
PERIYAR UNIVERSITY 

NAAC 'A++' Grade - State University - NIRF Rank 56–State Public University Rank 25 

SALEM - 636 011, Tamil Nadu, India. 

 

 

CENTRE FOR DISTANCE AND ONLINE EDUCATION  

(CDOE) 

 

 

 

M.Sc. MATHEMATICS 

SEMESTER - II 

 

 

 

 

 

 

 

CORE COURSE: REAL ANALYSIS – II  

(Candidates admitted from 2024 onwards)



CDOE - ODL M.Sc. Mathematics – SEMESTER II   REAL ANALYSIS II 

1 Periyar University – CDOE| Self-Learning Material 
 

 

PERIYAR UNIVERSITY 
 
CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE) 

M.Sc. Mathematics -  2024 admission onwards 

 

CORE – 5 

Real Analysis II 

 
 

Prepared by: 

 

 
 
 
 
 
 
 

Centre for Distance and Online Education (CDOE)

Periyar University
Salem 636 011



Contents

1 Multivariable Differential Calculus 5

1.1 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The Directional Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 The Total Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 The Total Derivative in terms of Partial Derivatives . . . . . . . . . . . . 15

1.5 The Matrix of a Linear Function . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 The Jacobian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.8 The Mean-value Theorem for Differentiable Functions . . . . . . . . . . 22

1.9 A Sufficient Condition for Differentiability . . . . . . . . . . . . . . . . . 24

1.10 A Sufficient Condition for Equality of Mixed Partial Derivatives . . . . . 26

1.11 Taylor’s Formula for Functions from Rn to R1 . . . . . . . . . . . . . . . 29

2 Implict Functions and Extremum

Problems 37

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Functions with nonzero Jacobian determinant . . . . . . . . . . . . . . . 40

2.3 The Inverse Function Theorem . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 The Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Extrema of real-valued functions of one variable . . . . . . . . . . . . . . 50

2.6 Extrema of real-valued functions of several variables . . . . . . . . . . . 51

1



3 Line Integrals 58

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Paths and line integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Other notations for line integrals . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Basic properties of line integrals . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Line integrals with respect to arc length . . . . . . . . . . . . . . . . . . 66

3.6 Open connected sets. Independence of the path . . . . . . . . . . . . . . 67

3.7 Second fundamental theorems of calculus to line integrals. . . . . . . . . 68

3.8 The first fundamental theorem of calculus for line integrals . . . . . . . . 70

4 Multiple Integrals 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Partitions of rectangles. Step functions . . . . . . . . . . . . . . . . . . . 78

4.3 The double integral of a step function . . . . . . . . . . . . . . . . . . . 79

4.4 The definition of the double integral of a function defined and bounded

on a rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Upper and lower double integrals . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Evaluation of a double integral by repeated one-dimensional integration 83

4.7 Integrability of continuous functions . . . . . . . . . . . . . . . . . . . . 84

4.8 Integrability of bounded functions with discontinuities . . . . . . . . . . 86

5 Green’s, Stoke’s and Gauss’s Theorem 91

5.1 Green’s theorem in the plane . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Change of variables in a double integral . . . . . . . . . . . . . . . . . . 95

5.3 Surface Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Change of parametric representation . . . . . . . . . . . . . . . . . . . . 99

5.5 Stoke’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 The Divergence Theorem (Gauss’ theorem) . . . . . . . . . . . . . . . . 103

2



REAL ANALYSIS - II

OBJECTIVE: This course covers vector and multivariable calculus. This topics include

vectors and matrices, parametric curves, partial derivatives, double and triple inte-

grals, and vector calculus in 2 and 3 dimensional spaces, line integrals and integration

theorems generalizing the Fundamental theorem of Calculus (Green theorem, Stokes

theorem and Gauss’s theorem).

UNIT-I: Multivariable Differential Calculus

Introduction - The Directional derivative - Directional derivative and continuity - The

total derivative - The total derivative expressed in terms of partial derivatives - The

matrix of linear function - The Jacobian matrix - The chain rule - Matrix form of chain

rule - The mean - value theorem for differentiable functions - A sufficient condition

for differentiability - A sufficient condition for equality of mixed partial derivatives -

Taylor’s theorem for functions of Rn to R1.

UNIT-II: Implicit Functions and Extremum Problems:

Functions with non-zero Jacobian determinants – The inverse function theorem – The

Implicit function theorem – Extrema of real valued functions of several variables.

Unit-III: Line Integrals

Introduction – Paths and line integrals – Other notations of line integrals – Basic prop-

erties of line integrals – Line integrals with respect to the arc length – Open connected

sets & Independence of the path – Second fundamental theorem of calculus for line

integrals – The first fundamental theorem of calculus for line integrals.

Unit-IV: Multiple integrals

Introduction – Partitions of rectangle, Step functions – The double integral of a step

function – The definition of the double integral of a function defined and bounded
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on a rectangle – Upper and lower double rectangles – Evaluation of a double integral

by repeated one-dimensional integration – Geometric interpretation of the double in-

tegral as a volume – Integrability of continuous functions – Integrability of bounded

functions with discontinuities.

Unit-V: Green’s theorem and Surface integrals Green’s theorem in the plane – Change

of variables in a double integral – Extensions to higher dimensions – Worked examples.

Surface Integrals: Definition of surface integral – Change of parametric representation

– Stoke’s theorem – The divergence theorem.
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Unit 1

Multivariable Differential Calculus

Objectives

After reading this unit, learners will be able to

• understand the notion of derivative of functions of several variables

• evaluate the partial, directional and total derivatives of functions involving sev-

eral variables.

• To study the calculus of functions from Rn to Rm.

• generalize important results in classical calculus in single-variable like chain rule,

mean-value theorem, and Taylor’s formula to n-variables.

1.1 Partial Derivatives

We shall start by recalling the concept of derivative for a function f of a single variable.

Let D ⊂ R and let x0 be an interior point of D. A function f : D → R is said to be

differentiable at x0 if the limit

lim
h→0

f(x0 + h)− f(x0)

h

exists and the value of the limit is denoted by f ′(x0).

The term f(x0) + (x− x0)f
′(x0) is called the linear approximation of f at x0.
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The geometric interpretation of the derivative f ′(x0) of a function f of a single

variable is the slope of the line

y = f(x0) + f ′(x0)(x− x0)

tangent to the graph of the function.

Let D ⊂ R2 and let f : D → R be any function. Fix (x0, y0) ∈ D and define

D1, D2 ⊂ R by D1 := {x ∈ R : (x, y0) ∈ D} and D2 := {y ∈ R : (x0, y) ∈ D}.

If x0 is an interior point of D1, we define the partial derivative of f with respect to

x at (x0, y0) to be the limit

lim
h→0

f(x0 + h, y0)− f(x0, y0)

h

provided this limit exists. It is denoted by fx(x0, y0).

Similarly, if y0 is an interior point of D2, we define the partial derivative of f with

respect to y at (x0, y0) to be the limit

lim
k→0

f(x0, y0 + k)− f(x0, y0)

k

provided this limit exists. It is denoted by fy(x0, y0).

These partial derivatives are also called the first-order partial derivatives or simply

the first partials of f at (x0, y0). They are sometimes denoted by

∂f

∂x
(x0, y0) and

∂f

∂y
(x0, y0).

Definition 1.1.1. If the partial derivatives
∂f

∂x
(x0, y0) and

∂f

∂y
(x0, y0). exist, then the pair

(fx(x0, y0), fy(x0, y0)) is called the gradient of f at (x0, y0) and is denoted by ∇f(x0, y0),

i.e.,

∇f(x0, y0) = (fx(x0, y0), fy(x0, y0)) .

The partial derivative fx(x0, y0) gives the rate of change in f at (x0, y0) along the

x-axis, whereas fy(x0, y0) gives the rate of change in f at (x0, y0) along the y-axis.

The above ideas can also be extend to a function of n-variables as follows:
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Definition 1.1.2. Let U ⊂ Rn be open and f : U → R. Let {e1, . . . , en} be the standard

basis of Rn. If the following limit exists, we write

∂f

∂xj

(x) = lim
h→0

f(x1, . . . xj−1, xj + h, xj+1, . . . , xn)− f(x)

h
= lim

h→0

f(x+ hej)− f(x)

h

Note that here

x+ hej = (x1, x2, . . . , xj−1, xj, xj+1, . . . , xn) + h(0, 0, . . . , 1 (jthplace), 0, . . . , 0)

= (x1, x2, . . . , xj−1, xj, xj+1, . . . , xn) + (0, 0, . . . , h (jthplace), 0, . . . , 0)

= (x1, . . . xj−1, xj + h, xj+1, . . . , xn)

Definition 1.1.3. Let E ⊂ Rn be open and f : E → Rm. Let {e1, . . . , en} and {u1, . . . , um}

be the standard basis of Rn and Rm.

For x ∈ E,

f(x) = (f1(x), f2(x), . . . , fm(x))

where the components of f are the real functions f1, . . . , fm defined by

f(x) =
m∑
i=1

fi(x)ui (x ∈ E),

or by fi(x) = f(x) · ui, 1 ≤ i ≤ m.

For x ∈ E, 1 ≤ i ≤ n, 1 ≤ j ≤ m, we define

(Djfi)(x) =
∂fi
∂xj

(x) = lim
t→0

fi(x+ tej)− fi(x)

t

provided the limit exists. Here, fi(x) means fi(x1, . . . , xn) and Djfi (called the partial

derivative) is the derivative of fi with respect to xj, keeping the other variables fixed.

Note: 1. In the case of functions of one variable, the existence of a derivative is

sufficient.

2. But in the case of functions of severable variables, continuity or atleast boundedness

of the partial derivatives is needed.
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Examples

1. Let f : R2 → R be given by f(x, y) := x2 + y2.

Then both the partial derivatives of f exist at every point of R2; in fact,

fx(x0, y0) = 2x0 and fy(x0, y0) = 2y0 for any (x0, y0) ∈ R2.

2. Let f : R2 → R be the norm function given by f(x, y) :=
√

x2 + y2.

Then both the partial derivatives of f exist at every point of R2 except at (0, 0)

i.e., the origin

In fact, for any (x0, y0) ∈ R2 with (x0, y0) ̸= (0, 0),

fx(x0, y0) =
x0√

x2
0 + y20

and fy(x0, y0) =
y0√

x2
0 + y20

.

To examine whether any of the partial derivatives exist at (0, 0), we have to use

the definition.

This leads to a limit of the quotient h
|h| as h → 0. Clearly, such a limit does not

exist.

It follows that fx(0, 0) and fy(0, 0) do not exist.

3. Let f : R2 → R be given by

f(x, y) =

{ xy

x2 + y2
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

Then for any h, k ∈ R with h ̸= 0 and k ̸= 0, we have

f(0 + h, 0)− f(0, 0)

h
= 0 and

f(0, 0 + k)− f(0, 0)

k
= 0.

Hence fx(0, 0) and fy(0, 0) exist and are both equal to 0. However, it is seen

already, f is not continuous at (0, 0).

Partial derivative differs from usual derivative for the reason that the existence of par-

tial derivatives D1f, . . . , Dnf at a particular point does not necessarily imply continuity

of f at that point.
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Check your progress

1. Let f : R2 → R be given by

f(x, y) =


x2y

x2 + y2
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

Show that f is continuous at (0, 0) and find the partial derivatives fx(0, 0) and

fy(0, 0).

2. Let f : R2 → R be given by f(x, y) = |x| + |y| for (x, y) ∈ R2. Show that fx(0, 0)

and fy(0, 0) do not exist.

1.2 The Directional Derivative

In this section, we will introduce the concept of directional derivatives which is a gen-

eralization of partial derivatives. Partial derivative specifies the rate of change of a

function with respect to each coordinate axis whereas directional derivative examines

the rate of change of a function in any specific direction. This is particularly impor-

tant in multivariable calculus, where functions depend on two or more variables, and

understanding how they change in arbitrary directions is key to analyzing surfaces,

gradients, and optimizations.

Let S ⊆ Rn. A nearby point of c ∈ S is denoted by c+ u, for u ̸= 0.

For h ∈ R, c+ hu represent points on the line segment joining c and c+ u.

Here u is a vector that describes the orientation of the line segment.

We shall assume that c is an interior point of S. Then there is an n-ball B(c; r)

lying in S, and, if h is small enough, the line segment joining c to c + hu will also lie

inside B(c; r) and hence in S.

Definition 1.2.1. Let f : S → Rm. The directional derivative of f at c in the direction u,

denoted by f ′(c;u), is defined by

f ′(c;u) = lim
h→0

f(c+ hu)− f(c)

h
(1.1)

provided the limit on the right exists.
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Geometrically, the directional derivative explains the way in which a function f

changes when we move from a point c ∈ S to a nearby point c + u (u ̸= 0) along a

line segment.

1.2.1 Examples

1. If u = 0, then f ′(c;0) exists and f ′(c;0) =0 for every c in S.

2. If u = uk, the k-th unit coordinate vector, then f ′ (c;uk) is called a partial deriva-

tive and is denoted by Dkf(c)

(
=

∂f

∂xk

)
.

3. If f = (f1, . . . , fm), then f ′(c;u) exists if and only if f ′
k(c;u) exists for each k =

1, 2, . . . ,m and in this case, we write

f ′(c;u) = (f ′
1(c;u), . . . , f

′
m(c;u))

In particular, when u = uk we have

Dkf(c) = (Dkf1(c), . . . , Dkfm(c)) =

(
∂f1
∂xk

(c), . . . ,
∂fm
∂xk

(c)

)

4. If F (t) = f(c + tu), then F ′(0) = f ′(c;u). More generally, F ′(t) = f ′(c + tu;u) if

either derivative exists.

5. If f(x) = ∥x∥2, then

F (t) = f(c+ tu) = (c+ tu) · (c+ tu) = ∥c∥2 + 2tc · u+ t2∥u∥2

so F ′(t) = 2c · u+ 2t∥u∥2; hence F ′(0) = f ′(c;u) = 2c · u.

6. If f is linear, then

f ′(c;u) = lim
h→0

f(c+ hu)− f(c)

h
= lim

h→0

f(c) + hf(u)− f(c)

h
= f(u)

for every c and every u.
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1.2.2 Remarks

1. If f ′(c;u) exists along every direction u, then in particular all the partial deriva-

tives D1f(c), . . . , Dnf(c) exist. However, the converse need not be true. For ex-

ample, consider the real-valued function f : R2 → R1 given by

f(x, y) =

{
x+ y if x = 0 or y = 0

1 otherwise

Then D1f(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

h

h
= 1

Similarly, it can be proved that D2f(0, 0) = 1.

However, for any other direction u = (a1, a2), where a1 ̸= 0 and a2 ̸= 0, we have

lim
h→0

f(0+ hu)− f(0)

h
= lim

h→0

f(hu)

h
= lim

h→0

1

h

and this limit does not exist.

2. A function can have a finite directional derivative f ′(c;u) for every. u without

being continuous at c. For example, let us consider

f(x, y) =


xy2

x2 + y4
if x ̸= 0

0 if x = 0

Let u = (a1, a2) be any vector in R2. Then we have

f(0 + hu)− f(0)

h
=

f (ha1, ha2)

h
=

a1a
2
2

a21 + h2a42

and hence

f ′(0;u) =

{
a22/a1 if a1 ̸= 0

0 if a1 = 0

Thus, f ′(0;u) exists for all u. On the other hand, the function f takes the value 1
2

at each point of the parabola x = y2 (except at the origin), so f is not continuous

at (0, 0), since f(0, 0) = 0.
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Check your progress

1. Find the directional derivative of the function f : R2 → R defined by f(x, y) =

x2 + y2.

2. Find the directional derivative of the function f : R2 → R defined by f(x, y) =√
x2 + y2.

3. Calculate all first-order partial derivatives and the directional derivatives f ′(x;u)

for each of the real-valued functions defined on Rn as follows:

(a) f(x) = a.x, where a is a fixed vector in Rn.

(b) f(x) = ∥x∥4.

(c) f(x) = x.L(x), where L : Rn 7→ Rn is a linear function.

(d) f(x) =
n∑

i=1

n∑
j=1

aijxixj , where aij = aji.

1.3 The Total Derivative

The total derivative of a function represents how the function changes in response to

changes in all of its input variables, taking into account both direct and indirect de-

pendencies between variables. It generalizes the concept of derivatives to functions

of serveral variables and is fundamental in fields like physics, engineering, and eco-

nomics where systems rely on several interrelated variables.

First we shall motivate this concept by considering a real-valued function f which

is differentiable at c. In this case, f can be approximated by a linear polynomial near

c . In fact, if f ′(c) exists, let Ec(h) denote the difference

Ec(h) =
f(c+ h)− f(c)

h
− f ′(c) if h ̸= 0 (1.2)

with Ec(0) = 0. Then we have the equation

f(c+ h) = f(c) + f ′(c)h+ hEc(h) (1.3)

which also holds for h = 0. This equation is called a first-order Taylor formula for

approximating f(c+h)−f(c) by f ′(c)h. The error term is hEc(h). It follows from (1.2)
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that Ec(h) → 0 as h → 0. The error term hEc(h) is said to be of smaller order than h

as h → 0.

We must note the following two important properties of the formula (1.3):

1. The quantity f ′(c)h is a linear function of h, i.e., if we take Tc(h) = f ′(c)h, then

Tc (ah1 + bh2) = aTc (h1) + bTc (h2)

2. The error term hEc(h) is of smaller order than h as h → 0.

Keeping the above in mind, we define the notion of total derivative of a function

f : Rn → Rm in such a way that it preserves the above properties.

Definition 1.3.1. Let f : S → Rm. Let c be an interior point of S, and let B(c; r) be an

n-ball lying in S. Let v be a point in Rn with ∥v∥ < r, so that c + v ∈ B(c; r). The

function f is said to be differentiable at c if there exists a linear function Tc : Rn → Rm

such that

f(c+ v) = f(c) +Tc(v) + ∥v∥Ec(v) (1.4)

where Ec(v) → 0 as v → 0.

Equation (1.4) is called a first-order Taylor formula and it holds for all v in Rn

with ∥v∥ < r. The linear function Tc is called the total derivative of f at c. We can

also write (1.4) in the form

f(c+ v) = f(c) +Tc(v) + o(∥v∥) as v → 0

The next results shows that the total derivative is unique, if it exists and gives a

relation between total derivative and directional derivatives.

Theorem 1.3.2. The total derivative of f at c is unique, if it exists

Proof. Assume f is differentiable at c with total derivative T1 and T2.

Let T = T1 −T2. We shall prove that T(v) = 0 for every v.
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Consider

T(v) = T1(v)−T2(v)

= f(c+ v)− f(c)−T1(v)− [f(c+ v)− f(c)−T2(v)]

and

∥T(v)∥ ≤ ∥f(c+ v)− f(c)−T1(v)∥+ ∥f(c+ v)− f(c)−T2(v)∥

As v → 0, the two terms on the right tends to 0 and hence T(v) = 0. This implies that

T1 = T2.

Theorem 1.3.3. Assume f is differentiable at c with total derivative Tc. Then the direc-

tional derivative f ′(c;u) exists for every u in Rn and we have

Tc(u) = f ′(c;u)

Proof. If v = 0, then f ′(c;0) = 0 and Tc(0) = 0.

Assume that v ̸= 0. Taking v = hu in Taylor’s formula (1.4),

f(c+ v) = f(c) +Tc(v) + ∥v∥Ec(v)

with h ̸= 0, we have

f(c+ hu)− f(c) = Tc(hu) + ∥hu∥Ec(v) = hTc(u) + |h|∥u∥Ec(v)

Dividing the above equation by h on both sides, we have

f(c+ hu)− f(c)

h
= Tc(u) +

|h|
h
∥u∥Ec(v)

Allowing h → 0, we note that v → 0 which implies that Ec(v) → 0 and the last term

on the right tends to 0. Therefore,

Tc(u) = lim
h→0

f(c+ hu)− f(c)

h
= f ′(c;u).

