ≥ 0 

43.  𝑀𝑎𝑥 𝑍 = 6𝑥1 − 2𝑥2 + 3𝑥3 

       Subject to     (i)    2𝑥1 − 𝑥2 + 2𝑥3 ≤ 2 

                               (ii)  𝑥1 + 4𝑥3 ≤ 4 

       and                       𝑥1, 𝑥2, 𝑥3   ≥ 0 
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44.  𝑀𝑎𝑥 𝑍 = 3𝑥1 + 2𝑥2 + 5𝑥3 

       Subject to     (i)    𝑥1 + 2𝑥2 + 𝑥3 ≤ 430 

                               (ii)  3𝑥1 + 2𝑥3 ≤ 460 

                              (iii) 𝑥1 + 4𝑥2 ≤ 420 

       and                       𝑥1, 𝑥2, 𝑥3   ≥ 0 
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4.5 BOUNDED VARIABLES LP PROBLEM 

 

    In addition to the constraints in any LP problem, the value of some or all variables 

is restricted with lower and upper limits. In such cases the standard form of an LP 

problem appears as:  

Optimize (Max or Min) Z = cx subject to the constraints Ax = b and l ≤ x ≤ u 

where l = (𝑙1, 𝑙2, … , 𝑙𝑛) and u = (𝑢1, 𝑢2, … , 𝑢𝑛) denote the lower and upper constraints 

bounds for variable x respectively. Other symbols have their usual meaning.  

The inequality constraints l ≤ x ≤ u in the LP model can be converted into 

equality constraints by introducing slack and/or surplus variables s′ and s′′ as follows:  

x ≥ l or x – s′′ = l, s′′ ≥ 0 and x ≤ u or x + s′ = u, s′ ≥ 0  

Thus, the given LP model contains m + n constraints equations with 3n variables. 

However, this size can be reduced to simply Ax = b.  

The lower bound constraints l ≤ x can also be written as: x = l + s′′, s′′ ≥ 0, and 

therefore, with this substitution variable x can be eliminated from all the constraints. 

The upper bound constraints x ≤ u can also be written as: x = u – s′, s′ ≥ 0. Such 

substitution, however, does not ensure non-negative value of x. It is in this context 

that a special technique known as bounded variable simplex method was developed 

in order to overcome this difficulty.  

In bounded variable simplex method, the optimality condition for a solution is the 

same as the simplex method, discussed earlier. But the inclusion of constraints      x 

+ s′ = u in the simplex table requires modification in the feasibility condition of the 

simplex method due to the following reasons:  

(i) A basic variable should become a non-basic variable at its upper bound (in 

usual simplex method all non-basic variables are at zero level).  

(ii) When a non-basic variable becomes a basic variable, its value should not 

exceed its upper bound and should also not disturb the non-negativity and upper 

bound conditions of all existing basic variables. 
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4.6 THE SIMPLEX ALGORITHM 

 

Step 1: (i) If the objective function of a given LP problem is of minimization, then 

convert it into that of maximization by using the following relationship:  

Minimize Z = – Maximize Z* ; Z* = – Z 

  (ii) Check whether all 𝑏𝐼 (i = 1, 2, . . ., m) are positive. If any one is negative, 

then multiply the corresponding constraint by –1 in order to make it positive.  

 (iii) Express the mathematical model of the given LP problem in standard 

form by adding slack/or surplus variables.  

Step 2: Obtain an initial basic feasible solution. If any of the basic variables is at a 

positive lower bound, then substitute it out at its lower bound.  

Step 3: Calculate 𝑐𝑗 − 𝑧𝑗 as usual for all non-basic feasible. Examine values of             

𝑐𝑗 − 𝑧𝑗. 

  (i) If all 𝑐𝑗 − 𝑧𝑗 ≤ 0, then the current basic feasible solution is the optimal 

solution.  

 (ii) If at least one 𝑐𝑗 − 𝑧𝑗 > 0 and this column has at least one entry positive    

(i.e., 𝑦𝑖𝑗 > 0) for some row i, then this indicates that an improvement in the value of 

objective function, Z is possible. 

Step 4: If Case (ii) of Step 3 holds true, then select a non-basic variable to enter into 

the new solution according to the following criterion:  

𝑐𝑘 − 𝑧𝑘 = 𝑀𝑖𝑛 {𝑐𝑗 − 𝑧𝑗 ∶  𝑐𝑗 − 𝑧𝑗 > 0} 

Step 5: After identifying the column vector (non-basic variable) that will enter the 

basis matrix B, the vector to be removed from B is calculated. For this calculate the 

quantities:  

𝜃1 = 𝑀𝑖𝑛 {
𝑥𝐵𝑖

𝑦𝑖𝑟
, 𝑦𝑖𝑟 > 0} ;  𝜃2 = 𝑀𝑖𝑛 {

𝑢𝑟−𝑥𝐵𝑖

−𝑦𝑖𝑟
, 𝑦𝑖𝑟 < 0} and 𝜃 = 𝑀𝑖𝑛 {𝜃1, 𝜃2, 𝑢𝑟} 

where 𝑢𝑟 is the upper bound for the variable 𝑥𝑟 in the current basic feasible solution. 

Obviously, if all 𝑦𝑖𝑟 > 0, 𝜃2 = ∞.  

  (i) If 𝜃 = 𝜃1, then the basic variable 𝑥𝑘 (column vector 𝑎𝑘) is removed from 

the basis and is replaced by non-basic variable, say 𝑥𝑟 (column vector 𝑎𝑟), as usual, 

by applying row operations.  

(ii) If 𝜃 = 𝜃1, then the basic variable 𝑥𝑘 (column vector 𝑎𝑘) is removed and 

replaced with a non-basic variable 𝑥𝑟 (column vector 𝑎𝑟). But at this stage value of 
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basic variable 𝑥𝑟 = 𝑥𝐵𝑟 is not at upper bound. This must be substituted out by using 

the relationship:  

(𝑥𝐵𝑘)𝑟 = (𝑥𝐵𝑘)𝑟
′ − 𝑦𝑘𝑟𝑢𝑟 ; 0 ≤ (𝑥𝐵𝑘)𝑟

′ ≤ 𝑢𝑟 

where (𝑥𝐵𝑘)𝑟
′  denotes the value of variables 𝑥𝑟.  

The value of non-basic variable 𝑥𝑟 is given at its upper bound value while the 

remaining non – basic variables are put at zero value by using the relationship:  

𝑥𝑟 = 𝑢𝑟 − 𝑥𝑟
′  ; 0 ≤ 𝑥𝑟

′ ≤ 𝑢𝑟 

  (iii) If𝜃 = 𝑢𝑟, the variable 𝑥𝑟 is given its upper bound value while the 

remaining non-basic variables are put at zero value by the relationship:  

𝑥𝑟 = 𝑢𝑟 − 𝑥𝑟
′  ; 0 ≤ 𝑥𝑟

′ ≤ 𝑢𝑟 

Step 6: Go to Step 4 and repeat the procedure until all 𝜃 entries in the 𝑐𝑗 − 𝑧𝑗 row are 

either negative or zero. 

Example 4.4 Solve the following LP problem: 

Maximize Z = 3𝑥1 + 2𝑥2 subject to the constraints 

(i) 𝑥1 − 3𝑥2 ≤ 3 (ii) 𝑥1 − 2𝑥2 ≤ 4 (iii) 2𝑥1 + 𝑥2 ≤ 20 (iv) 𝑥1 + 3𝑥2 ≤ 30 

(v) −𝑥1 + 𝑥2 ≤ 6     and 0 ≤ 𝑥1 ≤ 8 ; 0 ≤ 𝑥2 ≤ 6 

Solution: We first add non – negative slack variable 𝑠𝑖 (i = 1, 2, 3, 4, 5) to convert 

inequality constraints to equations. The standard form of LP problem then becomes: 

Maximize 𝑍 = 3𝑥1 + 2𝑥2 + 0𝑠1 + 0𝑠2 + 0𝑠3 + 0𝑠4 + 0𝑠5 subject to the constraints 

(i) 𝑥1 − 3𝑥2 + 𝑠1 = 3  (ii) 𝑥1 − 2𝑥2 + 𝑠2 = 4 (iii) 2𝑥1 + 𝑥2 + 𝑠3 = 20 

(iv) 𝑥1 + 3𝑥2 + 𝑠4 = 30 (v) −𝑥1 + 𝑥2 + 𝑠5 = 6 and 𝑥1, 𝑥2, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5 ≥ 0 

The initial basic feasible solution to this problem is: 

𝑥𝐵1 = 𝑠1 = 3, 𝑥𝐵2 = 𝑠2 = 4, 𝑥𝐵3 = 𝑠3 = 20, 𝑥𝐵4 = 𝑠4 = 30, 𝑥𝐵5 = 𝑠5 = 6. 

Since there are no upper bounds specified for these basic variables, arbitarily 

assume that all of them have upper bound at ∞. i.e., 𝑠1 = 𝑠2 = 𝑠3 = 𝑠4 = 𝑠5 = ∞. This 

solution can also be read from the initial simplex Table 4.13. 
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Table 4.13 Initial Solution 

    Since 𝑐1 = 𝑧1 = 3 is largest positive, variable 𝑥1 is eligible to enter into the basis. 

As none of the basic variables 𝑠1 to 𝑠5 are at their upper bound, thus, for deciding 

about the variable to leave the basis, we compute: 

𝜃1 = 𝑀𝑖𝑛 {
𝑥𝐵𝑖

𝑦𝑖1
, 𝑦𝑖1 > 0}       = 𝑀𝑖𝑛 {

3

1
,
4

1
,
20

2
,
30

1
} = 3 (corresponds to 𝑥1) 

𝜃2 = 𝑀𝑖𝑛 {
𝑢𝑖−𝑥𝐵𝑖

−𝑦𝑖1
, 𝑦𝑖1 < 0} =

∞−6

−(−1)
                       = ∞ (corresponds to 𝑠5) and 𝑢1 = 8. 

Therefore 𝜃 = 𝑀𝑖𝑛 {𝜃1, 𝜃2, 𝑢1} = 𝑀𝑖𝑛 {3,∞, 8} = 3 (corresponding to 𝜃1) 

    Thus, 𝑠1 is eligible to leave the basis and therefore 𝑦11 = 1 becomes the key 

element. 

    Introduce 𝑥1 into the basis and remove 𝑠1 from the basis by applying row 

operations in the same manner as discussed earlier. The improved solution is shown 

in Table 4.14. 
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Table 4.14 

 

Since 𝑐2 − 𝑧2 = 11 is largest positive, variable 𝑥2 is eligible to enter into the basis. 

For deciding which variable should leave the basis, we compute: 

𝜃1 = 𝑀𝑖𝑛 {
𝑥𝐵𝑖

𝑦𝑖2
, 𝑦𝑖2 > 0}       = 𝑀𝑖𝑛 {

1

1
,
14

7
,
27

6
}       = 1 (corresponds to 𝑥2) 

𝜃2 = 𝑀𝑖𝑛 {
𝑢𝑖−𝑥𝐵𝑖

−𝑦𝑖2
, 𝑦𝑖2 < 0} = 𝑀𝑖𝑛 {

8−3

−(−3)
,

∞

−(−2)
} =

5

3
 (corresponds to 𝑥1) and 𝑢2 = 6. 

Therefore, 𝜃 = 𝑀𝑖𝑛 {𝜃1, 𝜃2, 𝑢2} = 𝑀𝑖𝑛 {1,
5

3
, 6} = 1 (corresponds to 𝑠2) 

Thus, 𝑠2 will leave the basis and 𝑦22 = 1 becomes the key element. 

 Introduce 𝑥2 into the basis and remove 𝑠2 from the basis as usual. The 

improved solution is shown in Table 4.15. Since 𝑐3 − 𝑧3 is largest positive, therefore 

variable 𝑠1 is eligible to enter into the basis. We compute: 

𝜃1 = 𝑀𝑖𝑛 {
𝑥𝐵𝑖

𝑦𝑖3
, 𝑦𝑖3 > 0}       = 𝑀𝑖𝑛 {

7

5
,
21

5
}                         =

7

5
 (corresponds to 𝑠3) 

𝜃2 = 𝑀𝑖𝑛 {
𝑢𝑖−𝑥𝐵𝑖

−𝑦𝑖1
, 𝑦𝑖1 < 0} = 𝑀𝑖𝑛 {

8−6

−(−2)
,
6−1

−(−1)
,

∞

−(−1)
} = 1 (corresponds to 𝑥1) 

and 𝑢3 = ∞. 

Therefore, 𝜃 = 𝑀𝑖𝑛 {𝜃1, 𝜃2, 𝑢3} = 𝑀𝑖𝑛 {
7

5
, 1,∞} = 1 (corresponds to 𝑥1) 

Thus, 𝑥1 will leave the basis and 𝑦13 = −2 becomes the key element. 
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Table 4.15 

 

Introduce 𝑠1 into the basis and remove 𝑥1 from the basis, as usual. The improved 

solution is shown in Table 4.16. 

