
i

PERIYAR UNIVERSITY

(NAAC 'A++' Grade with CGPA 3.61 (Cycle - 3)

SALEM - 636 011

CENTRE FOR DISTANCE AND ONLINE EDUCATION

(CDOE)

BACHELOR OF COMPUTER SCIENCE

SEMESTER - IV

JAVA PROGRAMMING

(Candidates admitted from 2024 onwards)

State University - NIRF Rank 56 - State Public University Rank 25

1

PERIYAR UNIVERSITY

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)

B.Sc. COMPUTER SCIENCE 2024 admission onwards

Core Course VII

Java Programming

Prepared by:

Periyar University, Salem – 11.
Centre for Distance and Online Education (CDOE)

2

LIST OF CONTENTS

UNIT CONTENTS PAGE

1

Review of Object Oriented concepts – History of Java – Java
buzzwords – JVM architecture - Datatypes - Variables - Scope
and life time of variables - arrays - operators – control
statements - type conversion and casting - simple java
program - constructors - methods - Static block - Static Data –
Static Method String and StringBuffer Classes.

1-23

2

Inheritance: Basic concepts - Types of inheritance - Member
access rules - Usage of this and Super key word - Method
Overloading - Method overriding - Abstract classes - Dynamic
method dispatch - Usage of final keyword.
Packages: Definition – Access Protection –Importing
Packages. Interfaces: Definition – Implementation –Extending
Interfaces. Exception Handling: try – catch- throw - throws –
finally – Built-inexceptions - Creating own Exception classes.

24-37

3

Multithreaded Programming: Thread Class - Runnable
interface –Synchronization – Using synchronized methods –
Using synchronized statement- Interthread Communication –
Deadlock.
I/O Streams: Concepts of streams - Stream classes- Byte and
Character stream - Reading console Input and Writing Console
output - File Handling.

38-46

4

AWT Controls: The AWT class hierarchy - user interface
components- Labels - Button - Text Components - Check Box -
Check Box Group - Choice - List Box - Panels – Scroll Pane -
Menu - Scroll Bar. Working with Frame class - Colour - Fonts
and layout managers.
Event Handling: Events - Event sources - Event Listeners -
Event Delegation Model (EDM) - Handling Mouse and
Keyboard Events - Adapter classes - Inner classes

47-69

5

Swing: Introduction to Swing - Hierarchy of swing components.
Containers - Top level containers - JFrame - JWindow - JDialog
- JPanel - JButton - JToggleButton - JCheckBox - JRadioButton
- JLabel,JTextField - JTextArea - JList - JComboBox -
JScrollPane.

70-83

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

1

UNIT I

Objective: To provide fundamental knowledge of object-oriented programming and

basics of Java.

REVIEW OF OBJECT ORIENTED CONCEPTS

Object

Any entity that has state and behavior is known as an object. For example, a chair,

pen, table, keyboard, bike, etc. It can be physical or logical.

An Object can be defined as an instance of a class. An object contains an address

and takes up some space in memory.

Class

Collection of objects is called class. It is a logical entity.

A class can also be defined as a blueprint from which you can create an individual

object. Class doesn't consume any space.

Inheritance

When one object acquires all the properties and behaviours of a parent object, it is

known as inheritance. It provides code reusability. It is used to achieve runtime

polymorphism.

Polymorphism

If one task is performed in different ways, it is known as polymorphism. For example:

to convince the customer differently, to draw something, for example, shape,

triangle, rectangle, etc.

In Java, we use method overloading and method overriding to achieve

polymorphism.

Encapsulation

Binding (or wrapping) code and data together into a single unit are known as

encapsulation. For example, a capsule, it is wrapped with different medicines.

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

2

A java class is the example of encapsulation. Java bean is the fully encapsulated

class because all the data members are private here.

HISTORY OF JAVA

Java History

 Java is a high-level programming language originally developed by Sun

Microsystems and released in 1991.

 Java runs on a variety of platforms, such as Windows, Mac OS, and the various

versions of UNIX. So java is platform independent.

 Java was designed for the development of software for consumer electronic

devices like TVs, VCRs, toasters and such other electronic devices.

 1990 → A team of Sun Microsystems headed by James Gosling was decided to

develop a special software that can be used to manipulate consumer electronic

devices.

 1991 → The team announced a new language named “oak”.

 1992 → The team demonstrated the application of their new language to control

a list of home applications.

 1993 → The team known as Green Project team came up with the idea of

developing web applets.

 1994 → The team developed a web browser called “HotJava” to locate and run

applet programs on internet.

 1995 → Oak was renamed Java.

 1996 → Sun releases Java Development Kit 1.0.

 1997→ Sun releases Java Development Kit 1.1.

 1998 → Sun releases the Java 2 with version 1.2.

 1999 → Sun releases standard edition (J2SE) and enterprise edition(J2EE).

 2000 → J2SE with SDK(software development kit) 1.3 was released.

 2002 → J2SE with SDK 1.4 was released.

 2004 → J2SE JDK 5.0 was released. This is known as J2SE 5.0.

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

3

JAVA BUZZWORDS

Object Oriented:

 Java is truly object-oriented language. Almost everything in Java is an object.

 All program code and data reside within objects and classes.

 Java comes with an extensive set off classes, arranged in packages that we can

use in our programs by inheritance.

 The object model in java is simple and easy to extend.

Robust and Secure:

 Java is a robust language. It provides many safeguards to ensure reliable code. It

has strict compile time and runtime checking for data types.

 It is designed as garbage collected language relieving the programmers virtually

all memory management problems.

 Java also incorporates the concept of exception handling which captures series

errors and eliminates risk of crashing the system.

 The absence of pointers in java ensures that programs cannot gain access to

memory locations without proper authorization.

Distributed:

 Java is designed as a distributed language for creating applications on networks.

It has the ability to share both data and programs.

 Java applications can open and access remote objects on internet as easily as

they can do in a local system.

 This enables multiple programmers at multiple remote locations to collaborate

and work together on a single project.

Simple, Small and Familiar:

 Java is a small and simple language. Many features of C and C++ that are either

redundant

For example java does not use pointers, preprocessor header files, goto

statement and overloading and multiple inheritance and many others.

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

4

Multithreaded and Interactive:

 Multithreaded means handling multiple tasks simultaneously. Java supports

multithreaded programs. This means that we need not wait for the application to

finish one task before beginning another.

For example we can listen to an audio clip while scrolling a page and at the same

time download an applet from a distant computer.

 This feature greatly improves the interactive performance of graphical

applications.

High performance

 Java performance is impressive for an interpreted language, mainly due to the

use of intermediate byte code. According to sun, java speed is comparable to the

native C/C++.

 Java architecture is also designed to reduce overheads during runtime. Further,

the incorporation of multithreading enhances the overall execution speed of java

programs.

Dynamic and Extensible

 Java is a dynamic language.

 It is capable of dynamically linking in new class libraries, methods, and objects.

 Java program support functions written in other languages such as C and C++.

These functions are known as native methods.

JVM ARCHITECTURE

It facilitates the execution of programs developed in java. It comprises of the

following:

 Java Virtual machine(JVM): It is a program that interprets the intermediate java

byte code and generates the desired output. It is because if byte code and JVM

concepts that programs written in Java are highly portable.

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

5

 Runtime class libraries: There are a set of core class libraries that are required

for the execution of java programs.``

 User interface toolkits: AWT and swing are examples of toolkits that support

varied input methods for the users to interact with application program.

 Deployment technologies: JRE comprises the following key deployment

technologies:

 Java plug-in: Enables the execution of a java applet on the browser.

 Java Web start: Enables remote-deployment of an application.

DATA TYPES

Data types specify the size and type of values that can be stored.

Data types in Java

Integer Types

✓ Integer types can hold whole numbers such as 123, -96, 5678. Java supports four

types of integers. They are byte, short, int, and long.

Type Size Minimum value Maximum value

Byte One byte -128 127

Short Two bytes -32,768 32,767

Int Four bytes -2,147,483,648 2,147,483,647

Long Eight bytes -

9,223,372,036,854,775,8

08

9,223,372,036,854,775,

807

Numeric

Floating Point Types

✓ Floating point type contains fractional parts such as 26.78 and -7.890.

✓ The float type values are single-precision numbers while the double types

represent double-precision numbers.

✓ Floating point numbers are treated as double-precision quantities. We must

append f or F to the numbers. Example: 1.23f 7.67567e5F

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

6

Double-precision types are used when we need greater precision in storage of

floating point numbers. Floating point data types support a special value known as

Not-a-Number (NaN).

It is used to represent the result of operations such as dividing by zero, where

an actual number is not produced.

Type Size Minimum value Maximum value

Float 4 bytes 3.4e-038 1.7e+0.38

double 8 bytes 3.4e-038 1.7e+308

Character Type

✓ Java provides a character data type called char.

✓ The char type assumes a size of 2 bytes but, basically, it can hold only a single

character.

Boolean Type

✓ It is used to test a particular condition during the execution of the program.

✓ There are only two values that a boolean type can take: true or false.

✓ Boolean type is denoted by the keyword boolean and uses only one bit of storage.

VARIABLES

A variable is an identifier that denotes a storage location used to store a data value.

Variable names may consist of alphabets, digits, the underscore(_) and dollar

characters, subject to the following conditions:

 They must not begin with a digit.

 Uppercase and lowercase are distinct.

 It should not be a keyword.

 White space is not allowed.

 Variable names can be of any length.

A variable must be given a value after it has been declared it is used in an

expression. This can be achieved in two ways:

1. By using an assignment statement

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

7

2. By using a read statement

SCOPE AND LIFE TIME OF VARIABLE

Java variables are actually classified into three types:

• Instance variables

• Class variables

• Local variables

• Instance and class variable are declared inside a class. Instance variables are

created when the objects are instantiated and they are associated with the objects.

• Class variables are global to a class and belong to the entire set of objects

that class creates. Only one memory location is created for each class variable.

• Variables declared and used inside methods are called local variables. They

are not available for use outside method definition.

We often encounter situations where there is a need to store a value on one type

into a variable of another type.

✓ In such situation, we must cast the value to be stored by proceeding it with the

type name in parentheses. The syntax is

type variable1 = (type) variable2;

The process of converting one data type to another is called casting. Examples:

int m= 50;

byte n = (byte)m;

Four integer types can be cast to any other type except Boolean. Casting into a

smaller type may result in loss of data. Similarly, the float and double can be cast to

any other type except Boolean.

From To

byte short, char, int, long, float,

double

short int, long, float, double

char int, long, float, double

int long, float, double

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

8

long float, double

float Double

Casts that results in no loss of information

ARRAYS

An array is a group of related data items that share a common name. A particular

value is indicated by specifying a number called index number or subscript in square

brackets after the array name.

The arrays can be classified into two types. They are

1. One-dimensional array

2. Two-dimensional array

Creating An Array

Creation of array includes three steps:

1. Declare the array

2. Create memory locations

3. Put values into the memory locations.

One-dimensional array

A list of items can be given one variable name using only one subscript and such

variable is called a single-subscripted variable or a one-dimensional array.

Declaration of one-dimensional array:

Arrays in java may be declared in two forms.

Form 1: type arrayname[];

Form 2: type[] arrayname;

Ex: int mark[];

 int[] mark;

Creation of one-dimensional array

Arrays are created by using new operator. The general form is

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

9

 arrayname = new type[size];

Ex: mark = new int[10];

Initialization of one-dimensional array:

Values are assigned to the array by specifying the subscript.

 arrayname[subscript] = value;

Ex: mark[2] = 65;

An array may also be initialized when they are declared.

 type arrayname[] = {list-of-values};

The list-of-values are separated by comma and surrounded by curly braces. The

memory for the array is allocated by the compiler based on the number of values

given.