Theorem 1.3.4. If f is differentiable at c, then f is continuous at c.

14



Proof. Note that if v → 0 in the Taylor formula (1.4),

f(c+ v) = f(c) +Tc(v) + ∥v∥Ec(v),

then the error term ∥v∥Ec(v) → 0.

If v ∈ Rn and v = v1u1 + · · · + vnun, where u1, . . . ,un are the unit coordinate

vectors, then by linearity property we have

Tc(v) = v1Tc (u1) + · · ·+ vnTc (un)

As v → 0, each term on the right tends to 0 and hence Tc(v) → 0. Thus, we have

lim
v→0

f(c+ v) = f(c)

which implies that f is continuous at c.

Note. Hereafter, we will use the notation Tc = f ′(c) for the total derivative to resemble

the notation used in the one-dimensional theory. With this notation, the Taylor formula

(1.4) takes the form

f(c+ v) = f(c) + f ′(c)(v) + ∥v∥Ec(v)

where Ec(v) → 0 as v → 0.

However, it should be noted that f ′(c) : Rn → Rm is a linear function and is not a real

number. The vector f ′(c)(v) in Rm denotes the value of f ′(c) at v.

Example 1.3.5. If f is itself a linear function, i.e., f(c+v) = f(c)+f(v), then the Taylor’s

formula takes the form

f(v) = f ′(c)(v) + ∥v∥Ec(v)

for every c. Therefore, the derivative f ′(c) = f . In other words, the total derivative of a

linear function is the function itself.

1.4 The Total Derivative in terms of Partial Derivatives

Now we are going to prove that the vector f ′(c)(v) can be expressed as a linear com-

bination of the partial derivatives of f .
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Theorem 1.4.1. Let f : S → Rm be differentiable at an interior point c of S, where

S ⊆ Rn. If v = v1u1+ · · ·+ vnun, where u1, . . . ,un are the unit coordinate vectors in Rn,

then

f ′(c)(v) =
n∑

k=1

vkDkf(c)

In particular, if f is real-valued (m = 1) we have

f ′(c)(v) = ∇f(c) · v (1.5)

where ∇f(c) = (D1f(c), . . . , Dnf(c)).

Proof. By the linearity of f ′(c), we write

f ′(c)(v) =
n∑

k=1

f ′(c) (vkuk) =
n∑

k=1

vkf
′(c) (uk) =

n∑
k=1

vkf
′ (c;uk) =

n∑
k=1

vkDkf(c).

In the case, f is real-valued, we have

f ′(c)(v) =
n∑

k=1

vkDkf(c) = ∇f(c) · v,

where ∇f(c) =

(
∂f

∂x1

(c), . . . ,
∂f

∂xk

(c)

)
.

Note. The vector ∇f(c) in (1.5) is called the gradient vector of f at c. It is defined at

each point where the partials D1f, . . . , Dnf exist. The Taylor formula for a real-valued

function f will have the the form

f(c+ v) = f(c) +∇f(c) · v + o(∥v∥) as v → 0

1.5 The Matrix of a Linear Function

In this section we shall discuss some elementary facts from linear algebra that will be

useful in certain calculations with derivatives.

Let T : Rn → Rm be a linear function. (In our applications, T will be the total

derivative of a function f .) We will show that T determines an m×n matrix of scalars

which is obtained as follows:
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Let u1, . . . ,un and e1, . . . , em denote the unit coordinate vectors in Rn and Rm re-

spectively. If x ∈ Rn, we have x = x1u1 + · · ·+ xnun so, by linearity,

T(x) =
n∑

k=1

xkT (uk)

Therefore T is completely determined by its action on the coordinate vectors u1, . . . ,un.

Since T (uk) ∈ Rm, we can write T (uk) as a linear combination of e1, . . . , em, say

T (uk) =
m∑
i=1

tikei,

where the scalars t1k, . . . , tmk are the coordinates of T (uk). These scalars can be writ-

ten vertically as follows: 
t1k
t2k
...

tmk


This array is called a column vector. We form the column vector for each of

T (u1) , . . . ,T (un) and place them side by side to obtain the rectangular array
t11 t12 · · · t1n
t21 t22 · · · t2n
...

...
...

tm1 tm2 · · · tmn

 (1.6)

This is called the matrix of T and is denoted by m(T) which consists of m rows and n

columns. We also use the notation m(T) = (tik) to denote the above matrix.

Theorem 1.5.1. let T : Rn → Rm and S : Rm → Rp be two linear functions, with the

domain of S containing the range of T. Then we can form the composition S ◦T defined

by

(S ◦T)(x) = S[T(x)] for all x in Rn

The composition S ◦T is also linear and it maps Rn into Rp. Further,

m(S ◦T) = m(S ◦T) =

[
m∑
k=1

siktkj

]p,n
i,j=1
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Proof. We shall first prove the linearity of S ◦ T. For x1, x2 ∈ Rn and scalars α, β,

we have

(S ◦T)(αx1 + βx2) = S(T(αx1 + βx2))

= S(αTx1 + βTx2))

= αS(Tx1) + βS(Tx2))

= α(S ◦T)(x1) + β(S ◦T)(x2)

which shows that S ◦T is linear map from Rn into Rp.

Denote the unit coordinate vectors in Rn,Rm, and Rp, respectively, by u1, . . . ,un, e1, . . . , em,

and w1, . . . ,wp.

Suppose that S and T have matrices (sij) and (tij), respectively. This means that

S (ek) =

p∑
i=1

sikwi and T (uj) =
m∑
k=1

tkjek

for k = 1, 2, . . . ,m, and j = 1, 2, . . . , n. Then

(S ◦T) (uj) = S [T (uj)] =
m∑
k=1

tkjS (ek) =
m∑
k=1

tkj

p∑
i=1

sikwi =

p∑
i=1

(
m∑
k=1

siktkj

)
wi

so that

m(S ◦T) =

[
m∑
k=1

siktkj

]p,n
i,j=1

In other words, m(S ◦ T) is a p × n matrix whose entry in the ith row and jth

column is
m∑
k=1

siktkj, the dot product of the ith row of m(S) with the jth column of

m(T). This matrix is also called the product m(S)m(T). Thus, m(S ◦T) = m(S)m(T).

1.6 The Jacobian Matrix

Next we shall show find matrices associated with total derivatives.

Suppose f : Rn → Rm is differentiable at a point c ∈ Rn, and let T = f ′(c) be the

total derivative of f at c. To find the matrix associated with T we consider its action

on the unit coordinate vectors u1, . . . ,un. We know that

T (uk) = f ′ (c;uk) = Dkf(c)
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If we take f = (f1, . . . , fm) and e1, . . . , em are the unit coordinate vectors of Rm, then

Dkf = (Dkf1, . . . , Dkfm) and

T (uk) = Dkf(c) =
m∑
i=1

Dkfi(c)ei

Therefore the matrix of T is m(T) = (Dkfi(c)) and will be denoted by Df(c), i.e.,

Df(c) =


D1f1(c) D2f1(c) · · · Dnf1(c)
D1f2(c) D2f2(c) · · · Dnf2(c)

...
...

...
D1fm(c) D2fm(c) · · · Dnfm(c)

 . (1.7)

This matrix is called the Jacobian matrix of f at c. The Jacobian matrix Df(c) is

defined at each point c in Rn where all the partial derivatives Dkfi(c) exist.

The k-th row of the Jacobian matrix (1.7) is a vector in Rn called the gradient

vector of fk, denoted by ∇fk(c), i.e.,

∇fk(c) = (D1fk(c), . . . , Dnfk(c))

In the special case when f is real-valued (m = 1), the Jacobian matrix consists of only

one row. In this case Df(c) = ∇f(c), and Equation (1.5) of Theorem 1.5 shows that

the directional derivative f ′(c;v) is the dot product of the gradient vector ∇f(c) with

the direction v.

For a vector-valued function f = (f1, . . . , fm), we have

f ′(c)(v) = f ′(c;v) =
m∑
k=1

f ′
k(c;v)ek =

m∑
k=1

{∇fk(c) · v} ek (1.8)

so the vector f ′(c)(v) has components

(∇f1(c) · v, . . . ,∇fm(c) · v)

Thus, the components of f ′(c)(v) are obtained by taking the dot product of the succes-

sive rows of the Jacobian matrix with the vector v. If we regard f ′(c)(v) as an m × 1

matrix, or column vector, then f ′(c)(v) is equal to the matrix product Df(c)v, where

Df(c) is the m × n Jacobian matrix and v is regarded as an n × 1 matrix, or column

vector.
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Note. Equation (1.8), used in conjunction with the triangle inequality and the Cauchy-

Schwarz inequality, gives us

∥f ′(c)(v)∥ =

∥∥∥∥∥
m∑
k=1

{∇fk(c) · v} ek

∥∥∥∥∥ ≤
m∑
k=1

|∇fk(c) · v| ≤ ∥v∥
m∑
k=1

∥∇fk(c)∥

Therefore we have

∥f ′(c)(v)∥ ≤ M∥v∥ (1.9)

where M =
m∑
k=1

∥∇fk(c)∥. This inequality will be used in the proof of the chain rule. It

also shows that f ′(c)(v) → 0 as v → 0.

1.7 The Chain Rule

The chain rule is a fundamental rule in calculus for differentiating compositions of

functions. Let us first recall the chain rule in one-dimension without proving it.

Theorem 1.7.1. Let f be defined on an open interval S, let g be defined on f(S), and

consider the composite function g ◦ f defined on S by the equation

(g ◦ f)(x) = g[f(x)].

Assume that there is a point c in S such that f(c) is an interior point of f(S). If f is

differentiable at c and if g is differentiable at f(c), then g ◦ f is differentiable at c and we

have

(g ◦ f)′(c) = g′[f(c)]f ′(c).

For functions of several variables, the chain rule becomes more involved but follows

the same principle.

Let f and g be functions such that the composition h = f ◦ g is defined in a neigh-

borhood of a point a. The chain rule helps to evaluate the total derivative of h in terms

of total derivatives of f and g.

Theorem 1.7.2. Assume that g is differentiable at a, with total derivative g′(a). Let

b = g(a) and assume that f is differentiable at b, with total derivative f ′(b). Then the
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composite function h = f ◦ g is differentiable at a, and the total derivative h′(a) is given

by

h′(a) = f ′(b) ◦ g′(a)

the composition of the linear functions f ′(b) and g′(a).

Proof. We shall prove this interesting theorem step-by-step.

1. Since g is differentiable at a with total derivative g′(a), we have

g(a+ y)− g(a) = g′(a)(y) + ∥y∥Ea(y)

where Ea(y) → 0 as y → 0.

Taking b = g(a) and v = g(a+ y)− g(a), the above equation becomes

v = g′(a)(y) + ∥y∥Ea(y)

2. Since f is differentiable at b with total derivative f ′(b), we have

f(b+ v)− f(b) = f ′(b)(v) + ∥v∥Eb(v)

= f ′(b)[g′(a)(y) + ∥y∥Ea(y)] + ∥v∥Eb(v)

where Eb(v) → 0 as v → 0.

3. Consider the difference h(a+ y)− h(a) for small ∥y∥, and show that we have a

first-order Taylor formula. We have

h(a+ y)− h(a) = f [g(a+ y)]− f [g(a)] = f(b+ v)− f(b) (1.10)

where b = g(a) and v = g(a+ y)− b. The Taylor formula for g(a+ y) implies

v = g′(a)(y) + ∥y∥Ea(y), where Ea(y) → 0 as y → 0 (1.11)

The Taylor formula for f(b+ v) implies

f(b+ v)− f(b) = f ′(b)(v) + ∥v∥Eb(v), where Eb(v) → 0 as v → 0 (1.12)
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Using (1.11) in (1.12) we find

f(b+ v)− f(b) = f ′(b) [g′(a)(y)] + f ′(b) [∥y∥Ea(y)] + ∥v∥Eb(v)

= f ′(b) [g′(a)(y)] + ∥y∥E(y) (1.13)

where E(0) = 0 and

E(y) = f ′(b) [Ea(y)] +
∥v∥
∥y∥

Eb(v) if y ̸= 0 (1.14)

To complete the proof we need to show that E(y) → 0 as y → 0.

The first term on the right of (1.14) tends to 0 as y → 0 because Ea(y) → 0. In

the second term, the factor Eb(v) → 0 because v → 0 as y → 0. Now we show

that the quotient ∥v∥/∥y∥ remains bounded as y → 0. Using (1.11) and using

the fact that ∥f ′(c)(v)∥ ≤ M∥v∥ to estimate the numerator we find

∥v∥ ≤ ∥g′(a)(y)∥+ ∥y∥ ∥Ea(y)∥ ≤ ∥y∥ {M + ∥Ea(y)∥}

where M =
m∑
k=1

∥∇gk(a)∥. Hence

∥v∥
∥y∥

≤ M + ∥Ea(y)∥ ,

so ∥v∥/∥y∥ remains bounded as y → 0. Using (1.10) and (1.13) we obtain the

Taylor formula

h(a+ y)− h(a) = f ′(b) [g′(a)(y)] + ∥y∥E(y)

where E(y) → 0 as y → 0. This proves that h is differentiable at a and that its

total derivative at a is the composition f ′(b) ◦ g′(a).

1.8 The Mean-value Theorem for Differentiable Func-
tions

The Mean-Value Theorem for functions from R1 to R1 states that

f(y)− f(x) = f ′(z)(y − x)
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where z ∈ (x, y). We will see that this equation is false for vector-valued functions

from Rn to Rm, when m > 1. In this section, we will derive a generalized Mean-Value

Theorem for vector-valued functions.

Let us use the notation L(x,y) to denote the line segment joining two points x and

y in Rn. That is,

L(x,y) = {tx+ (1− t)y : 0 ≤ t ≤ 1}.

Theorem 1.8.1. (Mean-Value Theorem) Let S ⊂ Rn be open and assume that f : S →

Rm is differentiable at each point of S. Let x,y ∈ S such that L(x,y) ⊆ S. Then for every

vector a ∈ Rm, there is a point z ∈ L(x,y) such that

a · {f(y)− f(x)} = a · {f ′(z)(y − x)} (1.15)

Proof. Let us take u = y − x. Since S is open and L(x,y) ⊆ S, there is a δ > 0

such that x+ tu ∈ S for all real t ∈ (−δ, 1 + δ). Let a ∈ Rm be a fixed vector and let us

define F : (−δ, 1 + δ) → R by

F (t) = a · f(x+ tu)

Then F is differentiable on (−δ, 1 + δ) and its derivative is given by

F ′(t) = a · f ′(x+ tu;u) = a · {f ′(x+ tu)(u)}

By the usual Mean-Value Theorem, we have

F (1)− F (0) = F ′(θ), where 0 < θ < 1

Note that

F (1)− F (0) = a · {f(y)− f(x)}

and

F ′(θ) = a · {f ′(x+ θu)(u)} = a · {f ′(z)(y − x)}

where z = x+ θu ∈ L(x,y). Thus, we obtain (1.15).

Note. If S is convex, then L(x,y) ⊆ S for all x,y ∈ S, the above MVT holds for all

x,y ∈ S.

23



Examples

1. If f is real-valued (m = 1), then we can take a = 1 in (1.15) to obtain

f(y)− f(x) = f ′(z) (y − x) = ∇f(z) · (y − x).

2. If f is vector-valued (m > 1), and if a ∈ Rm is a unit vector, (1.15) and the

Cauchy-Schwarz inequality give us

∥f(y)− f(x)∥ ≤ ∥f ′(z)(y − x)∥

Using (1.9), we obtain

∥f ′(z)(y − x)∥ ≤ M∥y − x∥

and therefore

∥f(y)− f(x)∥ ≤ M∥y − x∥

where M =
m∑
k=1

∥∇fk(z)∥. Note that M depends on z and hence on x and y.

3. If S is convex and if all the partial derivatives Djfk are bounded on S, then there

is a constant A > 0 such that

∥f(y)− f(x)∥ ≤ A∥y − x∥.

In other words, f satisfies a Lipschitz condition on S.

Let us sum up

In this section, we have proved the mean-value theorem.

1.9 A Sufficient Condition for Differentiability

We have also seen that neither the existence of all partial derivatives nor the existence

of all directional derivatives suffices to establish differentiability (since neither implies

continuity). The next theorem shows that continuity of all but one of the partials does

imply differentiability.
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Theorem 1.9.1. Assume that one of the partial derivatives D1f , . . . , Dnf exists at c and

that the remaining n− 1 partial derivatives exist in some n-ball B(c) and are continuous

at c. Then f is differentiable at c.

Proof. If f = (f1, . . . , fm), then f is differentiable at c if and only if, each component

fk (real-valued) is differentiable at c. Therefore, it suffices to prove the theorem when

f is real-valued.

Assume that D1f(c) exists and that the partials D2f, . . . , Dnf exist and are contin-

uous at c.

The only candidate for f ′(c) is the gradient vector ∇f(c).

To prove that f is differentiable at c, it is enough to show that

f(c+ v)− f(c) = ∇f(c) · v + o(∥v∥) as v → 0

The idea is to express the difference f(c+ v)− f(c) as a sum of n terms, where the k

th term is an approximation to Dkf(c)vk.

Let v = λy, where ∥y∥ = 1 and λ = ∥v∥. We shall take λ small enough so that

c + v lies in the ball B(c) in which the partial derivatives D2f, . . . , Dnf exist. Since

y ∈ Rn, we can express y as

y = y1u1 + · · ·+ ynun

where uk is the k-th unit coordinate vector.

Now we write the difference f(c+ v)− f(c) as a telescoping sum as follows:

f(c+ v)− f(c) = f(c+ λy)− f(c) =
n∑

k=1

{f (c+ λvk)− f (c+ λvk−1)} , (1.16)

where

v0 = 0, v1 = y1u1, v2 = y1u1 + y2u2, . . . ,vn = y1u1 + · · ·+ ynun

The first term in the sum is f (c+ λv1) − f(c + λv0) = f (c+ λy1u1) − f(c). Since

D1f(c) exists, we can write

f (c+ λy1u1)− f(c) = λy1D1f(c) + λy1E1(λ)
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where E1(λ) → 0 as λ → 0.

For k ≥ 2, the k-th term in the sum is

f (c+ λvk−1 + λykuk)− f (c+ λvk−1) = f (bk + λykuk)− f (bk)

where bk = c+λvk−1. The two points bk and bk +λykuk differ only in their k-th com-

ponent, and we can apply the one-dimensional mean-value theorem for derivatives to

write

f (bk + λykuk)− f (bk) = λykDkf (ak) (1.17)

where ak lies on the line segment joining bk to bk + λykuk. Note that bk → c and

hence ak → c as λ → 0. Since each Dkf is continuous at c for k ≥ 2 we can write

Dkf (ak) = Dkf(c) + Ek(λ), where Ek(λ) → 0 as λ → 0

Using this in (1.17), we find that (1.16) becomes

f(c+ v)− f(c) = λ
n∑

k=1

Dkf(c)yk + λ
n∑

k=1

ykEk(λ) = ∇f(c) · v + ∥v∥E(λ)

where

E(λ) =
n∑

k=1

ykEk(λ) → 0 as ∥v∥ → 0

This completes the proof.