Table 4.16 

 

Since 𝑐1 − 𝑧1 = 4 is largest positive, therefore variable 𝑥1 is eligible to enter into the 

basis. Also the upper bound for variable 𝑥1 is 8; therefore we update the value of 

basic variables by using relationship and data of Table 4.16, as follows: 

𝑥𝐵1 = 𝑠1 = 𝑥𝐵1
′ − 𝑦11𝑢1 = −3 − (−

1

2
) 8 = 1 

𝑥𝐵2 = 𝑠2 = 𝑥𝐵2
′ − 𝑦21𝑢1 = −2 − (−

1

2
) 8 = 2 

𝑥𝐵3 = 𝑠3 = 𝑥𝐵3
′ − 𝑦31𝑢1 = 22 − (

5

2
) 8     = 1 
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𝑥𝐵4 = 𝑠4 = 𝑥𝐵4
′ − 𝑦41𝑢1 = 36 − (

5

2
) 8    = 1 

𝑥𝐵5 = 𝑠5 = 𝑥𝐵5
′ − 𝑦51𝑢1 = 8 − (−

1

2
) 8  = 1 

Also one of the non – basic variables 𝑥1 at its upper bound can be brought at zero 

level by using the substitution: 

𝑥1 = 𝑢1 − 𝑥1
′ = 8 − 𝑥1

′  ; 0 ≤ 𝑥1
′ ≤ 8 

The data of Table 4.16 can now be updated by substituting new values of basic 

variables as well as non – basic variables, as shown in Table 4.17. Since 𝑐4 − 𝑧4 is 

the only positive value, 𝑠2 will enter into the basis. For deciding which variable should 

leave the basis, we compute: 

𝜃1 = 𝑀𝑖𝑛 {
𝑥𝐵𝑖

𝑦𝑖4
, 𝑦𝑖4 > 0} = 𝑀𝑖𝑛 {

2

1 2⁄
,
16

3 2⁄
,
12

1 2⁄
} = 𝑀𝑖𝑛 {4,

32

3
, 24} = 4 (corresponds to 𝑠3) 

            

 

Table 4.17 

 

𝜃2 = 𝑀𝑖𝑛 {
𝑢𝑖−𝑥𝐵𝑖

−𝑦𝑖4
, 𝑦𝑖4 < 0}                       = 𝑀𝑖𝑛 {

∞

−(−3 2⁄ )
,

6−2

−(−1 2⁄ )
} = 8 (corresponds to 𝑥2) 

and 𝑢4 = ∞.  

Therefore, 𝜃 = 𝑀𝑖𝑛 {𝜃1, 𝜃2, 𝑢4} = 𝑀𝑖𝑛 {4, 8,∞} = 4 (corresponds to 𝑠3) 

Thus, variable 𝑠3 will leave the basis and 𝑦34 =
1

2
 becomes the key element. 

Introduce 𝑠2 into the basis and remove 𝑠3 from the basis as usual. The improved 

solution is shown is Table 4.18. 
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Table 4.18 

 

Since 𝑐1 − 𝑧1 is the only positive value, variable 𝑥1
′  will enter the basis. To decide 

which variable will leave the bais, we compute: 

𝜃1 = 𝑀𝑖𝑛 {
𝑥𝐵𝑖

𝑦𝑖1
, 𝑦𝑖1 > 0}       = 𝑀𝑖𝑛 {

12

5
,
10

3
}                         =

12

5
 (corresponds to 𝑠4) 

𝜃2 = 𝑀𝑖𝑛 {
𝑢𝑖−𝑥𝐵𝑖

−𝑦𝑖1
, 𝑦𝑖1 < 0} = 𝑀𝑖𝑛 {

∞

−(−7)
,
6−4

−(−2)
,

∞

−(−5)
}   = 1 (corresponds to 𝑥2) 

and 𝑢1 = 8. 

Therefore, 𝜃 = 𝑀𝑖𝑛 {𝜃1, 𝜃2, 𝑢1} = 𝑀𝑖𝑛 {
12

5
, 1, 8} = 1 (corresponds to 𝑥2) 

Thus, 𝑥2 will leave the basis and 𝑦21 = −2 becomes the key element. 

Introduce 𝑥1
′  into the basis and remove 𝑥2 from the basis. The new solution is shown 

in Table 4.19. 

 

Table 4.19 

 

Since the upper bound for variable 𝑥2 is 6, we update the value of basic variables by 
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using relationship and data of Table 4.19, as follows: 

𝑥𝐵1 = 𝑠1 = 𝑥𝐵1
′ − 𝑦12𝑢2 = −7 − (−

7

2
) 6 = 14 

𝑥𝐵2 = 𝑠2 = 𝑥𝐵2
′ − 𝑦22𝑢2 = −2 − (−

1

2
) 6 = 1 

𝑥𝐵3 = 𝑠3 = 𝑥𝐵3
′ − 𝑦32𝑢2 = −6 − (−

5

2
) 6 = 9 

𝑥𝐵4 = 𝑠4 = 𝑥𝐵4
′ − 𝑦42𝑢2 = 22 − (

5

2
) 6    = 7 

𝑥𝐵5 = 𝑠5 = 𝑥𝐵5
′ − 𝑦51𝑢1 = 16 − (

3

2
) 6  = 7 

The non – basic variable 𝑥2 at its upper bound can be brought at zero level by using 

the substitution: 𝑥2 = 𝑢2 − 𝑥2
′ = 6 − 𝑥2

′  ; 0 ≤ 𝑥2
′ ≤ 6 

 The data of Yable 4.19 can now be updated by substituting new values of 

basic variables and non – basic variables as shown in Table 4.20. 

Table 4.20 

 

In table 4.20, all 𝑐𝑗 − 𝑧𝑗 ≤ 0, an optimal solution is arrived at with values of variables 

as: 𝑥1
′ = 1 (or) 𝑥1 = 𝑢1 − 𝑥1

′ = 8 − 1 ;  𝑥2 = 𝑢2 − 𝑥2
′ = 6 − 0 = 6 and Max Z = 33. 

Example 4.5 Solve the following LP problem: 

Maximize Z = 3𝑥1 + 2𝑥2 + 2𝑥3 subject to the constraints 

(i) 𝑥1 + 2𝑥2 + 2𝑥3 ≤ 14 (ii) 2𝑥1 + 4𝑥2 + 3𝑥3 ≤ 23 (iii) 0 ≤ 𝑥1 ≤ 4  

(iv) 2 ≤ 𝑥2 ≤ 5  (v) 0 ≤ 𝑥3 ≤ 3  

Solution: The variable 𝑥2 has a positive lower bound, therefore taking 𝑥2
′ = 𝑥2 − 2 

(or) 𝑥2 = 𝑥2
′ + 2. Then the fourth constraint of a given LP problem can be written as            

0 ≤ 𝑥2
′ ≤ 3 and new LP problem will become: 
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Maximize 𝑍 = 3𝑥1 + 5(𝑥2
′ + 2) + 2𝑥3 = 3𝑥1 + 5𝑥2

′ + 2𝑥3 + 10 subject to the 

constraints 

(i) 𝑥1 + 2(𝑥2
′ + 2) + 2𝑥3 ≤ 14 (𝑜𝑟) 𝑥1 + 2𝑥2

′ + 2𝑥3 ≤ 10 

(ii) 2𝑥1 + 4(𝑥2
′ + 2) + 3𝑥3 ≤ 23 (𝑜𝑟) 2𝑥1 + 4𝑥2

′ + 3𝑥3 ≤ 15 

(iii) 0 ≤ 𝑥1 ≤ 4 (iv) 0 ≤ 𝑥2
′ ≤ 3 (v) 0 ≤ 𝑥3 ≤ 3 

We now introduce non – negative slack variables 𝑠1 and 𝑠2 to convert inequality 

constraints to equations. The standard form of LP problem then becomes: 

Maximize 𝑍 = 3𝑥1 + 5𝑥2
′ + 2𝑥3 + 10 + 0𝑠1 + 0𝑠2 subject to the constraints 

(i) 𝑥1 + 2𝑥2
′ + 2𝑥3 + 𝑠1 = 10 (ii) 2𝑥1 + 4𝑥2

′ + 3𝑥3 + 𝑥2 = 15 

and 𝑥1, 𝑥2
′ , 𝑥3, 𝑠1, 𝑠2 ≥ 0 

The initial basic feasible solution to this problem is: 𝑥𝐵1 = 𝑠1 = 10, 𝑥𝐵2 = 𝑠2 = 15. 

Also, for the basic variables 𝑠1 and 𝑠2 no upper bounds are specified, it is, therefore, 

assumed that both of these have an upper bound at ∞. The initial basic feasible 

solution can be read from the initial simplex Table 4.21. 

Table 4.21 Initial Solution 

 

Since 𝑐2 − 𝑧2 = 5 is largest positive, variable 𝑥2
′  will enter the basis. As none of the 

basic variables 𝑠1 and 𝑠2 are their upper bound, thus for deciding which variable will 

leave the basis, we compute: 

𝜃1 = 𝑀𝑖𝑛 {
𝑥𝐵𝑖

𝑦𝑖2
, 𝑦𝑖2 > 0} = 𝑀𝑖𝑛 {

10

2
,
15

4
} =

15

4
 (corresponds to 𝑠2) 

𝜃2 = ∞, because all entries in column 2 are positive, i.e., 𝑦12 > 0 for all i and 𝑢2 = 3. 

Therefore, 𝜃 = 𝑀𝑖𝑛 {𝜃1, 𝜃2, 𝑢2} = 𝑀𝐼𝑛 {
15

4
, ∞, 3} = 3 (corresponds to 𝑢2) 

Thus, 𝑥2
′  is substituted at its upper bound and remains non – basic. 

The non – basic variable 𝑥2
′  at its upper bound can now be put at zero value by using 
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the substitution: 𝑥2
′ = 𝑢2 − 𝑥2

′′ = 3 − 𝑥2
′′ ;  0 ≤ 𝑥2

′′ ≤ 3 

The value of other basic variables are updated by using Table 4.22. 

 

Table 4.22 

The data in Table 4.21 can be now updated by putting new value of basic variables 

and non – basic variables 𝑥2
′  as shown in Table 4.22. 

In Table 4.22, 𝑐1 − 𝑧1 = 3 is largest positive, therefore, variable 𝑥1 will enter into the 

basis. For deciding which variable should leave the basis, we compute: 

𝜃1 = 𝑀𝑖𝑛 {
𝑥𝐵𝑖

𝑦𝑖1
, 𝑦𝑖1 > 0} = 𝑀𝑖𝑛 {

4

1
,
3

1
} = 3 (corresponds to 𝑠2) 

𝜃2 = ∞, because all entries in column 1 are positive, i.e., 𝑦𝑖1 > 0 for all i and 𝑢1 = 4. 

Therefore, 𝜃 = 𝑀𝑖𝑛 {𝜃1, 𝜃2, 𝑢2} = 𝑀𝐼𝑛 {3,∞, 4} = 3 (corresponds to 𝜃1) 

Thus, variable 𝑠2 will leave the basis and 𝑦21 = 2 becomes the key element. 

 
Introduce 𝑥1 into the basis and remove 𝑠2 from the basis, as usual. The improved 

solution is shown in Table 4.23. 

           

 

Table 4.23 
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In Table 4.23, 𝑐2 − 𝑧2 = 1 is the only positive value, therefore, variable 𝑥2
′′ will enter 

into the basis. For deciding which variable should leave the basis, we compute: 

𝜃1 = ∞, because all entries in column 2 are either negative or zero, i.e., 𝑦𝑖2 > 0 for all 

i (corresponds to 𝑠2) 

𝜃2 = 𝑀𝑖𝑛 {
𝑢𝑖−𝑥𝐵𝑖

−𝑦𝑖2
, 𝑦𝑖2 < 0} = 𝑀𝑖𝑛 {∞,

5 2⁄

−(−2)
} =

5

4
 , and 𝑢2 = 3. 

Therefore, 𝜃 = 𝑀𝑖𝑛 {𝜃1, 𝜃2, 𝑢2} = 𝑀𝑖𝑛 {∞,
5

4
, 3} =

5

4
 (corresponds to 𝜃2) 

Thus, variable 𝑥1 will leave the basis. To put 𝑥1at its upper bound, substitute                

 𝑥1 = 4 − 𝑥1
′  in Table 4.23. The improved solution is shown in Table 4.24 

 

 

Table 4.24 

The value of non – basic variable 𝑥1 at its upper bound 4 can be put zero level by 

substituting  

 𝑥1 = 4 − 𝑥1
′  ; 0 ≤ 𝑥1

′ ≤ 4. 