Ex: int x[] = {25,35,15,5,55}

Array length : In java, all arrays store the allocated size in a variable named length.

To know the size of an array, it can be accessed as

 arrayname.length

Two-Dimensional Arrays

To store the values in a table form then two dimensional array is used. Two

subscript are needed to access a value in two dimensional array.

Declaration of two-dimensional array:

Arrays in java may be declared in two forms.

Form 1: type arrayname[][];

Form 2: type[][] arrayname;

Ex: int mata[][];

 int[][] mata;

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

10

Creation of two-dimensional array

Arrays are created by using new operator. The general form is

 arrayname = new type[row][col];

Ex: mata = new int[3][2];

Initialization of two-dimensional array:

Values are assigned to the array by specifying the subscript.

 arrayname[subscript1][subsrcipt2] = value;

Ex: mata[2][2] = 15;

An array may also be initialized when they are declared.

 type arrayname[][] = {list-of-values};

The list-of-values are separated by comma and surrounded by curly braces. The

memory for the array is allocated by the compiler based on the number of values

given.

Ex: int x[][] = {25,35,15,5,55,45}

Variable Size Arrays

Java treats multidimensional arrays as “arrays of arrays”. It is possible to declare a

two-dimensional array as follows.

int x[][] = new int [3][];

x[0] = new int[2];

x[1] = new int[5];

x[2] = new int[3];

OPERATORS

 Java supports a rich set of operators.

 An operator is a symbol that is used for manipulate data and variables.

 Operators are used in programs to manipulate data and variables.

o Arithmetic operators

o Relational operators

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

11

o Logical operators

o Assignment operators

o Increment and decrement operators

o Conditional operators

o Bitwise operators

o Special operators

Java operators are classified into number of categories.

➢ ARITHMETIC OPERATORS

Arithmetic operators are used to construct mathematical expressions as in algebra

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo division

RELATIONAL OPERATORS

❖ Compares two quantities depending on their relation.

❖ Java supports six relational operators.

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

= = is equal to

!= is not equal to

A simple relational expression contains only one relational operator and is of the

following form:

ae-1 relational operator ae-2

where ae-1 and ae-2 are arithmetic expressions

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

12

LOGICAL OPERATORS

Java has three logical operators.

Operator Meaning

&& Logical AND

|| Logical OR

! Logical NOT

A logical operator returns either TRUE or FALSE values.

 Logical operator && and || are used to check compound condition (ie for

combining two or more relations)

 When an expression combines two or more relational expressions then it is

called logical expression or a compound relational expression

ASSIGNMENT OPERATORS

 Used to assign the value of an expression to a variable.

 Assignment operators are usually in the form “=”.

v op=exp;

INCREMENT AND DECREMENT OPERATORS

❖ They are also called unary operator.

++ → Increment operator, add 1 to the operand

-- → Decrement operator, subtract 1 to the operand

They may also use to increment subscripted variables

CONDITIONAL OPERATORS

❖ The character pair ?: is used for conditional operator.

❖ It is also called as ternary operator.

General Form exp1 ? exp2: exp3

where exp1, exp2, exp3 are expressions

The operator ?: works as follows

 exp1 is evaluated first, if its is true then the exp2 is evaluated.

 If exp1 is false, exp3 is evaluated

BITWISE OPERATORS:

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

13

❖ Bitwise operators are used to manipulate data at values of bit level.

These operators are used for testing the bits, or shifting them to the right or left.

❖ Bitwise operators may not to float or double.

Operator Meaning

& Bitwise AND

! Bitwise OR

^ Bitwise exclusive OR

~ One’s complement

<< Shift left

>> Shift right

>>> Shift right with zero fill

SPECIAL OPERATORS

❖ Java supports special operators

➢ Instance of operator

➢ Dot operator (or) member selection operator (.)

✓ Instance of operator:

❖ Instance of operator is an object reference operator.

❖ Allow us to determine whether the object belongs to a particular class or

not.

❖ Return true, if the object on the left-hand side is an instance of the class

given on the right-hand side.

Dot operator

The dot operator (.) is used to access the instance variables and methods of class

objects.

It is also used to access classes and sub packages from a package.

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

14

CONTROL STATEMENTS

When a program breaks the sequential flow and jumps to another part of the code, it

is called branching.

❖ When the branching is based on a particular condition, it is known as conditional

branching.

 ❖ If branching takes place without any decision, it is known as unconditional

branching. if statement

 switch statement

 Conditional operator statement

The following statements are known as control or decision making statements.

 if statement

 switch statement

 Conditional operator statement

IF Statement

The if statement is a powerful decision making statement and is used to control the

flow of execution of statements.

General form if (test expression)

The expression is first evaluated.

❖ Depending on the value of the expression is true or false, control is transfer to a

particular statement.

❖ The if statement are

1. simple if statement

2. if…else statement

3. Nested if…else statement

4. else if ladder

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

15

1. Simple If Statement

➢ If the test expression is true the statement block will be executed; otherwise

the execution will jump to the statement-x

➢ Statement block may be single statement or a group of statement.

Example

General form

if (test expression)

{

statement-block;

}

statement-x;

Example

if (category == SPORTS)

{

 marks = marks +

bonus_marks;

}

System.out.println(marks);

2. The If…Else Statement

➢ If the test expression is true, then the true-block statements are executed.

➢ Otherwise, the false block statements are executed.

General form

if (test expression)

{

True block statements;

}

else

{

False block statements;

}

Statement-X;

Example

if (degree = = “BCA”)

{

 points = points+500;

}

else

{

 Points = points + 100;

}

3. Nesting of if …else statement

➢ Here if the condition-1 is false, the statement-3 will be executed; otherwise it

evaluates the condition-2.

➢ If the condition-2 is true, then statement-1 will be executed; otherwise the

statement -2 will be evaluated and then control is transferred to the statement-x.

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

16

General form
if (test condition1)
{
 if (test condition2)
 {
 True
blockstatements-1;
 }
 else
 {
 False block
statement-2;
 }
}
else
{
 False block statements-3;
}
Statement-x;

Example
if (gender == “female”)
{
 if (balance>5000)
 {
 Bonus = 0.03 *
balance;
 }
 else
 {
 Bonus = 0.02 *
balance;
 }
}
else
{
 Bonus = 0.01 * balance;
}
balance=balance + bonus;

4. Else if ladder

Else If ladder is a chain of ifs in which the statement associated with each else is an

if.

The condition is evaluated from the top to downwards.

➢ As soon as the condition is true, then the statements associated with it are

executed and the control is transferred to the statement -x.

➢ When all the n condition is false, then the final else containing the default-

statement will be executed.

General form

If (condition-1)

 statement-1;

else if (condition-2)

 statement -2;

else if (condition-3)

 statement -3;

…..

else if (condition n)

 statement -n;

else

 default-statement;

Example

If (marks>79)

 grade=”honors”;

else if (marks>79)

 grade=”first”;

else if (marks>79)

 grade=”second”;

else if (marks>79)

 grade=”third”;

else

 grade=”fail”; // Default-stmt

System.out.println(“grade=”+grade);

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

17

The Switch Statement

 It an multiway decision statement.

 The switch statement tests the value of a given variable against a list of case

values.

 When a match is found, a block of statement associated with that case is

executed.

 The expression is an integer expression or character known as case labels.

 Block1, block2 … are statements lists may contain zero or more statements.

 No need to put braces around each block

 Case labels end with a colon (:)

 The breakstatement at the end of each block signal the end of a particular case

and causes an exit from the switch statement, transferring the control to the

statement -x following the switch.

 The default is an option case; it will be executed if the value of the expression

does not match with any of the case values.

 If not present, no action takes place when all matches fail and the control goes to

the statement –x.

General form
switch(expression)
{
 case value-1:
 block-1
 break;
 case value-2:
 block-2
 break;
 case value-3:
 block-3
 break;

Example
switch(expression)
{
 case ‘1’:
 System.out.println(“Monday”);
 break;
 case ‘2’:
 System.out.println(“Tuesday”);
 break;
 case ‘3’:
 System.out.println(“Wednesday”);
 break;

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

18

 ………..
 ……….
 default:
 default-block
 break;
}
statement-x;

 case ‘4’:
 System.out.println(“Thursday”);
 break;
 ………………
 ………………..
 default:
 System.out.println (“WRONG
INPUT”);
 break;
}
System.out.println(“ WELCOME TO
THIS WEEK”);

SIMPLE JAVA PROGRAM

Simple java program

class SampleOne
{
 public static void main (String args[])
 {
 System.out.println(“ Java is better than C++”);
 }
}

Class declaration

The first line

 Class SampleOne declares a class, java is a true object-oriented language and

therefore, everything must be placed inside a class.

 class is a keyword and declares that a new class definition follows.

 SampleOne is a java identifier that specifies the name of the class to be defined.

Opening Brace

Every class definition in java begins with an opening brace “{“ and ends with a

matching closing brace “}”.

The main line

 The third line

public static void main (String args[])

 The above line defines a method named main.

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

19

 This is similar to the main() function in C/C++.

 Every java application program must include the main() method. This the

starting point for the interpreter to begin the execution of the program.

 A java application can have any number of classes but only one of them must

include a main method to initiate the execution.

 The line contains a number of keywords public, static and void.

 Public : The keyword public is an access specifier that declares the main method

as unprotected and therefore making it accessible to all other classes.

 Static : Declares this method as one that belongs to the entire class and not a

part of any object of the class. The main methods must always be declared as

static since the interpreter uses this method before any object are created.

 Void: The void states that the main method does not return any value.

The output line

The only executable statement in the program is

System.out.println(“Java is better than C++”);

This is similar to printf() statement of C or cout<< construct of C++.

Since java is a true object oriented language, every method must be part of an

object.

The println method is a member of the out object, which is a static data member of

System class.

This line prints the string “java is better than C++.”

CONSTRUCTORS

Every class has a constructor. If we do not explicitly write a constructor for a class,

the Java compiler builds a default constructor for that class.

Each time a new object is created, at least one constructor will be invoked.

 The main rule of constructors is that they should have the same name as the

class.

 A class can have more than one constructor.

 They does not return any value and do not specify even void.

 Constructors are automatically called during the creation of the objects.

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

20

ADVANTAGES OF CONSTRUCTORS:

1. A constructor eliminates placing the default values.

2. A constructor eliminates calling the normal method implicitly.

TYPES OF CONSTRUCTORS:

 Based on creating objects in JAVA we have two types of constructors.

 They are

Default/parameter less/no argument constructor and Parameterized constructor.

STRING AND STRING BUFFER CLASSES

Strings, which are widely used in Java programming, are a sequence of characters.

In Java programming language, strings are treated as objects.

The Java platform provides the String class to create and manipulate strings.