1.10 A Sufficient Condition for Equality of Mixed Par-
tial Derivatives

The partial derivatives D1f , . . . , Dnf of a function from Rn to Rm are themselves func-

tions from Rn to Rm and they, in turn, can have partial derivatives. These are called

second-order partial derivatives. We use the following notation :

Dr,kf = Dr (Dkf) =
∂2f

∂xr∂xk

Higher-order partial derivatives are similarly defined.
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Example 1.10.1. The example

f(x, y) =


xy (x2 − y2)

(x2 + y2)
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

shows that D1,2f(x, y) is not necessarily the same as D2,1f(x, y). In fact, in this example

we have

D1f(x, y) =
y (x4 + 4x2y2 − y4)

(x2 + y2)2
, if (x, y) ̸= (0, 0)

and D1f(0, 0) = 0. Hence, D1f(0, y) = −y for all y and therefore

D2,1f(0, y) = −1, D2,1f(0, 0) = −1

On the other hand, we have

D2f(x, y) =
x (x4 − 4x2y2 − y4)

(x2 + y2)2
, if (x, y) ̸= (0, 0)

and D2f(0, 0) = 0, so that D2f(x, 0) = x for all x. Therefore, D1,2f(x, 0) = 1, D1,2f(0, 0) =

1, and we see that D2,1f(0, 0) ̸= D1,2f(0, 0).

The following theorem basically gives us a criterion for determining when the two

mixed partials D1,2f and D2,1f will be equal.

Theorem 1.10.2. If both partial derivatives Drf and Dkf exist in an n-ball B(c; δ) and

if both are differentiable at c, then

Dr,kf(c) = Dk,rf(c) (1.18)

Proof. If f = (f1, . . . , fm), then Dkf = (Dkf1, . . . , Dkfm). Therefore it suffices to

prove the theorem for real-valued f . Also, since only two components are involved in

(1.18), it suffices to consider the case n = 2. For simplicity, we assume that c = (0, 0).

We shall prove that

D1,2f(0, 0) = D2,1f(0, 0)

Choose h ̸= 0 so that the square with vertices (0, 0), (h, 0), (h, h), and (0, h) lies in the

2-ball B(0; δ). Consider the quantity

∆(h) = f(h, h)− f(h, 0)− f(0, h) + f(0, 0)
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We will show that ∆(h)/h2 tends to both D2,1f(0, 0) and D1,2f(0, 0) as h → 0.

Let G(x) = f(x, h)− f(x, 0) and note that

∆(h) = G(h)−G(0). (1.19)

By the one-dimensional Mean-value theorem we have

G(h)−G(0) = hG′ (x1) = h {D1f (x1, h)−D1f (x1, 0)}

where x1 lies between 0 and h. Since D1f is differentiable at (0, 0), we have the

first-order Taylor formulas

D1f (x1, h) = D1f(0, 0) +D1,1f(0, 0)x1 +D2,1f(0, 0)h+
(
x2
1 + h2

)1/2
E1(h)

and

D1f (x1, 0) = D1f(0, 0) +D1,1f(0, 0)x1 + |x1|E2(h)

where E1(h) and E2(h) → 0 as h → 0. Using these in (1.19) and (1.10) we find

∆(h) = D2,1f(0, 0)h
2 + E(h)

where E(h) = h (x2
1 + h2)

1/2
E1(h) + h |x1|E2(h). Since |x1| ≤ |h|, we have

0 ≤ |E(h)| ≤
√
2h2 |E1(h)|+ h2 |E2(h)|

so

lim
h→0

∆(h)

h2
= D2,1f(0, 0)

Applying the same procedure to the function H(y) = f(h, y)− f(0, y) in place of G(x),

we find that

lim
h→0

∆(h)

h2
= D1,2f(0, 0)

which completes the proof.

Theorems 1.10.1 and 1.10.2 leads to the following result:

Theorem 1.10.3. If both partial derivatives Drf and Dkf exist in an n-ball B(c) and if

both Dr,kf and Dk,rf are continuous at c, then

Dr,kf(c) = Dk,rf(c).
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1.11 Taylor’s Formula for Functions from Rn to R1

The Taylor formula (or Taylor series) is a powerful tool in calculus for approximating a

function near a point using polynomials. It expresses a smooth function as an infinite

sum of terms based on the function’s derivatives at a single point. When truncated, it

provides polynomial approximations to the function, which become more accurate as

more terms are included.

Taylor’s formula for real-valued functions defined on [a, b] can be stated as follows:

Theorem 1.11.1. Let f be a function having finite n-th derivative f (n) everywhere in

an open interval (a, b) and assume that f (n−1) is continuous on the closed interval [a, b].

Assume that c ∈ [a, b]. Then, for every x in [a, b], x ̸= c, there exists a point x1 interior to

the interval joining x and c such that

f(x) = f(c) +
n−1∑
k=1

f (k)(c)

k!
(x− c)k +

f (n)(x1)

n!
(x− c)n

The above Taylor’s theorem can be extended to real-valued functions f defined on

subsets of Rn. In order to state the general theorem in a form which resembles the

one-dimensional case, we introduce special symbols as follows:

If all second-order partial derivatives of f exist at x ∈ Rn, and if t = (t1, . . . , tn) is

an arbitrary point in Rn, we write

f ′′(x; t) =
n∑

i=1

n∑
j=1

Di,jf(x)tjti.

We also define

f ′′′(x; t) =
n∑

i=1

n∑
j=1

n∑
k=1

Di,j,kf(x)tktjti

if all third-order partial derivatives exist at x. The symbol f (m)(x; t) is similarly defined

if all m-th order partials exist.

These sums are analogous to the formula

f ′(x; t) =
n∑

i=1

Dif(x)ti,

for the directional derivative of a function which is differentiable at x.
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Theorem 1.11.2. (Taylor’s formula). Assume that f and all its partial derivatives of

order < m are differentiable at each point of an open set S in Rn. If a,b ∈ S such that

L(a,b) ⊆ S, then there is a point z ∈ L(a,b) such that

f(b)− f(a) =
m−1∑
k=1

1

k!
f (k)(a;b− a) +

1

m!
f (m)(z;b− a)

Proof. Since S is open, there is a δ > 0 such that a +t(b − a) ∈ S for all real

t ∈ (−δ, 1 + δ). Define g on (−δ, 1 + δ) by

g(t) = f [a+ t(b− a)].

Then f(b)− f(a) = g(1)− g(0). By applying the one-dimensional Taylor formula to g,

we have

g(1)− g(0) =
m−1∑
k=1

1

k!
g(k)(0) +

1

m!
g(m)(θ), where 0 < θ < 1 (1.20)

Note that g is a composite function given by g(t) = f [p(t)], where p(t) = a+ t(b− a).

The k-th component of p has derivative p′k(t) = bk − ak. Applying the chain rule, we

see that g′(t) exists in the interval (−δ, 1 + δ) and is given by

g′(t) =
n∑

j=1

Djf [p(t)] (bj − aj) = f ′(p(t);b− a)

Applying the chain rule again, we obtain

g′′(t) =
n∑

i=1

n∑
j=1

Di,jf [p(t)] (bj − aj) (bi − ai) = f ′′(p(t);b− a)

Similarly, we find that g(m)(t) = f (m)(p(t);b − a). When these are used in (1.20)

we obtain the theorem, since the point z = a+ θ(b− a) ∈ L(a,b).

Summary

In this chapter, we have studied the concept of partial, directional and total derivatives.

We have seen that the total derivatives can be expressed in term of partial derivatives.

Further, we have generalized some of the important theorems of calculus like chain

rule, mean-value theorem, and Taylor’s formula to functions depending on n-variables.
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Check your progress

1. If f : Rn → Rm is differentiable at c, then

(A) f ′(c) : Rn → Rm is linear (B) f ′(c) : Rn → Rn is linear

(C) f ′(c) : Rm → Rn is linear (D) f ′(c) : Rm → Rm is linear

2. If f : Rn → Rm is differentiable at c, then

(A) Tc(u) = f ′(c;u) (B) Tc(u) = f ′(c)

(C) Tc(u) = f (D) T (u) = Dkf(c)

3. If f : Rn → Rm is linear, then

(A) f ′(c) exists for every c and f ′(c) = f

(B) f ′(c) exists for some c and f ′(c) = f

(C) f ′(c) need not exists at c

(D) None of the above

4. If f(x, y) = log(x2 + y2), (x, y) ̸= (0, 0), then

(A) D1,2f(x, y) = D2,1f(x, y) for all x, y ∈ R

(B) D1,2f(x, y) ̸= D1,1f(x, y) for all x, y ∈ R

(C) D1,2f(x, y) = D2,1f(x, y) for some x, y ∈ R

(D) D1,2f(x, y) ̸= D1,1f(x, y) for some x, y ∈ R

5. The limit lim
h→0

h

|h|
=

(A) 0 (B) 1 (C) doesn’t exist (D) −1

Glossary

• S ⊆ Rn means that S is a subset of Rn.

• uk, the k-th unit coordinate vector means uk = (0, . . . , 1, . . . , 0), where is 1 is in

the k-th position.

• f : S → Rm means that f is a function defined on a set S ⊂ Rn with values in

Rm.
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• f = (f1, f2, . . . , fm) means that f(c) = (f1(c), . . . , fn(c)), where fi : S → R, i =

1, 2, . . . , n.

• If n = 1, then we will use f = f .

• B(c; r) = {x ∈ Rn : ∥x− c∥ < r} will be called an n-ball in Rn

• Dkf(c) =
∂f

∂xk

, a partial derivative of f with respect to xk.

• Open n-ball: Let a ∈ Rn and r > 0. The set B(a; r) = {x ∈ Rn : ∥x− a∥ < r} is

called an open n−ball of radius r and center a.

• Interior point: Let S be a subset of Rn. A point a ∈ S is said to be an interior

point of S, if there is an open n-ball B(a; r) with center at a such that B(a; r) ⊆ S.

• Open set: A set S ⊂ Rb is said to be open if all its points are interior points.

• A function f : Rn → Rm is said to be linear if

f(ax+ by) = af(x) + bf(y)

for every pair of vectors x and y in Rn and every pair of scalars a and b.

Self-Assessment Questions

1. If f is differentiable at c, then show that f is continuous at c.

2. State and prove the chain rule.

3. State and prove the mean value theorem for differentiable functions.

4. Establish sufficient condition for differentiability.

5. Establish sufficient condition for equality of mixed partial dierivatives.

6. State and prove Talyor’s formula.
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Exercises

1. Calculate all first order partial derivatives and the directional derivative for f(x) =

x · L(x) where L : Rn → Rn is a linear function.

2. If f(x, y) =

{
xy(x2−y2)
x2+y2

if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0),
then show that D2,1f(0, 0) ̸= D1,2f(0, 0).

3. If T : Rn → Rm and S : Rm → Rp are linear transformations with the domain of

S containing the range of f , then show that the composition S ◦ T is linear map

from Rn into Rp. Also calculate the matrix m(S ◦ T ).

4. Let f : R2 → R3 be defined by f(x, y) = (sinx cos y, sinx sin y, cosx cos y). Deter-

mine the Jacobian matrix Df(x, y).

Answers for check your progress

1. (A) 2. (A) 3. (A) 4. 5. (C)

Section 1.2:

(a) Let x = (x1, x2, · · · , xn) and a = (a1, a2, · · · , an). Then

f(x) = a · x = a1x1 + a2x2 + · · ·+ anxn.

The first-order partial derivatives of f are given by,

Dkf(x) = ak (k = 1, 2, 3, · · · , n)

The directional derivative of f at x along u is given by

f ′(x;u) = lim
h→0

f(x+ hu)− f(x)

h

= lim
h→0

a · (x+ hu)− a · x
h

= lim
h→0

a · x+ ha · u− a · x
h

= a · u
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(b) i) The first order partial derivatives of f are given by,

Let

∥x∥4 = (∥x∥2)2 =

(
n∑

i=1

x2
i

)2

=
n∑

i=1

x4
i +

n∑
i,j=1
i̸=j

x2
ix

2
j∥x∥4

= x4
k +

n∑
i=1
i ̸=k

x4
i + 2x2

k

n∑
i=1
i ̸=k

x2
i +

n∑
i,j=1

i ̸=j,i ̸=k,j ̸=k

x2
ix

2
j

Let k = 1, 2, · · · , n, then

Dkf(x) = 4x3
k + 4xk

n∑
i=1

x2
i

Thus, Dkf(x) exists and is continuous. Hence, f is differentiable and thus, it has

directional derivative in every direction.

ii) The directional derivative of f at x along u:

f ′(x;u) = f ′(x)(u) = f ′(x)(u1e1 + u2e2 + · · ·+ unen)

=
n∑

k=1

ukf
′(x)(ek)

=
n∑

k=1

ukf
′(x; ek)

=
n∑

k=1

ukDkf(x)

= 4∥x∥2
n∑

k=1

ukxk

f ′(x;u) = 4∥x∥2(x · u).

(c) f(x) = x · L(x) and L is a linear function.
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i) The first order partial derivatives of f are given by,

Dkf(x) = lim
h→0

f(x+ hek)− f(x)

h

= lim
h→0

(x+ hek) · L(x+ hek)− x · L(x)
h

= lim
h→0

(x+ hek) · [L(x) + hL(ek)]− x · L(x)
h

= lim
h→0

x · L(x) + hx · L(ek) + hek · L(x) + h2ek · L(ek)− x · L(x)
h

= lim
h→0

h[x · L(ek) + ek · L(x) + hek · L(ek)]
h

Dkf(x) = x · L(ek) + ek · L(x).

Let u = (u1, u2, · · · , un) = u1e1 + u2e2 + · · ·+ unen.

ii) The directional derivative of f at x along u is given by

f ′(x;u) =
n∑

k=1

ukDkf(x) =
n∑

k=1

uk[x · L(ek) + ek · L(x)]

=
n∑

k=1

xuk · L(ek) +
n∑

k=1

ukek · L(x)

= x
n∑

k=1

uk · L(ek) +
n∑

k=1

ukek · L(x)

= x ·
n∑

k=1

L(ukek) +
n∑

k=1

ukek · L(x)

f ′(x;u) = x · L(u) + L(x) · u

(d)

f(x) =
n∑

i=1

n∑
j=1

aijxixj

= akkx
2
k +

∑
i ̸=k

aikxixk +
∑
i ̸=k

akixkxi +
∑

i ̸=k,j ̸=k,i̸=j

aijxixj

Then, we have

Dkf(x) = 2akkxk +
∑
i ̸=k

aikxi +
∑
i ̸=k

akixi

= 2akkxk + 2
∑
i ̸=k

aikxi (since, aik = aki)

Dkf(x) = 2
∑
i ̸=k

aikxi
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Thus, Dkf(x) exists and is continuous. Hence, f is differentiable and thus, it has

directional derivative in every direction. Then,

f ′(x;u) =
n∑

k=1

ukDkf(x)

= 2
n∑

k=1

uk

n∑
i=1

aikxi

= 2
n∑

i=1

n∑
i=1

aikxiuk

= 2xTAu.

where A = (aij)
n
i=1,j=1.
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Unit 2

Implict Functions and Extremum
Problems

Objectives

After reading this unit learners will be able to understand the important theorems of

multivariable calculus as follows:

• Inverse function theorem

• Implicit function theorem

• Extremum problems

2.1 Introduction

Given a simple equation

f(x, t) = 0 (2.1)

the basic question to be asked to whether we can determine x as a function of t. If yes,

then we have

x = g(t),

for some function g and we say that g is defined “implicitly” by (2.1).

In a similar manner, when we have a system of several equations involving n sev-

eral variables we can think of whether can we solve these equations for some of the

variables in terms of the remaining n − 1 variables. This is the same type of problem
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as above, except that x and t are replaced by vectors, and f and g are replaced by

vector-valued functions. Under suitable conditions, a solution always exists. Basically,

the implicit function theorem gives these sufficient conditions and some idea about

the solution.

For example, a system of n linear equations of the form

n∑
j=1

aijxj = ti (i = 1, 2, . . . , n) (2.2)

where the aij and ti are given numbers and x1, . . . , xn represent unknowns has a

unique solution if, and only if, the determinant of the coefficient matrix A = [aij]

is nonzero.

Note. The determinant of a square matrix A = [aij] is denoted by detA or det [aij]. If

det [aij] ̸= 0, the solution of (2.2) can be obtained by Cramer’s rule which expresses each

xk as a quotient of two determinants, say xk = Ak/D, where D = det [aij] and Ak is the

determinant of the matrix obtained by replacing the k-th column of [aij] by t1, . . . , tn. In

particular, if each ti = 0, then each xk = 0.

Next we show that the system (2.2) can be written in the form (2.1). Each equation

in (2.2) has the form

fi(x, t) = 0 where x = (x1, . . . , xn) , t = (t1, . . . , tn)

and

fi(x, t) =
n∑

j=1

aijxj − ti.

Therefore the system in (2.2) can be expressed as one vector equation

f(x, t) = 0,

where f = (f1, . . . , fn). If Djfi denotes the partial derivative of fi with respect to the

j-th coordinate xj, then Djfi(x, t) = aij. Thus the coefficient matrix A = [aij] in (2.2)

is a Jacobian matrix. Linear algebra tells us that (2.2) has a unique solution if the

determinant of this Jacobian matrix is nonzero.
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In the general implicit function theorem, the nonvanishing of the determinant of

a Jacobian matrix also plays a role. This comes about by approximating f by a linear

function. The equation f(x, t) = 0 gets replaced by a system of linear equations whose

coefficient matrix is the Jacobian matrix of f .

Notation. If f = (f1, . . . , fn) and x = (x1, . . . , xn), the Jacobian matrix Df(x) =

[Djfi(x)] is an n × n matrix. Its determinant is called a Jacobian determinant and

is denoted by Jf(x). Thus,

Jf (x) = detDf(x) = det [Djfi(x)]

The notation
∂ (f1, . . . , fn)

∂ (x1, . . . , xn)

is also used to denote the Jacobian determinant Jf(x).

The next theorem gives a relation between the Jacobian determinant of a complex-

valued function and its derivative.

Theorem 2.1.1. If f = u + iv is a complex-valued function with a derivative at a point

z in C, then Jf (z) = |f ′(z)|2.

Proof. We have f ′(z) = D1u+ iD1v, so |f ′(z)|2 = (D1u)
2 + (D1v)

2. Also,

Jf (z) = det

[
D1u D2u
D1v D2v

]
= D1uD2v −D1vD2u = (D1u)

2 + (D1v)
2

by the Cauchy-Riemann equations.

Check your progress

1. A system of algebraic equations AX = B has a unique solution if and only if

(A) the determinant of the coefficient matrix A = [aij] is nonzero.

(B) the determinant of the coefficient matrix A = [aij] is zero.

(C) the coefficient matrix A = [aij] is positive definite.

(D) the each entries aij of the coefficient matrix A is nonzero.
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2.2 Functions with nonzero Jacobian determinant

In this section, we give some important properties of functions with non vanishing

Jacobian determinant at certain points. These results will be used to prove the implicit

function theorem.

Theorem 2.2.1. Let B = B(a; r) be an n-ball in Rn, let ∂B denote its boundary,

∂B = {x : ∥x− a∥ = r}

and let B̄ = B ∪ ∂B denote its closure. Let f = (f1, . . . , fn) be continuous on B̄, and

assume that all the partial derivatives Djfi(x) exist if x ∈ B. Assume further that f(x) ̸=

f(a) if x ∈ ∂B and that the Jacobian determinant Jf (x) ̸= 0 for each x in B. Then f(B),

the image of B under f , contains an n-ball with center at f(a).

Proof.

1. First let us define a real-valued function g on ∂B by:

g(x) = ∥f(x)− f(a)∥ if x ∈ ∂B

Since f(x) ̸= f(a) if x ∈ ∂B, g(x) > 0 for each x in ∂B. Also, since f is continuous

on B̄, the function g is continuous on ∂B . Since ∂B is closed and bounded, it is

compact and so g attains an absolute minimum (call it m) for some point on ∂B.

Note that m > 0 since g is positive on ∂B.

2. Let T = B
(
f(a); m

2

)
, an n−ball with centre at f(a) and radius

m

2
.

Thus the theorem will be proved if T ⊆ f(B).

Let us now prove that y ∈ f(B) whenever y ∈ T .