The value of other basic variables are updated by using the relationship: 

𝑥𝐵1 = 𝑠1 = 𝑥𝐵1
′ − 𝑦11𝑢1 =

5

2
− 0 × 4            =

5

2
 

𝑥𝐵2 = 𝑥2
′′ = 𝑥𝐵2

′ − 𝑦21𝑢1 = −
3

4
− (−

1

2
) × 4 =

5

2
 

The data in Table 4.24 can now be updated by putting new values of basic variables 

and  non – basic variable 𝑥1
′  as shown in Table 4.25. 
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Table 4.25 

In table 4.25, all 𝑐𝑗 − 𝑧𝑗 ≤ 0, an optimal solution is arrived at with values of variables: 

𝑥1
′ = 0 (𝑜𝑟) 4 − 𝑥1 = 0 (𝑜𝑟) 𝑥1 = 4 

 

𝑥2
′ =

5

4
 (𝑜𝑟) 3 − 𝑥2

′ =
5

4
 (𝑜𝑟)3 − (𝑥2 − 2) =

5

4
 (𝑜𝑟) 𝑥2 =

15

4
 

and Max Z = 
123

4
 . 

 

Let us sum up  

    We have learned about bounded variable LPP to find the solution by using 

simplex algorithm. 

 

Check Your Progress 

 

Solve the following LP problems 

45.                   𝑀𝑎𝑥 𝑍 = 𝑥2 + 3𝑥3 

       Subject to            𝑥1 + 𝑥2 + 𝑥3 ≤ 10 

                                         𝑥1 − 2𝑥3 ≤ 0 

                                         2𝑥2 − 𝑥3 ≤ 10 

                           0 ≤ 𝑥1 ≤ 8;  0 ≤  𝑥2 ≤ 4; 𝑥3   ≥ 0 
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46.                      𝑀𝑎𝑥 𝑍 = 4𝑥1 + 4𝑥2 + 3𝑥3 

       Subject to            −𝑥1 + 2𝑥2 + 3𝑥3 ≤ 15 

                                               −𝑥2 + 𝑥3 ≤ 4 

                                        2𝑥1 + 𝑥2 − 𝑥3 ≤ 6 

                                        𝑥1 − 𝑥2 + 2𝑥3 ≤ 10 

                           0 ≤ 𝑥1 ≤ 8; 𝑥2 ≥ 0; 𝑥3  ≤ 4 

                    

Unit Summary 

 
The revised simplex method is another efficient method. It is efficient in the sense that at 

each iteration, we need not recompute values of all the variables, in the simplex table, 

while moving from one iteration to next in search of an improved solution of an LP 

problem. In the usual simplex method, at each iteration it was necessary to calculate 

𝑐𝑗 − 𝑧𝑗  corresponding to non-basic variable columns in order to decide whether the 

current solution is optimal or not. If not, then in order to select the non-basic variable to 

enter into the basis matrix B, we first need to know 𝑦𝑗 = 𝐵
−1 𝑎𝑗 , where 𝑦𝑗 refers to the 

updated column 𝑎𝑗 in the simplex table being examined. If 𝑦𝑗 ≤ 0 , then the optimal 

solution is unbounded. Otherwise, apply the minimum ratio rule to decide which basic 

variable should leave the basis.  

In bounded variable simplex method, the optimality condition for a solution is the same as 

the simplex method. But the inclusion of upper bound x ≤ u or x = u – s′ or constraints x 

+ s′ = u in the simplex table requires modification in the feasibility condition of the 

simplex method due to the following reasons: 

 A basic variable should become a non-basic variable at its upper bound (in usual 

simplex method all non-basic variables are at zero level). 

 When a non-basic variable becomes a basic variable, its value should not exceed its 

upper bound and should also not disturb the non-negativity and upper bound conditions 

of all existing basic variables. 

 

Glossary 

 Max Z – maximize Z 

 Min Z – minimize Z 
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Self- Assessment Questions 

 

1. Formulate a linear programming problem in the form of the revised simplex 

method. 

2. Develop a computations algorithm for solving a linear programming problem by 

the revised  

simplex method.  

3. Compare the revised simplex method with simplex method and bring out the 

salient points of the  

difference. 

4. Give a brief outline for the standard form I of the revised simplex method. 

5. What is the difference between simplex method and revised simplex method? 

When and where should the two be applied? 

 

ACTIVITIES 

Solve the following LP problems: 

1. 𝑀𝑎𝑥 𝑍 = 4𝑥1 + 10𝑥2 + 9𝑥3 + 11𝑥4 

       Subject to               2𝑥1 + 2𝑥2 + 2𝑥3 + 2𝑥4 ≤ 5 

                                   48𝑥1 + 80𝑥2 + 160𝑥3 + 240 ≤ 257 

                                         

                                0 ≤ 𝑥𝑗 ≤ 1; 𝑗 = 1,2,3,4. . 

2.    𝑀𝑎𝑥 𝑍 = 3𝑥1 + 𝑥2 + 𝑥3 + 7𝑥4 

       Subject to               2𝑥1 + 3𝑥2 − 𝑥3 + 4𝑥4 ≤ 40 

                                   −2𝑥1 + 2𝑥2 + 5𝑥3 − 𝑥4 ≤ 35 

                                      𝑥1 + 𝑥2 − 2𝑥3 + 3𝑥4 ≤ 100 

                                𝑥1 ≥ 2, 𝑥2 ≥ 1, 𝑥3 ≥ 3, 𝑥4 ≥ 4 . 
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PARAMETRIC LINEAR PROGRAMMING 

Objectives 

After studying this unit you should be able to appreciate the need of 

parametric analysis to find various basic feasible solutions of any LP problem, 

Which become optimal one after the other due to continuous variations in the 

parameters of LP problem. Perform parametric analysis to study variation in 

the objective function coefficients and resources availability. Take care of 

change in the optimal solution due to variation in LP model parameters over a 

range of variation. 

Appreciate the need of a goal programming approach for solving multi-

objective decision problems. Distinguish between LP and GP approaches for 

solving a business decision problem. Formulate GP model of the given multi-

objective decision problem. Understand the method of assigning different 

ranks and weights to unequal multiple goals. Use simplex method for solving 

a GP model. 

 

5.1 INTRODUCTION 

Once an LP model based on real-life data has been solved, the 

decision-maker desires to know how the solution will change if parameters, 

such as cost (or profit) 𝑐𝑗, availability of resources 𝑏𝑖 and the technological 

coefficients 𝑎𝑖𝑗 are changed. We have already discussed the need to perform 

a sensitivity analysis in order to consider the impact of discrete changes in its 

parameters on optimal solution of LP model. In this chapter, we will discuss 

another parameter variation analysis also called parametric analysis to find 

various basic feasible solutions of an LP model that become optimal one after 

the other, due to continuous variations in the parameters. Since LP model 

parameters change as a linear function of a single parameter, this technique 

is known as linear parametric programming. 

             The purpose of this analysis is to keep to a minimum the additional 

efforts required to take care of changes in the optimal solution due to variation 

in LP model parameters over a range of variation. In this chapter we will 
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perform parametric analysis only for the following two parameters (evaluation 

of other parameters, over a range, is also possible but tend to be more 

complex.) 

(i) Variation in objective function coefficients, 𝑐𝑗 

(ii) Variation in resources availability (Right-hand side values), 𝑏𝑖 

Let λ be the unknown (positive or negative) scalar parameter with 

which coefficients in the LP model vary. We start the analysis at optimal 

solution obtained at λ = 0. Then, using the optimality and feasibility conditions 

of the simplex method we determine the range of λ for which the optimal 

solution at λ = 0 remains unchanged. Let λ lies between 0 and 𝜆1. This means 

0 ≤ λ ≤ 𝜆1 is the range of λ beyond which the current solution will become 

infeasible and/or non-optimal. Thus at λ = 𝜆1 a new solution is determined 

which remains optimal and feasible in other interval, say              𝜆1 ≤ λ ≤ 𝜆2. 

Again a new solution at λ = 𝜆2 is obtained. The process of determining the 

range of λ is repeated till a stage is reached beyond which the solution either 

does not change or exist. 

5.2 VARIATION IN THE OBJECTIVE FUNCTION   

         COEFFICIENTS 

Let us define the parametric linear programming model as follow: 

                          Maximize Z = ∑ (𝑐𝑗 + 𝜆𝑐𝑗
′)𝑥𝑗

𝑛
𝑗=1  

subject to the constraints 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 = 𝑏𝑖 ; 𝑖 = 1, 2, … ,𝑚 and 𝑥𝑗 ≥ 0 ; 𝑗 = 1, 2, … , 𝑛 

where 𝜆𝑐𝑗
′ represents predetermined variation in the parameter c and 𝜆 ≥ 0 is 

a scalar parameter. Now the aim is to determine such consecutive values of λ 

at which the current optimal basic feasible solution tends to change with a 

change in the coefficients 𝑐𝑗. Such consecutive values of λ are called critical 

(range) values of λ and are measured from λ = 0. Thus, the given LP problem 

is initially solved by using simplex method at λ = 0. Since changes in cost 
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coefficient 𝑐𝑗 only affect the optimality of the current solution, therefore as λ 

changes only 𝑐𝑗 − 𝑧𝑗 values are affected. Hence, for the perturbed LP problem 

let us calculate 𝑐𝑗 − 𝑧𝑗 values corresponding to non-basic variable columns in 

the optimal simplex table as follows: 

𝑐𝑗(𝜆) − 𝑧𝑗(𝜆) = 𝑐𝑗(𝜆) − 𝑐𝐵(𝜆)𝐵
−1𝑎𝑗 = (𝑐𝑗 + 𝜆𝑐𝑗

′) − (𝑐𝐵 + 𝜆𝑐𝐵
′ )𝑦𝑗 ;  𝑦𝑗 = 𝐵

−1𝑎𝑗  

                    = (𝑐𝑗 − 𝑐𝐵𝑦𝑗) + 𝜆(𝑐𝑗
′ − 𝑐𝐵

′ 𝑦𝑗) = (𝑐𝑗 − 𝑧𝑗) + 𝜆(𝑐𝑗
′ − 𝑧𝑗

′) ; 𝑧𝑗 = 𝑐𝐵𝑦𝑗  

        For a solution to be optimal for all values of λ we must have 𝑐𝑗(λ) – 𝑧𝑗(λ) ≤ 0 

(maximization case) and 𝑐𝑗(λ) – 𝑧𝑗(λ) ≥ 0 (minimization case). These inequalities, for 

a given solution, are also used for determining the range 𝜆1 ≤ λ ≤ 𝜆2, within which the 

current solution remains optimal as follows: 

𝜆 = 𝑀𝑖𝑛 {
−(𝑐𝑗 − 𝑧𝑗)

(𝑐𝑗
′ − 𝑧𝑗

′)
} 

where (𝑐𝑗
′ − 𝑧𝑗

′) > 0 for maximization and (𝑐𝑗
′ − 𝑧𝑗

′) < 0 for minimization. 

 

Example 5.1 Consider the parametric linear programming problem: 

Maximize Z = (3 − 6𝜆)𝑥1 + (2 − 2𝜆)𝑥2 + (5 + 5𝜆)𝑥3  

subject to the constraints 

(i) 𝑥1 + 2𝑥2 + 𝑥3 ≤ 430 (ii) 3𝑥1 + 2𝑥3 ≤ 460  (iii) 3𝑥1 + 4𝑥2 ≤ 420 

and  𝑥1, 𝑥2, 𝑥3 ≥ 0. Perform the parametric analysis and identify all the critical values 

of the 

 parameter 𝜆. 

Solution:  

       The given parametric LP problem can be written in its standard form as: 

Maximize Z = (3 − 6𝜆)𝑥1 + (2 − 2𝜆)𝑥2 + (5 + 5𝜆)𝑥3 + 0𝑠1 + 0𝑠2 + 0𝑠3 

subject to the constraints 

(i)     𝑥1 + 2𝑥2 + 𝑥3 + 𝑠1 = 430 (ii) 3𝑥1 + 2𝑥3 + 𝑠2 = 460 
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(iii) 3𝑥1 + 4𝑥2 + 𝑠3 = 420 and 𝑥1, 𝑥2, 𝑥3, 𝑠1, 𝑠2, 𝑠3 ≥ 0. 

According to the problem, we have: 

𝑐(𝜆) = 𝑐𝑗 + 𝜆𝑐𝑗
′ = (3, 2, 5, 0, 0, 0) + 𝜆(−6,−2, 5, 0, 0, 0) 

Solving the given LP problem with 𝜆 = 0. The optimal solution at 𝜆 = 0 is shown at 

table 5.1. 

 

Table 5.1: Optimal Solution at 𝜆 = 0 

The optimal solution is 𝑥1 = 0, 𝑥2 = 100, 𝑥3 = 230 𝑎𝑛𝑑 𝑀𝑎𝑥 𝑍 = 1350. 