String Class Methods

Method task performed

s2=s1.toLowerCase; Converts the string s1 to all lowercase

s2=s1.toUpperCase’; Converts the string s1 to all uppercase

s2=s1.replace(‘x’,’y’); Replace all appearances of x with y

s1.equal(s2); Returns true if s1 is equal to s2

s2=s1.trim(); Remove white space at the beginning and end of the String

s1

s1.equalsIgnoreCase(

s2);

Returns true if s1 is equal to s2, ignoring the case of

characters

s1.length(); Gives the length of s1.

s1.charAt(n) Gives nth character of s1

s1.concat(s2); Concatenates s1 and s2

s1.substring(n); Gives substring starting from nth character.

s1.substirng(n,m); Gives substring starting from nth character up to mth

character

String.valueOf(p); Creates a string object of the parameter p(simple type or

object)

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

21

p.toString(); Creates a string representation of object p

s1.indexOf(‘x’) Gives the position of the first occurrence of ‘x’ in the string s1

s1.indexOf(‘x’,’n’); Gives the position ‘x’ that occurs after nth position in the

string s1

String.valueOf(variable

);

Converts the parameter value to string representation.

s1.compareTo(s2) Returns negative if s1<s2, positive if s1>s2, zero if s1 and s2

equal.

StringBuffer class methods

StringBuffer class is a peer class of String.

 String creates strings of fixed_length

 StringBuffer class creates string of flexible length that can be modified in terms of

both length and content.

 In stringbuffer class we can insert characters and substrings in the middle of a

string, or append another string to the end.

1 public StringBuffer append(String s)

Updates the value of the object that invoked the method. The method takes boolean,

char, int, long, Strings, etc.

2 public StringBuffer reverse()

The method reverses the value of the StringBuffer object that invoked the method.

3 public delete(int start, int end)

Deletes the string starting from the start index until the end index.

4 public insert(int offset, int i)

This method inserts a string s at the position mentioned by the offset.

5 replace(int start, int end, String str)

This method replaces the characters in a substring of this StringBuffer with characters

in the specified String.

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

22

SUMMARY

The provided document covers a comprehensive overview of Object-Oriented

Concepts, Java History, Java Buzzwords, JVM Architecture, Data Types, Variables,

Operators, Control Statements, Simple Java Program, Constructors, String and

StringBuffer classes. Understand the basic Object-oriented concepts. Implement the

basic constructs of Core Java.

ACTIVITIES

o Identify and list objects and their corresponding classes from everyday scenarios

(e.g., car as an object, Car class).

o Create a hierarchy of classes related to vehicles (e.g., Vehicle -> Car, Truck) and

demonstrate inheritance by sharing properties and methods.

o Implement method overloading and overriding using simple scenarios (e.g.,

Shape class with various subclasses like Circle, Square).

o Design a Java class that demonstrates encapsulation (private fields, public

methods for access).

o Draw a diagram illustrating the components of the JVM and explain their

functions.

o Simulate scenarios where students must use if-else statements or switch

statements to control program flow based on different conditions.

o Create classes with multiple constructors and demonstrate how each constructor

is invoked during object instantiation.

SELF-ASSESSMENT QUESTIONS

1. How would you define an object in your own words?

2. What are the key characteristics of an object? Can you provide examples?

3. How do state and behavior relate to objects? Can you illustrate this with a specific object?

4. Why do objects occupy space in memory, and how does this affect program performance?

5. How is a class like a blueprint? Can you provide a real-world analogy?

6. What types of data and methods are typically included in a class definition?

7. How does inheritance promote code reusability? Can you give an example?

8. What is polymorphism, and why is it a key concept in object-oriented programming?

9. What are the two main types of polymorphism in Java? Can you briefly explain each?

10. How does method overloading demonstrate polymorphism? Can you give a code

example?

11. How does method overriding demonstrate polymorphism? Can you give a code example?

CDOE-ODL BSc(CS) – SEMESTER IV Unit I

23

12. What is encapsulation, and how does it enhance data security in a program?

13. What are conditional statements, and why are they used in programming?

14. How do you structure an if-else statement to handle multiple conditions?

15. What is the purpose of the else if statement, and how does it differ from using multiple

if statements?

16. What are the logical operators (&&, ||, !) in Java, and how are they used in conditional

statements?

17. How would you test the correctness of your conditional statements in your code?

18. What are the different types of constructors in Java? Explain each type briefly.

19. How does a parameterized constructor differ from a default constructor? Provide an

example.

20. What is constructor overloading, and how is it implemented in Java?

21. What are the different types of loops available in Java? Describe each type.

22. What factors can affect the efficiency of a loop? How can you optimize looping

statements?

23. How would you test and debug your loop structures to ensure they function correctly?

24

UNIT II

Objective: To equip the student with programming knowledge in Inheritance,

Package, Interface and Exception handling

INHERITANCE

When one class acquires the properties of another class it is known as inheritance.

 A class that is inherited is called a super class or base class.

 The class that does the inheriting is called a subclass or derived class.

 Advantage of inheritance is that it allows reusability of coding.

TYPES OF INHERITANCE

Inheritance may take different forms. They are

 Single inheritance (one super class, one sub class)

 Multilevel inheritance (derived from a derived class)

 Multiple Inheritance

Single inheritance

Single class is one in which there exists single base class and

single derived class.

Multi level inheritance

Multi level inheritance is one which there exist single base class, single derived class

and n number of intermediate base classes.

An intermediate base class is one, in one contest it acts as base class and in

another context it acts as derived class.

Multiple Inheritance

Multiple inheritances are one supported by JAVA through classes but it is supported

by JAVA through the concept of interfaces.

Defining a subclass

A subclass is defined as follows:

class subclassname extends superclassname

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

25

{

variables declaration;

methods declaration;

}

The keyword extends signifies that the properties of the super classname are

extended to the subclassname.

SUBCLASS CONSTRUCTOR

 A subclass constructor is used to construct the instance variables of both the

subclass and the super class.

 The sub class constructor uses the keyword super to invoke the constructor

method of the super class.

 The keyword super is used in following conditions. Super may only be used

within a subclass constructor method.

 The call to super class constructor must appear as the first statement within the

sub class constructor.

 The parameter in the super call must match the order and type of the instance

variable declared in the program.

MEMBER ACCESS RULES

The modifiers are also known as access modifiers.

Java provides three types of visibility modifiers: public, private and protected.

Public Access:

To declare the variable or method as public, it is visible to the entire class in which it

is defined.

Example:

public int number;

public void sum () {……………..}

Friendly Access:

When no access modifier is specified, the number defaults to a limited version of

public accessibility known as “friendly” level of access.

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

26

The difference between the “public” and “friendly” access is that the public modifier

makes fields visible in all classes.

While friendly access makes fields visible only in the same package, but not in other

package.

Protected Access:

The protected modifier makes the fields visible not only to all classes and

subclasses in the same package but also to subclasses in other packages.

Non-subclasses in other packages cannot access the “protected” members.

Private Access:

Private fields are accessible only with their own class.

They cannot be inherited by subclasses and therefore not accessible in subclasses.

A method declared as private behaves like a method declared as final.

Private protected Access:

A field can be declared with two keywords private and protected together like:

private protected int codeNumber;

This gives a visibility level in between the “protected” access and “private” access.

Use public if the field is to be visible everywhere.

Use protected if the field is to be visible everywhere in the current package and also

subclasses in other packages.

Use “default” if the field is to be visible everywhere in the current package only.

METHOD OVERLOADING

Method overloading is creating methods that have same name, but different

parameter lists and different definitions. Method overloading is used when objects

are required to perform similar tasks but using different input parameters.

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

27

When a method is called, java matches up the method name first and then the

number and type of parameters to decide which one of the definitions to execute.

This process is known as polymorphism.

Ex:

 class room {

 float l,b;

 room(float x, float y) {

 l=x;

 b=y; }

 room(float x) {

 l = b = x; }

 int area() {

 return(l * b); }

 }

METHOD OVERRIDING

 A method defined in a super class is inherited by its sub class and is used by the

objects created by the sub class.

 There may be occasions when we want an object to respond to the same method

is called.

 This is possible by defining a method in the sub class that has the same name,

same arguments and same return type as a method in the super class.

 When the methods are called, the method defined in the sub class is invoked and

executed instead of the one in the super class. This is known as overriding.

Example

class Super {
int x;
void display () {
System.out.println(“Super x=”+x);
System.out.println(“Sub y=”+y);
} }
class overridetest {
public static void main (String args[]) {
Sub S1=new Sub (100, 200);
S1.display (); } }

Super (int x) {
this.x=x;
}
void display () {
System.out.println(“x=”+x);
} }

class Sub extends Super {
int y;
Sub (int x, int y) {
super (x);
this.y=y; } }

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

28

ABSTRACT METHODS AND CLASSES

In JAVA we have two types of classes. Concrete classes and abstract classes.

They are

 A concrete class is one which contains fully defined methods. Defined methods

are also known as implemented or concrete methods. With respect to concrete

class, we can create an object of that class directly.

 An abstract class is one which contains some defined methods and some

undefined methods. Undefined methods are also known as unimplemented or

abstract methods. Abstract method is one which does not contain any definition.

To make the method as abstract we have to use a keyword called abstract before

the function declaration.

ABSTRACT METHODS

 When a method is defined as final than that method is not re-defined in a

subclass.

 Java allows a method to be re-defined in a sub class and those methods are

called abstract methods.

 When a class contains one or more abstract methods, then it should be declared

as abstract class.

 When a class is defined as abstract class, it must satisfy following conditions.

o We can’t use abstract classes to instantiate objects directly. For example

Op s = new Op() - is illegal because Op is an abstract class.

o The abstract methods of an abstract class must be defined in its sub class.

o We can’t declare abstract constructors or abstract static methods.

 Final allows the methods not redefine in the subclass.

 Abstract method must always be redefined in a subclass, thus making overriding

compulsory.

 This is done using the modifier keyword abstract in the method definition.

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

29

FINAL VARIABLES AND METHODS

 It prevents the subclasses form overriding the member of the superclass.

 Final variables and methods are declared as final using the keyword final as a

modifier.

Example: size =100

final int SIZE = 100;

final void showstatus(){…………..}

 Making a method final ensures that the functionality defined in that method

will never be altered in any way.

 The value of a final variable can never be changed.

FINAL CLASSES

• A class that cannot be sub-classed is called a final class.

• It prevents a class being further sub-classed for security reasons.

• Any attempt to inherit these classes will cause an error.

final class Aclass

{

}

Final class Bclass extend someclass

{

}

FINALIZER METHODS

• Initialization→ constructor method is used to initialize an object when it is

declared. This process is called initialization.

• Finalization→finalizer method is just opposite to initialization, it automatically

frees up the memory resources used by the objects. This process is known as

finalization.

• It acts like a destructor.

• The method can be added to any class.

The finalize() method has this general form: 99

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

30

protected void finalize()

{

// finalization code here }

Here, the keyword protected is a specifier that prevents access to finalize() by

code defined outside its class.

PACKAGES

 A package is a collection of classes, interfaces and sub-packages.

 A sub-package in turns divides into classes, interfaces, sub-sub-packages, etc.

 Learning about JAVA is nothing but learning about various packages.

 By default one predefined package is imported for each and every JAVA program

and whose name is java.lang.*.

 Whenever we develop any java program, it may contain many number of user

defined classes and user defined interfaces.

 If we are not using any package name to place user defined classes and

interfaces, JVM will assume its own package called NONAME package.

 In java we have two types of packages they are

predefined or built-in or core packages and user or secondary or custom defined

packages.

BENEFITS:

 The classes contained in the packages of other programs can be easily reused.

 In packages, classes can be unique compared with classes in other packages.

 That is two classes in two different packages can have the same name.

 They may be referred by their fully qualified name, comprising the package name

and the class name.

 Packages provide a way to "hide" classes thus preventing other programs or

packages from accessing classes that are meant for internal use only.