For y in T , let us define a real-valued function h on B̄ by

h(x) = ∥f(x)− y∥ if x ∈ B̄

Then h is continuous on the compact set B̄ and hence attains its absolute mini-

mum on B̄.
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3. We shall now show that h attains its minimum inside the open n-ball B.

Note that at the center point a, we have h(a) = ∥f(a) − y∥ < m/2 since y ∈ T .

Hence the minimum value of h in B̄ must also be less that m/2.

If x ∈ ∂B, we have

h(x) = ∥f(x)− y∥ = ∥f(x)− f(a)− (y − f(a))∥

≥ ∥f(x)− f(a)∥ − ∥f(a)− y∥

> g(x)− m

2

≥ m− m

2

=
m

2
.

Hence, h cannot attain its minimum on the boundary ∂B. Hence there is an

interior point c in B at which h attains its minimum.

4. At this point the square of h also has a minimum. Since

h2(x) = ∥f(x)− y∥2 =
n∑

i=1

[fi(x)− yi]
2

and since each partial derivative Dk (h
2) must be zero at c, we must have

n∑
i=1

[fi(c)− yi]Dkfi(c) = 0 for k = 1, 2, . . . , n.

But this is a system of linear equations whose determinant Jf(c) ̸= 0, since c ∈ B.

Therefore fi(c) = yi for each i, or f(c) = y. That is, y ∈ f(B). Hence T ⊆ f(B)

and the proof is complete.

Definition 2.2.2. Let (S, dS) and (T, dT ) be metric spaces. A function f : S → T is called

an open mapping if, for every open set A in S, the image f(A) is open in T .

The next theorem gives a sufficient condition for a mapping that takes open sets

onto open sets.

Theorem 2.2.3. (Open Mapping Theorem) Let A be an open subset of Rn and assume

that f : A → Rn is continuous and has finite partial derivatives Djfi on A. If f is

one-to-one on A and if Jf (x) ̸= 0 for each x in A, then f(A) is open.
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Proof. If b ∈ f(A), then b = f(a) for some a in A. There is an n-ball B(a; r) ⊆ A on

which f satisfies the hypotheses of the previous theorem. So, f(B) contains an n-ball

with center at b. Therefore, b is an interior point of f(A), so f(A) is open.

The next theorem shows that a function with continuous partial derivatives is lo-

cally one-to-one near a point where the Jacobian determinant does not vanish.

Theorem 2.2.4. Assume that f = (f1, . . . , fn) has continuous partial derivatives Djfi on

an open set S in Rn, and that the Jacobian determinant Jf (a) ̸= 0 for some point a in S.

Then there is an n-ball B(a) on which f is one-to-one.

Proof. Let Z1, . . . ,Zn be n points in S and let Z = (Z1; . . . ;Zn) denote that point

in Rn2 whose first n components are the components of Z1, whose next n components

are the components of Z2, and so on.

Let us define a real-valued function h by

h(Z) = det [Djfi (Zi)]

This function is continuous at those points Z in Rn2 where h(Z) is defined because

each Djfi is continuous on S and a determinant is a polynomial in its n2 entries. Let

Z be the special point in Rn2 obtained by putting

Z1 = Z2 = · · · = Zn = a.

Then h(Z) = Jf (a) ̸= 0 and hence, by continuity, there is some n-ball B(a) such that

det [Djfi (Zi)] ̸= 0

if each Zi ∈ B(a). We will prove that f is one-to-one on B(a).

Suppose that f(x) = f(y) for some pair of points x ̸= y in B(a). Then we must

arrive at a contradiction.

Since B(a) is convex, the line segment L(x,y) ⊆ B(a) and we can apply the Mean-

Value Theorem to each component fi of f to write

0 = fi(y)− fi(x) = ∇fi (Zi) · (y − x) for i = 1, 2, . . . , n
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where each Zi ∈ L(x,y) and hence Zi ∈ B(a). (The Mean-Value Theorem is applicable

because f is differentiable on S.) But this is a system of linear equations of the form

n∑
k=1

(yk − xk) aik = 0 with aik = Dkfi (Zi) .

The determinant of this system is not zero, since Zi ∈ B(a). Hence yk−xk = 0 for each

k, and this contradicts the assumption that x ̸= y. We have thus shown that x ̸= y

implies f(x) ̸= f(y) and hence that f is one-to-one on B(a).

Note. The above theorem is a local theorem and not a global theorem. The nonvanishing

of Jf (a) guarantees that f is one-to-one on a neighborhood of a. It does not follow that

f is one-to-one on S, even when Jf (x) ̸= 0 for every x in S. The following example

illustrates this point. Let f be the complex-valued function defined by f(z) = ez if z ∈ C.

If z = x+ iy we have

Jf (z) = |f ′(z)|2 = |ez|2 = e2x

Thus Jf (z) ̸= 0 for every z in C. However, f is not one-to-one on C because f (z1) = f (z2)

for every pair of points z1 and z2 which differ by 2πi.

The next theorem gives a global property of functions with nonzero Jacobian de-

terminant.

Theorem 2.2.5. Let A be an open subset of Rn and assume that f : A → Rn has con-

tinuous partial derivatives Djfi on A. If Jf (x) ̸= 0 for all x in A, then f is an open

mapping.

Proof. Let S be any open subset of A. If x ∈ S there is an n-ball B(x) in which f is

one-to-one by previous theorem. Hence by Theorem 2.2.4, the image f(B(x)) is open

in Rn. But we can write S =
⋃
x∈S

B(x). Applying f we find f(S) =
⋃
x∈S

f(B(x)), so f(S)

is open.

Definition 2.2.6. If a function f = (f1, . . . , fn) has continuous partial derivatives on a

set S, we say that f is continuously differentiable on S, and we write f ∈ C ′ on S.

Note. Continuous differentiability at a point implies differentiability at that point.
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Theorem 2.2.4 shows that a continuously differentiable function with a nonvanish-

ing Jacobian at a point a has a local inverse in a neighborhood of a. The next theorem

gives some local differentiability properties of this local inverse function.

Check your progress

1. A function f from a metric space (S, dS) to another (T, dT ) is called an open

mapping if

(A) for every open set A in S, f(A) is open in T .

(B) f is a continuous mapping of S into T .

(C) for every closed set A in S, f(A) is closed in T .

(D) f is a bijective mapping.

2. A function f = (f1, f2, · · · , fn) is said to continuously differentiable on S ⊂ Rn if

(A) f has continuous partial derivatives (B) f has all partial derivatives

(C) f has directional derivatives (D) each fi continuous and differ-

entiable

2.3 The Inverse Function Theorem

The inverse function theorem is a fundamental result in multivariable calculus that

provides conditions under which a function has a local inverse near a point. It finds

applications in coordinate transformations, in particular, in change of variables in in-

tegrals and in proving the implicit function theorem.

We recall the following result about differentiable functions of a single variable:

Let f be a continuously differentiable function of a single variable x on an open

interval, and suppose that at some point a in the interval, f(a) is nonzero. Then f maps

a sufficiently small interval around the point a one to one onto an interval around the

point f(a). Denote the inverse function of f by g, then g is differentiable at f(a), and

g′(f(a)) =
1

f ′(a)
.
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Theorem 2.3.1. Assume f = (f1, . . . , fn) ∈ C ′ on an open set S in Rn, and let T = f(S).

If the Jacobian determinant Jf(a) ̸= 0 for some point a in S, then there are two open sets

X ⊆ S and Y ⊆ T and a uniquely determined function g such that

a) a ∈ X and f(a) ∈ Y ,

b) Y = f(X),

c) f is one-to-one on X,

d) g is defined on Y,g(Y ) = X, and g[f(x)] = x for every x in X,

e) g ∈ C ′ on Y .

Proof.

1. The function Jf defined by Jf(x) = det[Djfi(x)] is continuous on S and, since

Jf(a) ̸= 0, there is an n-ball B1(a) such that Jf(x) ̸= 0 for all x in B1(a). By

Theorem 2.2.4, there is an n-ball B(a) ⊆ B1(a) on which f is one-to-one.

2. Let B be an n-ball with center at a and radius smaller than that of B(a). Then,

by Theorem 2.2.1, f(B) contains an n-ball denoted as Y with center at f(a). Let

X = f−1(Y ) ∩B. Then X is open since both f−1(Y ) and B are open.

3. The set B̄ (the closure of B ) is compact and f is one-to-one and continuous on

B̄. Hence, there exists a function g (the inverse function f−1) defined on f(B̄)

such that

g[f(x)] = x for all x ∈ B̄.

Moreover, g is continuous on f(B̄). Since X ⊆ B̄ and Y ⊆ f(B̄), we have

a) a ∈ X and f(a) ∈ Y ,

b) Y = f(X),

c) f is one-to-one on X,

d) g is defined on Y,g(Y ) = X, and g[f(x)] = x for every x in X.
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The uniqueness of g follows from (d).

4. To prove (e), we define a real-valued function h by the equation

h(Z) = det [Djfi (Zi)] ,

where Z1, . . . ,Zn are n points in S, and Z = (Z1; . . . ;Zn) is the corresponding

point in Rn2. Then, arguing as in the proof of Theorem 2.2.4, there is an n-ball

B2(a) such that

h(Z) = det[Djfi(Zi)] ̸= 0

if each Zi ∈ B2(a). We can now assume that, the n-ball B(a) was chosen so that

B(a) ⊆ B2(a). Then B̄ ⊆ B2(a) and h(Z) ̸= 0 if each Zi ∈ B̄.

5. To prove (e), let us write g = (g1, . . . , gn) and show that each gk ∈ C ′ on Y .

To prove this let us take y ∈ Y and show that Drgk(y) exists.

Consider the difference quotient
gk (y + tur)− gk(y)

t
, where ur is the r-th unit

coordinate vector. Since Y is open, y + tur ∈ Y if t is sufficiently small.

6. Let x = g(y) and let x′ = g (y + tur).

Then both x and x′ are in X and f (x′)− f(x) = tur. Hence fi (x
′)− fi(x) is 0 if

i ̸= r, and is t if i = r.

By the Mean-Value Theorem, we have

fi (x
′)− fi(x)

t
= ∇fi (Zi) ·

x′ − x

t
for i = 1, 2, . . . , n

where each Zi is on the line segment joining x and x′; hence Zi ∈ B. Note that

the expression on the left is 1 or 0 , according to whether i = r or i ̸= r. Since

det [Djfi (Zi)] = h(Z) ̸= 0,

the system of n linear equations with n unknowns
x′
j − xj

t
has a unique solution.
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7. Using Cramer’s rule for solving for the k-th unknown, we obtain an expression for
gk (y + tur)− gk(y)

t
as a quotient of determinants. As t → 0, the point x → x′,

since g is continuous, and hence each Zi → x, since Zi is on the segment joining

x to x′. The determinant which appears in the denominator has for its limit the

number det [Djfi(x)] = Jf(x), and this is nonzero, since x ∈ X. Therefore, the

following limit exists:

lim
t→0

gk (y + tur)− gk(y)

t
= Drgk(y)

This establishes the existence of Drgk(y) for each y in Y and each r = 1, 2, . . . , n.

Moreover, this limit is a quotient of two determinants involving the derivatives

Djfi(x). Continuity of the Djfi implies continuity of each partial Drgk. This

completes the proof of (e).

Check your progress

1. Check whether the function F : R2 → R2 defined by F (x1, x2) =

(
x2 + y
y2 + x

)
has an

inverse near the point (1, 1).

2.4 The Implicit Function Theorem

The implicit function theorem in multivariable calculus provides conditions under

which a system of equations can be solved for some variables in terms of others, near

a point where certain regularity conditions are met. It generalizes the idea of solving

equations implicitly for one variable in terms of others.

Theorem 2.4.1. (Implicit function theorem) Let f = (f1, . . . , fn) be a vector-valued

function defined on an open set S in Rn+k with values in Rn. Suppose f ∈ C ′ on S. Let

(x0; t0) be a point in S for which f (x0; t0) = 0 and for which the n × n determinant

det [Djfi (x0; t0)] ̸= 0. Then there exists a k-dimensional open set T0 containing t0 and

one, and only one, vector-valued function g, defined on T0 and having values in Rn, such

that
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a) g ∈ C ′ on T0,

b) g (t0) = x0,

c) f(g(t); t) = 0 for every t in T0.

Proof. We shall apply the inverse function theorem to a certain vector-valued func-

tion F = (F1, . . . , Fn;Fn+1, . . . , Fn+k) defined on S and having values in Rn+k. The

function F is defined as follows: For 1 ≤ m ≤ n, let Fm(x; t) = fm(x; t), and for

1 ≤ m ≤ k, let Fn+m(x; t) = tm. We can then write F = (f ; I), where f = (f1, . . . , fn)

and where I is the identity function defined by I(t) = t for each t in Rk. The Jacobian

JF (x; t) then has the same value as the n× n determinant det [Djfi(x; t)] because the

terms which appear in the last k rows and also in the last k columns of JF(x; t) form a

k × k determinant with ones along the main diagonal and zeros elsewhere; the inter-

section of the first n rows and n columns consists of the determinant det [Djfi(x; t)],

and

DiFn+j(x; t) = 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ k

Hence the Jacobian JF (x0; t0) ̸= 0. Also, F (x0; t0) = (0; t0). Therefore, by inverse

function theorem, there exist open sets X and Y containing (x0; t0) and (0; t0), respec-

tively, such that F is one-to-one on X, and X = F−1(Y ). Also, there exists a local

inverse function G, defined on Y and having values in X, such that

G[F(x; t)] = (x; t)

and such that G ∈ C ′ on Y .

Now G can be reduced to components as follows: G = (v;w) where v = (v1, . . . , vn)

is a vector-valued function defined on Y with values in Rn and w = (w1, . . . , wk) is

also defined on Y but has values in Rk. We can now determine v and w explicitly. The

equation G[F(x; t)] = (x; t), when written in terms of the components v and w, gives

us the two equations

v[F(x; t)] = x and w[F(x; t)] = t.
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But now, every point (x; t) in Y can be written uniquely in the form (x; t) = F (x′; t′)

for some ( x′; t′ ) in X, because F is one-to-one on X and the inverse image F−1(Y )

contains X. Furthermore, by the manner in which F was defined, when we write

(x; t) = F (x′; t′), we must have t′ = t. Therefore,

v(x; t) = v [F (x′; t)] = x′ and w(x; t) = w [F (x′; t)] = t.

Hence the function G can be described as follows: Given a point (x; t) in Y , we have

G(x; t) = (x′; t), where x′ is that point in Rn such that (x; t) = F (x′; t). This statement

implies that

F[v(x; t); t] = (x; t) for every (x; t) in Y.

Now we are ready to define the set T0 and the function g in the theorem. Let

T0 =
{
t : t ∈ Rk, (0; t) ∈ Y

}
and for each t in T0 define g(t) = v(0; t). The set T0 is open in Rk. Moreover, g ∈ C ′

on T0 because G ∈ C ′ on Y and the components of g are taken from the components

of G. Also,

g (t0) = v (0; t0) = x0

because (0; t0) = F (x0; t0). Finally, the equation F [v(x; t); t] = (x; t), which holds

for every (x; t) in Y , yields (by considering the components in Rn ) the equation

f [v(x; t); t] = x. Taking x = 0, we see that for every t in T0, we have f [g(t); t] = 0, and

this completes the proof of statements (a), (b), and (c). It remains to prove that there

is only one such function g. But this follows at once from the one-to-one character

of f . If there were another function, say h, which satisfied (c), then we would have

f [g(t); t] = f [h(t); t], and this would imply (g(t); t) = (h(t); t), or g(t) = h(t) for every

t in T0.
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Check your progress

2. Verify that the system of two equations

F1(x, y, z) = x2 + y2 + z2 − 1 = 0,

F2(x, y, z) = x+ z − 1 = 0.

can be solved for y and z as functions of x.

2.5 Extrema of real-valued functions of one variable

This section will examine real-valued functions f and identify points where f has a

local extremum, or a local minimum or maximum.

If f is a function of one variable, a necessary condition for a function f to have

a local extremum at an interior point c of an interval is that f ′(c) = 0, provided

that f ′(c) exists. However, this is not sufficient condition, as we can see by taking

f(x) = x3, c = 0. Now, we derive a sufficient condition.

Theorem 2.5.1. For some integer n ≥ 1, let f have a continuous nth derivative in the

open interval (a, b). Suppose also that for some interior point c in (a, b) we have

f ′(c) = f ′′(c) = · · · = f (n−1)(c) = 0, but f (n)(c) ̸= 0

Then for n even, f has a local minimum at c if f (n)(c) > 0, and a local maximum at c if

f (n)(c) < 0. If n is odd, there is neither a local maximum nor a local minimum at c.

Proof. Since f (n)(c) ̸= 0, there exists an interval B(c) such that for every x in B(c),

the derivative f (n)(x) will have the same sign as f (n)(c). Now by Taylor’s formula for

one dimension (Theorem 1.11.1), for every x in B(c) we have

f(x)− f(c) =
f (n) (x1)

n!
(x− c)n, where x1 ∈ B(c)

If n is even, this equation implies f(x) ≥ f(c) when f (n)(c) > 0, and f(x) ≤ f(c) when

f (n)(c) ≤ 0. If n is odd and f (n)(c) > 0, then f(x) > f(c) when x > c, but f(x) < f(c)

when x < c, and there can be no extremum at c. A similar statement holds if n is odd

and f (n)(c) < 0. This proves the theorem.
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2.6 Extrema of real-valued functions of several vari-
ables

Necessary condition for a function to have a local maximum or a local minimum at

an interior point a of an open set is that each partial derivative Dkf(a) must be zero

at that point. We can also state this in terms of directional derivatives by saying that

f ′(a;u) must be zero for every direction u.

The converse of the above statement is not true, however. For example, let us

consider a function of two real variables:

f(x, y) =
(
y − x2

) (
y − 2x2

)
Here we have D1f(0, 0) = D2f(0, 0) = 0. Now f(0, 0) = 0, but the function assumes

both positive and negative values in every neighborhood of (0, 0), so there is neither a

local maximum nor a local minimum at (0, 0).

This example illustrates another interesting phenomenon. If we take a fixed straight

line through the origin and restrict the point (x, y) to move along this line toward (0, 0),

then the point will finally enter the region above the parabola y = 2x2 (or below the

parabola y = x2 in which f(x, y) becomes and stays positive for every (x, y) ̸= (0, 0).

Therefore, along every such line, f has a minimum at (0, 0), but the origin is not a

local minimum in any two-dimensional neighborhood of (0, 0).

Definition 2.6.1. If f is differentiable at a and if ∇f(a) = 0, the point a is called a

stationary point of f . A stationary point is called a saddle point if every n-ball B(a)

contains points x such that f(x) > f(a) and other points such that f(x) < f(a).

In the foregoing example, the origin is a saddle point of the function.

To determine whether a function of n variables has a local maximum, a local mini-

mum, or a saddle point at a stationary point a, we must determine the algebraic sign

of f(x)− f(a) for all x in a neighborhood of a. As in the one-dimensional case, this is

done with the help of Taylor’s formula.
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Take m = 2 and y = a+ t in the Taylor’s formula. If the partial derivatives of f are

differentiable on an n-ball B(a) then

f(a+ t)− f(a) = ∇f(a) · t+ 1

2
f ′′(z; t) (2.3)

where z lies on the line segment joining a and a+ t, and

f ′′(z; t) =
n∑

i=1

n∑
j=1

Di,jf(z)titj

At a stationary point we have ∇f(a) = 0 so (2.3) becomes

f(a+ t)− f(a) =
1

2
f ′′(z; t)

Therefore, as a+t ranges over B(a), the algebraic sign of f(a+t)−f(a) is determined

by that of f ′′(z; t). We can write (2.3) in the form

f(a+ t)− f(a) =
1

2
f ′′(a; t) + ∥t∥2E(t) (2.4)

where

∥t∥2E(t) =
1

2
f ′′(z; t)− 1

2
f ′′(a; t)

The inequality

∥t∥2|E(t)| ≤ 1

2

n∑
i=1

n∑
j=1

|Di,jf(z)−Di,jf(a)| ∥t∥2

shows that E(t) → 0 as t → 0 if the second-order partial derivatives of f are continu-

ous at-a. Since ∥t∥2E(t) tends to zero faster than ∥t∥2, it seems reasonable to expect

that the algebraic sign of f(a+ t)−f(a) should be determined by that of f ′′(a; t). This

is what is proved in the next theorem.