      In order to find the first critical (or range) value of 𝜆 in which the solution shown in  

Table 5.1 remains optimal. We first find 𝑐𝑗
′ − 𝑧𝑗

′ values corresponding to non – basic  

variables 𝑥1, 𝑠1 𝑎𝑛𝑑 𝑠2 columns as follows: 

𝑐𝑗
′ − 𝑧𝑗

′ = 𝑐𝑗
′ − 𝑐𝐵

′ 𝑦𝑗 = (−6, 0, 0) − (−2, 5, 0) [

−1 2⁄
1
2⁄ −1 4⁄

3
2⁄ 0 1

2⁄

2 −2 1

] ; 𝑗 = 1, 4, 5  

           = (−6, 0, 0) − [
1

2
+
15

2
, −1,

1

2
+
5

2
] = (−6, 0, 0) − (8,−1, 3) = (−14, 1, −3) 

       For a maximization LP problem, the current solution will remain optimal provided 

all  𝑐𝑗(𝜆) − 𝑧𝑗(𝜆) ≤ 0. Since 𝑐𝑗
′ − 𝑧𝑗

′ > 0, the first critical value of 𝜆 is given by: 

𝜆1 = 𝑀𝑖𝑛 {
−(𝑐𝑗 − 𝑧𝑗)

(𝑐𝑗
′ − 𝑧𝑗

′) > 0
} = −

(𝑐4 − 𝑧4)

𝑐4
′ − 𝑧4

′ = −
(−1)

1
= 1 
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      This means that for 𝜆1 ∈ [0, 1], the solution given in Table 5.1 remains optimal. 

The objective function value in thisinterval is given by: 

𝑍(𝜆) = 𝑍 + 𝑍′(𝜆) = 𝑐𝐵𝑥𝐵 + 𝜆𝑐𝐵
′ 𝑥𝐵 = 1350 + 950𝜆 

     Now, for values of 𝜆 other than zero in the interval [0, 1], we compute 𝑐𝑗(𝜆) − 𝑧𝑗(𝜆) 

values for non – basic variables 𝑥1, 𝑠1, 𝑠2 as shown in Table 5.2. 

  𝑐1(𝜆) − 𝑧1(𝜆) = (𝑐1 − 𝑧1) + 𝜆(𝑐1
′ − 𝑧1

′) = −4 − 14𝜆 ≤ 0 (𝑜𝑟) 𝜆 ≥
2

7
 

  𝑐4(𝜆) − 𝑧4(𝜆) = (𝑐4 − 𝑧4) + 𝜆(𝑐4
′ − 𝑧4

′ ) = −1 + 𝜆     ≤ 0 (𝑜𝑟) 𝜆 ≥ 1 

𝑐5(𝜆) − 𝑧5(𝜆) = (𝑐5 − 𝑧5) + 𝜆(𝑐5
′ − 𝑧5

′ ) = −2 − 3𝜆   ≤ 0 (𝑜𝑟) 𝜆 ≥ −
2

3
 

The optimal solution of any value of 𝜆 in the interval [0,1] is given in Table 5.2. 

 

Table 5.2 

At 𝜆 = 1, 𝑐4(𝜆) − 𝑧4(𝜆) = 0 in the ′𝑠1′ column. But for 𝜆 > 1, 𝑐4(𝜆) − 𝑧4(𝜆) > 0 

for non – basic variable 𝑠1 and hence the solution in Table 5.2 no longer remains 

optimal. 

 We now enter variable 𝑠1 in the solution to find new optimal solution. The new  

optimal solution shown in Table 5.3 is 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 230 and 

 Max Z = 2300. 
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Table 5.3: Optimal Solution at 𝜆 = 1 

      The solution shown in Table 5.3 will be optimal if all 𝑐𝑗(λ) – 𝑧𝑗(λ) ≤ 0, j = 1, 2, 5. 

The check the optimality we compute these values for the non-basic variables 𝑥1, 𝑥2 

and 𝑠2 as follows: 

  𝑐1(𝜆) − 𝑧1(𝜆) = (𝑐1 − 𝑧1) + 𝜆(𝑐1
′ − 𝑧1

′) = −
9

2
−
27

2
𝜆 ≤ 0 (𝑜𝑟) 𝜆 ≥ −

1

3
 

           𝑐2(𝜆) − 𝑧2(𝜆) = (𝑐2 − 𝑧2) + 𝜆(𝑐2
′ − 𝑧2

′ ) = 2 − 2𝜆     ≤ 0 (𝑜𝑟) 𝜆 ≥ 1,  

where is true 

𝑐5(𝜆) − 𝑧5(𝜆) = (𝑐5 − 𝑧5) + 𝜆(𝑐5
′ − 𝑧5

′ ) = −
5

2
−
5

2
𝜆  ≤ 0 (𝑜𝑟) 𝜆 ≥ −1 

      Therefore, for λ = 1, the 𝑐𝑗(λ) − 𝑧𝑗(λ) ≤ 0 for all non – basic variable columns and 

hence the solution in Table 5.3 is optimal: 𝑥1 = 𝑥2 = 0, 𝑥3 = 230 and Max Z = 2,300. 

       For λ ≤ –2/3 , 𝑐𝑗(λ) – 𝑧𝑗(λ) value for non-basic variable 𝑠2 becomes positive 

and again solution shown in Table 5.3 no longer remains optimal. Entering 

variable 𝑠2 in the basis to find new optimal solution. The variable 𝑠2 will replace 

basic variable 𝑠3 in the basis. The new optimal solution is shown in Table 5.4. 
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Table 5.4: Optimal Solution 

Solution shown in Table 5.4 will be optimal only when 𝑐𝑗λ) – 𝑐𝑗(λ) ≤ 0 ; j = 1, 4, 6 

  𝑐1(𝜆) − 𝑧1(𝜆) = (𝑐1 − 𝑧1) + 𝜆(𝑐1
′ − 𝑧1

′) = 0 − 8𝜆     ≤ 0 (𝑜𝑟) 𝜆 ≥ 0 

  𝑐4(𝜆) − 𝑧4(𝜆) = (𝑐4 − 𝑧4) + 𝜆(𝑐4
′ − 𝑧4

′ ) = −5 − 5𝜆 ≤ 0 (𝑜𝑟) 𝜆 ≥ −1 

𝑐6(𝜆) − 𝑧6(𝜆) = (𝑐6 − 𝑧6) + 𝜆(𝑐6
′ − 𝑧6

′ ) = 2 + 3𝜆    ≤ 0 (𝑜𝑟) 𝜆 ≥
2

3
  

     Thus for –1 ≤ λ ≤ –2/3, the optimal solution is: 𝑥1 = 0, 𝑥2 = 105, 𝑥3 = 220 and               

 Max Z = 1310 + 890 λ. Hence Table 5.2 to 5.4 give family of optimal solutions for  

– 2/3 ≤ λ ≤ 1, λ ≥ 1 and –1≤ λ ≤ –2/3. The critical value of λ are –2/3 and 1. 

Example 5.2 Consider the linear programming problem: 

Minimize Z = −𝑥1 − 3𝑥2  

subject to the constraints 

                       (i) 𝑥1 + 𝑥2 ≤ 6  (ii) −𝑥1 + 2𝑥2 ≤ 6  and 𝑥1, 𝑥2 ≥ 0. 

The optimal solution to this solution is given in Table 5.5. 
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Table 5.5: Optimal Solution at 𝜆 = 0 

Solve this problem of the variation in the cost vector is 𝑐′ = (2, 1, 0, 0). Identify all the 

critical values of parameter 𝜆. 

Solution: The given parametric LP model in its standard form is stated as: 

Minimize Z = (−1 + 2𝜆)𝑥1 + (−3 + 𝜆)𝑥2 + 0𝑠1 + 0𝑠2 subject to the constraints 

(i) 𝑥1 + 𝑥2 + 𝑠1 = 6  (ii) −𝑥1 + 2𝑥2 + 𝑠2 = 6 and 𝑥1, 𝑥2, 𝑠1, 𝑠2 ≥ 0 

When 𝜆 = 0, the given parametric LP problem reduces to the ordinary LP 

problem whose optimal solution: 𝑥1 = 2, 𝑥2 = 4 and Max Z = –14 is given in Table 

5.5. 

 In order to find the first critical value of λ other than zero for which the solution 

shown in Table 5.6 is optimal, we first find 𝑐𝑗
′ − 𝑧𝑗

′ values corresponding to the non – 

basic variables 𝑠1 and 𝑠2 as follows: 

𝑐𝑗
′ − 𝑧𝑗

′ = 𝑐𝑗
′ − 𝑐𝐵

′ 𝑦𝑗 = (0, 0) − (2, 1) [
2
3⁄ −1 3⁄

1
3⁄

1
3⁄
] ; 𝑗 = 3, 4 

                                                 = (0, 0) − [
5

3
, −

1

3
] = [−

5

3
,
1

3
] 

         Since LP problem is of minimization, at the optimal solution we must have                   

   𝑐𝑗(λ) – 𝑧𝑗(λ) ≥ 0 for all j. Also as 𝑐3
′ − 𝑧3

′ < 0, the first critical value of λ is given by 

𝜆1 = 𝑀𝑖𝑛 {
−(𝑐𝑗 − 𝑧𝑗)

(𝑐𝑗
′ − 𝑧𝑗

′) < 0
} = −

(𝑐3 − 𝑧3)

𝑐3
′ − 𝑧3

′ =
−(5 3⁄ )

−5 3⁄
= 1 

       This means that for 𝜆1 ∈ [0, 1], the solution in Table 5.6 remains optimal. The 
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objective function value in this interval is given by 

𝑍(𝜆) = 𝑍 + 𝑍′(𝜆) = 𝑐𝐵𝑥𝐵 + 𝜆𝑐𝐵
′ 𝑥𝐵 = −14 + 𝜆[2, 1] [

2
4
] = −14 + 8𝜆 

      Thus for values of λ other than zero in the interval [0, 1], we compute the solution 

as  shown in Table 5.6.         

         

 

Table 5.6 

The optimal solution given in Table 5.6 will remain optimal if all  

𝑐𝑗(λ) − 𝑧𝑗(λ) ≥ 0 ; 𝑗 = 3, 4 

  𝑐3(𝜆) − 𝑧3(𝜆) = (𝑐3 − 𝑧3) + 𝜆(𝑐3
′ − 𝑧3

′ ) = (
5

3
) − (

5

3
) 𝜆 

  𝑐4(𝜆) − 𝑧4(𝜆) = (𝑐4 − 𝑧4) + 𝜆(𝑐4
′ − 𝑧4

′ ) = (
2

3
) + (

1

3
) 𝜆 

      At 𝜆 = 1, 𝑐3(𝜆) − 𝑧3(𝜆) = 0 and 𝑐4(𝜆) − 𝑧4(𝜆) > 0. So entering variable 

𝑠1 in the basis. The new solution is shown in Table 5.7. 
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Table 5.7: Optimal Solution at 𝜆 = 1 

       Since LP problem is of minimization, therfore for the solution to be optimal we 

must have 𝑐𝑗(𝜆) − 𝑧𝑗(𝜆) ≥ 0 for all j. But 𝑐𝑗(𝜆) − 𝑧𝑗(𝜆) ≥ 0 for non – basic variable 

columns 1 and 4 at 𝜆 = 1. Thus the current solution: 𝑥1 = 0, 𝑥2 = 3 and Min Z = – 6 is 

the optimal solution. However, we need to find the new critical value of λ in the 

interval [1, λ2] over which the solution shown in Table 5.7 remains optimal. For this 

computing: 

𝜆2 = 𝑀𝑖𝑛 {
−(𝑐𝑗 − 𝑧𝑗)

(𝑐𝑗
′ − 𝑧𝑗

′) < 0
} = −

(𝑐4 − 𝑧4)

𝑐4
′ − 𝑧4

′ =
−(3 2⁄ )

−(1 2⁄ )
= 3 

     This shows that if λ ∈ [1, 3], the 𝑐𝑗(𝜆) − 𝑧𝑗(𝜆) ≥ 0  for j = 1, 4 and the 

solution shown in Table 5.7 is optimal. In the interval [1, 3], the value of 

objective function is given by 

𝑍(𝜆) = 𝑍 + 𝑍′(𝜆) = 𝑐𝐵𝑥𝐵 + 𝜆𝑐𝐵
′ 𝑥𝐵 = [0,−3] [

3
3
] + 𝜆[0, 1] [

3
3
] = −9 + 3𝜆 

      At 𝜆 = 3, 𝑐4(𝜆) − 𝑧4(𝜆) = 0, so entering variable 𝑠2 into the basis and remove 𝑥2 

from the basis to get a new solution as shown in Table 5.8. 
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Table 5.8: Optimal Solution at 𝜆 = 3 

All 𝑐𝑗(𝜆) − 𝑧𝑗(𝜆) ≥ 0 in Table 5.8. However, we find the interval [3, λ3] in which this 

 solution remains optimal as follows: 

𝜆3 = 𝑀𝑖𝑛 {
−(𝑐1 − 𝑧1)

(𝑐1
′ − 𝑧1

′) < 0
} 

But all (𝑐𝑗
′ − 𝑧𝑗

′) ≥ 0, this solution will remain optimal for all values of 𝜆 in the interval 

[3, ∞]. 

 

5.3 VARIATION IN THE AVAILABILITY OF RESOURCES   

      (RHS) VALUES 

            Let us define the parametric linear programming model as follows: 

                     Maximize Z = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1   

subject to the constraints 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 = 𝑏𝑖 ± 𝜆𝑏𝑖

′ ; 𝑖 = 1, 2, … ,𝑚 and 𝑥𝑗 ≥ 0 ; 𝑗 = 1, 2, … , 𝑛 

where 𝑏𝑖 ± 𝜆𝑏𝑖
′ is the predetermined variation in resource values (right-hand 

side values), where 𝜆 ≥ 0 is a scalar parameter. Now our aim is to find the 

range (or critical values) of λ so that the current optimal solution remains 

unchanged with a change in the right-hand side constants 𝑏𝑖, for all i. 