 Packages also provide a way for separating "design" form "coding".

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

31

USING PACKAGES

 Packages are organized in a hierarchical structure.

o The package named java contains the package awt, which in turns contain

various classes required for implementing graphical user interface. Best

and easiest one to access the class

o Used only once, not possible to access other classes of the package.

There are two ways of accessing the classes stored in a package

1. Using the fully qualified class name. (Using the package name containing the

class and then appending the class name by using the dot operator.)

E.g. java.awt.Color

2. Using the import statement, appear at the top of the file. Imported package class

can be accessed anywhere in the program

Syntax:

import packagename.classname;

Or

import packagename.*

These are known as import statements and must appear at the top of the file, before

any class declarations, import is a keyword.

 The first statement allows the specified class in the specified package to be

imported. For example, the statement

import java.awt.Color;

imports the class Color and therefore the class name can now be directly used in

the program.

 The second statement imports every class contained in the specified package.

For example, the statement

import java.awt.*;

will bring all classes of java.awt package.

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

32

INTERFACES

Interfaces are basically used to develop user defined data types.

 With respect to interfaces we can achieve the concept of multiple inheritances.

 With interfaces we can achieve the concept of polymorphism, dynamic binding

and hence we can improve the performance of a JAVA program in turns of

memory space and execution time.

 An interface is a construct which contains the collection of purely undefined

methods or an interface is a collection of purely abstract methods.

interface <InterfaceName>

{

variables declaration;

methods declaration;

}

Here, interface is the keyword.

Interface name represent a JAVA valid variable name.

Variables are declared as follows:

static final type VariableName = Value;

All variables are declared as constants. Methods declaration will contain only a list of

methods without any body statements.

return-type methodName1 (parameter_list);

EXTENDING INTERFACES

 Interface can also be extended.

 An interface can be sub-interfaced from other interfaces.

 The new interface will inherit all the member of the super-interface.

 Interface can be extended using the keyword extends.

interface name2 extends name1

{

Body of name2

}

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

33

IMPLEMENTING INTERFACES

Implement the interface using implements keyword.

General form1

class classname implements

interfacename

{

body of classname

}

General form2

class classname extends supperclass

implements

interface1,interface2,………..

{

body of classname

}

EXCEPTION HANDLING

Exceptions: An exception is a condition that is caused by a run-time error in the

program.

 A java exception is an object that descirbes an error condition occurred in a piece

of code. Exceptions can be generated by the Java run-time system or they can

be manually generated by code.

 Exceptions thrown by a Java relate to fundamental errors that violate the rules of

the Java language or the constraints of the Java execution environment.

 Manually generated exceptions are typically used to report some error condition

to the caller of a method.

 Java exception handling is managed via try, catch, throw, throw and finally.

Exception types

 All exceptions are subclasses of Throwable class. There are two subclasses that

partition exception into two distinct branches, Exception and Error.

 Exception – this class is used for exceptional conditions that user program should

catch. The class defined for custom exceptions are subclass to this class. A

special subclass called RuntimeException, Exception of this class is

automatically defined for a program.

 Error – This class defines exceptions that are not expected under normal

circumstances. Exceptions of this type are used by the Java run-time system to

indicate errors having to be deal by the run-time environment itself.

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

34

Syntax of Exception Handling Code

The basic concept of exception handling are throwing an exception and catching it.

Program statements to be montiored are placed within try block. If an exception

occurs within the try block, it is thrown. The code to handle the exception is placed

within in the catch block. Any code that must be executed before a method returns is

put in a finally block.

The general form of an exception-handling blcok:

 try {

 // block of code to monitor for errors

 }

 catch (ExceptionType1 exOb) {

 // exception handler for ExceptionType1

 }

 catch (ExceptionType2 exOb) {

 // exception handler for ExceptionType2

 }

 // …

 finally {

 // block of code to be executed before try block ends

 }

 The try block can have one or more statements that could generate an

exception. If any one statement generate an exception, the remaining

statements in the block are skipped and execution jumps to the catch block.

 The catch block have one or more statements that are necessary to process

the exception. Every try statement should be followed by atleast one catch

statement.

 A try statement may have multiple catch blocks.

 A finally block is added to a try statement to handle an exception that is not

handled or caught by the previous catch statements. A finally block can be

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

35

used to handle any exception within in a try block. A finally block may be

added immediately after the try block or after the last catch block.

 When a finally block is defined, this is guaranteed to executed, regardless of

whether or not an excpetion is thrown.

Nested try statements: the try statement can be nested. Each time a try statement

is entered, the context of that exception is pushed on the stack. If an inner try

statement does not have a catch handler for a particular exception, the stack is

unwound and next try statement’s catch handlers are inspected for a match. This

continues until one of the catch statements succeeds, if no catch statement matches,

then the Java run-time system will handle the exception.

Throwing our own Exceptions

throw

An exception can be throw from the program. The general form is

 throw ThrowableInstance;

where ThrowableInstance must be an object of type Throwable or a subclass of

Throwable.

The flow of execution stops immediately after the throw statement. The nearest

enclosing try block is inspected whether it has a catch statement that matches the

exception. If a match is found, control is transferred to that statement. If no matching

catch is found, then the default exception handler halts the program and prints the

stact trace.

Ex. throw new ArithmeticException();

 throw new NumberFormatException();

throws

If a method can cause an exception but it doesn’t handle then it must specify this

behavior so that callers of the method can guard against that exception. This is

indicated by using throws clause in the method declaration. The throws clasuse lists

the type of exceptions that method might throw. The general form is

 type method-name(parameter-list) throws exception-list

 {

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

36

 // body of method

 }

where exception-list is a comma separated list of the exceptions that a method can

throw.

Some common Java exceptions

Exception type Cause of Exception

ArithmeticException Caused by math errors

ArrayIndexOutOfBoundException Caused by wrong array indexes

ArrayStoreException Caused when a program tries to store the wrong

type of data

FileNotFoundException Caused by an attempt to access a nonexistent file.

IOException Caused by general I/O failures

NullPointerException Caused by referencing a null object

NumberFormatException Caused when a conversion between strings and

number fails

OutOfMemoryException Caused when there’s not enough memory to

allocate a new object

SecurityException Caused when an applet tries to perform an action

not allowed by the browser’s security setting

StringIndexOutOfBoundException Caused when a program attempts to access

a nonexistent character position in a string.

SUMMARY

Implement inheritance, packages, interfaces and exception handling of Core Java.

ACTIVITIES

o Create two classes, one as a superclass and the other as a subclass.

Demonstrate inheritance by extending the superclass in the subclass.

o Discuss scenarios where each type of inheritance would be useful. Create

example classes demonstrating each type of inheritance.

CDOE-ODL BSc(CS) – SEMESTER IV Unit II

37

o Provide a superclass with a parameterized constructor. Create a subclass that

inherits from it and initialize both superclass and subclass variables using the

super keyword.

o Discuss scenarios where overriding is useful and what happens when a method

is called using superclass and subclass references.

o Create an abstract class with one or more abstract methods. Provide concrete

implementations in subclasses. Discuss why abstract classes are useful

compared to concrete classes.

o Create a final class and demonstrate why it cannot be subclassed. Similarly,

create a final method and discuss why it cannot be overridden.

o Create classes in different packages and demonstrate how access modifiers

(public, protected, default, private) affect visibility across packages.

o Create interfaces with multiple methods. Implement these interfaces in classes

and discuss how interfaces provide flexibility compared to classes.

o Provide classes with methods that throw exceptions. Demonstrate how

exceptions propagate up the class hierarchy and how different exceptions can be

handled using try-catch blocks.

SELF-ASSESSMENT QUESTIONS

1. What are the different types of inheritance supported in Java? Can you explain each

type?

2. How do you define a superclass and a subclass in Java? What is the relationship

between them?

3. What is method overriding, and how does it relate to inheritance? Provide an

example.

4. How does inheritance facilitate polymorphism in Java?

5. How do the public, protected, and private access modifiers affect member access

in inheritance?

6. What is a package in Java, and why is it used?

7. How do you implement an interface in a class? What is the syntax?

8. What are default and static methods in interfaces? How do they differ from regular

interface methods?

9. How do you use try-catch blocks to handle exceptions? Provide a code example.

10. What is the purpose of the finally block in exception handling? When is it

executed?

11. What is the difference between checked and unchecked exceptions? Can you give

examples of each?

CDOE-ODL BSc(CS) – SEMESTER IV Unit III

38

UNIT III

Objective: To enable the students to understand the concepts Multithreaded

Programming and I/O handling.

MULTITHREADED PROGRAMMING

 A flow of control is known as thread.

 If a program contains multiple flow of controls for achieving concurrent

execution then that program is known as multithreaded program.

 A program is said to be a multithreaded program if and only if in which there exist

‘n’ number of sub-programs there exist a separate flow of control.

 All such flow of controls are executing concurrently such flow of controls are

known as threads and such type of applications or programs is called

multithreaded programs.

 A thread is similar to a program that has a single flow of control. It has a

beginning a body, and an end, and executes commands sequentially.

CREATING THREADS

Creating threads in Java is simple.

Threads are implemented in the form of objects that contain a method called run().

 The run() method is the heart and soul of any thread. It makes up the entire body

of the thread and is the only method in which the thread’s behavior can be

implemented.

 A typical run() would appear as follows:

public void run()

{

---- (Statements for implementing thread)

}

The run() method should be invoked by an object of the concerned thread. This can

be achieved by creating the thread and initiating it with the help of another thread

method called start().

CDOE-ODL BSc(CS) – SEMESTER IV Unit III

39

A NEW THREAD CAN BE CREATED IN TWO WAYS.

 By creating a thread class : Define a class that extends thread class and

override its run() method with the code required by the thread.

 By converting a class to a thread: Define a class that implements Runnable

interface. The Runnable interface has only one method, run() , that is to be

defined in the method with the code to be executed by the thread.

 The approach to be used depends on what the class we are creating requires.

 If it requires to extend another class, then we have no choice but to implement

the Runnable interface, since Java classes cannot have two superclasses.

EXTENDING THE THREAD CLASS

 We can make our class Runnable as a thread by extending the class

java.lang.Thread. This gives us access to all the thread methods directly. It

includes the following steps:

 Declare the class as extending the Thread class.

 Implement the run() method that is responsible for executing the sequence of

code that the thread will execute.

 Create a thread object and call the start() method to initiate the thread

execution.

Declaring the class

The thread class can be extended as follows:

class MyThread extends Thread

{

……..

……..

}

Now we have a new type of thread MyThread.

Implementing the run() method

 The run() method has been inherited by the class MyThread.

 We have to override this method in order to implement the code to be executed

by our thread.

CDOE-ODL BSc(CS) – SEMESTER IV Unit III

40

 The basic implementation of run() will look like this:

public void run()

{

……..

…….. // Thread code here

}

 when we start the new thread, Java calls the thread’s run() method, so it is

the run() where all the action takes place.

STARTING NEW THREAD

To actually create and run on instance of the thread class, we must write the

following

MyThread aThread = new MyThread();

aThread.start (); //invokes run() method

The second line calls the start() method causing the thread to move into the

runnable state.

Then the Java runtime will schedule the thread to run by invoking its run() method.

Now, the thread is said to be in the running state.

I/O STREAMS

A file is a collection of related records, a record is collection of fields and a filed is a

group of characters. Storing and managing data using files is known as file

processing which includes tasks such as creating files, updating files and

manipulation of data. Java handles the file processing in the form of streams. Java

also supports to write and read an object from the secondary storage device, known

as object serialization.