Theorem 2.6.2. (Second-derivative test for extrema) Assume that the second-order

partial derivatives Di,jf exist in an n-ball B(a) and are continuous at a, where a is a

stationary point of f . Let

Q(t) =
1

2
f ′′(a; t) =

1

2

n∑
i=1

n∑
j=1

Di,jf(a)titj (2.5)

a) If Q(t) > 0 for all t ̸= 0, f has a relative minimum at a.
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b If Q(t) < 0 for all t ̸= 0, f has a relative maximum at a.

c) If Q(t) takes both positive and negative values, then f has a saddle point at a.

Proof. First let us note that the function Q is continuous at each point t in Rn.

Let S = {t : ∥t∥ = 1} denote the boundary of the n-ball B(0; 1).

If Q(t) > 0 for all t ̸= 0, then Q(t) is positive on S.

Since S is compact, Q has a minimum on S (call it m), and m > 0.

Now Q(ct) = c2Q(t) for every real c.

Taking c = 1/∥t∥ where t ̸= 0 we see that ct ∈ S and hence c2Q(t) ≥ m, so

Q(t) ≥ m∥t∥2. Using this in (2.4) we find

f(a+ t)− f(a) = Q(t) + ∥t∥2E(t) ≥ m∥t∥2 + ∥t∥2E(t)

Since E(t) → 0 as t → 0, there is a positive number r such that |E(t)| < 1
2
m whenever

0 < ∥t∥ < r. For such t we have 0 ≤ ∥t∥2|E(t)| < 1
2
m∥t∥2, so

f(a+ t)− f(a) > m∥t∥2 − 1

2
m∥t∥2 = 1

2
m∥t∥2 > 0

Therefore f has a relative minimum at a, which proves (a). To prove (b) we use a

similar argument, or simply apply part (a) to −f .

Finally, we prove (c). For each λ > 0 we have, from (4),

f(a+ λt)− f(a) = Q(λt) + λ2∥t∥2E(λt) = λ2
{
Q(t) + ∥t∥2E(λt)

}
Suppose Q(t) ̸= 0 for some t. Since E(y) → 0 as y → 0, there is a positive r such that

∥t∥2E(λt) <
1

2
|Q(t)| if 0 < λ < r

Therefore, for each such λ the quantity λ2 {Q(t) + ∥t∥2E(λt)} has the same sign as

Q(t). Therefore, if 0 < λ < r, the difference f(a + λt) − f(a) has the same sign as

Q(t). Hence, if Q(t) takes both positive and negative values, it follows that f has a

saddle point at a.

Note. A real-valued function Q defined on Rn by an equation of the type

Q(x) =
n∑

i=1

n∑
j=1

aijxixj
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where x = (x1, . . . , xn) and the aij are real is called a quadratic form. The form is

called symmetric if aij = aji for all i and j, positive definite if x ̸= 0 implies Q(x) > 0,

and negative definite if x ̸= 0 implies Q(x) < 0.

In general, it is not easy to determine whether a quadratic form is positive or

negative definite. For the case n = 2, the following criterion can be used:

Theorem 2.6.3. Let f be a real-valued function with continuous second-order partial

derivatives at a stationary point a in R2. Let

A = D1,1f(a), B = D1,2f(a), C = D2,2f(a)

and let

∆ = det

[
A B
B C

]
= AC −B2

Then we have:

a) If ∆ > 0 and A > 0, f has a relative minimum at a.

b) If ∆ > 0 and A < 0, f has a relative maximum at a.

c) If ∆ < 0, f has a saddle point at a.

Proof. In the two-dimensional case we can write the quadratic form in (2.5) as

follows:

Q(x, y) =
1

2

{
Ax2 + 2Bxy + Cy2

}
If A ̸= 0, this can also be written as

Q(x, y) =
1

2A

{
(Ax+By)2 +∆y2

}
If ∆ > 0, the expression in brackets is the sum of two squares, so Q(x, y) has the same

sign as A. Therefore, statements (a) and (b) follow at once from parts (a) and (b) of

Theorem 2.6.2.

If ∆ < 0, the quadratic form is the product of two linear factors. Therefore, the set

of points (x, y) such that Q(x, y) = 0 consists of two lines in the xy-plane intersecting
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at (0, 0). These lines divide the plane into four regions; Q(x, y) is positive in two of

these regions and negative in the other two. Therefore f has a saddle point at a.

Note. If ∆ = 0, there may be a local maximum, a local minimum, or a saddle point at

a.

Check your progress

1. A stationary point a is a saddle point if for every n−ball B(a) contains points x

such that

(A) ∇f(a) = 0 (B) f(x) > f(a)

(C) f(x) < f(a) (D) All the above

2. At the point (0, 0), the function f(x, y) = (y − x2)(y − 2x2) has a

(A) local minimum (B) local maximum

(C) saddle point (D) ∇f(0, 0) ̸= 0

Excerises

1. If x(r, θ) = r cos θ, y(r, θ) = r sin θ, show that
∂(x, y)

∂(r, θ)
= r

2. If x(r, θ, ϕ) = r cos θ, y(r, θ, ϕ) = r sin θ, z = r cosϕ, show that
∂(x, y, z)

∂(r, θ, ϕ)
=

−r2 sinϕ.

3. Let A be an open subset of Rn and assume that f : A → Rn has continuous

partial derivatives Djfi on A. If Jf (x) ̸= 0 for all x in A, then show that f is an

open mapping.

Answers for check your progress

1. Consider the function F : R2 → R2 defined by

F (x, y) =

(
x2 + 1
y2 + x

)
.

The Jacobian matrix at a point (x, y) is

JF (x, y) =

(
2x 1
1 2y

)
.
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At (1, 1), the Jacobian is

JF (x, y) =

(
2 1
1 2

)
.

The determinant of Jf (x, y) is nonzero. Hence, by the inverse unction theorem,

F has a local inverse near (1, 1).

2. Consider the system of two equations

F1(x, y, z) = x2 + y2 + z2 − 1 = 0,

F2(x, y, z) = x+ z − 1 = 0.

This defines two equations in three variables (x, y, z). The implicit function theo-

rem can be used to solve for z and y as functions of x, near a point where certain

conditions hold.

We compute the Jacobian matrix of F with respect to y and z

JF (x0, y0, z0) =

(
2y0 2z0
0 1

)
.

If we evaluate this at a point where the determinant is nonzero, say (x0, y0, z0) =

(0, 1, 0), then the matrix is invertible, and by the implicit function theorem, we

can locally solve for y and z as functions of x.
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Unit 3

Line Integrals

Objectives

After reading this unit, learners will be able to

• understand the the notion of line integrals which are important in both pure and

applied mathematics

• prove the basic properties of line integrals

• develop a deep understanding of vector fields and line integrals.

• apply first and second fundamental theorem of calculus for line integrals to prob-

lems in physics.

3.1 Introduction

Line integrals are of fundamental importance in both pure and applied mathematics.

They occur in connection with work, potential energy, heat flow, change in entropy,

circulation of a fluid, and other physical situations in which the behavior of a vector or

scalar field is studied along a curve. We use integrals to find the total amount of some

quantity on a curve or surface in space. Examples include total mass of a wire, work

along a curve, total charge on a surface, and flux across a surface.

We are already familiar with the concept of Riemann-integral
∫ b

a
f(x)dx for real-

valued functions and vector-valued functions defined and bounded on finite intervals.
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Here, we are going to replace the interval [a, b] by a curve in n-space described by a

vector-valued function α, and the integrand is a vector field f defined and bounded on

this curve. The resulting integral will be called a line integral, a curvilinear integral,

or a contour integral, and is denoted by
∫
f · dα or by some similar symbol. The

dot is used purposely to suggest an inner product of two vectors. The curve is called a

path of integration.

3.2 Paths and line integrals

First let us recall the definition of a curve.

Let J = [a, b] be a finite closed interval in R1 and let α be a vector-valued function

defined on J , i.e., α : J → Rn.

1. As t runs over J , the function values α(t) trace out a set of points in n-space

called the graph of the function.

2. If α is continuous on J , the graph is called a curve or called as a curve described

by α.

In the study of curves, it is noted that different functions can trace out the same curve

in different ways, for example, in different directions or with different velocities. In

the study of line integrals we are concerned not only with the set of points on a curve

but also the direction in which the curve is traced out, that is, with the function α

itself. Such a function will be called a continuous path.

Definition 3.2.1. Let J = [a, b] be a finite closed interval in R1.

1. A function α : J → Rn which is continuous on J is called a continuous path in

n-space.

2. The path is called smooth if the derivative α′ exists and is continuous (or α is

continuously differentiable) in the open interval (a, b).
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3. The path is called piecewise smooth if the interval [a, b] can be partitioned into a

finite number of subintervals in each of which the path is smooth.

Figure 3.1: A piecewise smooth path in a plane

In the follwing figurem the curve has a tangent line at all but a finite number of

its points. These exceptional points subdivide the curve into arcs, along each of which

the tangent line turns continuously.

Definition 3.2.2. (Line Integral) Let α be a piecewise smooth path in n-space defined

on [a, b], and let f be a vector field defined and bounded on the graph of α. The line

integral of f along α is denoted by
∫
f · dα and is defined by∫

f · dα =

∫ b

a

f [α(t)] ·α′(t)dt (10.1)

provided the integral on the right exists, either as a proper or improper integral.

Note. Note that the line integrals are defined in terms of ordinary integrals. In general,

the dot product f [α(t)] · α′(t) is bounded on [a, b] and continuous except possibly at a

finite number of points, in which case the integral exists as a proper integral.

3.3 Other notations for line integrals

1. If C denotes the graph of α, the line integral
∫
f · dα is also written as

∫
C
f · dα

and is called the integral of f along C.

2. If A = α(a) and B = α(b) denote the end points of C, the line integral is

sometimes written as
∫ b

a

f or as
∫ b

a

f · dα and is called the line integral of f

from a to b along α.
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3. When A = B the path is said to be closed. The symbol
∮

is often used to indicate

integration along a closed path.

4. When f and α are expressed in terms of their components, say

f = (f1, . . . , fn) and α = (α1, . . . , αn)

the integral on the right of (10.1) becomes a sum of integrals,
n∑

k=1

∫ b

a

fk[α(t)]α′
k(t)dt

5. In the case of two-dimension, the path α is usually described by a pair of para-

metric equations,

x = α1(t), y = α2(t)

and the line integral
∫
C
f · dα is written as

∫
C
f1dx + f2dy, or as

∫
C
f1(x, y)dx +

f2(x, y)dy.

6. In the case of three-dimension, we use three parametric equations,

x = α1(t), y = α2(t), z = α3(t)

and we write the line integral∫
C

f · dα =

∫
C

f1dx+ f2dy + f3dz =

∫
C

f1(x, y, z)dx+ f2(x, y, z)dy + f3(x, y, z)dz

When the notation
∫ b

a

f is used it should be kept in mind that the integral depends

not only on the end points a and b but also on the path α joining them. In this case

the line integral is also written as
∫

f1dα1 + · · ·+ fndαn.

The following examples illustrates that the value of the integral is independent of

the parametric representation used to describe the curve.

Example 3.3.1. Let f be a two-dimensional vector field given by f(x, y) =
√
yi +

(x3 + y) j for all (x, y) with y ≥ 0. Calculate the line integral of f from (0, 0) to (1, 1)

along each of the following paths:

(a) the line with parametric equations x = t, y = t, 0 ≤ t ≤ 1;

(b) the path with parametric equations x = t2, y = t3, 0 ≤ t ≤ 1.
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Solution. For the path in part (a) we take α(t) = ti + tj. Then α′(t) = i + j and

f [α(t)] =
√
ti + (t3 + t) j. Therefore the dot product of f [α(t)] and α′(t) is equal to

√
t+ t3 + t and we find∫ (1,1)

(0,0)

f · dα =

∫ 1

0

(√
t+ t3 + t

)
dt =

17

12

For the path in part (b) we take α(t) = t2i + t3j. Then α′(t) = 2ti + 3t2j and

f [α(t)] = t3/2i+ (t6 + t3) j. Therefore

f [α(t)] · α′(t) = 2t5/2 + 3t8 + 3t5

so, ∫ (1,1)

(0,0)

f · dα =

∫ 1

0

(
2t5/2 + 3t8 + 3t5

)
dt =

59

42

This example shows that the integral from one point to another may depend on the

path joining the two points.

Now let us carry out the calculation for part (b) once more, using the same curve

but with a different parametric representation. The same curve can be described by

the function

β(t) = ti+ t3/2j, where 0 ≤ t ≤ 1

This leads to the relation

f [β(t)] · β′(t) =
(
t3/4i+

(
t3 + t3/2

)
j
)
·
(
i+ 3

2t
1/2j

)
= t3/4 + 3

2t
7/2 +

3

2
t2

and ∫ 1

0

f [β(t)] · β′(t)dt =
59

42
.

Check your progress

1. The line integral of a vector field f along a piecewise smooth path α is defined

by

(A)
∫ b

a

f ′(α(t))α′
k(t)dt (B)

n∑
k=1

∫ b

a

f ′
k(α(t))αk(t)dt

(C)
∫ b

a

f ′(α(t))α′(t)dt (D)
n∑

k=1

∫ b

a

fk(α(t))α
′
k(t)dt
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2. The value of the line integral
∫
C

(3x2 − 2y)ds along the line from (3, 6) to (−1, 1)

is

(A) 8
√
53 (B) 6

√
53 (C) −8

√
53 (D) −8

√
53

3. The value of the line integral of the vector field f(x, y) = (x2 + y2)i + (x2 − y2)j

from (0, 0) to (2, 0) along the curve y = 1− |1− x| is

(A) 4
3

(B) −2
3

(C) 4
3

(D) 2
5

4. The value of the line integral of f(x, y) =
√
yi + (x3 + y)j from (0, 0) to (1, 1)

along the path x = t, y = t3/2 is

(A) 1
42

(B) 39
42

(C) 59
42

(D) doesn’t exist

5. Which of the following statement is true for line integrals?

(A) The line integral of a continuous gradient is independent of the path in any

open connected set.

(B) The line integral of a continuous gradient is is zero around every piecewise

smooth closed path.

(C) The value of the integral independent on the path joining a to b.

(D) For some vector fields, the integral depends only on the end points a and b

and not on the path which joins them.

Problems

1. Compute the value of the line integral
∫
C

(x2 − 2xy)dx + (y2 − 2xy)dy, where C

is a path from (−2, 4) to (1, 1) along the parabola y = x2.

Solution. Let us take

α(t) = (t, t2).

Given that ∫
c

f · dα =

∫
c

f1(x, y)dx+ f2(x, y)dy

where, f1(x, y) = x2 − 2xy, f2(x, y) = y2 − 2xy
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Take, x = t = α1(t), y = t2 = α2(t). We have

α(t) = (α1(t), α2(t)) = (t, t2) = ti+ t2j

α′(t) = (1, 2t) = 1i+ 2tj

3.4 Basic properties of line integrals

Since line integrals are defined in terms of usual integrals, they inherit many of the

properties of usual integrals which will be stated as follows:

Theorem 3.4.1. Suppose f and g are vector fields defined and bounded on the graph of

α. The following properties hold:

1. Linearity Property of line integral:∫
(af + bg) · dα = a

∫
f · dα+ b

∫
g · dα

2. Additive property with respect to the path of integration:∫
C

f · dα =

∫
C1

f · dα+

∫
C2

f · dα

where the two curves C1 and C2 make up the curve C. That is, C is described by a function

α defined on an interval [a, b], and the curves C1 and C2 are those traced out by α(t) as t

varies over subintervals [a, c] and [c, b], respectively, for some c satisfying a < c < b.

Next we examine the behavior of line integrals under a change of parameter. Let α

be a continuous path defined on an interval [a, b], let u be a real-valued function that

is differentiable, with u′ never zero on an interval [c, d], and such that the range of u is

[a, b]. Then the function β defined on [c, d] by the equation

β(t) = α[u(t)]

is a continuous path having the same graph as α. Two paths α and β so related are

called equivalent. They are said to provide different parametric representations of the

same curve. The function u is said to define a change of parameter.
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Let C denote the common graph of two equivalent paths α and β. If the derivative

of u is always positive on [c, d] the function u is increasing and we say that the two

paths α and β trace out C in the same direction. If the derivative of u is always

negative we say that α and β trace out C in opposite directions. In the first case

the function u is said to be orientation-preserving; in the second case u is said to be

orientation-reversing. An example is shown in Figure 10.2.

The next theorem shows that the value of a line integral remains unchanged under

a change of parameter that preserves orientation and it reverses its sign if the change

of parameter reverses orientation. We assume both intergals
∫
f ·dα and

∫
f ·dβ exist.

In the above figures, the first one says that the function h preserves orientation and in

Figure 3.2: A change of parameter defind by u = h(t)

the second figure, the function h reverses the orientation.

Theorem 3.4.2. Behavior of a line integral under a change of parameter. Let α

and β be equivalent piecewise smooth paths. Then we have∫
C

f · dα =

∫
C

f · dβ

if α and β trace out C in the same direction; and∫
C

f · dα = −
∫
C

f · dβ
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if α and β trace out C in opposite directions.

Proof. It is sufficient to prove the theorem for smooth paths alone. For piecewise

smooth paths, the results follows from the additive property with respect to the path

of integration.

We apply the chain rule to prove the required result. The paths α and β are related

by an equation of the form β(t) = α[u(t)], where u is defined on an interval [c, d] and

α is defined on an interval [a, b]. From the chain rule we have

β′(t) = α′[u(t)]u′(t)

Therefore we find∫
C

f · dβ =

∫ d

c

f [β(t)] · β′(t)dt =

∫ d

c

f(α[u(t)]) ·α′[u(t)]u′(t)dt

Taking v = u(t), dv = u′(t)dt, we obtain∫
C

f · dβ =

∫ u(d)

u(c)

f(α(v)) ·α′(v)dv = ±
∫ b

a

f(α(v)) ·α′(v)dv = ±
∫
C

f · dα

where the +ve sign is used if a = u(c) and b = u(d), i.e., when α and β trace out C in

the same direction and the -ve sign is used if a = u(d) and b = u(c) i.e., when α and β

trace out C in opposite directions.

Check your progress

1. Prove the linearity property of line integrals.

3.5 Line integrals with respect to arc length

Let α be a path with α′ continuous on an interval [a, b]. The graph of α is a rectifiable

curve and the corresponding arc-length function s is given by the integral

s(t) =

∫ t

a

∥α′(u)∥ du

The derivative of arc length is given by

s′(t) = ∥α′(t)∥
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Let φ be a scalar field defined and bounded on C, the graph of α. The line integral of

φ with respect to arc length along C is denoted by the symbol
∫
C
φds and is defined

by the equation ∫
C

φds =

∫ b

a

φ[α(t)]s′(t)dt

whenever the integral on the right exists.

Now consider a scalar field φ given by φ[α(t)] = f [α(t)] · T (t), the dot product of

a vector field f defined on C and the unit tangent vector T (t) = dα/ds. In this case

the line integral
∫
C
φds is the same as the line integral

∫
C
f · dα because

f [α(t)] ·α′(t) = f [α(t)] · dα
ds

ds

dt
= f [α(t)] · T (t)s′(t) = φ[α(t)]s′(t)

When f denotes a velocity field, the dot product f · T is the tangential component

of velocity, and the line integral
∫
C
f · T ds is called the flow integral of f along C.