     Let 𝐵0 and 𝑥𝐵0 = 𝐵0
−1𝑏 b be the optimal basis and optimal basic feasible 
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solution, respectively, of the original LP problem when it is solved at λ = 0. 

      If b is replaced by b + λb' , then the optimality condition 𝑐𝑗 − 𝑧𝑗 will not be 

affected. However, such changes will affect the value of the basic variables. 

The new values are given by: 

𝑥𝐵(𝜆) = 𝐵
−1(𝑏 + 𝜆𝑏′) = 𝐵−1𝑏 + 𝜆𝐵−1𝑏; = 𝑥𝐵 + 𝜆𝑥𝐵

′  

      Now as long as 𝑥𝐵(λ) ≥ 0, the current basis remains optimal. Thus, this 

criterion can be used to determine the range of λ, within which the solution 

remains optimal, as follows: 

𝜆 = 𝑀𝑖𝑛 {
𝑥𝐵𝑖

−𝑥𝐵𝑖
′ < 0

} =
𝑥𝐵𝑟
−𝑥𝐵𝑟

′  

       Let λ = 𝜆1. Then for λ ∈ [0, 𝜆1], the current solution remains optimal and 

at this solution the value of the objective function is given by 𝑍(𝜆) = 𝑍 +

𝜆𝑍′ = 𝑐𝐵𝑥𝐵 + 𝜆𝑐𝐵𝑥𝐵
′ . At 𝜆1 the current basis 𝑥𝐵 (right hand side) is replaced 

by 𝑥𝐵(𝜆) = 𝐵
−1(𝑏 + 𝜆𝑏′ ) and 𝑥𝐵𝑟 is removed from the basis by the usual 

simplex method. The process of finding the new range [𝜆1, 𝜆2] of values of λ 

is repeated, over which the new basis is optimal. The process is terminated 

when 𝑥𝐵𝑖
′ = 𝐵−1𝑏′ ≥ 0 for all i. This also implies that the current basis is 

optimal for all values of λ greater than or equal to the last value of λ. 

 

Example 5.3 Consider the linear programming problem: 

Maximize Z = 3𝑥1 + 2𝑥2 + 5𝑥3  

subject to the constraints 

(i)   𝑥1 + 2𝑥2 + 𝑥3 ≤ 430 + λ  (ii) 3𝑥1 + 2𝑥3 ≤ 460 − 4λ 

(iii) 𝑥1 + 4𝑥2 ≤ 420 − 4λ and 𝑥1, 𝑥2, 𝑥3 ≥ 0 

Determine the critical value (range) of λ for which the solution remains optimal basic 

feasible. 
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Solution: 

       The given parametric LP problem can be written in its standard form as: 

Maximize Z = 3𝑥1 + 2𝑥2 + 5𝑥3 + 0𝑠1 + 0𝑠2 + 0𝑠3  

subject to the constraints 

(i)   𝑥1 + 2𝑥2 + 𝑥3 + 𝑠1 = 430 + λ  (ii) 3𝑥1 + 2𝑥3 + 𝑠2 = 460 − 4λ 

(iii) 𝑥1 + 4𝑥2 + 𝑠3 = 420 − 4λ and 𝑥1, 𝑥2, 𝑥3, 𝑠1, 𝑠2, 𝑠3 ≥ 0. 

The optimal solution when λ = 0 is shown in Table 5.9. 

 

Table 5.9: Optimal Solution at λ = 0 

     In order to find the range in which the solution shown in Table 5.9 is 

optimal, we first calculate 

𝑥𝐵
′ = 𝐵−1𝑏′ 

[

𝑥2
𝑥3
𝑠3
] = [

1 2⁄ −1 4⁄ 0
0 1 2⁄ 0
−2 0 1

] [
1
−4
−4
] = [

3 2⁄
−2
−10

] 

For a fixed λ, values of basic variables in Table 5.9 becomes: 

𝑥2 = 100 + (
3

2
) λ, 𝑥3 = 230 − 2λ and 𝑠3 = 20 − 10λ. 

The optimal solution shown in Table 5.9 will remain optimal as long as: 

  𝑥2 = 100 + (
3

2
) λ ≥ 0 (or) λ ≤ −

200

3
 

  𝑥3 = 230 − 2λ    ≥ 0 (or) λ ≤ 115 
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  𝑠3 = 20 − 10λ    ≥ 0 (or) λ ≤ 2 

       Consequently the solution in Table 5.9 will remain optimal between – 

200/3 and 2, i.e., – 200/3 ≤ λ ≤ 2. In particular for any λ ∈ [0, 2], the objective 

function value and the right hand side values are given by 

𝑍(λ) = 𝑐𝐵𝑥𝐵 + λ𝑐𝐵𝑥𝐵
′ = (2, 5, 0) [

100
230
20

] + λ(2, 5, 0) [
3 2⁄
−2
−10

] = 1350 − 7λ 

𝑥𝐵(λ) = 𝑥𝐵 + λx𝐵
′ = [

100
230
20

] + λ [
3 2⁄
−2
−10

] = [
100 + 3λ 2⁄
230 − 2λ
20 − 10λ

] 

      Evidently for λ > 2, the new solution will be primal infeasible because 

𝑥𝐵3(= 𝑠3) will become negative. The solution at λ = 2 is shown in Table 

5.10. 

Table 5.10: Optimal Solution at λ = 2 

       For λ > 2, the basic variable 𝑠3 becomes negative. Consequently solution 

becomes infeasible. Therefore dual simplex method is applied to find the new 

optimal solution.  

Remove 𝑠3 (because 𝑥𝐵3 ≤ 0) from the basis. Determine the ratio 

 {(𝑐𝑗 − 𝑧𝑗) 𝑦𝑟𝑗⁄  ;  𝑦𝑟𝑗 < 0} = 1 2⁄  (corresponds to 𝑠1), and enter 𝑠1 into the basis. The 

new solution is shown in Table 5.11. 
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Table 5.11: Optimal Solution at λ > 2 

     In order to find the next critical value of λ in the interval [2, λ2] in which the 

solution shown in Table 5.10 remains optimal, we first find 

𝑥𝐵
′ = 𝐵−1𝑏′ = [

0 0 1 4⁄

0 1 2⁄ 0
1 −1 2⁄ −1 2⁄

] [
1
−4
−4
] = [

−1
−2
5
] 

     The solution shown in Table 5.11 will remain optimal as long as basic variable 

 𝑥2, 𝑥3, 𝑎𝑛𝑑 𝑠1 remain non – negative, i.e., 

 𝑥2 = 105 − λ ≥ 0 (or) λ ≤ 105 ;  𝑥3 = 230 − 2λ ≥ 0 (or) λ ≤ 115 ; 

 𝑠1 = −10 + 5λ ≥ 0 (or)λ ≥ 2 

Thus the solution is optimal for all values of λ in the range 2 ≤ λ ≤ 105. 

      For λ ∈ [2 ,105], the optimal objective function value and the right hand side 

values are given by 

𝑍(λ) = 𝑐𝐵𝑥𝐵 + λ𝑐𝐵𝑥𝐵
′ = (2, 5, 0) [

105
230
10

] + λ(2, 5, 0) [
−1
−2
5
] = 1360 − 12λ 

𝑥𝐵(λ) = 𝑥𝐵 + λx𝐵
′ = [

105
230
10

] + λ [
−1
−2
5
] = [

105 − λ
230 − 2λ
10 + 5λ

] 

Evidently, if λ > 105, the new solution will be primal infeasible because basic 

variable 𝑥2 becomes negative. Hence, no optimal solution exists for all 

 λ ≥ 105. 

For λ ≤ – 200/3, the basic variable in Table 5.11 becomes negative.  
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Applying dual simplex method to find solution for λ ≤ – 200/3. Entering non-

basic variable 𝑠2 into the basis to replace basic variable 𝑥2. The new optimal solution 

is shown in Table 5.12. 

 

Table 5.12: Optimal Solution at λ = 105 

      The critical values of λ for which solution shown in Table 5.12 remains optimal 

are calculated as follows: 

[

𝑠2
𝑥3
𝑠3
] = 𝐵−1𝑏′ = [

−2 1 0
1 0 0
0 0 1

] [
1
−4
−4
] = [

−6
1
−4
] 

Hence the basic solution in Table 5.12 will remain optimal provided 

𝑥3 = 430 + 𝜆 ≥ 0 (𝑜𝑟) 𝜆 ≥ −430 ;  𝑠2 = 400 − 6𝜆 ≥ 0 (𝑜𝑟) 𝜆 ≤
200

3
 ;  

𝑠3 = 420 − 4𝜆 ≥ 0 (𝑜𝑟) 𝜆 ≤ 105  

This implies that the solution is optimal in the range −430 ≤ 𝜆 ≤ −
200

3
. 

      For λ < – 430, the basic variable 𝑥3 in Table 5.12 becomes negative. As there is 

no negative entry in 𝑥3 row of Table 5.13, the prime solution is infeasible. Hence, 

there exists no optimal solution to the problem for all λ < – 430. 

     Hence, Table 5.9, Table 5.11 and Table 5.12 gives range of λ values, 

 – 200/3 ≤ λ ≤ 2, 2 ≤ λ ≤ 105 and – 430 ≤ λ ≤ 200/3, respectively for which solution is 

optimal. 
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Example 5.4 Consider the linear programming problem: 

Maximize Z = 4𝑥1 + 6𝑥2 + 2𝑥3  

subject to the constraints 

(i) 𝑥1 + 𝑥2 + 𝑥3 ≤ 3  (ii) 𝑥1 + 4𝑥2 + 7𝑥3 ≤ 9 and 𝑥1, 𝑥2, 𝑥3 ≥ 0. 

The optimal solution to this LP problem is shown below: 

Table 5.13: Optimal Solution 

Solve the problem if the variation in right-hand side vector is: (3, –3)T. Perform 

complete parametric analysis and identify all critical values of parameter λ. 

Solution:  

     The given parametric LP problem can be written in its standard form as: 

Maximize Z = 4𝑥1 + 6𝑥2 + 2𝑥3 + 0𝑠1 + 0𝑠2  

subject to the constraints 

(i) 𝑥1 + 𝑥2 + 𝑥3 + 𝑠1 = 3 + 3λ  (ii) 𝑥1 + 4𝑥2 + 7𝑥3 + 𝑠2 = 9 − 3λ  

and 𝑥1, 𝑥2, 𝑥3, 𝑠1, 𝑠2 ≥ 0. 

     The optimal solution when λ = 0 is given in Table 5.13. For values of λ other than 

zero, the values of right-hand side constants change because of the variation in 

vector b′. The new values are computed as follows: 

[
𝑥1
𝑥2
] = 𝐵−1𝑏′ = [

4

3
−
1

3

−
1

3

1

3

] [
3
−3
] = [

5
−2
] 
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      As λ changes, values of basic variables 𝑥1 and 𝑥2 also change and solution  

Table 5.13 remains optimal provided value of basic variables remains non-negative,  

i.e., solution remains optimal provided 

𝑥1 = 1 + 5λ ≥ 0 or λ ≥ – 1/5, 

                                              𝑥2 = 2 – 2λ ≥ 0 or λ ≤ 1. 

      Thus, solution remains optimal in the range –1/5 ≤ λ ≤ 1 and is given by: 

 x1 = 1 + 5λ, 𝑥2 = 2 – 2λ, 𝑥3 = 𝑥4 = 𝑥5 = 0, and Max Z = 16 + 8λ. 

For λ > l, the basic variable 𝑥2 becomes negative. Consequently solution 

becomes infeasible for the primal, but remains feasible for the dual because all       

 𝑐𝑗 − 𝑧𝑗 ≤ 0. Apply dual simplex method to find the new optimal solution for λ > 1.  

Evidently 𝑥2 is the variable that leaves the basis. Determine the ratio                            

{(𝑐𝑗 − 𝑧𝑗)/𝑦𝑟𝑗 ; 𝑦𝑟𝑗 < 0} = 10 (corresponding to 𝑠1) and enter 𝑠1 into the basis.  

The new solution is shown in Table 5.14. 

         

 

Table 5.14: Optimal Solution 

The basic solution shown in Table 5.14 is: 

𝑥1 = 9 – 3𝜆 ;  𝑥2 = 0 ;  𝑥3 = 0 ;  𝑠1 = −6 +  6𝜆 ; 𝑠2 = 0 and Max Z = 36 – 12λ. 

This solution will remain optimal provided: 

𝑥1 = 9 – 3𝜆 ≥ 0 (𝑜𝑟) 𝜆 ≤ 3 𝑎𝑛𝑑 𝑠1 = –  6 +  6𝜆 ≥ 0 (𝑜𝑟) 𝜆 ≥ 2. 
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i.e., solution is optimal for all 1 ≤ λ ≤ 3. 