Concepts of Streams

In file processing, input refers to the flow of data into a program and output means

the flow of data out of a program.

Java uses the concept of streams to represent the ordered sequence of data, a

common characteristic shared by all the input/output devices.

CDOE-ODL BSc(CS) – SEMESTER IV Unit III

41

A stream persent a uniform, easy-to-use, object-oriented interface between the

program and the input/output devices.

A stream has a source and a destination, which may he physical devices or

programs or other streams in the same program.

Java streams are classified into two basic types are input stream and output stream.

An input stream extracts data from the source and sends it to the program. An output

stream takes data from the program and sends it to the destination.

Stream Classes

The java.io package contains a large number of stream classes that provide

capabilities for processing all types of data. These classes are classified into two

categories based on the type of data they can process.

1. Byte stream classes that provide support for handling I/O operations on bytes.

2. Character stream classes that provide support for managing I/O operations on

characters.

Byte stream and character stream classes contain specialized classes to deal with

input and output operations independently on various types of devices.

Java Stream

classes

Byte Stream

classes

Character

Stream classes

Input Stream

classes

Output Stream

classes

Reader

classes

Writer

classes

Memory File Pipe Memory File Pipe

CDOE-ODL BSc(CS) – SEMESTER IV Unit III

42

Byte Stream Classes

Byte stream classes provide functional features for creating and manipulating

streams and files for reading and writing bytes. Java provides two kinds of byte

stream classes input stream and output stream classes.

Input stream classes: Input stream classes are used to read bytes, include a super

class known as InputStream and various subclasses for supporting various input-

related functions.

The super class InputStream is an abstract class. The InputStream class defines

methods for performing input functions such as

 Reading bytes

 Closing streams

 Marking positions in streams

 Skipping ahead in a stream

 Finding the number of bytes in a stream

Some of the InputStream methods are

1. read() Reads a byte from the input stream

2. read(byte b[]) Reads an array of bytes into b

3. read(byte b[], int n, int m) Reads m bytes into b starting from nth byte.

4. available() Gives number of bytes available in the input

5. skip(n) Skips over n bytes from the input stream

6. reset() Goes back to the beginning of the stream

7. close() Close the input stream

The DataInputStream class extends FilterInputStream and implements the interface

DataInput. The DataInput interface contains the following methods:

readShort() readDouble() readInt()

readLine() readLong() readChar()

readFloat() readBoolean() readUTF()

Output Stream Classes: Output stream classes are derived from the base clas

OutputStream. The OutputStream is an abstract class. The subclasses of the

OutputStream can be used for performing the output operations.

CDOE-ODL BSc(CS) – SEMESTER IV Unit III

43

The OutputStream includes methods to perform the following operations

1. Writing bytes

2. Closing streams

3. Flusing streams

Some of the methods defined in the OutputStream class.

Method Description

1. write() Writes a byte to the output stream

2. write(byte[] b) Writes all bytes in the array b to the output stream

3. write(byte b[], int n, int m) Writes m bytes from array b starting from nth byte

4. close() Closes the output stream

5. flush() Flushes the output stream

The DataOutputStream implements the interface DataOutput. The DataOutput

interface consist the following methods.

writeShort() writeDouble() writeInt()

writeLine() writeLong() writeChar()

writeFloat() writeBoolean() writeUTF()

Character Stream classes

Character streams can be used to read and write 16-bit unicode characters. There

are two kinds of character stream classes,

1. reader stream classes and

2. writer stream classes.

Reader Stream classes: Reader stream classes are designed to read character from

the files. The Reader class is an abstract class and it is the base class for all other

classes in this group. The Reader class contains methods to handle various input

operations based on characters.

Writer Stream classes: The writer stream classes are designed to perform all output

operations on files. These classes do the task based on characters. The Writer class

is an abstract class and it is the base for all the classes in this group.

CDOE-ODL BSc(CS) – SEMESTER IV Unit III

44

The classes used for various input/output operations in both groups are given below.

Task Character Stream

Class

Byte Stream class

Performing input operations Reader InputStream

Buffering input BufferedReader BufferedInputStream

Keeping track of line numbers LineNumberReader LineNumberInputStream

Reading from an array CharArrayReader ByteArrayInputStream

Reading from files FileReader FileInputStream

Filtering the input FilterReader FilterInputStream

Puhsing back PushbackReader PushbackInputStream

Reading from a pipe PipedReader PipedInputStream

Reading from a string StringReader StringBufferedInputStream

Reading primitive types DataInputStream

Performing output operations Writer OutputStream

Buffering output BufferedWriter BufferedOutputStream

Writing to an array CharArrayWriter ByteArrayOutputStream

Filtering the output FilterWriter FilterOutputStream

Writing to a file FileWriter FileOutputStream

Writing to a pipe PipedWriter PipedOutputStream

Writing to a string StringWriter

Writing primitive types DataOutputStream

Other usefule I/O classes

The java.io pacakge supports many other classes for performing certain specialized

functions. Some of the classes are

 RandomAccessFile – this class enables to read and write bytes, text and Java

data types to any location in the file. This class extends object class and

implements DataInput and DataOutput interfaces. This class implements

methods of both interfaces.

CDOE-ODL BSc(CS) – SEMESTER IV Unit III

45

Interface Interface

Implementation of the RandomAccessFile

 StreamTokenizer – this class is a subclass of object can be used for breaking up

a stream of text from an input text file into meaningful pieces called tokens.

Other Stream classes

 Object Streams – Java supports input and output operations on objects using the

object streams. The object streams are created using the ObjectInputStream and

ObjectOutputStream classes. The contents of the file is read or write as object,

and this process is called object serialization.

 Piped Streams – Piped streams provide functionality for threads to communicate

and exchange data between them.

 Pushback Streams – the pushback streams are created by the classes

PushbackInputStream or PushbackReader, can be used to push a single byte or

character back into the input stream so that it can be reread. This is commonly

used with parsers.

 Filtered Streams – These streams provide the basic capability to create input and

output streams for filtering input/output in a number of ways. These streams

placed between an input stream and an output stream and perform some optional

processing on the data they transfer. Java supports this through two abstract

classes, FilterInputStream and FilterOutputStream.

SUMMARY

Implement multi-threading and I/O Streams of Core Java

Object

DataInput DataOutput

RandomAccessFile

CDOE-ODL BSc(CS) – SEMESTER IV Unit III

46

ACTIVITIES

o Implement two classes ThreadClassA and ThreadClassB to demonstrate thread

creation using both extending the Thread class and implementing the Runnable

interface.

o Create a shared resource accessed by multiple threads to demonstrate

synchronization.

o Implement a producer-consumer scenario using wait() and notify() methods for

inter-thread communication.

SELF ASSESSMENT QUESTIONS

1. What is a thread in Java, and how does it differ from a process?

2. How do you create a thread in Java? Explain both the Runnable interface and the Thread

class.

3. Can you describe the thread lifecycle and the methods that change a thread's state?

4. What is synchronization, and why is it necessary in multithreaded programming?

5. Explain the concept of a synchronized block and how it differs from a synchronized

method.

6. What is the purpose of the wait(), notify(), and notifyAll() methods?

7. How do you implement producer-consumer problems using these methods?

8. What is the difference between thread-safe and non-thread-safe classes?

9. How can you make a class thread-safe in Java?

10. What are the main types of I/O in Java (byte stream vs. character stream)?

11. How do you read from and write to files in Java using I/O streams?

12. What is the purpose of BufferedReader and BufferedWriter?

13. What is serialization in Java, and why is it used?

14. How do you implement serialization for a custom class?

15. How does Java handle exceptions in I/O operations?

16. What are checked and unchecked exceptions in the context of I/O?

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

47

o UNIT IV

Objective: To enable the students to use AWT controls, Event Handling and Swing

for GUI.

AWT CONTROLS

Every AWT controls inherits properties from Component class.

COMPONENT

The class Component is the abstract base class for the non menu user-interface

controls of AWT. Component represents an object with graphical representation.

CONTAINER

The Container is a component in AWT that can contain another components

like buttons, textfields, labels etc. The classes that extends Container class are

known as container such as Frame, Dialog and Panel.

It is basically a screen where the where the components are placed at their specific

locations. Thus it contains and controls the layout of components.

Types of containers:

There are four types of containers in Java AWT:

1. Window

2. Panel

3. Frame

4. Dialog

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

48

Window

The window is the container that have no borders and menu bars. You must use

frame, dialog or another window for creating a window. We need to create an

instance of Window class to create this container.

Panel

The Panel is the container that doesn't contain title bar, border or menu bar. It is

generic container for holding the components. It can have other components like

button, text field etc. An instance of Panel class creates a container, in which we can

add components.

Frame

The Frame is the container that contain title bar and border and can have menu

bars. It can have other components like button, text field, scrollbar etc. Frame is

most widely used container while developing an AWT application.

LABEL

Label is a passive control because it does not create any event when accessed by

the user. The label control is an object of Label. A label displays a single line of read-

only text. However the text can be changed by the application programmer but

cannot be changed by the end user in any way.

Field

 static int CENTER -- Indicates that the label should be centered.

 static int LEFT -- Indicates that the label should be left justified.

 static int RIGHT -- Indicates that the label should be right justified.

Constructors

Label() - Constructs an empty label.

Label(String text) - Constructs a new label with the specified string of text, left justified.

Label(String text, int alignment) - Constructs a new label that presents the specified

string of text with the specified alignment.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

49

Methods

void setText(String text) It sets the texts for label with the specified text.

void setAlignment(int alignment) It sets the alignment for label with the specified

alignment.

String getText() It gets the text of the label

int getAlignment() It gets the current alignment of the label.

void addNotify() It creates the peer for the label.

protected String paramString() It returns the string the state of the label.

BUTTON

A button is basically a control component with a label that generates an event when

pushed. The Button class is used to create a labeled button that has platform

independent implementation. The application result in some action when the button

is pushed.

When we press a button and release it, AWT sends an instance of ActionEvent to

that button by calling processEvent on the button. The processEvent method of

the button receives the all the events, then it passes an action event by calling its

own method processActionEvent. This method passes the action event on to

action listeners that are interested in the action events generated by the button.

To perform an action on a button being pressed and released,

the ActionListener interface needs to be implemented. The registered new listener

can receive events from the button by calling addActionListener method of the

button. The Java application can use the button's action command as a messaging

protocol.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

50

CONSTRUCTOR

Button() It constructs a new button with an empty string i.e. it has no

label.

Button (String text) It constructs a new button with given string as its label.

Methods

void setText (String text) It sets the string message on the button

String getText() It fetches the String message on the button.

void setLabel (String label) It sets the label of button with the specified

string.

String getLabel() It fetches the label of the button.

void addActionListener(ActionListener

l)

It adds the specified action listener to get the

action events from the button.

String getActionCommand() It returns the command name of the action

event fired by the button.

ActionListener[] getActionListeners() It returns an array of all the action listeners

registered on the button.

protected String paramString() It returns the string which represents the state

of button.

void removeActionListener

(ActionListener l)

It removes the specified action listener so that

it no longer receives action events from the

button.

void setActionCommand(String

command)

It sets the command name for the action event

given by the button.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

51

TEXT FIELD

The object of a TextField class is a text component that allows a user to enter a

single line text and edit it. It inherits TextComponent class, which further

inherits Component class.