When C is a closed curve the flow integral is called the circulation of f along C.

3.6 Open connected sets. Independence of the path

Definition 3.6.1. Let S be an open set in Rn. The set S is called connected if every pair

of points in S can be joined by a piecewise smooth path whose graph lies in S. That is,

for every pair of points A and B in S there is a piecewise smooth path α defined on an

interval [a, b] such that α(t) ∈ S for each t in [a, b] satisfying α(a) = A and α(b) = B.

Example 3.6.2. Three examples of open connected sets in the plane are shown in Figure

10.3. Examples in 3-space analogous to these would be (a) a solid ellipsoid, (b) a solid

polyhedron, and (c) a solid torus; in each case only the interior points are considered.

Definition 3.6.3. An open set S is said to be disconnected if S is the union of two or

more disjoint non-empty open sets.

If f is a vector field that is continuous on an open connected set S. Choose two

points a and b in S. In general, the value of the integral of f depends on the path

joining a and b.
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Definition 3.6.4. For vector fields, we say that the integral is independent of the path

from a to b if the line integral of f depends only on the end points a and b and not on the

path which joins them.

Definition 3.6.5. We say that the line integral of f is independent of the path in S if

it is independent of the path from a to b for every pair of points a and b in S.

3.7 Second fundamental theorems of calculus to line
integrals.

The fundamental theorem of calculus is an important result in calculus that connects

differentiation and integration, showing that they are essentially inverse processes.

The fundamental theorem of line integrals extends the fundamental theorem of

calculus to line integrals over vector fields. It provides a way to evaluate the line

integral of a gradient field along a curve, simplifying the computation of such integrals.

The second fundamental theorem for real functions, states that∫ b

a

φ′(t)dt = φ(b)− φ(a)

provided that φ′ is continuous on some open interval containing both a and b. To

extend this result to line integrals we need a slightly stronger version of the theorem

in which continuity of φ′ is assumed only in the open interval (a, b).

This theorem is particularly useful in physics and engineering for simplifying the

work done by conservative forces and in other applications involving potential fields.

Lemma 3.7.1. (Zero-Derivative theorem) If f ′(x) = 0 for each x in an open interval

I, then f is constant on I.

Theorem 3.7.2. Let φ be a real function that is continuous on a closed interval [a, b] and

assume that the integral
∫ b

a

φ′(t)dt exists. If φ′ is continuous on the open interval (a, b),

we have ∫ b

a

φ′(t)dt = φ(b)− φ(a)
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Proof. For each x in [a, b] define f(x) =

∫ x

a

φ′(t)dt. We wish to prove that

f(b) = φ(b)− φ(a) (3.1)

Then, f is continuous on the closed interval [a, b] and also f is differentiable on the

open interval (a, b), with f ′(x) = φ′(x) for each x in (a, b). Therefore, by the zero-

derivative theorem, the difference f − φ is constant on the open interval (a, b). By

continuity, f−φ is also constant on the closed interval [a, b]. In particular, f(b)−φ(b) =

f(a)− φ(a). But since f(a) = 0, this proves (3.1).

Now, we are ready to prove the second fundamental theorem of calculus for line

integrals for vector fields. We can also note that there are vector fields having line

integrals independent of the path.

Theorem 3.7.3. Let φ be a differentiable scalar field with a continuous gradient ∇φ on

an open connected set S in Rn. Then for any two points a and b joined by a piecewise

smooth path α in S we have ∫ b

a

∇φ · dα = φ(b)− φ(a)

Proof. Choose any two points a and b in S and join them by a piecewise smooth

path α in S defined on an interval [a, b]. Assume first that α is smooth on [a, b]. Then

the line integral of ∇φ from a to b along α is given by∫ b

a

∇φ · dα =

∫ b

a

∇φ[α(t)] ·α′(t)dt

By the chain rule we have

∇φ[α(t)] ·α′(t) = g′(t)

where g is the composite function defined on [a, b] by the formula

g(t) = φ[α(t)]

The derivative g′ is continuous on the open interval (a, b) because ∇φ is continuous

on S and α is smooth. Therefore, by applying Theorem 3.8.2 to g, we obtain∫ b

a

∇φ · dα =

∫ b

a

g′(t)dt = g(b)− g(a) = φ[α(b)]− φ[α(a)] = φ(b)− φ(a)

69



This proves the theorem if α is smooth.

When α is piecewise smooth we partition the interval [a, b] into a finite number

(say r ) of subintervals [tk−1, tk], in each of which α is smooth, and we apply the result

just proved to each subinterval. This gives us∫ b

a

∇φ =
r∑

k=1

∫ α(tk)

α(tk−1)

∇φ =
r∑

k=1

{φ [α (tk)]− φ [α (tk−1)]} = φ(b)− φ(a)

as required.

Note. We note that the linear integral of a gradient is independent of the path in a any

open connected set S in which the gradient is continuous.

Check your progress

1. Which of the following statement is true for line integrals?

(A) The line integral of a continuous gradient is independent of the path in any

open connected set.

(B) The line integral of a continuous gradient is is zero around every piecewise

smooth closed path.

(C) The value of the integral independent on the path joining a to b.

(D) For some vector fields, the integral depends only on the end points a and b

and not on the path which joins them.

3.8 The first fundamental theorem of calculus for line
integrals

Let us first recall the first fundamental theorem for real-valued functions, which states

that the derivative of indefinite integral of a continuous function f is equal to f , i.e.,.

if

φ(x) =

∫ x

a

f(t)dt,

then at the points of continuity of f , we have φ′(x) = f(x).

Now, we extend the above theorem to line integrals.
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Theorem 3.8.1. Let f be a vector field that is continuous on an open connected set S in

Rn, and assume that the line integral of f is independent of the path in S. Let a be a fixed

point of S and define a scalar field φ on S by the equation

φ(x) =

∫ x

a

f · dα

where α is any piecewise smooth path in S joining a to x. Then the gradient of φ exists

and is equal to f ; that is,

∇φ(x) = f(x) for every x in S

Proof. We shall prove that the partial derivative Dkφ(x) exists and

Dkφ(x) = fk(x),

the k-th component of f(x), for each k = 1, 2, . . . , n and each x in S.

Let B(x; r) be an n-ball with center at x and radius r lying in S. If y is a unit vector,

the point x+ hy also lies in S for every real h satisfying 0 < |h| < r, and we can form

the difference quotient
φ(x+ hy)− φ(x)

h

By the additive property of line integrals, we have

φ(x+ hy)− φ(x) =

∫ x+hy

x

f · dα

and the path joining x to x+ hy can be any piecewise smooth path lying in S.

In particular, we can choose a line segment described by

α(t) = x+ thy, where 0 ≤ t ≤ 1

Since α′(t) = hy, the difference quotient becomes

φ(x+ hy)− φ(x)

h
=

∫ 1

0

f(x+ thy) · ydt (3.2)

Now we take y = ek, the k-th unit coordinate vector, and note that the integrand

becomes f(x + thy) · y = fk (x+ thek). Then we make the change of variable u =

ht, du = hdt, and we write (3.2) in the form

φ (x+ hek)− φ(x)

h
=

1

h

∫ h

0

fk (x+ uek) du =
g(h)− g(0)

h
(3.3)
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where g is the function defined on the open interval (−r, r) by the equation

g(t) =

∫ t

0

fk (x+ uek) du

Since each component fk is continuous on S, the first fundamental theorem for ordi-

nary integrals asserts that g′(t) exists for each t in (−r, r) and that

g′(t) = fk (x+ tek)

In particular, g′(0) = fk(x). Therefore, if we let h → 0 in (3.3) we find that

lim
h→0

φ (x+ hek)− φ(x)

h
= lim

h→0

g(h)− g(0)

h
= g′(0) = fk(x)

Thus, the partial derivative Dkφ(x) exists and Dkφ(x) = fk(x).

Let us sum up

In this unit, we introduced the notion of line integrals for vector-valued function.

Further, we proved some of the important properties. Moreover, we proved the funda-

mental theorem of calculus for line integrals.

Check your progress

1. The value of the line integral
∫
C

∇φ · dα where φ(x, y) = x3(3 − y2) + 4y and C

is given by α(t) = (3− t2, 5− t) with −2 ≤ t ≤ 3 is

(A) 100 (B) 150 (C) 120 (D) 125

2. Which of the following statement is true for line integrals?

(A) The line integral of a continuous gradient is independent of the path in any

open connected set.

(B) The line integral of a continuous gradient is is zero around every piecewise

smooth closed path.

(C) The value of the integral independent on the path joining a to b.

(D) For some vector fields, the integral depends only on the end points a and b

and not on the path which joins them.
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Glossary

Let f : Rn → Rm.

1. When n = m = 1, f is called a real-valued function of a real variable.

2. When n = 1 and m > 1, f is called a vector-valued function of a real variable.

3. When n > 1 and m = 1, f is called a real-valued function of a vector variable or

a scalar field.

4. When n > 1 and m > 1, f is called a vector-valued function of a vector variable

or a vector field.

Exercises

In each of Exercises 1 through 8 calculate the line integral of the vector field f along

the path described.

1. f(x, y) = (x2 − 2xy) i + (y2 − 2xy) j, from (−1, 1) to (1, 1) along the parabola

y = x2.

2. f(x, y) = (2a− y)i+ xj, along the path described by α(t) = a(t− sin t)i+ a(1−

cos t)j, 0 ≤ t ≤ 2π.

3. f(x, y, z) = (y2 − z2) i+2yzj−x2k, along the path described by α(t) = ti+ t2j+

t3k, 0 ≤ t ≤ 1.

4. f(x, y) = (x2 + y2) i + (x2 − y2) j, from (0, 0) to (2, 0) along the curve y = 1 −

|1− x|.

5. f(x, y) = (x + y)i + (x − y)j, once around the ellipse b2x2 + a2y2 = a2b2 in a

counterclockwise direction.

6. f(x, y, z) = 2xyi+ (x2 + z) j + yk, from (1, 0, 2) to (3, 4, 1) along a line segment.

7. f(x, y, z) = xi+ yj + (xz − y)k, from (0, 0, 0) to (1, 2, 4) along a line segment.
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8. f(x, y, z) = xi+yj+(xz−y)k, along the path described by α(t) = t2i+2tj+4t3k,

0 ≤ t ≤ 1.

In each of Exercises 9 through 12, compute the value of the given line integral.

9.
∫
C
(x2 − 2xy) dx + (y2 − 2xy) dy, where C is a path from (−2, 4) to (1, 1) along

the parabola y = x2.

10.
∫
C

(x+y)dx−(x−y)dy
x2+y2

, where C is the circle x2 + y2 = a2, traversed once in a counter-

clockwise direction.

11.
∫
C

dx+dy
|x|+|y| , where C is the square with vertices (1, 0), (0, 1), (−1, 0), and (0,−1),

traversed once in a counterclockwise direction.

12.
∫
C
ydx+ zdy + xdz, where

(a) C is the curve of intersection of the two surfaces x+ y = 2 and x2+ y2+ z2 =

2(x + y). The curve is to be traversed once in a direction that appears clockwise

when viewed from the origin.

(b) C is the intersection of the two surfaces z = xy and x2 + y2 = 1, traversed

once in a direction that appears counterclockwise when viewed from high above

the xy-plane.

Calculate the line integral with respect to arc length in each of Exercises 13

through 16.

13.
∫
C
(x+y)ds, where C is the triangle with vertices (0, 0), (1, 0), and (0, 1), traversed

in a counterclockwise direction.

14.
∫
C
y2ds, where C has the vector equation

α(t) = a(t− sin t)i+ a(1− cos t)j, 0 ≤ t ≤ 2π

15.
∫
C
(x2 + y2) ds, where C has the vector equation

α(t) = a(cos t+ t sin t)i+ a(sin t− t cos t)j, 0 ≤ t ≤ 2π
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16.
∫
C
zds, where C has the vector equation

α(t) = t cos ti+ t sin tj + tk, 0 ≤ t ≤ t0

Application oriented problems

1. A force field f in 3 -space is given by f(x, y, z) = xi+ yj + (xz − y)k. Compute

the work done by this force in moving a particle from (0, 0, 0) to (1, 2, 4) along

the line segment joining these two points.

2. Find the amount of work done by the force f(x, y) = (x2 − y2) i+2xyj in moving

a particle (in a counterclockwise direction) once around the square bounded by

the coordinate axes and the lines x = a and y = a, a > 0.

3. A two-dimensional force field f is given by the equation f(x, y) = cxyi + x6y2j,

where c is a positive constant. This force acts on a particle which must move

from (0, 0) to the line x = 1 along a curve of the form

y = axb, where a > 0 and b > 0

Find a value of a (in terms of c ) such that the work done by this force is inde-

pendent of b.
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Unit 4

Multiple Integrals

Objectives

After reading this read, learners will be able to

1. define the concept of double integral,

2. find a connection between double integrals and line integrals,

3. evaluate the double integral for a step functions and then for more general func-

tions.

4.1 Introduction

Multiple integrals extend the concept of integration to functions of multiple variables,

allowing us to calculate volumes, areas, mass, and other physical properties in higher

dimensions. There are different types of multiple integrals depending on the number

of variables involved, such as double and triple integrals.

Double integrals are used to integrate functions of two variables over a two-dimensional

region (usually in the xy-plane). They are often used to calculate the area, volume un-

der a surface, or mass of a region when density varies over the area.

Triple integrals are used for integrating functions of three variables over a three-

dimensional region. They are used to compute volumes, mass, and other quantities in

three dimensions.
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First we consider rectangular regions; later we consider more general regions with

curvilinear boundaries. The integrand is a scalar field f defined and bounded on Q.

The resulting integral is called a double integral and is denoted by the symbol∫∫
Q

f, or by
∫∫

Q

f(x, y)dxdy

As in the one-dimensional case, the symbols dx and dy play no role in the definition of

the double integral; however, they are useful in computations and transformations of

integrals.

4.2 Partitions of rectangles. Step functions

Let Q be a rectangle which is the Cartesian product of two closed intervals [a, b] and

[c, d], i.e.,

Q = [a, b]× [c, d] = {(x, y) | x ∈ [a, b] and y ∈ [c, d]}

Let P1 and P2 be two partition of [a, b] and [c, d] respectively, say

P1 = {x0, x1, . . . , xn−1, xn} and P2 = {y0, y1, . . . , ym−1, ym}

where x0 = a, xn = b, y0 = c, and ym = d. The Cartesian product P1 ×P2 is said to be a

partition of Q. Since P1 decomposes [a, b] into n subintervals and P2 decomposes [c, d]

into m subintervals, the partition P = P1 × P2 decomposes Q into mn subrectangles.

Definition 4.2.1. A partition P ′ of Q is said to be finer than P if P ⊆ P ′, that is, if

every point in P is also in P ′.

Definition 4.2.2. The Cartesian product of two open subintervals of P1 and P2 is a

subrectangle with its edges missing. This is called an open subrectangle of P or of Q.

Definition 4.2.3. (Step Function) A function f defined on a rectangle Q is said to be

a step function if a partition P of Q exists such that f is constant on each of the open

subrectangles of P .

A typical graph of a step function is shown below. Most of the graph consists of

horizontal rectangular patches. A step function also has well-defined values at each of

the boundary
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Figure 4.1: Step function defined on a rectangle Q

Check your progress

1. If f and g are two step functions defined on a given rectangle Q, show that the

linear combination c1f + c2g is also a step function.

2. If P and P ′ are partitions of Q such that f is constant on the open subrectangles

of P and g is constant on the open subrectangles of P ′, then show that c1f + c2g

is constant on the open subrectangles of the union P ∪ P ′ (which we may call a

common refinement of P and P ′ ).

3. Show that the set of step functions defined on Q forms a linear space.

4.3 The double integral of a step function

Let P = P1 × P2 be a partition of a rectangle Q into mn subrectangles and let f be

a step function that is constant on the open subrectangles of Q. Let the subrectangle

determined by [xi−1, xi] and [yj−1, yj] be denoted by Qij and let cij denote the constant

value that f takes at the interior points of Qij. If f is positive, the volume of the

rectangular box with base Qij and altitude cij is the product

cij · (xi − xi−1) (yj − yj−1)

79



For any step function f , positive or not, the sum of all these products is defined to be

the double integral of f over Q. Thus, we have the following definition.

Definition 4.3.1. (Double integral of a step function) Let f be a step function which

takes the constant value cij on the open subrectangle (xi−1, xi)× (yj−1, yj) of a rectangle

Q. The double integral of f over Q is defined by the formula∫∫
Q

f =
n∑

i=1

m∑
j=1

cij (xi − xi−1) (yj − yj−1) =
n∑

i=1

m∑
j=1

cij∆xi∆yj (11.1)

Note. As in the one-dimensional case, the value of the integral will not differ if the parti-

tion P is replaced by any finer partition P ′. Thus, the value of the integral is independent

of the choice of P so long as f is constant on the open subrectangles of Q.

Notation. We will write the symbol for the integral as
∫∫

Q

f(x, y)dxdy (or)
∫∫

Q

f .

Note. If f(x, y) = k, (a constant) when a < x < b and c < y < d, then we have∫∫
Q

f = k(b− a)(d− c). (11.2)

Since we have

b− a =

∫ b

a

dx and d− c =

∫ d

c

dy

formula (11.2) can also be written as∫∫
Q

f =

∫ d

c

[∫ b

a

f(x, y)dx

]
dy =

∫ b

a

[∫ d

c

f(x, y)dy

]
dx (11.3)

The integrals which appear on the right are one-dimensional integrals, and the

formula is said to provide an evaluation of the double integral by repeated or iterated

integration. In particular, when f is a step function of the type described above, we

can write ∫∫
Qij

f =

∫ yj

yj−1

[∫ xi

xi−1

f(x, y)dx

]
dy =

∫ xi

xi−1

[∫ yj

yj−1

f(x, y)dy

]
dx

Summing on i and j and using (11.1), we find that (11.3) holds for step functions.

The following further properties of the double integral of a step function are gen-

eralizations of the corresponding one-dimensional theorems. They may be proved as
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direct consequences of the definition in (11.1) or by use of formula (11.3) and the

companion theorems for one-dimensional integrals. In the following theorems the

symbols s and t denote step functions defined on a rectangle Q. To avoid trivial spe-

cial cases we assume that Q is a nondegenerate rectangle; in other words, that Q is

not merely a single point or a line segment.

Theorem 4.3.2. (Linearity) For every real c1 and c2 we have∫∫
Q

[c1s(x, y) + c2t(x, y)] dxdy = c1

∫∫
Q

s(x, y)dxdy + c2

∫∫
Q

t(x, y)dxdy

Theorem 4.3.3. (Additivity) If Q is subdivided into two rectangles Q1 and Q2, then∫∫
Q

s(x, y)dxdy =

∫∫
Q1

s(x, y)dxdy +

∫∫
Q2

s(x, y)dxdy

Theorem 4.3.4. (Comparison theorem) If s(x, y) ≤ t(x, y) for every (x, y) in Q, we

have ∫∫
Q

s(x, y)dxdy ≤
∫∫

Q

t(x, y)dxdy

In particular, if t(x, y) ≥ 0 for every (x, y) in Q, then∫∫
Q

t(x, y)dxdy ≥ 0.