           For λ > 3, the basic variable 𝑥1 becomes negative. As there is no negative 

 coefficient in the 𝑥1 row, the primal solution is infeasible. Hence there exists no 

optimal solution to the problem for all λ > 3. 

For λ ≤ –1/5, the basic variable 𝑥1 in Table 5.14 becomes negative.  

Consequently, solution becomes infeasible for the primal, but remains feasible  

for the dual, because all 𝑐𝑗 − 𝑧𝑗 ≤ 0. Applying dual simplex method to find the new 

optimal solution for λ ≤ –1/5. Evidently 𝑥1 is the variable that leaves the basis.  

Determine the ratio {(𝑐𝑗 − 𝑧𝑗) / 𝑦𝑟𝑗 ; 𝑦𝑟𝑗  < 0} = {6, 2}. Enter 𝑠2  into the basis. 

The new solution is shown in Table 5.15. 

Table 5.15: Optimal Solution 

The basic solution shown in Table 5.15 is: 

 𝑥1 = 0 ; 𝑥2 = 3 + 3𝜆 ;  𝑥3 = 0 ;  𝑥4 = 0 ;  𝑥5 =–3 – 15𝜆 and Max Z = 18 + 18λ. 

      This solution will remain optimal provided 𝑥2 = 3 + 3λ ≥ 0 or λ ≥ – 1 and  

𝑥5 = – 3 – 15λ ≥ 0 or λ ≤ –1/5. For λ < –1, the basic variable 𝑥2 in Table 5.15 

becomes negative. As there is no negative coefficient in the 𝑥2 row, the primal 

solution is infeasible. 

 Hence there exists no optimal solution to the problem for all λ < – 1. Thus  

Tables 5.13, 5.14 and 5.15 give families of optimal solutions for  

– 1/5 ≤ λ ≤ 1, 1 ≤ λ ≤ 3 and – 1 ≤ λ ≤ 1/5 respectively. 
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Let Us Sum Up 

            We have studied about parametric linear programming and their  parameters  

I. Variation in objective function coefficients,𝑐𝑗 

II. Variation inresources availability, 𝑏𝑖  

To solve related problems. 

 

Check Your Progress  

 

47. 𝑀𝑎𝑥 𝑍 = 𝜆𝑥 − 𝑦 

       Subject to the constraints, (i) 3𝑥 − 𝑦 ≥ 4, (𝑖𝑖)2𝑥 + 𝑦 ≤ 3 

                                                 and −∞ < 𝛼 ≤ 𝜆 ≤ 𝛽 ≤ ∞ 

      where  ∞ is an arbitrary, and small scalar but finite and 𝛽 is an arbitrary and large    

      scalar number but finite. Perform a complete parametric programming analysis. 

48. (a) Max𝑍 = (𝜆 − 1)𝑥1 + 𝑥2 

            Subject to (i) 𝑥1 + 2𝑥2 ≤ 10, (ii) 2𝑥1 + 𝑥2 ≤ 11, 

                             (iii) 𝑥1 − 2𝑥2 ≤ 3 

            and               𝑥1, 𝑥2 ≥ 0 

    (b) 𝑀𝑖𝑛 𝑍 = −𝜆𝑥1 − 𝜆𝑥2 − 𝑥3 + 𝑥4 

             Subject to (i) 3𝑥1 − 3𝑥2 − 𝑥3 + 𝑥4 ≥ 5 

                          (ii) 2𝑥1 − 2𝑥2 − 𝑥3 + 𝑥4 ≥ 3 

             and           𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 

  Perform a complete parametric programming analysis, Identify the range of critical    

   values of the parameter 𝜆 and all optimal basic feasible solutions. 

49. 𝑀𝑎𝑥 𝑍 = 3𝑥1 + 2𝑥2 + 5𝑥3 

           Subject to (i) 𝑥1 + 2𝑥2 + 𝑥3 ≤ 430 + 100𝜆 

                    (ii) 3𝑥1 + 2𝑥3 ≤ 460 − 200𝜆 

                    (iii) 𝑥1 + 4𝑥2 ≤ 420 + 400𝜆 

            and           𝑥1, 𝑥2, 𝑥3 ≥ 0 

Preform parametric analysis to determine the range of 𝜆 for which the solution 

remains optimal basic feasible.  

50. Max𝑍 = (6 − 𝜆) 𝑥1 + (12 − 𝜆)𝑥2 + (4 − 𝜆)𝑥3 

        Subject to (i) 3𝑥1 + 4𝑥2 + 𝑥3 ≤ 2, (ii) 𝑥1 + 3𝑥2 + 2𝑥3 ≤ 1 
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         and      𝑥1, 𝑥2, 𝑥3 ≥ 0 

Perform a complete parametric programming analysis and identify all the critical 

values of the programming 𝜆. 

51. Max𝑍 = (4 − 10𝜆) 𝑥1 + (8 − 4𝜆)𝑥2 

       Subject to (i) 𝑥1 + 𝑥2 ≤ 4, (ii) 2𝑥1 + 𝑥2 ≤ 3 − 𝜆 

        and      𝑥1, 𝑥2 ≥ 0 

  Study the variation in the optimum solution with parameter 𝜆, where−∞ < 𝜆 < ∞. 

 

5.4 GOAL PROGRAMMING 

Objectives 

After studying this section, students should  able to appreciate the need of a goal  

programming approach for solving multi-objective decision problems. Distinguish 

between LP and GP approaches for solving a business decision problem. Formulate 

GP model of the given multi-objective decision problem. Understand the method of 

assigning different ranks and weights to unequal multiple goals. Use simplex method 

for solving a GP model. 

           LPP is formulated and solved to optimize a single objective function involving 

profit or cost under the set of constraints.  A single objective function is easy to solve 

but is not often represent the real life situation due to divergent and conflicting 

objectives of any business or service organization.  Hence it is necessary to attain a 

satisfactory level of achievementamong multiple and conflicting objectives or goals.  

The technique of deriving a best possible “satisfactory‟ level of goal attainment is 

called goal programming (GP).  

          A problem is model into a GP model in a similar manner as that of the LP 

model.  However, the GP model accommodates multiple and often conflicting goals 

in a particular priority order.  A particular priority structure is established by ranking 

and weighting various goals and sub-goals in accordance with their importance.  The 

priority structure helps to deal with all goals, in such a way that more important goals 

are achieved first at the expense of less important goals.  
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5.5 DIFFERENCE BETWEEN LP AND GP APPROACH 

          LP has two major limitations from its application point of view 

 (i) single objective function and (ii) same unit of measurement of various resources.  

i) The LP model has a single objective function to be optimized such as profit 

 maximization, cost minimization etc.  However, in actual practice the decision maker  

may like to get simultaneous solution to a complex system of competing objectives.  

The solution of any LPP is based on the cardinal value such as profit or cost, where  

as GP allows an ordinal solution.  As it may not be possible to obtain information 

about the value or cost of a goal, their upper and lower limits are determined.  

ii) Whenever there are multiple incommensurable (different units of 

measurement) goals, LP incorporates only one of these goals in the objective 

function and treats the remaining goals as constraints.  

In goal programming, goals are given an ordinal ranking in terms of their 

contributions to the organization.  

 

5.6 CONCEPT OF GOAL PROGRAMMING  

          The concept of GP was introduced by Charnes and Cooper in 1961.  They 

suggested a method for solving infeasible LPP arising from various conflicting 

resource constraints (goals).  Some of the examples of multiple conflicting goals are 

(1) maximizing profits and increase wages paid to employees.   

(2) upgrade product quality and reduce product cost and 

 (3) reduce credit losses and increase sales.  

The solution of the GP problem involves achieving some higher goals first, before the 

lower order goals are considered.  It is not possible to achieve every goal to the 

extend desired by the decision maker.  GP attempts to achieve a satisfactory level of 

goals rather than optimum solution for a single goal.  

            In GP, instead of trying to minimize or maximize the objective function directly  

as in LPP, the deviations from established goals within the given set of constraints 

are minimized.  The deviational variables are represented in two dimensions, both 

positive and negative deviations from each goal and sub goal.  The objective function 

then becomes the minimization of a sum of these deviations based on the relative 

importance within the priority structure assigned to each deviation. 
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5.7 GOAL PROGRAMMING MODEL FORMULATION    

5.7.1 Single Goal with Multiple Sub goals  

             A goal is the result desired by a decision maker.  The goal may be 

underachieved, fully achieved or overachieved within the given decision 

environment.  The degree of goal achievement depends upon the „relative 

managerial effort applied to an activity.  

If the target level for the ith goal is fully achieved then the ith constraint is written as:   

 

To allow for underachievement or overachievement, the above stated ith goal can  

be rewritten as:                

Where,  = negative deviation from ith goal (under achievement)  

               = positive deviation from ith goal (over achievement)  

Since both under and over achievement of a goal can-not be achieved 

simultaneously, one or both of these deviational variables (  be zero in the 

solution.  

                                                     i.e., .   

i.e., if one assumes a positive value in the solution, the other must be zero and vice-

versa.   

Remark  

The deviational variable in GP model  are equivalent to slack and surplus 

 variables in LPP, respectively.  

The deviational variable  (called surplus variable in LP) is removed from 

objective function of GP when over achievement is acceptable.  Similarly, if under 

achievement is acceptable, (called slack variable in LPP) is removed from 
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objective function of GP.  But if exact attainment of the goal is desired, then both 

 are included in the objective function.  

 

Example 5.7.1  

A manufacturing firm produces two types of products A and B.  The unit profit of 

producer A is Rs.100/- and that of product B is Rs.50/-.  The goal of the firm is to 

earn a total profit of exactly Rs.700/- in the next week.  Formulate as a GPP. 

 Solution: 

Let x1 and x2 be number of units of product A and B to be produced respectively.  

Therefore, single goal of profit maximization is stated as:  Maximize z = 100x1 + 

50x2.  As the goal of the firm is to earn a total profit of exactly Rs.700 per week, the 

above single goal can be restated to allow for under and overachievements as  

 

Therefore the goal programming model can be formulated as: 

 

 

Where  = under achievement of the profit goal of Rs.700/-. 

            = over achievement of the profit goal of Rs.700/-. 

Remark:  

If the profit goal is not completely achieved, the slack in the profit goal will be 

expressed by negative deviation  from the goal.  But if the solution shows a profit 

in excess of Rs.700/-, the surplus in the profit will be expressed by positive deviation, 

, from the goal.  

If the profit goal of Rs.700/- is exactly achieved, both  will be zero. 
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5.7.2 Equally Ranked Multiple Goals 

Example 5.7.2  

A manufacturing firm produces two types of products A and B.  The unit profit of a  

producer A is Rs.100/- and that of product B is Rs.50/-.  The goal of the firm is to 

earn a total profit of exactly Rs.700/- in the next week.  Let us suppose that the 

manager in addition to the profit goal of Rs.700/-, also wants to achieve sales volume 

for products A and B close to 5 and 4 respectively.  Formulate this problem as a 

GPP.  

Solution:  

The constraints of the problem can by stated as       

100x1 + 50x2 = 700 (profit target goal)            

 x 1 ≤ 5 and x2 ≤ 4 (sales target goal)   

The corresponding GP model is   

               

   

  

Where   are under achievement and over achievement of the profit goal  

of Rs.700/-,  represent underachievement of sales volume for product A 

and B respectively.  

Remark:  

Since sales target goals are given as the maximum possible sales volume,  

 are not included in the sales target constraints.  

Example 5.7.3 

An office equipment manufacturer produces two kinds of products, chairs and lamps.  

 Production of either a chair or a lamp requires 1 hour of production capacity in the 

plant.   
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The plant has a maximum production capacity of 50 hours per week.  Because of the  

limited sales capacity, the maximum numbers of chairs and lamps that can be sold 

are 6 and 8 per week respectively.  The gross margin from the sale of a chair is 

Rs.90 and Rs.60 for a lamp. The plant manager decides to determine the number of 

units of each product that should be produced per week in consideration of the 

following set of goals:  

i) Available production capacity should be fully utilized but not exceeded.  

ii) Sales of two products should be as much as possible. iii) Overtime 

should not exceed 20 per cent of available production time.  

Formulate this problem as a GP model so that the plant manager may achieve his 

goals as closely as possible.  

 

Solution:  

        Let x1, x2 be the number of units of chair and lamp to be produced respectively.  

The first goal is to attain the production capacity with the target established at  

50 hours/week,  hence the corresponding constraint is  

 

Where  = under utilization of production capacity  

        = over utilization of production capacity.  

The second goal pertains to maximization of sales, hence the sales constraints are   

 

As the sales goals are the maximum sales volumes,  will not appear in 

these constraints.  

 The third goal pertains to minimization of overtime as much as possible, the 

corresponding constraint is  
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Where  = overtime beyond 50 hours  

            = overtime less than 20 per cent of goal constraints  

            = overtime more than 20 per cent of goal constraints.  