When we enter a key in the text field (like key pressed, key released or key typed),

the event is sent to TextField. Then the KeyEvent is passed to the

registered KeyListener. It can also be done using ActionEvent; if the ActionEvent is

enabled on the text field, then the ActionEvent may be fired by pressing return key.

The event is handled by the ActionListener interface.

Constructor

TextField() It constructs a new text field component.

TextField(String text) It constructs a new text field initialized with the given string

text to be displayed.

TextField(int columns) It constructs a new textfield (empty) with given number of

columns.

TextField (String text, int

columns)

It constructs a new text field with the given text and given

number of columns (width).

Methods

void addNotify() It creates the peer of text field.

boolean echoCharIsSet() It tells whether text field has character set for

echoing or not.

void

addActionListener(ActionListener l)

It adds the specified action listener to receive

action events from the text field.

ActionListener[] getActionListeners() It returns array of all action listeners registered

on text field.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

52

AccessibleContext

getAccessibleContext()

It fetches the accessible context related to the

text field.

int getColumns() It fetches the number of columns in text field.

char getEchoChar() It fetches the character that is used for echoing.

void removeActionListener

(ActionListener l)

It removes specified action listener so that it

doesn't receive action events anymore.

void setColumns(int columns) It sets the number of columns in text field.

void setEchoChar(char c) It sets the echo character for text field.

void setText(String t) It sets the text presented by this text component

to the specified text.

TEXT AREA

The object of a TextArea class is a multiline region that displays text. It allows the

editing of multiple line text. It inherits TextComponent class.

The text area allows us to type as much text as we want. When the text in the text

area becomes larger than the viewable area, the scroll bar appears automatically

which helps us to scroll the text up and down, or right and left.

Class constructors:

TextArea() It constructs a new and empty text area with no text

in it.

TextArea (int row, int column) It constructs a new text area with specified number of

rows and columns and empty string as text.

TextArea (String text) It constructs a new text area and displays the

specified text in it.

TextArea (String text, int row,

int column)

It constructs a new text area with the specified text in

the text area and specified number of rows and

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

53

columns.

TextArea (String text, int row,

int column, int scrollbars)

It construcst a new text area with specified text in text

area and specified number of rows and columns and

visibility.

Methods

void addNotify() It creates the peer of text field.

boolean echoCharIsSet() It tells whether text field has character set for

echoing or not.

void

addActionListener(ActionListener l)

It adds the specified action listener to receive

action events from the text field.

ActionListener[] getActionListeners() It returns array of all action listeners registered

on text field.

AccessibleContext

getAccessibleContext()

It fetches the accessible context related to the

text field.

int getColumns() It fetches the number of columns in text field.

char getEchoChar() It fetches the character that is used for echoing.

void removeActionListener

(ActionListener l)

It removes specified action listener so that it

doesn't receive action events anymore.

void setColumns(int columns) It sets the number of columns in text field.

void setEchoChar(char c) It sets the echo character for text field.

void setText(String t) It sets the text presented by this text component

to the specified text.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

54

CHECKBOX

The Checkbox class is used to create a checkbox. It is used to turn an option on

(true) or off (false). Clicking on a Checkbox changes its state from "on" to "off" or

from "off" to "on".

Constructor

Checkbox() It constructs a checkbox with no string as the

label.

Checkbox(String label) It constructs a checkbox with the given label.

Checkbox(String label, boolean

state)

It constructs a checkbox with the given label and

sets the given state.

Checkbox(String label, boolean

state, CheckboxGroup group)

It constructs a checkbox with the given label, set

the given state in the specified checkbox group.

Checkbox(String label,

CheckboxGroup group, boolean

state)

It constructs a checkbox with the given label, in

the given checkbox group and set to the specified

state.

Method

void addItemListener(ItemListener IL) It adds the given item listener to get the item

events from the checkbox.

AccessibleContext

getAccessibleContext()

It fetches the accessible context of checkbox.

void addNotify() It creates the peer of checkbox.

CheckboxGroup

getCheckboxGroup()

It determines the group of checkbox.

ItemListener[] getItemListeners() It returns an array of the item listeners

registered on checkbox.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

55

String getLabel() It fetched the label of checkbox.

Object[] getSelectedObjects() It returns an array (size 1) containing checkbox

label and returns null if checkbox is not

selected.

boolean getState() It returns true if the checkbox is on, else returns

off.

protected void processItemEvent

(ItemEvent e)

It process the item events occurring in the

checkbox by dispatching them to registered

ItemListener object.

void

removeItemListener(ItemListener l)

It removes the specified item listener so that the

item listener doesn't receive item events from

the checkbox anymore.

void

setCheckboxGroup(CheckboxGroup

g)

It sets the checkbox's group to the given

checkbox.

void setLabel(String label) It sets the checkbox's label to the string

argument.

void setState(boolean state) It sets the state of checkbox to the specified

state.

CHECKBOXGROUP

The object of CheckboxGroup class is used to group together a set of Checkbox. At

a time only one check box button is allowed to be in "on" state and remaining check

box button in "off" state. It inherits the object class.

CHOICE

The object of Choice class is used to show popup menu of choices. Choice selected

by user is shown on the top of a menu. It inherits Component class.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

56

Constructor

Choice() It constructs a new choice menu.

Methods

void add(String item) It adds an item to the choice menu.

void addItemListener(ItemListener

l)

It adds the item listener that receives item events

from the choice menu.

void addNotify() It creates the peer of choice.

String getItem(int index) It gets the item (string) at the given index position

in the choice menu.

int getItemCount() It returns the number of items of the choice menu.

ItemListener[] getItemListeners() It returns an array of all item listeners registered

on choice.

T[]

getListeners(Class listenerType)

Returns an array of all the objects currently

registered as FooListeners upon this Choice.

int getSelectedIndex() Returns the index of the currently selected item.

String getSelectedItem() Gets a representation of the current choice as a

string.

Object[] getSelectedObjects() Returns an array (length 1) containing the

currently selected item.

void insert(String item, int index) Inserts the item into this choice at the specified

position.

void remove(int position) It removes an item from the choice menu at the

given index position.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

57

void remove(String item) It removes the first occurrence of the item from

choice menu.

void removeAll() It removes all the items from the choice menu.

void removeItemListener

(ItemListener l)

It removes the mentioned item listener. Thus is

doesn't receive item events from the choice menu

anymore.

void select(int pos) It changes / sets the selected item in the choice

menu to the item at given index position.

void select(String str) It changes / sets the selected item in the choice

menu to the item whose string value is equal to

string specified in the argument.

LIST

The object of List class represents a list of text items. With the help of the List class,

user can choose either one item or multiple items. It inherits the Component class.

Constructor

List() It constructs a new scrolling list.

List(int row_num) It constructs a new scrolling list initialized with the

given number of rows visible.

List (int row_num, Boolean

multipleMode)

It constructs a new scrolling list initialized which

displays the given number of rows.

Methods

void add(String item) It adds the specified item into the end of

scrolling list.

void add(String item, int index) It adds the specified item into list at the

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

58

given index position.

void addActionListener(ActionListener l) It adds the specified action listener to

receive action events from list.

void addItemListener(ItemListener l) It adds specified item listener to receive

item events from list.

void addNotify() It creates peer of list.

void deselect(int index) It deselects the item at given index

position.

ActionListener[] getActionListeners() It returns an array of action listeners

registered on the list.

String getItem(int index) It fetches the item related to given index

position.

int getItemCount() It gets the count/number of items in the list.

ItemListener[] getItemListeners() It returns an array of item listeners

registered on the list.

String[] getItems() It fetched the items from the list.

int getRows() It fetches the count of visible rows in the

list.

int getSelectedIndex() It fetches the index of selected item of list.

int[] getSelectedIndexes() It gets the selected indices of the list.

String getSelectedItem() It gets the selected item on the list.

String[] getSelectedItems() It gets the selected items on the list.

Object[] getSelectedObjects() It gets the selected items on scrolling list in

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

59

array of objects.

int getVisibleIndex() It gets the index of an item which was

made visible by method makeVisible()

void makeVisible(int index) It makes the item at given index visible.

boolean isIndexSelected(int index) It returns true if given item in the list is

selected.

boolean isMultipleMode() It returns the true if list allows multiple

selections.

protected String paramString() It returns parameter string representing

state of the scrolling list.

protected void processEvent(AWTEvent e) It process the events on scrolling list.

protected void

 processItemEvent(ItemEvent e)

It process the item events occurring on list

by dispatching them to a registered

ItemListener object.

void removeActionListener

(ActionListener l)

It removes specified action listener. Thus it

doesn't receive further action events from

the list.

void removeItemListener(ItemListener l) It removes specified item listener. Thus it

doesn't receive further action events from

the list.

void remove(int position) It removes the item at given index position

from the list.

void remove(String item) It removes the first occurrence of an item

from list.

void removeAll() It removes all the items from the list.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

60

void replaceItem(String newVal, int index) It replaces the item at the given index in

list with the new string specified.

void select(int index) It selects the item at given index in the list.

void setMultipleMode(boolean b) It sets the flag which determines whether

the list will allow multiple selection or not.

void removeNotify() It removes the peer of list.

PANEL

The Panel is a simplest container class. It provides space in which an application

can attach any other component. It inherits the Container class.

It doesn't have title bar.

MENU

The object of MenuItem class adds a simple labeled menu item on menu. The items

used in a menu must belong to the MenuItem or any of its subclass.

The object of Menu class is a pull down menu component which is displayed on the

menu bar. It inherits the MenuItem class.

WORKING WITH FRAME CLASS

The class Frame is a top level window with border and title. It uses BorderLayout as

default layout manager.

Constructor

Frame()

Constructs a new instance of Frame that is initially invisible.

Frame(GraphicsConfiguration gc)

Constructs a new, initially invisible Frame with the specified GraphicsConfiguration.

Frame(String title)

Constructs a new, initially invisible Frame object with the specified title.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

61

Frame(String title, GraphicsConfiguration gc)

Constructs a new, initially invisible Frame object with the specified title and a

GraphicsConfiguration.

Methods

void addNotify()

Makes this Frame displayable by connecting it to a native screen resource.

int getCursorType()

Deprecated. As of JDK version 1.1, replaced by Component.getCursor().

int getExtendedState()

Gets the state of this frame.

static Frame[] getFrames()

Returns an array of all Frames created by this application.

Image getIconImage()

Returns the image to be displayed as the icon for this frame.

Rectangle getMaximizedBounds()

Gets maximized bounds for this frame.

MenuBar getMenuBar()

Gets the menu bar for this frame.

int getState()

Gets the state of this frame (obsolete).

String getTitle()

Gets the title of the frame.

boolean isResizable()

Indicates whether this frame is resizable by the user.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

62

boolean isUndecorated()

Indicates whether this frame is undecorated.

protected String paramString()

Returns a string representing the state of this Frame.

void remove(MenuComponent m)

Removes the specified menu bar from this frame.

void removeNotify()

Makes this Frame undisplayable by removing its connection to its native screen

resource.

void setCursor(int cursorType)

Deprecated. As of JDK version 1.1, replaced by Component.setCursor(Cursor).

void setExtendedState(int state)

Sets the state of this frame.

void setIconImage(Image image)

Sets the image to be displayed as the icon for this window.

void setMaximizedBounds(Rectangle bounds)

Sets the maximized bounds for this frame.

void setMenuBar(MenuBar mb)

Sets the menu bar for this frame to the specified menu bar.

void setResizable(boolean resizable)

Sets whether this frame is resizable by the user.

void setState(int state)

Sets the state of this frame (obsolete).

void setTitle(String title)

Sets the title for this frame to the specified string.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

63

FONTS

In Java, Font is a class that belongs to the java.awt package. It implements the

Serializable interface. FontUIResource is the direct known subclass of the Java Font

class.