4.4 The definition of the double integral of a function
defined and bounded on a rectangle

Let f be a function that is defined and bounded on a rectangle Q, i.e.,

|f(x, y)| ≤ M if (x, y) ∈ Q

Then f may be surrounded from above and from below by two constant step functions

s and t, where s(x, y) = −M and t(x, y) = M for all (x, y) in Q. Now consider any two

step functions s and t, defined on Q, such that

s(x, y) ≤ f(x, y) ≤ t(x, y) for every point (x, y) in Q (4.1)
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Definition 4.4.1. (Integral of a bounded functon over a rectangle) If there is one

and only one number I such that ∫∫
Q

s ≤ I ≤
∫∫

Q

t (4.2)

for every pair of step functions satisfying the inequalities in (??), this number I is called

the double integral of f over Q and is denoted by the symbol∫∫
Q

f (or)
∫∫

Q

f(x, y)dxdy

When such an I exists the function f is said to be integrable on Q.

4.5 Upper and lower double integrals

Theorem 4.5.1. Every function f which is bounded on a rectangle Q has a lower integral

I(f) and an upper integral Ī(f) satisfying the inequalities∫∫
Q

s ≤ I(f) ≤ Ī(f) ≤
∫∫

Q

t

for all step functions s and t with s ≤ f ≤ t. The function f is integrable on Q if and only

if its upper and lower integrals are equal, in which case we have∫∫
Q

f = I(f) = Ī(f).

Proof. Assume f is bounded on a rectangle Q and let s and t be step functions

satisfying

s(x, y) ≤ f(x, y) ≤ t(x, y) for every point (x, y) in Q.

We say that s is below f , and t is above f , and we write s ≤ f ≤ t.

Let us define the two sets S and T as follows:

S =

{∫∫
Q

s : s ≤ f

}

T =

{∫∫
Q

t : t ≥ f

}
.
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Since f is bounded, the sets S and T are nonempty. Also,∫∫
Q

s ≤
∫∫

Q

t

if s ≤ f ≤ t, so every number in S is less than every number in T . Therefore S has a

supremum, and T has an infimum, and they satisfy the inequalities∫∫
Q

s ≤ supS ≤ inf T ≤
∫∫

Q

t

for all s and t satisfying s ≤ f ≤ t. This shows that both numbers supS and inf T

satisfy (11.5). Therefore, f is integrable on Q if and only if supS = inf T , in which

case we have ∫∫
Q

f = supS = inf T.

The number sup S is called the lower integral of f and is denoted by I(f). The number

inf T is called the upper integral of f and is denoted by I(f). Thus, we have

I(f) = sup

{∫∫
Q

s | s ≤ f

}
, I(f) = inf

{∫∫
Q

t | f ≤ t

}
.

4.6 Evaluation of a double integral by repeated one-
dimensional integration

We evaluate certain double integrals by means of two successive one-dimensional inte-

grations. The result is an extension of formula (11.3), which we have already proved

for step functions.

Theorem 4.6.1. Let f be defined and bounded on a rectangle Q = [a, b]× [c, d], and as-

sume that f is integrable on Q. For each fixed y in [c, d] assume that the one-dimensional

integral
∫ b

a

f(x, y)dx exists, and denote its value by A(y). If the integral
∫ d

c

A(y)dy exists

it is equal to the double integral
∫∫

Q

f . In other words, we have

∫∫
Q

f(x, y)dxdy =

∫ a

c

[∫ b

a

f(x, y)dx

]
dy (4.3)
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Proof. Choose any two step functions s and t satisfying s ≤ f ≤ t on Q. Integrating

with respect to x over the interval [a, b] we have∫ b

a

s(x, y)dx ≤
∫ b

a

f(x, y)dx ≤
∫ b

a

t(x, y)dx,

and therefore, ∫ b

a

s(x, y)dx ≤ A(y) ≤
∫ b

a

t(x, y)dx.

Since the integral
∫ d

c

A(y)dy exist, we can integrate with respect to y to obtain

∫ d

c

∫ b

a

s(x, y)dxdy ≤
∫ d

c

A(y)dy ≤
∫ d

c

∫ b

a

t(x, y)dxdy.

Since s and t are arbitrary step functions and f is integrable on Q, we have∫∫
Q

f =

∫ d

c

A(y)dy =

∫ d

c

[∫ b

a

f(x, y)dx

]
dy.

4.7 Integrability of continuous functions

Theorem 4.7.1. (Small-span theorem) If f is continuous on a rectangle Q = [a, b] ×

[c, d], then for every ϵ > 0, there is a partition P of Q into a finite number (say n)of

subrectangles Q1, Q2, . . . , Qn such that the span of f in every rectangle Qk is less than ϵ,

i.e.,

Mk(f)−mk(f) < ϵ

where Mk(f) = sup
Qk

|f | and mk(f) = inf
Qk

|f |

We will use the above small-span theorem to prove integrability of a function which

is continuous on a rectangle.

Theorem 4.7.2. (Integrability of Continuous Functions) If a function f is continuous

on a rectangle Q = [a, b] × [c, d], then f is integrable on Q. Moreover, the value of the

integral can be obtained by iterated integration,∫∫
Q

f =

∫ a

c

[∫ b

a

f(x, y)dx

]
dy =

∫ b

a

[∫ a

c

f(x, y)dy

]
dx (4.4)
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Proof. Since f is continuous on the rectangle Q (which is compact), f is bounded

on Q. If f is bounded on Q, then f has an upper integral and a lower integral.

We shall prove that I(f) = Ī(f).

Choose ϵ > 0.

By the small-span theorem, for this choice of ϵ, there is a partition P of Q into

a finite number (say n) of subrectangles Q1, . . . , Qn such that the span of f in every

subrectangle is less than ϵ. Denote by Mk(f) and mk(f), respectively, the absolute

maximum and minimum values of f in Qk. Then we have

Mk(f)−mk(f) < ϵ

where Mk(f) = sup
Qk

|f | and mk(f) = inf
Qk

|f |, for each k = 1, 2, . . . , n. Now let s and t be

two step functions defined on the interior of each Qk as follows:

s(x) = mk(f), t(x) = Mk(f) if x ∈ int Qk

At the boundary points we define

s(x) = m and t(x) = M,

where m = inf
Q

|f | and M = sup
Q

|f |.

Then we have s ≤ f ≤ t for all x in Q. Also, we have∫∫
Q

s =
n∑

k=1

mk(f)a (Qk) and
∫∫

Q

t =
n∑

k=1

Mk(f)a (Qk)

where a (Qk) is the area of rectangle Qk. The difference of these two integrals is∫∫
Q

t−
∫∫

Q

s =
n∑

k=1

{Mk(f)−mk(f)} a (Qk) < ϵ

n∑
k=1

a (Qk) = ϵa(Q)

where a(Q) is the area of Q. Since
∫∫

Q
s ≤ I(f) ≤ Ī(f) ≤

∫∫
Q
t, we obtain the

inequality

0 ≤ Ī(f)− I(f) ≤ ϵa(Q).

Letting ϵ → 0 we see that I(f) = Ī(f), so f is integrable on Q.
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Next we prove that the double integral is equal to the first iterated integral in

(4.4). For each fixed y in [c, d] the one-dimensional integral
∫ b

a
f(x, y)dx exists since

the integrand is continuous on Q.

Let A(y) =
∫ b

a

f(x, y)dx.

We shall prove that A is continuous on [c, d]. If y and y1 are any two points in [c, d]

we have

A(y)− A (y1) =

∫ b

a

{f(x, y)− f (x, y1)} dx

from which we find

|A(y)− A (y1)| ≤ (b− a) max
a≤x≤b

|f(x, y)− f (x, y1)| = (b− a) |f (x1, y)− f (x1, y1)|

where x1 is a point in [a, b] where |f(x, y)− f (x, y1)| attains its maximum. This in-

equality shows that A(y) → A (y1) as y → y1, so A is continuous at y1. Therefore

the integral
∫ d

c

A(y)dy exists and, by Theorem 4.6.1, it is equal to
∫∫

Q

f . A similar

argument works when the iteration is taken in the reverse order.

4.8 Integrability of bounded functions with discontinu-
ities

Let f be defined and bounded on a rectangle Q. In this section, we prove that the

double integral exists if f has discontinuities in Q, provided the set of discontinuities

is not too large. To measure the size of the set of discontinuities we introduce the

concept of bounded set of content zero.

Definition 4.8.1. (Bounded set of Content Zero) Let A be a bounded subset of the

plane. The set A is said to have content zero if for every ϵ > 0 there is a finite set of

rectangles whose union contains A and the sum of whose areas does not exceed ϵ.

In other words, a bounded plane set of content zero can be enclosed in a union of

rectangles whose total area is arbitrarily small.

The following statements about bounded sets of content zero are easy consequences

of this definition.
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(a) Any finite set of points in the plane has content zero.

(b) The union of a finite number of bounded sets of content zero is also of content

zero.

(c) Every subset of a set of content zero has content zero.

(d) Every line segment has content zero.

Theorem 4.8.2. Let f be defined and bounded on a rectangle Q = [a, b]× [c, d]. If the set

of discontinuities of f in Q is a set of content zero then the double integral
∫∫

Q
f exists.

Proof. Let M > 0 be such that |f | ≤ M on Q.

Let D denote the set of discontinuities of f in Q.

Let δ > 0. Since D has content zero, there is a partition P of Q such that the sum

of the areas of all the subrectangles of P which contain points of D is less than δ.

On these subrectangles define step functions s and t as follows:

s(x) = −M, t(x) = M

On the remaining subrectangles of P , we define s and t as follows:

On the interior of each Qk, s and t are defined as follows:

s(x) = mk(f), t(x) = Mk(f) if x ∈ int Qk

At the boundary points we define

s(x) = m and t(x) = M,

where m = inf
Q

|f | and M = sup
Q

|f |.

. Then we have s ≤ f ≤ t for all Q\D. Also we have∫∫
Q\D

s =
n∑

k=1

mk(f)a(Qk),∫∫
Q\D

t =
n∑

k=1

Mk(f)a(Qk)
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where a(Qk) is the area of rectangle Qk. Moreover,∫∫
Q\D

t−
∫∫

Q\D
s =

n∑
k=1

[Mk(f)−mk(f)]a(Qk),

< ϵ

n∑
k=1

a(Qk)

= ϵa(Q\D)

Also, ∫∫
D

t−
∫∫

D

s =

∫∫
D

t− s = 2M

∫∫
D

1 < 2Mδ

Therefore, ∫∫
Q

t−
∫∫

Q

s =

∫∫
Q\D

t− s+

∫∫
D

t− s

≤ ϵa(Q) + 2Mδ.

The first term, ϵa(Q), comes from estimating the integral of t−s over the subrectangles

containing only points of continuity of f ; the second term, 2Mδ, comes from estimat-

ing the integral of t− s over the subrectangles which contain points of D. Hence,

I(f)− I(f) ≤
∫∫

Q

t−
∫∫

Q

s ≤ ϵa(Q) + 2Mδ

Letting ϵ → 0 we have

0 ≤ Ī(f)− I(f) ≤ 2Mδ.

Since δ is arbitrary, we have Ī(f) = I(f).

So f is integrable on Q.

Let us sum up

In this unit, we introduced the notion of double integration and studied some its im-

portant properties.

Check your progress

1. If f is integrable on Q, which of the following is true ?

(A)
∫∫

Q

f = supS = inf T (B)
∫∫

Q

s ≤ inf T ≤ supS

∫∫
Q

t

(C)
∫∫

Q

t ≤ supS ≤ inf T ≤
∫∫

Q

s (D)
∫∫

Q

t ≤ supT ≤ inf S ≤
∫∫

Q

s
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2. The value of the double integral
∫∫

Q

sin(x+ y)dxdy where Q = [0, π/2]× [0, π/2]

is

(A) 1 (B) 2 (C) π/2 (D) π

3. The value of the line integral
∮
C

y2dx + xdy where C is the square with vertices

(0, 0), (2, 0), (2, 2), (0, 2) is

(A) -4 (B) 4 (C) 8 (D) 2

4. Stokes theorem relates

(A) a surface integral to a line integral

(B) a surface integral to a double integral

(C) a double integral to a line integral

(D) a volume integral to a surface integral

5. Gauss theorem provides a relationship between

(A) a triple integral over a solid and a surface integral over the boundary of the

solid

(B) an integral over a surface and a line integral over the boundary of the surface

(C) a double integral over a plane region R and a line integral over a closed curve

forming the boundary of R.

(D) None of the above.
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Unit 5

Green’s, Stoke’s and Gauss’s Theorem

Objective

After this unit, learners will be able to

• understand and apply the fundamental theorems that relate different types of

integrals in vector calculus.

• apply Green’s theorem to convert a line integral around a closed curve into a

double integral over the region enclosed by the curve

• apply Stokes’ Theorem to compute line integrals or surface integrals in 3D.

• use the Divergence Theorem to simplify complex surface integrals into volume

integrals and vice versa.

5.1 Green’s theorem in the plane

The second fundamental theorem of calculus for line integrals states that the line

integral of a gradient ∇f along a path joining two points A and B may be expressed

in terms of the function values f(A) and f(B). A two-dimensional version of the

second fundamental theorem is usually referred to as Green’s theorem. This expresses

a double integral over a plane region R as a line integral taken along a closed curve

forming the boundary of R and it can be stated as follows:∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮
C

Pdx+Qdy
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The curve C which appears on the right is the boundary of the region R, and the

integration symbol
∮

indicates that the curve is to be traversed in the counterclockwise

direction.

Two types of assumptions are required for the validity of this identity.

1. First, conditions are imposed on the functions P and Q to ensure the existence

of the integrals. The usual assumptions are that P and Q are continuously dif-

ferentiable on an open set S containing the region R. This implies continuity of

P and Q on C as well as continuity of ∂P/∂y and ∂Q/∂x on R, although the

theorem is also valid under less stringent hypotheses.

2. Second, there are conditions of a geometric nature that are imposed on the re-

gion R and its boundary curve C. The curve C may be any rectifiable simple

closed curve. The term “rectifiable” means that C has a finite arc length.

Definition 5.1.1. Suppose C is described by a continuous vector-valued function α de-

fined on an interval [a, b]. If α(a) = α(b), the curve is closed.

Definition 5.1.2. A closed curve such that α (t1) ̸= α (t2) for every pair of values t1 ̸= t2

in the half-open interval (a, b] is called a simple closed curve.

This means that, except for the end points of the interval [a, b], distinct values of t

lead to distinct points on the curve. A circle is the prototype of a simple closed curve.

Definition 5.1.3. Simple closed curves that lie in a plane are usually called Jordan curves.

Note. Every Jordan curve C decomposes the plane into two disjoint open connected sets

having the curve C as their common boundary. One of these regions is bounded and

is called the interior (or inner region) of C. The other is unbounded and is called the

exterior (or outer region) of C.

Green’s theorem is valid whenever C is a rectifiable Jordan curve, and the region R is

the union of C and its interior. Since we have not defined line integrals along arbitrary

rectifiable curves, we restrict our discussion here to piecewise smooth curves.
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Theorem 5.1.4. (Green’s theorem for plane regions bounded by piecewise smooth

Jordan curves) Let P and Q be scalar fields that are continuously differentiable on an

open set S in the xy-plane. Let C be a piecewise smooth Jordan curve, and let R denote

the union of C and its interior. Assume R is a subset of S. Then we have the identity∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮
C

Pdx+Qdy (5.1)

where the line integral is taken around C in the counterclockwise direction.

Proof. The Green’s identity is equivalent to the two formulas, namely,∫∫
R

∂Q

∂x
dxdy =

∮
C

Qdy (5.2)

and

−
∫∫

R

∂P

∂y
dxdy =

∮
C

Pdx (5.3)

In fact, if both of these are true, Green’s identity follows by adding the above two

equations. Conversely, if Green’s identity is true we may obtain (5.2) and (5.3) as

special cases by taking P = 0 and Q = 0, respectively.

Proof for special regions. We shall prove the theorem for a region R of Type I.

Such a region has the form

R = {(x, y) | a ≤ x ≤ b and f(x) ≤ y ≤ g(x)}

where f and g are continuous on [a, b] with f ≤ g. The boundary C of R consists of

four parts, a lower arc C1 (the graph of f), an upper arc C2 (the graph of g), and two

vertical line segments, traversed in the directions.

First let us evaluate the double integral −
∫∫

R

∂P

∂y
dxdy by iterated integration.

Integrating first with respect to y, we have

−
∫∫

R

∂P

∂y
dxdy = −

∫ b

a

[∫ g(x)

f(x)

∂P

∂y
dy

]
dx

=

∫ b

a

[∫ f(x)

g(x)

∂P

∂y
dy

]
dx

=

∫ b

a

P [x, f(x)]dx−
∫ b

a

P [x, g(x)]dx (5.4)
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On the other hand, the line integral
∫
C

Pdx can be written as follows:∫
C

Pdx =

∫
C1

Pdx+

∫
C2

Pdx+

∫
L1

Pdx+

∫
L2

Pdx

Since the line integral along each vertical segment is zero, we have∫
C

Pdx =

∫
C1

Pdx+

∫
C2

Pdx.

To evaluate the integral along C1, we use the vector representation α(t) = ti + f(t)j

and obtain ∫
C1

Pdx =

∫ b

a

P [t, f(t)]dt

Next, we use the representation α(t) = ti+ g(t)j to evaluate the integral along C2 and

we obtain ∫
C2

Pdx = −
∫ b

a

P [t, g(t)]dt

where negative sign is used to take into account the reversal in direction. Therefore

we have ∫
C

Pdx =

∫ b

a

P [t, f(t)]dt−
∫ b

a

P [t, g(t)]dt.

Comparing this equation with the formula in (5.4) we obtain (5.3).

A similar argument can be used to prove Greens’ identity for regions of Type II. In

this way a proof of Green’s theorem is obtained for regions that are of both Type I and

Type II. Once this is done, the theorem can be proved for those regions R that can

be decomposed into a finite number of regions that are of both types. "Crosscuts" are

introduced and the theorem is applied to each subregion, and the results are added

together. The line integrals along the crosscuts cancel in pairs, and the sum of the line

integrals along the boundaries of the subregions is equal to the line integral along the

boundary of R.

Check your progress

1. The value of the line integral
∮
C

y2dx + xdy where C is the square with vertices

(0, 0), (2, 0), (2, 2), (0, 2) is

(A) -4 (B) 4 (C) 8 (D) 2
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5.2 Change of variables in a double integral

In one-dimensional integration theory the method of substitution often enables us to

evaluate complicated integrals by transforming them into simpler ones or into types

that can be more easily recognized. The method is based on the formula∫ b

a

f(x)dx =

∫ d

c

f [g(t)]g′(t)dt (5.5)

where a = g(c) and b = g(d). The above formula is valid under the assumptions that g

has a continuous derivative on an interval [c, d] and that f is continuous on the set of

values taken by g(t) as t runs through the interval [c, d].

In a similar way, there is a two-dimensional analogue of (5.5) called the formula for

making a change of variables in a double integral. It transforms an integral of the form∫∫
S

f(x, y)dxdy, extended over a region S in the xy-plane, into another double integral∫ S

T

F (u, v)dudv, extended over a new region T in the uv-plane. The exact relationship

between the regions S and T and the integrands f(x, y) and F (u, v) will be discussed

presently. The method of substitution for double integrals is more elaborate than in

the one-dimensional case because there are two formal substitutions to be made, one

for x and another for y. This means that instead of the one function g which appears

in Equation (5.5), we now have two functions, say X and Y , which connect x, y with

u, v as follows:

x = X(u, v), y = Y (u, v) (5.6)

The two equations in (5.6) define a mapping which carries a point (u, v) in the uv-

plane into an image point (x, y) in the xy-plane. A set T of points in the uv-plane

is mapped onto another set S in the xy-plane. The mapping can also be described by

means of a vector-valued function. From the origin in the xy-plane we draw the radius

vector r to a general point (x, y) of S. The vector r depends on both u and v and can

be considered a vector-valued function of two variables defined by the equation

r(u, v) = X(u, v)i+ Y (u, v)j if (u, v) ∈ T (5.7)
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This equation is called a vector equation of the mapping. As (u, v) runs through the

points of T , the endpoint of r(u, v) traces out the points of S.