The required GP model is   

                

Subject to  

             

                

 

5.7.3 Ranking and Weighting of Unequal Multiple Goals 

            Multiple and conflicting goals are usually not of equal rank.  Hence to achieve 

these goals according to their importance a “pre-emptive” priority factor P1, P2,… is 

assigned to goal deviations in the formulation of the objective function to be 

minimized.  The P’s do not assume numerical values; they are simply a convenient 

way of indicating that one goal is more important than another. 

           The priority factors have the relationship of P1>> P2>> P3 … Pk>> Pk+1>>….   

Where >> means “more important than”.  That is, Pj> n Pj+1 (j= 1, 2, 3…, k), where n 

is very large number, implies that multiplication by ‘n’ cannot make a lower order goal 

as important as the higher order goal.  Hence, a lower priority goal will never be 

achieved at the expense of higher priority goal.  

           It is possible that two or more goals may be assigned equal priority factor.  

Also within a given priority there may be sub goals of unequal importance which 

must be given due weightage.  

 That is different weights are assigned to the individual deviational variable with 

identical priority factor in the GP objective function.  It is important to note that 

deviational variable of the same priority level must have the same unit of 

measurement.  
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5.7.4 General GP Model  

The general goal linear programming model with m goals may be stated as   

          

subject to linear constraints  

 

 

where  represents decision variable which is under the control of the DM whereas  

ranking coefficient Pr, weights wi, coefficient matrix aij and constant bi are not under 

direct control of  DM.   are deviational variables representing the amount of 

under and over achievement of ith goal respectively.  

 

5.8 GRAPHICAL SOLUTION METHOD FOR GOAL 

PROGRAMMING 

A graphical method can also be used to solve GPP with two decision variables like 

LPP. 

 Step 1:  Graph all the constraints and identify the feasible region, after setting the 

deviational variables to zero.  

Step 2:  Identify the top–priority solution.  This is accomplished by determining the 

point or points within the feasible region that satisfies the highest priority goal.  

Step 3:  Move to the goal having the next highest priority and determine the best 

solution, such that, the best solution does not degrade the solution already achieved 

for goals of higher priority.  

Step 4:  Repeat step-3 until all priority levels have been investigated.  
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Example 5.8.1  

A manufacturing firm produces two types of products A and B.  According to past 

 experience, production of either product A or B requires an average of one hour in 

the plant. 

  The plant has a normal production capacity of 400 hours a month.  The marketing 

department of the firm reports that because of limited market, the maximum number 

of products A and B that can be sold in a month are 240 and 300 respectively.  The 

net profit from the sale of products A and B are Rs.800 and Rs.400 respectively.  

The manager of the firm has set the following goals arranged in the order of 

importance (pre-emptive priority factor).   

P1: He wants to avoid under utilization of normal production capacity.                                

P2:  He wants to sell maximum possible units of Products A and B.  Since the net 

profit from the sale of product A is twice the amount from product B, the manager 

has twice as much desire to achieve sales for product A as for product B.                                        

 P3:  He wants to minimize the overtime operation of the plant as much as possible. 

Formulate and solve the given problem by graphical method of goal programming.  

Solution: Let x1, x2 be the number of units of product A and B to be produced 

respectively.  

Production capacity constraint is  

Where is underutilization (idle time) of production capacity.       

            is overtime operation of the normal capacity.  

As sales goals are maximum possible sales volume, positive deviation will not 

appear in the sales volume, hence sales constraint can be expressed as   

                                     

Where  are under-achievements of the sales goals for product A and B  

respectively. Corresponding GPP is  

                      



 

223 

 

Subject to       

                        

 

Graphical solution method  

 

As under and over utilization of the plant capacities are allowed, both the deviational  

variables  are indicated by arrows in the graph. Similarly  are 

also indicated by arrows in the graph. 

As the 1st goal is to minimize , it is completely achieved on and above the line ED.  

Hence .  In the 2ndgoal, as the differential weight of product A is twice, we try 

to achieve the sales goal of product A first and which can be completely achieved on 

and right to the line DB. Hence . Also, the 2nd priority given to product B is 

completely achieved on and above the line EB. Hence .                                                                      

     First two goals are completely achieved at the point B in the feasible region 

(2)B(3). Hence . The 3rd goal is to minimize over time 

operation, which cannot be achieved at the expense of first two goals.  To find B 

solve equations (2) and (3), we get .  Using all these values in (1), 

we get, .  
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The solution to this problem is  

 

Remark:   

If the 2nd priority is given to the over time operation and 3rd priority to sales goal 

constraint then the solution will be on the line DE.  As the product A has more weight 

than product B, the solution will be at the point D which satisfies the higher weight 

product A at the expense of a lower weight product B.  Hence the solution is       

 . 

 

Example 5.8.2 

A camera company manufactures two types of 35 mm cameras. The production 

process for manufacturing the cameras is such that two departmental operations are 

required.  To produce their standard camera requires two hours of production time in 

department 1 and 3 hours in department 2.  To produce their deluxe model requires 

4 hours of production time in department 1 and 3 hours in department 2.  Currently, 

80 hours of labour are available each week in each of the departments.  This labour 

time is somewhat restrictive factor since the company has a general policy of 

avoiding over time if possible.  

The manufacturers profit on each standard camera is Rs 30, while the profit on the 

deluxe Model is Rs 40.  Management has set the following goals:  

P1:  Avoid overtime operation in each department.  

P2:  Prior sales records indicate that on the average, a minimum of 10 standard and 

10 deluxe cameras can be sold weekly.  Management would like to meet these sales 

goals.  Since the production time may limit producing this number of each camera, 

and since the deluxe camera has a higher profit margin, the sales goals should be 

weighed by the profit contribution for the respective cameras.  i.e., Rs. 30 for the 

standard camera and Rs. 40 for the deluxe camera.  

 (We can also use weight of 3 and 4 since they have the same ratio of the profit 

contribution).  



 

225 

 

P3:  Maximize the profit.  

Solution: Let x1 and x2 be the number of standard and deluxe cameras to be 

produced  

respectively.  The GP model  

 

 The value 1200 for the R.H.S of the above equation is an arbitrary high profit  goal. 
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Graphical solution method  

 

        

The  and  deviational variables have a priority coefficient of  in the objective 

function.   

Hence goal constraints 1 and 2 must be considered first.  If we set  and   

then the area of feasibility is on and below the line AB and BC.  Any point in this area 

will satisfy the condition  

Now  and  deviational variables have priority co-efficient of  in the objective 

function.   

As  factor has a differential weight of 4 while  factor has a weight of 3, we try 

to minimize  to zero before considering . Hence, we can minimize both  and 

 to zero and still remain within the feasible region. However, minimizing these 

variables to zero will reduce the feasible region to EDBF.  Any point in this feasible 

area will satisfy the conditions  

.  

The last priority level is , the deviational variable associated with this priority is .  

If we minimize  to zero, we will achieve all the goals.  However the goal equation 
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(5) lies outside the current feasible region.  As (5) is not feasible,  level goal can 

only be achieved at the expense of goals with higher priorities.  

     In order to have an acceptable solution that does not destroy the achievement of 

goals with a higher priority,  must be positive.  As we like to minimize   as much 

as possible, draw lines parallel to (5) until it contact the feasible region which is the 

point B on the feasible region.  B is (13.33, 13.33) (solving equations 1 and 2).  

The values of the deviational variables are     

 

Substituting these values and  = 13.33 in to the respective goal constraints, we can 

determine:   = 3.33,  = 266.67,  = 3.33.  

     By producing 13.33 units/week of each camera, the company can achieve its first 

two objectives and can maximize profits.  Exactly 80 hours will be used in each 

departmental operation and profits will be Rs.933.33. The company will under 

achieve its objective of Rs.1200 profit by Rs. 266.67. 

 

5.9 Modified Simplex Method of GPP (Minimization): 

  

Step-1: Determine the initial basic feasible solution and set up initial simplex table.  

 Compute   and   values separately for each of the ranked goals P1, P2, … 

and enter at the bottom of the simplex table.  First priority goal (P1) is shown at the 

bottom and least priority goal at the top.  

Step-2:  Examine  values in the P1 row first.  If all  at the highest 

priority levels, then optimum solution has been obtained.  If at least one   

at a priority level and there is no positive entry at the higher unachieved priority 

levels, in the same column, then the current solution is not optimum.  

Step-3:  If the target values of each goal in the solution column (  is zero, the 

current solution is optimum.  
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Step-4:  Examine the negative values of  of the highest priority (P1) and 

choose the most negative of these.  The column corresponding to this value 

becomes the pivot column.  Otherwise move to next priority (P2) and select the most 

negative value of   for determining the pivot column.  

Step-5:  Determine the pivot row and pivot element in the same way as in the 

simplex method.  

Step-6:  Any negative value in the  row which has positive  under any 

lower priority rows is ignored. It is because deviations from highest priority goal 

would be increased with the entry of this variable in the basis.  

 

Example 5.9.1 Use modified simplex method to solve the following GPP.  

 

Subject to the constraints 

           

 

       X  

Solution:  

                         

     

 

 

 

 

 

 

 

 

 

 

240  

 

 

 

  ---  

                   

          

                     

 

 

 

Z=  

780  

400  

 ---  

 ---  

 ---  

 

In the table:  
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The values  in the   column represent the unachieved 

portion of each goal.  

  

 

 

 

 

In the  row, the most negative value is -1 corresponding to , (Also as the 

most negative -2 is along  corresponding to ), we can select  as entering 

variable.  

 

                  

                  

     

 

0 

 

 

 

 

 

 

 

 

240 

 

 

--- 

 

      

          

      

 

 

 

 

300 

160 

--- 

--- 

--- 

 

The value of the objective function    indicates that the 

unachieved portion of the first and second goals has decreased.  
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In the  row, the most negative value is -1 corresponding to  , select  as entering 

variable.  

 

     

0 

0 

 

 

 

 

 

 

 

 

240 

 

--- 

--- 

 

 

 

 

  

      

 

 

 

 

 

140 

0 

--- 

--- 

--- 

 

All  values in  row are either positive or zero, also the value of z in  row  

is completely minimized to zero.  The most negative value in  row is -1 

 corresponding to  and corresponding entry in the higher priority  is not 

positive, hence we can revise the table.  

                      

                   

 0                 ---  

 0  

   

   

   

     

     

  240  

      

 ---  

 ---    

 

 

 

            

            

             

     

     

     

  

    0  

     0   

 ---  

 ---  

 ---  

 

All  values in  row are either positive or zero and the value of z in  row is  

completely minimized to zero.  In  row there are two negative values, however, it is  
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not possible to choose  as the pivot column because there is already a 

positive value at a higher priority level .  Hence the solution in the above table will 

not improve further.  The optimum solution is   

            

Let Us Sum Up 

        We have learned about Goal programming model formulation and its types. 

Also find  the solution by using Graphical method and  Modified simplex method . 

 

Check Your Progress 

 

52. A company produces motorcycle seats.  The company has two production lines.  

The production rate for line 1 is 50 seats per hour and for line 2, it is 60 seats per 

hour.  The company has entered into a contract to supply 1200 seats daily to another 

company.  Currently, the normal operation period for each line is 8 hours.  The 

production manager of the company is trying to determine the best daily operation 

hours for the two lines in order to achieve the following goals:  

P1:  Produce and deliver 1200 seats daily.  

P2:  Limit the daily overtime operations hours of line-2 to 3 hours.  

P3:  Minimize under-utilization of regular daily operation hours of each line.  Assign    

   differential weights based on the relative productivity rate.  

P4:  Minimize the daily overtime operation hours of each line as much as possible.  

Assign differential weights based on the relative cost of overtime.  It is assumed that 

the cost of operation is identical for the two production lines. 

Formulate a goal programming model and then solve it by using graphical method.  
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53. Use Modified simplex method to solve  

 

Unit Summary 

Parametric linear programming techniques are used to determine the effect 

of pre-determined continuous variation in the input data, on the optimal 

solution of an LPP. The parametric analysis aims at finding various basic 

solutions that become optimal one after the other due to continuous 

variations in the LP model parameters. These techniques reduce 

computational time required to obtain the changes in the optimal solution 

due to variation in LP model parameters over a range of variation. 

Goal Programming is an approach used for solving a multi-objective 

optimization problem. A problem is modeled into a GP model in a manner 

similar to that of an LP model. However, the GP model accommodates 

multiple, and often conflicting, incommensurable goals, in a particular priority 

order. A particular priority structure is established by ranking and weighing 

various goals and their subgoals, in accordance with their importance. The 

priority structure helps to deal with all goals that cannot be completely and/or 

simultaneously achieved in such a manner that more important goals are 

achieved first, at the expense of the less important ones. An important 

feature of a GP is that the goals (a specific numerical target values that the 

decision-maker would ideally like to achieve) are satisfied in ordinal 

sequence. To the extent desired by the decision-maker, attempts are made 

to achieve each goal sequentially rather than simultaneously, up to a 

satisfactory level rather than an optimal level. In GP, instead of trying to 
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minimize or maximize the objective function directly, as in the case of an LP, 

the deviations from established goals within the given set of constraints are 

minimized. The deviational variables are represented in two dimensions– 

both positive and negative deviations from each goal and subgoal. These 

deviational variables represent the extent to which the target goals are not 

achieved. The objective function then becomes the minimization of a sum of 

these deviations, based on the relative importance within the pre-emptive 

priority structure assigned to each deviation. 