It represents the font that are used to render the text. In Java, there are two technical

terms that are used to represent font are characters and Glyphs.

There are two types of fonts in Java:

o Physical Fonts

o Logical Fonts

Physical Fonts

Physical fonts are actual Java font library. It contains tables that maps character

sequence to glyph sequences by using the font technology such as TrueType

Fonts (TTF) and PostScript Type 1 Font. Note that all implementation of Java must

support TTF. Using other font technologies is implementation dependent. Physical

font includes the name such as Helvetica, Palatino, HonMincho, other font names.

The property of the physical font is that it uses the limited set of writing systems such

as Latin characters or only Japanese and Basic Latin characters. It may vary as to

configuration changes. If any application requires a specific font, user can bundle

and instantiate that font by using the createFont() method of the Java Font class.

Logical Fonts

Java defines five logical font families that are Serif, SansSerif, Monospaced,

Dialog, and DialogInput. It must be supported by the JRE. Note that JRE maps the

logical font names to physical font because these are not the actual font libraries.

Usually, mapping implementation is locale dependent. Each logical font name map

to several physical fonts in order to cover a large range of characters.

A Font object have three different names that are:

o Logical font name: It is the name that is used to construct the font.

o Font face name: It is the name of particular font face. For example, Helvetica

Bold.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

64

o Family name: It is the name of the font family. It determines the typograph

design among several faces.

LAYOUT MANAGER

The Layout managers enable us to control the way in which visual components are

arranged in the GUI forms by determining the size and position of components within

the containers.

Types of LayoutManager

There are 4 layout managers in Java

 FlowLayout: It arranges the components in a container like the words on a page.

It fills the top line from left to right and top to bottom. The components are

arranged in the order as they are added i.e. first components appears at top left,

if the container is not wide enough to display all the components, it is wrapped

around the line. Vertical and horizontal gap between components can be

controlled. The components can be left, center or right aligned.

 BorderLayout: It arranges all the components along the edges or the middle of

the container i.e. top, bottom, right and left edges of the area. The components

added to the top or bottom gets its preferred height, but its width will be the width

of the container and also the components added to the left or right gets its

preferred width, but its height will be the remaining height of the container. The

components added to the center gets neither its preferred height or width. It

covers the remaining area of the container.

 GridLayout: It arranges all the components in a grid of equally sized cells,

adding them from the left to right and top to bottom. Only one component can

be placed in a cell and each region of the grid will have the same size. When the

container is resized, all cells are automatically resized. The order of placing the

components in a cell is determined as they were added.

 GridBagLayout: It is a powerful layout which arranges all the components in a

grid of cells and maintains the aspect ration of the object whenever the container

is resized. In this layout, cells may be different in size. It assigns a consistent

horizontal and vertical gap among components. It allows us to specify a default

alignment for components within the columns or rows.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

65

EVENT HANDLING

Event and Listener (Java Event Handling)

Changing the state of an object is known as an event. For example, click on button,

dragging mouse etc. The java.awt.event package provides many event classes and

Listener interfaces for event handling.

Java Event classes and Listener interfaces

Event Classes Listeners

ActionEvent ActionListener

MouseEvent MouseListener and MouseMotionListener

MouseWheelEvent MouseWheelListener

KeyEvent KeyListener

ItemEvent ItemListener

TextEvent TextListener

AdjustmentEvent AdjustmentListener

WindowEvent WindowListener

ComponentEvent ComponentListener

ContainerEvent ContainerListener

FocusEvent FocusListener

Following steps are required to perform event handling:

1. Register the component with the Listener

2. Java Event Handling Code

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

66

We can put the event handling code into one of the following places:

 Within class

 Other class

 Anonymous class

EVENT DELEGATION MODEL

The Delegation Event Model in Java is based on a hierarchy of objects, with one

object acting as the source of the event and other objects acting as listeners that

respond to those events. When an event occurs, the source object generates an

event object and passes it to all the registered listeners. Each listener then has the

opportunity to process the event and respond accordingly.

One of the key benefits of the Delegation Event Model in Java is that it allows for a

high level of modularity in Java applications. By separating the event source from the

event listener, you can create more flexible and scalable code. This model also

allows for easy customization, as different event listeners can be created to handle

different types of events.

The Delegation Event Model in Java consists of three main components: event

source, event object, and event listener.

Event source: This is the object that generates the event. When an event occurs,

the event source creates an event object and passes it to all registered event

listeners. Examples of event sources can be a button, a text field, or any other

component of the user interface.

Event object: This is a Java object that encapsulates information about the event

that occurred. It contains details such as the type of event, the source of the event,

and any additional data that may be relevant to the event. The event object is

passed to all registered event listeners, allowing them to respond to the event

appropriately.

Event listener: This is an interface that defines methods for responding to events.

To handle an event, an object must implement the appropriate event listener

interface and register itself with the event source. When the event occurs, the event

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

67

source calls the appropriate method on each registered event listener, passing in the

event object.

HANDLING MOUSE AND KEYBOARD EVENTS

Mouse Events

MouseListener and MouseMotionListener is an interface in java.awt.event package .

Mouse events are of two types. MouseListener handles the events when the mouse

is not in motion. While MouseMotionListener handles the events when mouse is in

motion.

There are five types of events that MouseListener can generate.

There are five abstract functions that represent these five events.

The abstract functions are:

1. void mouseReleased(MouseEvent e) : Mouse key is released

2. void mouseClicked(MouseEvent e) : Mouse key is pressed/released

3. void mouseExited(MouseEvent e) : Mouse exited the component

4. void mouseEntered(MouseEvent e) : Mouse entered the component

5. void mousepressed(MouseEvent e) : Mouse key is pressed

There are two types of events that MouseMotionListener can generate. There are

two abstract functions that represent these five events. The abstract functions are:

1. void mouseDragged(MouseEvent e) : Invoked when a mouse button is pressed

in the component and dragged. Events are passed until the user releases the

mouse button.

2. void mouseMoved(MouseEvent e) : invoked when the mouse cursor is moved

from one point to another within the component, without pressing any mouse

buttons.

Keyboard Events

The Java KeyListener is notified whenever you change the state of key. It is notified

against KeyEvent. The KeyListener interface is found in java.awt.event package, and

it has three methods.

Interface declaration

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

68

Following is the declaration for java.awt.event.KeyListener interface:

1. public interface KeyListener extends EventListener

Methods of KeyListener interface

The signature of 3 methods found in KeyListener interface are given below:

public abstract void keyPressed (KeyEvent

e);

It is invoked when a key has been

pressed.

public abstract void keyReleased

(KeyEvent e);

It is invoked when a key has been

released.

public abstract void keyTyped (KeyEvent

e);

It is invoked when a key has been typed.

ADAPTER CLASSES

In Java's event handling mechanism, adapter classes are abstract classes provided

by the Java AWT (Abstract Window Toolkit) package for receiving various events.

These classes contain empty implementations of the methods in an event listener

interface, providing a convenience for creating listener objects.

The adapter classes in Java are

 WindowAdapter

 KeyAdapter

 MouseAdapter

 FocusAdapter

 ContainerAdapter

 ComponentAdapter

These adapter classes implement interfaces like WindowListener, KeyListener,

MouseListener, FocusListener, ContainerListener, and ComponentListener

respectively, which contain methods related to specific events.

INNER CLASSES

A Java inner class is a class that is defined inside another class. The concept of

inner class works with nested Java classes where outer and inner classes are used.

CDOE-ODL BSc(CS) – SEMESTER IV Unit IV

69

The main class in which inner classes are defined is known as the outer class and all

other classes which are inside the outer class are known as Java inner classes.

SUMMARY

Implement AWT and Event handling.

ACTIVITIES

o Represents an object with graphical representation.

SELF–ASSESSMENT QUESTIONS

1. What is AWT, and how does it differ from Swing?

2. What are the primary components provided by AWT?

3. What is the purpose of the `Frame` class in AWT?

4. What are layout managers in AWT? Name and explain a few common ones.

5. How do you set a layout manager for a container in AWT?

6. How do you perform custom painting in AWT?

7. What is the role of the `Graphics` class in AWT?

8. What is Swing, and how does it enhance AWT?

9. Explain the concept of "lightweight" components in Swing.

10. What is the "look and feel" of a Swing application, and how can it be changed?

11. How do you set a custom look and feel for a Swing application?

12. Discuss the advantages and disadvantages of using Swing over AWT.

13. Can you use AWT components in a Swing application? If so, how?

14. What is event handling in Java?

15. What is an event listener, and how do you implement one in Java?

16. How do you use ActionListener, MouseListener, and KeyListener in your

applications?

17. How do you register an event listener with a component?

18. What is the Event Dispatch Thread, and why is it important in Swing?

19. How do you create and handle custom events in Java?

20. What is the difference between using built-in events and custom events?

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

70

UNIT V

Objective: To equip the student with programming knowledge SWING components.

SWING

Java Swing is a part of Java Foundation Classes (JFC) that is used to create

window-based applications. It is built on the top of AWT (Abstract Windowing Toolkit)

API and entirely written in java.

Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton,

JTextField, JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Hierarchy of Java Swing classes

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

71

The methods of Component class are widely used in java swing that are given

below.

public void add(Component c) add a component on another component.

public void setSize(int width,int

height)

sets size of the component.

public void setLayout(LayoutManager

m)

sets the layout manager for the component.

public void setVisible(boolean b) sets the visibility of the component. It is by

default false.

JFrame

The javax.swing.JFrame class is a type of container which inherits the

java.awt.Frame class. JFrame works like the main window where components like

labels, buttons, textfields are added to create a GUI.

Unlike Frame, JFrame has the option to hide or close the window with the help of

setDefaultCloseOperation(int) method.

Constructors

JFrame() It constructs a new frame that is initially invisible.

JFrame(GraphicsConfiguration gc) It creates a Frame in the specified

GraphicsConfiguration of a screen device and a

blank title.

JFrame(String title) It creates a new, initially invisible Frame with the

specified title.

JFrame(String title,

GraphicsConfiguration gc)

It creates a JFrame with the specified title and the

specified GraphicsConfiguration of a screen

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

72

device.

Methods

protected void addImpl (Component comp,

Object constraints, int index)

Adds the specified child

Component.

protected

JRootPane

createRootPane() Called by the constructor methods

to create the default rootPane.

protected void frameInit() Called by the constructors to init the

JFrame properly.

void setContentPane(Containe

contentPane)

It sets the contentPane property

void setIconImage(Image image) It sets the image to be displayed as

the icon for this window.

void setJMenuBar(JMenuBar

menubar)

It sets the menubar for this frame.

void setLayeredPane(JLayeredPane

layeredPane)

It sets the layeredPane property.

JRootPane getRootPane() It returns the rootPane object for

this frame.

TransferHandler getTransferHandler() It gets the transferHandler property.

JDialog

The JDialog control represents a top level window with a border and a title used to

take some form of input from the user. It inherits the Dialog class.

Unlike JFrame, it doesn't have maximize and minimize buttons.

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

73

Constructors

JDialog() It is used to create a modeless dialog without a title

and without a specified Frame owner.

JDialog (Frame owner) It is used to create a modeless dialog with specified

Frame as its owner and an empty title.