Sometimes the two equations in (5.6) can be solved for u and v in terms of x and

y. When this is possible we may express the result in the form

u = U(x, y), v = V (x, y)

These equations define a mapping from the xy-plane to the uv-plane, called the inverse

mapping of the one defined by (5.6), since it carries points of S back to T . The so-

called one-to-one mappings are of special importance. These carry distinct points of

T onto distinct points of S; in other words, no two distinct points of T are mapped

onto the same point of S by a one-to-one mapping. Each such mapping establishes a

one-to-one correspondence between the points in T and those in S and enables us (at

least in theory) to go back from S to T by the inverse mapping (which, of course, is

also one-to-one).

We shall consider mappings for which the functions X and Y are continuous and

have continuous partial derivatives ∂X/∂u, ∂X/∂v, ∂Y/∂u, and ∂Y/∂v on S. Similar

assumptions are made for the functions U and V .

The formula for transforming double integrals may be written as∫∫
S

f(x, y)dxdy =

∫∫
T

f [X(u, v), Y (u, v)]|J(u, v)|dudv (5.8)

The factor J(u, v) which appears in the integrand on the right plays the role of the

factor g′(t) which appears in the one-dimensional Formula (5.5). This factor is called

the Jacobian determinant of the mapping defined by (5.6); it is equal to

J(u, v) =

∣∣∣∣ ∂X
∂u

∂Y
∂u

∂X
∂v

∂Y
∂v

∣∣∣∣
Sometimes the symbol

∂(X, Y )

∂(u, v)
is used instead of J(u, v) to represent the Jacobian

determinant.

In special case (5.8) becomes∫∫
S

dxdy =

∫∫
T

|J(u, v)dudv (5.9)
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Geometric motivation. Take a region T in the uv-plane, and let S denote the set of

points in the xy-plane onto which T is mapped by the vector function r given by (5.7).

Now introduce two new vector-valued functions V 1 and V 2 which are obtained by tak-

ing the partial derivatives of the components of r with respect to u and v, respectively.

That is, define

V 1 =
∂r

∂u
=

∂X

∂u
i+

∂Y

∂u
j and V 2 =

∂r

∂v
=

∂X

∂v
i+

∂Y

∂v
j

These vectors may be interpreted geometrically as follows: Consider a horizontal

line segment in the uv-plane (v is constant on such a segment). The vector function r

maps this segment onto a curve (called a u-curve) in the xy-plane. If we think of u as

a parameter representing time, the vector V1 represents the velocity of the position r

and is therefore tangent to the curve traced out by the tip of r. In the same way, each

vector V2 represents the velocity vector of a v-curve obtained by setting u = constant.

A u-curve and a v-curve pass through each point of the region S.

Consider now a small rectangle with dimensions ∆u and ∆v. If ∆u is the length

of a small time interval, then in time ∆u a point of a u-curve moves along the curve

a distance approximately equal to the product ∥V 1∥∆u (since ∥V 1∥ represents the

speed and ∆u the time). Similarly, in time ∆v a point on a v-curve moves a distance

nearly equal to ∥V2∥∆v. Hence the rectangular region with dimensions ∆u and ∆v

in the uv-plane is traced onto a portion of the xy-plane that is nearly a parallelogram,

whose sides are the vectors V1∆u and V2∆v. The area of this parallelogram is the

magnitude of the cross product of the two vectors V1∆u and V2∆v; this is equal to

∥(V 1∆u)× (V 2∆v)∥ = ∥V 1 × V 2∥∆u∆v

If we compute the cross product V 1 × V 2 in terms of the components of V 1 and V 2

we find

V 1 × V 2 =

∣∣∣∣∣∣
i j k
∂X
∂u

∂Y
∂u

0
∂X
∂v

∂Y
∂v

0

∣∣∣∣∣∣ =
∣∣∣∣ ∂X

∂u
∂Y
∂u

∂X
∂v

∂Y
∂v

∣∣∣∣k = J(u, v)k

Therefore the magnitude of V1×V2 is exactly |J(u, v)| and the area of the curvilinear

parallelogram is nearly equal to |J(u, v)|∆u∆v.
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If J(u, v) = 1 for all points in T , then the "parallelogram" has the same area as

the rectangle and the mapping preserves areas. Otherwise, to obtain the area of the

parallelogram we must multiply the area of the rectangle by |J(u, v)|. This suggests

that the Jacobian may be thought of as a "magnification factor" for areas.

Now let P be a partition of a large rectangle R enclosing the entire region T and

consider a typical subrectangle of P of, say, dimensions ∆u and ∆v. If ∆u and ∆v are

small, the Jacobian function J is nearly constant on the subrectangle and hence J acts

somewhat like a step function on R. (We define J to be zero outside T .) If we think

of J as an actual step function, then the double integral of |J | over R (and hence over

T ) is a sum of products of the form |J(u, v)|∆u∆v and the above remarks suggest that

this sum is nearly equal to the area of S, which we know to be the double integral∫∫
S

dxdy.

This geometric discussion, which merely suggests why we might expect an equa-

tion like (5.9) to hold, can be made the basis of a rigorous proof, but the details are

lengthy and rather intricate. As mentioned above, a proof of (5.9), based on an en-

tirely different approach, will be given in a later section.

If J(u, v) = 0 at a particular point (u, v), the two vectors V1 and V2 are parallel

(since their cross product is the zero vector) and the parallelogram degenerates into

a line segment. Such points are called singular points of the mapping. As we have

already mentioned, transformation formula (5.8) is also valid whenever there are only

a finite number of such singular points or, more generally, when the singular points

form a set of content zero. This is the case for all the mappings we shall use.

5.3 Surface Integrals

Surface integrals extend the concept of integration to surfaces in three-dimensional

space, allowing you to integrate scalar or vector fields over a surface. They play a

crucial role in vector calculus, physics, and engineering, particularly in calculating

quantities like mass, area, flux, and more. Surface integrals are analogous to line in-
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tegrals as the integration takes place along a surface rather than along a curve. We

defined line integrals in terms of a parametric representation for the curve. Simi-

larly, we shall define surface integrals in terms of a parametric representation for the

surface. Then we shall prove that under certain general conditions the value of the

integral is independent of the representation.

Definition 5.3.1. Let S = r(T ) be a parametric surface described by a differentiable

function r defined on a region T in the uv-plane, and let f be a scalar field defined and

bounded on S. The surface integral of f over S is denoted by the symbol
∫∫

fdS (or) by∫∫
S

f(x, y, z)dS , and is defined by the equation

∫∫
r(T )

fdS =

∫∫
T

f [r(u, v)]

∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥ dudv
whenever the double integral on the right exists.

Let S = r(T ) be a simple parametric surface. At each regular point of S let n

denote the unit normal having the same direction as the fundamental vector product.

That is, let

n =
∂r
∂u

× ∂r
∂v∥∥∂r

∂u
× ∂r

∂v

∥∥ (5.10)

The dot product F · n represents the component of the flux density vector in the

direction of n. The mass of fluid flowing through S in unit time in the direction of n

is defined to be the surface integral

∫∫
r(TT )

F · ndS =

∫∫
T

F · n
∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥ dudv
5.4 Change of parametric representation

We turn now to a discussion of the independence of surface integrals under a change

of parametric representation. Suppose a function r maps a region A in the uv-plane

onto a parametric surface r(A). Suppose also that A is the image of a region B in the
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st-plane under a one-to-one continuously differentiable mapping G given by

G(s, t) = U(s, t)i+ V (s, t)j if (s, t) ∈ B (5.11)

Consider the function R defined on B by the equation

R(s, t) = r[G(s, t)] (5.12)

Two functions r and R so related will be called smoothly equivalent. Smoothly equiv-

alent functions describe the same surface. That is, r(A) and R(B) are identical as

point sets. (This follows at once from the one-to-one nature of G.) The next theorem

describes the relationship between their fundamental vector products.

Theorem 5.4.1. Let r and R be smoothly equivalent functions related by Equation

(5.12), where G = Ui + V j is a one-to-one continuously differentiable mapping of a

region B in the st-plane onto a region A in the uv-plane given by Equation (5.11). Then

we have
∂R

∂s
× ∂R

∂t
=

(
∂r

∂u
× ∂r

∂v

)
∂(U, V )

∂(s, t)
(5.13)

where the partial derivatives ∂r/∂u and ∂r/∂v are to be evaluated at the point (U(s, t), V (s, t)).

In other words, the fundamental vector product of R is equal to that of r, times the Jaco-

bian determinant of the mapping G.

Proof. The derivatives ∂R/∂s and ∂R/∂t can be computed by differentiation of

Equation (5.12). If we apply the chain rule to each component of R and rearrange

terms, we find that

∂R

∂s
=

∂r

∂u

∂U

∂s
+

∂r

∂v

∂V

∂s
and

∂R

∂t
=

∂r

∂u

∂U

∂t
+

∂r

∂v

∂V

∂t

where the derivatives ∂r/∂u and ∂r/∂v are evaluated at (U(s, t), V (s, t)). Now we

cross multiply these two equations and, noting the order of the factors, we obtain

∂R

∂s
× ∂R

∂t
=

(
∂r

∂u
× ∂r

∂v

)(
∂U

∂s

∂V

∂t
− ∂U

∂t

∂V

∂s

)
=

(
∂r

∂u
× ∂r

∂v

)
∂(U, V )

∂(s, t)

This completes the proof.
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5.5 Stoke’s Theorem

Stoke’s theorem is a generalization of the second fundamental theorem of calculus

involving surface integrals. Moreover, Stoke’s theorem is a direct extension of Green’s

theorem which states that∫∫
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫
C

Pdx+Qdy

where S is a plane region bounded by a simple closed curve C traversed in the posi-

tive (counterclockwise) direction. Stokes’ theorem relates a surface integral to a line

integral which can be stated as follows:

Theorem 5.5.1. (Stokes’ Theorem) Assume that S is a smooth simple parametric sur-

face, say S = r(T ), where T is a region in the uv-plane bounded by a piecewise smooth

Jordan curve Γ. Assume also that r is a one-to-one mapping whose components have

continuous second-order partial derivatives on some open set containing T ∪ Γ. Let C

denote the image of Γ under r, and let P,Q, and R be continuously differentiable scalar

fields on S. Then we have∫∫
S

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy (5.14)

=

∫
C

Pdx+Qdy +Rdz

The curve Γ is traversed in the positive (counterclockwise) direction and the curve

C is traversed in the direction inherited from Γ through the mapping function r.

Proof. It is sufficint to establish the following:∫
C

Pdx =

∫∫
S

(
−∂P

∂y
dx ∧ dy +

∂P

∂z
dz ∧ dx

)
(5.15)∫

C

Qdy =

∫∫
S

(
−∂Q

∂z
dy ∧ dz +

∂Q

∂x
dx ∧ dy

)
∫
C

Rdz =

∫∫
S

(
−∂R

∂x
dz ∧ dx+

∂R

∂y
dy ∧ dz

)
Adding the above three equations we get the formula (5.14) in Stokes’ theorem. Since

the above three equations are similar, we prove only Equation (5.15).
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The idea is to express the surface integral on the right as a double integral over

T and then we use Green’s theorem to express the double integral over T as a line

integral over Γ. Finally, we show that this line integral is equal to
∫
C

Pdx.

We write

r(u, v) = X(u, v)i+ Y (u, v)j + Z(u, v)k

and express the surface integral over S in the form∫∫
S

(
−∂P

∂y
dx ∧ dy +

∂P

∂z
dz ∧ dx

)
=

∫∫
T

{
−∂P

∂y

∂(X, Y )

∂(u, v)
+

∂P

∂z

∂(Z,X)

∂(u, v)

}
dudv.

Now let p denote the composite function given by

p(u, v) = P [X(u, v), Y (u, v), Z(u, v)].

The last integrand can be written as

−∂P

∂y

∂(X, Y )

∂(u, v)
+

∂P

∂z

∂(Z,X)

∂(u, v)
=

∂

∂u

(
p
∂X

∂v

)
− ∂

∂v

(
p
∂X

∂u

)
.

Applying Green’s theorem to the double integral over T , we obtain∫∫
T

{
∂

∂u

(
p
∂X

∂v

)
− ∂

∂v

(
p
∂X

∂u

)}
dudv =

∫
Γ

p
∂X

∂u
du+ p

∂X

∂v
dv

where Γ is traversed in the positive direction. We parametrize Γ by a function γ defined

on an interval [a, b] and let

α(t) = r[γ(t)],

be a corresponding parametrization of C. Then by expressing each line integral in

terms of its parametric representation we find that∫
Γ

p
∂X

∂u
du+ p

∂X

∂v
dv =

∫
C

Pdx

which completes the proof of (5.14).

Check your progress

1. Stokes theorem relates

(A) a surface integral to a line integral
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(B) a surface integral to a double integral

(C) a double integral to a line integral

(D) a volume integral to a surface integral

5.6 The Divergence Theorem (Gauss’ theorem)

The Gauss Divergence Theorem (often simply called the Divergence Theorem) is a

fundamental result in vector calculus that relates the flux of a vector field through a

closed surface to the divergence of the vector field inside the surface. It serves as a

bridge between the behavior of a vector field on a boundary and its behavior inside a

region. It simplifies many problems in physics, engineering, and geometry involving

flux such as fluid flow, electromagnetism, conservation laws, etc.

Stokes’ theorem relates an integral extended over a surface and a line integral taken

over the one or more curves forming the boundary of this surface. The divergence

theorem relates a triple integral extended over a solid and a surface integral taken

over the boundary of this solid.

Theorem 5.6.1. Let V be a solid in 3-space bounded by an orientable closed surface S,

and let n be the unit outer normal to S. If F is a continuously differentiable vector field

defined on V , we have ∫∫∫
V

(divF )dxdydz =

∫∫
S

F · ndS (5.16)

Interpretation: The left-hand side of the theorem,
∫∫∫

V

∇ · FdV represents the

total divergence (net source or sink) of the vector field F inside the volume V . The

right-hand side,
∫∫

S

F · ndS, represents the total flux of the vector field through the

boundary surface S. The flux measures how much of the field F flows out of (or into)

the volume V through S

. Proof. If we express F and n in terms of their components, say

F (x, y, z) = P (x, y, z)i+Q(x, y, z)j +R(x, y, z)k
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and

n = cosαi+ cos βj + cos γk

then Equation (5.16) can be written as∫∫∫
V

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz =

∫∫
S

(P cosα +Q cos β +R cos γ)dS (5.17)

It suffices to establish the three equations∫∫∫
V

∂P

∂x
dxdydz =

∫∫
S

P cosαdS∫∫∫
V

∂Q

∂y
dxdydz =

∫∫
S

Q cos βdS∫∫∫
V

∂R

∂z
dxdydz =

∫∫
S

R cos γdS

and add the results to obtain (5.17). We will first prove the third formula for solids of

a very special type.

Assume that

V = {(x, y, z) : g(x, y) ≤ z ≤ f(x, y) for (x, y) in T}

where T is a connected region in the xy-plane, and f and g are continuous functions

on T , with g(x, y) ≤ f(x, y) for each (x, y) in T .

Geometrically, this means that T is the projection of V on the xy-plane. Every line

through T parallel to the z-axis intersects the solid V along a line segment connecting

the surface z = g(x, y) to the surface z = f(x, y). The boundary surface S consists of

1. an upper cap S1, given by the explicit formula z = f(x, y);

2. a lower part S2, given by z = g(x, y); and

3. a portion S3 of the cylinder generated by a line moving parallel to the z-axis

along the boundary of T .

The outer normal to S has a nonnegative z-component on S1, has a nonpositive com-

ponent on S2, and is parallel to the xy-plane on S3. Solids of this type will be called

“xy-projectable.” They include all convex solids (for example, solid spheres, ellipsoids,
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cubes) and many solids that are not convex (for example, solid tori with axes parallel

to the z-axis).

To prove the result, first we express the triple integral as a double integral extended

over the projection T . Then we show that this double integral has the same value as

the surface integral in question. We begin with the formula∫∫∫
V

∂R

∂z
dxdydz =

∫∫
T

[∫ f(x,y)

g(x,y)

∂R

∂z
dz

]
dxdy.

We use the second fundamental theorem of calculus to evaluate the one-dimensional

integral with respect to z which gives∫∫∫
V

∂R

∂z
dxdydz =

∫∫
T

{R[x, y, f(x, y)]−R[x, y, g(x, y)]}dxdy. (5.18)

For the surface integral we can write∫∫
S

R cos γdS =

∫∫
S1

R cos γdS +

∫∫
S2

R cos γdS +

∫∫
S3

R cos γdS. (5.19)

On S3 the normal n is parallel to the xy-plane, so cos γ = 0 and the integral over S3 is

zero. On the surface S1 we use the representation

r(x, y) = xi+ yj + f(x, y)k

and on S2 we use the representation

r(x, y) = xi+ yj + g(x, y)k.

On S1, the normal n has the same direction as the vector product
∂r

∂x
× ∂r

∂y
, so we can

write ∫∫
S1

R cos γdS =

∫∫
S1

Rdx ∧ dy =

∫∫
T

R[x, y, f(x, y)]dxdy

On S2 the normal n has the direction opposite to that of ∂r/∂x×∂r/∂y so, by Equation

(12.26), we have∫∫
S2

R cos γdS = −
∫∫

S2

Rdx ∧ dy = −
∫∫

T

R[x, y, g(x, y)]dxdy

Therefore Equation (12.56) becomes∫∫
S

R cos γdS =

∫∫
T

{R[x, y, f(x, y)]−R[x, y, g(x, y)]}dxdy
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Comparing this with Equation (12.55) we see that∫∫∫
V

∂R

∂z
dxdydz =

∫∫
S

R cos γdS

In the foregoing proof the assumption that V is xy-projectable enabled us to express

the triple integral over V as a double integral over its projection T in the xy-plane. It

is clear that if V is yz-projectable we can use the same type of argument to prove the

identity ∫∫∫
V

∂P

∂x
dxdydz =

∫∫
S

P cosαdS

and if V is xz-projectable we obtain∫∫∫
V

∂Q

∂y
dxdydz =

∫∫
S

Q cos βdS

Thus we see that the divergence theorem is valid for all solids projectable on all three

coordinate planes. In particular the theorem holds for every convex solid.

Check your progress

1. Gauss theorem provides a relationship between

(A) an integral over a surface and a line integral over the boundary of the surface

(B) a triple integral and a surface integral over the boundary of the solid

(C) a double integral over a plane region R and a line integral over a closed

curve forming the boundary of R.

(D) None of the above.

Summary

In this chapter, we have studied three important and famous theorems in integration

theory that relates line, surface and volume integrals, namely, Green’s, Stoke’s and

Gauss divergence theorem.

Glossary

1. A parametric representation is a way of describing surfaces where we have three

equations involving three variables x, y and z in terms of two parameters u and
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v:

x = X(u, v), y = Y (u, v), z = Z(u, v)

where the point (u, v) vary over some two-dimensional connected set T in the

uv-plane and the corresponding points (x, y, z) trace out a surface in xyz-space.

2. If r is the radius vector from the origin to a point (x, y, z) of the surface, we can

write the above parametric equations into one vector equation of the form:

r(u, v) = X(u, v)i+ Y (u, v)j + Z(u, v)k, where (u, v) ∈ T.

This is called a bf vector equation for the surface.

3. If the above parametric equations or the vector equation are assumed to be con-

tinuous on T , then the image of T under the mapping r is called a parametric

surface and denoted as r(T ).

4. If the function r is one-to-one on T , the image r(T ) is called a simple parametric

surface.

Self-Assessment Questions

1. State and prove Greens’ theorem.

2. State and prove Stoke’s theorem.

3. State and prove Gauss’s theorem.
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