 

Glossary 

 𝑐𝑗- Cost (or profit),  

 𝑏𝑖- Availability of resources  

  𝑎𝑖𝑗- Technological coefficients  

  B- Basic variables 

 

Self- Assessment Questions 

 

1. Write a short note on parametric linear programming.  

2. Explain the basic difference between sensitivity analysis and parametric 

programming. 

3. In a linear programming problem Min Z = cx subject to Ax= b and x ≥ 0 discuss 

the effect of 

 (a) discrete changes in the requirement vector b. 

 (b) discrete changes in the cost vector c. 

4. Explain what is meant by a parametric linear programming problem, pointing out 

 its chief characteristics 

5. What is goal programming? Clearly state its assumptions. 

 

Activities 

1. Explain the difference between cardinal value and ordinal value. 

2. Under what circumstances can cardinal weights be used in the objective 

function of a goal programming model? What happens if the cardinal weights 
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are attached to all priorities in the objective function of a goal programming 

model? 

3. State some problem areas in management where goal program ming might 

be applicable. 

4. ‘Goal programming appears to be the most appropriate, flexible and 

powerful technique for complex decision problems involving multiple 

conflicting objectives.’ Discuss. 

5. What is goal programming? Why are all goal programming problems 

minimization problems? Why does altering the goal priorities result in a 

different solution to a problem? Explain.  
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ANSWERS FOR CHECK YOUR PROGRESS 

 

UNIT- I 

 

 1.   x1 = 0 , 𝑥2 =
15

7
and Max Z = 

45

7
 (cut –1: x4) 

        𝑥1 =
5

4
 , 𝑥2 =

5

4
 , 𝑥4 =

15

4
  and Max Z = 

25

4
 (cut –2: 𝑥4) 

        𝑥1 = 0 , 𝑥2 = 2  and Max Z = 6 

2.   𝑥1 =
5

4
 , 𝑥2 =

5

8
 and Max Z = 15 

     𝑥1 =
10

3
 , 𝑥2 = 0 , 𝑥4 =

25

3
 and Max Z = 

20

3
 

     𝑥1 = 2 , 𝑥2 = 0 , 𝑥3 = 2  and Max Z = – 16 

3.   x1 =
9

2
 , x3 =

7

2
 and Max Z = 63 

        Fractional cut (𝑥2) ∶ 𝑥1 =
32

7
 , 𝑥2 = 3 , 𝑥3 =

11

7
 and Max Z = 59 

        Fractional cut (𝑥1) ∶ 𝑥1 = 4 , 𝑥2 = 3 and Max Z = 55 

4.  𝑥1 = 0 , 𝑥2 =
7

4
 and Max Z = 

39

4
 

     𝑥1 =
3

2
 , 𝑥2 = 1 , 𝑥4 =

9

2
 

     𝑥1 = 1 , 𝑥2 = 1  and Max Z = 15. 

5.  x1 =
7

2
 , x2 =

9

5
  and Max Z = 

53

10
 

     𝑥1 = 5 , 𝑥2 = 0 and Max Z = 5 

6.   x1 = 0 , x2 = 3 and Max Z = 12 

7.   x1 =
20

9
 , x2 =

5

3
 , x3 =

26

9
 and Max Z = 17 

         x1 = 2 , x2 = 2 , x3 = 2 and Max Z = 14 

8.  No integer solution. 

9. Optimal solution is 𝑥1
∗ = 7/3, 𝑥2

∗ = 7/3,  𝑧𝑚𝑎𝑥 = 42. 

10.  Optimal solution is 𝑥1
∗ = 0, 𝑥2

∗ = 100, 𝑥3
∗ = 230, 𝑧𝑚𝑎𝑥 = 1350. 
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UNIT- II 

 

11. (a)𝑥0 = (4,−1, 1 ), local minimum 

     (b) 𝑥0 = (0, 0, 0 ), local minimum 

     (c) 𝑥0 = (8, 4, 3 ), local minimum 

12. Point of inflection at 𝑥 = −𝑏 3𝑎⁄  

13. 𝑅 = 𝑦𝑥 = 15𝑥𝑒
−𝑥

3⁄ ; 𝑥 = 3 𝑜𝑟 ∞ (absurd); Max. P = Rs. 50 at 𝑥 =100. 

14. 𝑃 = 𝑅 − 𝐶 = 26𝑥 − 𝑥2; 𝑥 = 13,𝑀𝑎𝑥 𝑃 =Rs. 149. 

15. Let 𝑥 be the vacant apartments; 

       Profit = Revenue – cost = (4,500 + 150𝑥) (60 – 𝑥) - 6𝑥  

16. 𝑥1 = 4.95, 𝑥2 = 2.045, and Min 𝑍 = 21.63 

17. . 𝑥1 = 0.81, 𝑥2 = 0.35, 𝑥3 = 0.28 and Min 𝑍 = 0.84 

18. 3𝑥1 = 1/3, 𝑥2 = 5/6, and Max 𝑍 = 4.166 

19. 𝑥1 = 12.06, 𝑥2 = 10.35, and Max 𝑍 = 80.73 

20. Formulate 𝐿(𝑥, 𝑦, 𝑧, 𝜆) = 𝑓(𝑥, 𝑦, 𝑧) − 𝜆𝑔(𝑥, 𝑦, 𝑧); where 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧, is 

the volume of a parallelopipped. Differentiate partially L with respect to 

𝑥, 𝑦, 𝑧  and 𝜆 and equate them equal to zero. Solve four equation to get 

first  𝜆 = (
3

2
) . 𝑧 𝑦 𝑧 and then 𝑥 =

𝑎

√3
, 𝑦 =

𝑏

√3
,  and 𝑧 =

𝑐

√3
. 

21.  𝑥1 = 44, 𝑥2 = 2, 𝜆 = 100 and Max 𝑍 = 4,900 

22.  𝑥1 =
1

2
, 𝑥2 =

3

2
, 𝜆1 = 3, 𝜆2 = 0 and Max 𝑍 =

17

2
 

23. 𝑥1 =
4

13
, 𝑥2 =

33

13
 and Max 𝑍 = 21.3 

24.  𝑥1 =
48

5
, 𝑥2 =

1

5
 and Max 𝑍 = 587.72 

25.  𝑥1 = 1, 𝑥2 = 1 and Max 𝑍 = 0 

26.  (a) 𝑥1 = 1, 𝑥2 = 20 and Max 𝑍 = 1 

  (b) 𝑥1 = 3, 𝑥2 = 2 and Max 𝑍 = 3 

27.  (a)𝑥1 = 2, 𝑥2 = 2 and Min 𝑍 = 8 

 (b) 𝑥1 = 0, 𝑥2 = 1 and Min 𝑍 = 2 

28.   (a)𝑥1 = 60, 𝑥2 = 20 and Max 𝑍 = 400 

   (b) 𝑥1 = 1, 𝑥2 = 1 and Min 𝑍 = 1 

29.  Let 𝑥 and 𝑦 = quantity of product A and B to be produced, respectively. 

     Max Z = (200 – 2𝑥2) + (500 – 2𝑦2) 
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    Subject to (i) 0.5𝑥 + 0.25𝑦 ≤ 35,  (ii) 2𝑥 + 3𝑦 ≤ 80; 

       and     𝑥, 𝑦 ≥ 0.   

30. 𝑥1 = 0, 𝑥2 = 1, 𝜆1 =
1

3
, 𝜆2 =

5

3
 and Max Z=3 

31. 𝑥1 =
4

13
, 𝑥2 =

33

13
 and Max Z= 

267

13
 

32. 𝑥1 =
1

4
, 𝑥2 =

15

8
 and Max Z= 

 97

 16
 

 

UNIT- III 

 

33. (a)    (i) Basic: 𝑥1 = 0,    𝑥2 = 1/2                Non-basic: 𝑥3 = 𝑥4 = 0 

           (ii) Basic: 𝑥1 = 2,    𝑥3 = 7/2       Non-basic: 𝑥2 = 𝑥4 = 0 (infeasible also) 

           (iii) Basic: 𝑥1 = 8/3, 𝑥4 = 7/3   Non-basic: 𝑥2 = 𝑥3 = 0 (infeasible also) 

              (iv) Basic: 𝑥2 = 1/2, 𝑥3 = 0               Non-basic: 𝑥1 = 𝑥4 = 0 

              (v) Basic: 𝑥2 = 1/2, 𝑥3 = 0                Non-basic: 𝑥1 = 𝑥4 = 0 

              (vi) Basic: 𝑥3 = 0,    𝑥4 = 1      Non-basic: 𝑥1 = 𝑥2 = 0 (infeasible also) 

       (b) (i) 𝑥1 = 0, 𝑥2 = 6, 𝑥3 = −2 

            (ii)  𝑥1 = 3, 𝑥2 = 0, 𝑥3 = 1 

            (iii) 𝑥1 = 2, 𝑥2 = 2, 𝑥3 = 0 

34. (i) Basic: 𝑥1 = 1,    𝑥2 = 0         Non-basic: 𝑥3 = 0 (degenerate solution) 

           (ii) Basic: 𝑥1 = 5/3,    𝑥3 = 1/3                 Non-basic: 𝑥1 = 0  

          (iii) Basic: 𝑥1 = 1, 𝑥3 = 0         Non-basic: 𝑥2 = 0 (degenerate solution) 

35. The solution (𝑥1 = 1, 𝑥2 =
1

2
, 𝑥3 = 0, 𝑥4 = 0, 𝑥5 = 0) is not a basic 

solution. 

36. For each of the three possible submatrices of order 2, calculate 

𝑥𝐵 = 𝐵−1𝑏. 

     (a) 𝑥1 = 2, 𝑥2 = 1, 𝑥3 = 0              (b) 𝑥1 = 0, 𝑥2 =
5

3
, 𝑥3 =

2

3
 

37. For each of the 10 possible submatrices of order 2, calculate 𝑥𝐵 =

𝐵−1𝑏. None of the 10 basic feasible solution corresponds to the given 

solution. Hence the given solution is not basic. 

38. (i) For 𝜆1 = 2, 𝜆2 = 1, 𝜆3 = −1 and 𝜆4 = 0, the solution is (0, 1/2, 3/2, 0) 

     (ii) For 𝜆1 = −2, 𝜆2 = −1, 𝜆3 = 1 and 𝜆4 = 0, the solution is (3, 2, 0, 0)
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39.  For 𝜆1 = −1, 𝜆2 = −2, 𝜆3 = 1, the basic feasible solution is:  

𝑥1 = 3, 𝑥2 = 5 and  𝑥3 = 0. 

 

UNIT – IV 

 

40.   𝑥1 = 0, 𝑥2 = 2/5 and 𝑀𝑎𝑥 𝑍 = 5 

41.  𝑥1 = 2/7, 𝑥2 = 9/7 and 𝑀𝑎𝑥 𝑍 = 13/7 

42. 𝑥1 = 8/5, 𝑥2 = 3/5 and 𝑀𝑎𝑥 𝑍 = 11/5 

43.  𝑥1 = 4, 𝑥2 = 6, 𝑥3 = 0  and 𝑀𝑎𝑥 𝑍 = 12 

44.  𝑥1 = 0, 𝑥2 = 100, 𝑥3 = 230  and 𝑀𝑎𝑥 𝑍 = 1350. 

45.  𝑥1 = 20/3, 𝑥2 = 0, 𝑥3 = 10/3  and 𝑀𝑎𝑥 𝑍 = 10 

46.  𝑥1 =
17

5
, 𝑥2 =

16

5
, 𝑥′3 = 0 𝑜𝑟 4 − 𝑥3 = 0 𝑜𝑟 𝑥3 = 4   and 𝑀𝑎𝑥 𝑍 = 192/5 

 

UNIT – V 

 

47.   𝑥 =
8

5
, 𝑦 = −1/5 and 𝑀𝑖𝑛 𝑍 =

1

5
+ (

8

5
)  𝜆.  

  Problem has one characteristics solution: -2≤ 𝜆 ≤ 3 and a multiple 

solution for  𝜆 = 3. 

48.  (a) x1 = 0, x2 = 5; 0 ≤ λ ≤ 3/2 

      x1 = 4, x2 = 3; 3/2 ≤ λ ≤ 3 

         x1 = 5, x2 = 1; λ ≥ 3 

    (b) x1 = x2 = x3 = 0; x4 = 5 and  Max Z = 5; −2 ≤ λ ≤ 3. 

49.   x1 = 0, x2 = 2, x3 = 5, λ ≤ 2.3 

50.   x1 = 2/5, x2 = 1/5,0 ≤ λ ≤ 3 

51.   x1 = 4, x2 = 0,−∞ < λ < −5 

   x1 = 0, x2 = 5,−5 < λ < −1 

   x1 = 0, x2 = 3,−1 < λ < 2 

   No feasible solution when λ > 3. 
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52.  The GP model is  

 

The solution is  

 

              Note:  P1, P2 and P3 are completely achieved but P4 is not achieved.  

53.      