JDialog (Frame owner, String

title, boolean modal)

It is used to create a dialog with the specified title,

owner Frame and modality.

JPanel

The JPanel is a simplest container class. It provides space in which an application

can attach any other component. It inherits the JComponents class.

It doesn't have title bar.

Constructors

JPanel() It is used to create a new JPanel with a double buffer and

a flow layout.

JPanel(boolean

isDoubleBuffered)

It is used to create a new JPanel with FlowLayout and

the specified buffering strategy.

JPanel(LayoutManager

layout)

It is used to create a new JPanel with the specified layout

manager.

JButton

The JButton class is used to create a labeled button that has platform independent

implementation. The application result in some action when the button is pushed. It

inherits AbstractButton class.

Constructors

JButton() It creates a button with no text and icon.

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

74

JButton(String s) It creates a button with the specified text.

JButton(Icon i) It creates a button with the specified icon object.

Methods

void setText(String s) It is used to set specified text on button

String getText() It is used to return the text of the button.

void setEnabled(boolean b) It is used to enable or disable the button.

void setIcon(Icon b) It is used to set the specified Icon on the

button.

Icon getIcon() It is used to get the Icon of the button.

void setMnemonic(int a) It is used to set the mnemonic on the button.

void addActionListener

(ActionListener a)

It is used to add the action listener to this

object.

JToggleButton

JToggleButton is used to create toggle button, it is two-states button to switch on or

off.

Constructors

JToggleButton() It creates an initially unselected toggle button

without setting the text or image.

JToggleButton(Action a) It creates a toggle button where properties are

taken from the Action supplied.

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

75

JToggleButton(Icon icon) It creates an initially unselected toggle button with

the specified image but no text.

JToggleButton(Icon icon, boolean

selected)

It creates a toggle button with the specified image

and selection state, but no text.

JToggleButton(String text) It creates an unselected toggle button with the

specified text.

JToggleButton(String text, boolean

selected)

It creates a toggle button with the specified text and

selection state.

JToggleButton(String text, Icon

icon)

It creates a toggle button that has the specified text

and image, and that is initially unselected.

JToggleButton(String text, Icon

icon, boolean selected)

It creates a toggle button with the specified text,

image, and selection state.

Methods

AccessibleContext getAccessibleContext() It gets the AccessibleContext associated

with this JToggleButton.

String getUIClassID() It returns a string that specifies the name of

the l&f class that renders this component.

protected String paramString() It returns a string representation of this

JToggleButton.

void updateUI() It resets the UI property to a value from the

current look and feel.

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

76

JCheckBox

The JCheckBox class is used to create a checkbox. It is used to turn an option on

(true) or off (false). Clicking on a CheckBox changes its state from "on" to "off" or

from "off" to "on ".It inherits JToggleButton class.

Constructors

JCheckBox() Creates an initially unselected check box button with no

text, no icon.

JChechBox(String s) Creates an initially unselected check box with text.

JCheckBox(String text,

boolean selected)

Creates a check box with text and specifies whether or

not it is initially selected.

JCheckBox(Action a) Creates a check box where properties are taken from the

Action supplied.

Methods

AccessibleContext

getAccessibleContext()

It is used to get the AccessibleContext associated with this

JCheckBox.

protected String

paramString()

It returns a string representation of this JCheckBox.

JRadioButton

The JRadioButton class is used to create a radio button. It is used to choose one

option from multiple options. It is widely used in exam systems or quiz.

It should be added in ButtonGroup to select one radio button only.

Constructors

JRadioButton() Creates an unselected radio button with no text.

JRadioButton(String s) Creates an unselected radio button with specified

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

77

text.

JRadioButton(String s, boolean

selected)

Creates a radio button with the specified text and

selected status.

Methods

void setText(String s) It is used to set specified text on button.

String getText() It is used to return the text of the button.

void setEnabled(boolean b) It is used to enable or disable the button.

void setIcon(Icon b) It is used to set the specified Icon on the button.

Icon getIcon() It is used to get the Icon of the button.

void setMnemonic(int a) It is used to set the mnemonic on the button.

void

addActionListener(ActionListener

a)

It is used to add the action listener to this object.

JLabel

The object of JLabel class is a component for placing text in a container. It is used to

display a single line of read only text. The text can be changed by an application but

a user cannot edit it directly. It inherits JComponent class.

Constructors

JLabel() Creates a JLabel instance with no image and with an empty

string for the title.

JLabel(String s) Creates a JLabel instance with the specified text.

JLabel(Icon i) Creates a JLabel instance with the specified image.

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

78

JLabel(String s, Icon i, int

horizontalAlignment)

Creates a JLabel instance with the specified text, image, and

horizontal alignment.

Methods

String getText() t returns the text string that a label displays.

void setText(String text) It defines the single line of text this component will

display.

void setHorizontalAlignment (int

alignment)

It sets the alignment of the label's contents along

the X axis.

Icon getIcon() It returns the graphic image that the label displays.

int getHorizontalAlignment() It returns the alignment of the label's contents

along the X axis.

JTextField

The object of a JTextField class is a text component that allows the editing of a

single line text. It inherits JTextComponent class.

Constructors

JTextField() Creates a new TextField

JTextField(String text) Creates a new TextField initialized with the specified text.

JTextField(String text, int

columns)

Creates a new TextField initialized with the specified text

and columns.

JTextField(int columns) Creates a new empty TextField with the specified number

of columns.

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

79

Methods

void addActionListener(ActionListener

l)

It is used to add the specified action listener to

receive action events from this textfield.

Action getAction() It returns the currently set Action for this

ActionEvent source, or null if no Action is set.

void setFont(Font f) It is used to set the current font.

void

removeActionListener(ActionListener l)

It is used to remove the specified action listener

so that it no longer receives action events from

this textfield.

JTextArea

The object of a JTextArea class is a multi line region that displays text. It allows the

editing of multiple line text. It inherits JTextComponent class

Constructors:

JTextArea() Creates a text area that displays no text initially.

JTextArea(String s) Creates a text area that displays specified text initially.

JTextArea(int row, int

column)

Creates a text area with the specified number of rows and

columns that displays no text initially.

JTextArea(String s, int row,

int column)

Creates a text area with the specified number of rows and

columns that displays specified text.

Methods:

void setRows(int rows) It is used to set specified number of rows.

void setColumns(int cols) It is used to set specified number of columns.

void setFont(Font f) It is used to set the specified font.

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

80

void insert(String s, int

position)

It is used to insert the specified text on the specified position.

void append(String s) It is used to append the given text to the end of the document.

JList

The object of JList class represents a list of text items. The list of text items can be

set up so that the user can choose either one item or multiple items. It inherits

JComponent class.

Constructors:

JList() Creates a JList with an empty, read-only, model.

JList(ary[] listData) Creates a JList that displays the elements in the specified array.

JList(ListModel<ary>

dataModel)

Creates a JList that displays elements from the specified, non-

null, model.

Methods:

Void addListSelectionListener

(ListSelectionListener listener)

It is used to add a listener to the list, to be notified each

time a change to the selection occurs.

int getSelectedIndex() It is used to return the smallest selected cell index.

ListModel getModel() It is used to return the data model that holds a list of

items displayed by the JList component.

void setListData(Object[]

listData)

It is used to create a read-only ListModel from an array of

objects.

JComboBox

The object of Choice class is used to show popup menu of choices. Choice selected

by user is shown on the top of a menu. It inherits JComponent class.

Constructors:

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

81

JComboBox() Creates a JComboBox with a default data model.

JComboBox(Object[] items) Creates a JComboBox that contains the elements in the

specified array.

JComboBox(Vector<?>

items)

Creates a JComboBox that contains the elements in the

specified Vector.

Methods:

void addItem(Object anObject) It is used to add an item to the item list.

void removeItem(Object anObject) It is used to delete an item to the item list.

void removeAllItems() It is used to remove all the items from the list.

void setEditable(boolean b) It is used to determine whether the JComboBox is

editable.

void addActionListener (ActionListener

a)

It is used to add the ActionListener.

void addItemListener(ItemListener i) It is used to add the ItemListener.

JScrollPane

A JscrollPane is used to make scrollable view of a component. When screen size is

limited, we use a scroll pane to display a large component or a component whose

size can change dynamically.

Constructors

JScrollPane() It creates a scroll pane. The Component parameter, when present,

sets the scroll pane's client. The two int parameters, when

present, set the vertical and horizontal scroll bar policies

(respectively).

JScrollPane(Component)

JScrollPane(int, int)

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

82

JScrollPane(Component,

int, int)

Methods

void setColumnHeaderView(Component) It sets the column header for the scroll

pane.

void setRowHeaderView(Component) It sets the row header for the scroll pane.

void setCorner(String, Component) It sets or gets the specified corner. The

int parameter specifies which corner and

must be one of the following constants

defined in ScrollPaneConstants:

UPPER_LEFT_CORNER,

UPPER_RIGHT_CORNER,

LOWER_LEFT_CORNER,

LOWER_RIGHT_CORNER,

LOWER_LEADING_CORNER,

LOWER_TRAILING_CORNER,

UPPER_LEADING_CORNER,

UPPER_TRAILING_CORNER.

Component getCorner(String)

void setViewportView(Component) Set the scroll pane's client.

SUMMARY

Use Swing to create GUI.

ACTIVITIES

o Create a JFrame that displays a simple window with a label and a button.

Clicking the button should display a message dialog.

o Create a JFrame with multiple JPanels, each using a different layout manager

(e.g., BorderLayout, FlowLayout, GridLayout). Add buttons or other components

to each panel to observe how layouts affect component positioning.

CDOE-ODL BSc(CS) – SEMESTER IV Unit V

83

o Construct a JFrame that mimics a simple form (e.g., login screen or personal

information form) using JLabels and JTextFields. Implement validation by

changing text colors or displaying error messages.

o Develop a settings panel within a JFrame that includes checkboxes for

enabling/disabling options and radio buttons for selecting options exclusively (like

selecting a color theme).

o Create a JFrame with both a JComboBox and a JList. Populate them with data

(e.g., items in a dropdown list or selectable items in a list). Implement event

listeners to handle selection changes.

o Customize JButton and JToggleButton components by setting icons, tooltips, and

background colors based on different states (like hover or click). Experiment with

different look and feel options to change the appearance of components.

o Implement a JFrame with multiple buttons, each performing a different action

(e.g., changing panel content, clearing form data). Use ActionListener to manage

button clicks effectively.

SELF-ASSESSMENT QUESTIONS

1. What is Swing, and how does it differ from AWT?

2. How do you create a `JButton`? Provide an example of how to add it to a

`JFrame`.

3. What is the purpose of `JLabel`, and how can you use it to display text and

images?

4. How do you create a `JTextField`, and how can you retrieve user input from it?

5. What is the difference between `JTextArea` and `JTextField`?

6. How do you create a `JCheckBox`, and how can you determine its state?

7. Explain how to use a `JRadioButton` and group them using a `ButtonGroup`.

8. How do you create a `JComboBox` and add items to it?

9. What is the difference between `JList` and `JComboBox`?

10. What is a `JPanel`, and how can it be used to organize components?

11. How do you use layout managers like `FlowLayout`, `BorderLayout`, and

GridLayout` in Swing?

12. How do you create and display a modal dialog using `JDialog`?

13. How do you attach an `ActionListener` to a button?

14. How can you create a custom component by extending `JComponent`?

15. Explain how to override the `paintComponent` method for custom drawing.

