
PERIYAR UNIVERSITY

NAAC 'A++' Grade – State University – NIRF Rank 56- State Public University Rank 25

SALEM - 636 011, Tamil Nadu, India

CENTRE FOR DISTANCE AND ONLINE EDUCATION

(CDOE)

B.SC COMPUTER SCIENCE

SEMESTER - II

CORE COURSE: DATA STRUCTURES AND

ALGORITHMS LAB

(Candidates admitted from 2024 onwards)

 Periyar University – CDOE| Self-Learning Material

PERIYAR UNIVERSITY

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)

B.Sc COMPUTER SCIENCE 2024 admission onwards

CORE COURSE – IV

Data Structure and Algorithms Lab

Centre for Distance and Online Education (CDOE)

Prepared by:

Periyar University, Salem – 11.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 Periyar University – CDOE| Self-Learning Material

DATA STRUCTURE AND ALGORITHMS LAB

Sl. No Contents

1
Write a program to implement the List ADT using arrays and linked

lists.

2

Write a programs to implement the following using a singly linked list.

· Stack ADT

· Queue ADT

3

Write a program that reads an infix expression, converts the expression to

postfix form and then evaluates the postfix expression

(use stack ADT).

4 Write a program to implement priority queue ADT.

5

Write a program to perform the following operations:

· Insert an element into a binary search tree.

· Delete an element from a binary search tree.

· Search for a key element in a binary search tree.

6

Write a program to perform the following operations

· Insertion into an AVL-tree

· Deletion from an AVL-tree

7
Write a programs for the implementation of BFS and DFS for a given

graph.

8

Write a programs for implementing the following searching methods:

· Linear search

· Binary search.

9

Write a programs for implementing the following sorting methods:

· Bubble sort

· Selection sort

· Insertion sort

· Radix sort.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 Periyar University – CDOE| Self-Learning Material

Objective:

 To understand the concepts of ADTs

 To learn linear data structures-lists, stacks, queues

 To learn Tree structures and application of trees

 To learn graph structures and application of graphs

 To understand various sorting and searching

CDOE - ODL B.Sc Computer Science – SEMESTER II

 Periyar University – CDOE| Self-Learning Material

 INDEX

S.No Date Title
Page
No.

Signature

1

LIST ADT USING ARRAYS AND
LINKED LISTS.

2

STACK ADT & QUEUE ADT
USING SINGLY LINKED LIST

3

INFIX TO POSTFIX EXPRESSION

4

PRIORITY QUEUE

5

BINARY SEARCH TREE

6

AVL TREE

7

GRAPH TRAVERSAL

8

LINEAR SEARCH AND BINARY
SEARCH

9

SORTING ALGORITHMS

CDOE - ODL B.Sc Computer Science – SEMESTER II

 1 Periyar University – CDOE| Self-Learning Material

PROGRAM -1

AIM:

To write a python program to implement the List ADT using arrays and linked

lists.

ALGORITHM:

Step 1: Define the ArrayList Class:

 Initialize ArrayList class with an empty list arr.

 Define append method to add elements to the list.

 Define display method to print the contents of the list.

Step 2: Define the Node Class:

 Initialize Node class with data and next attributes.

Step 3: Define the LinkedList Class:

 Initialize LinkedList class with head attribute pointing to the first node.

 Define append method to add elements to the end of the linked list.

 Define display method to print the elements of the linked list.

Step 4: Test List ADT using Arrays:

 Create an instance of ArrayList.

 Append elements to the list.

 Display the contents of the list.

Step 5: Test List ADT using Linked List:

 Create an instance of LinkedList.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 2 Periyar University – CDOE| Self-Learning Material

 Append elements to the linked list.

 Display the elements of the linked list.

CODING:

class ArrayList:

 def __init__(self):

 self.arr = []

 def append(self, value):

 self.arr.append(value)

 def display(self):

 print("Array List:", self.arr)

class Node:

 def __init__(self, data):

 self.data = data

 self.next = None

class LinkedList:

 def __init__(self):

 self.head = None

 def append(self, value):

 new_node = Node(value)

 if self.head is None:

 self.head = new_node

 else:

 current = self.head

 while current.next:

 current = current.next

 current.next = new_node

CDOE - ODL B.Sc Computer Science – SEMESTER II

 3 Periyar University – CDOE| Self-Learning Material

 def display(self):

 current = self.head

 linked_list_str = ""

 while current:

 linked_list_str += str(current.data) + " "

 current = current.next

 print("Linked List:", linked_list_str)

Test List ADT using arrays

array_list = ArrayList()

array_list.append(10)

array_list.append(20)

array_list.append(30)

array_list.display()

Test List ADT using linked list

linked_list = LinkedList()

linked_list.append(10)

linked_list.append(20)

linked_list.append(30)

linked_list.display()

OUTPUT

Array List: [10, 20, 30]

Linked List: 10 20 30

Result:

The python program to implement the List ADT using arrays and linked lists has

been executed and the results are verified successfully.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 4 Periyar University – CDOE| Self-Learning Material

PROGRAM -2

AIM:

To write python program to implement Stack ADT and Queue ADT using a singly

linked list.

ALGORITHM:

Step 1: Define the Node Class:

 Initialize Node class with data and next attributes.

Step 2: Define the Stack Class:

 Initialize Stack class with top attribute pointing to the topmost element

in the stack.

 Define is_empty method to check if the stack is empty.

 Define push method to push elements onto the stack.

 Define pop method to pop the top element from the stack.

 Define peek method to return the top element of the stack without

removing it.

 Define display method to print the elements of the stack.

Step 3: Test Stack ADT:

 Create an instance of Stack.

 Push elements onto the stack.

 Display the contents of the stack.

 Peek the top element of the stack.

 Pop an element from the stack.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 5 Periyar University – CDOE| Self-Learning Material

 Display the updated contents of the stack.

Algorithm for Queue ADT using a singly linked list:

Step 1: Define the Node Class:

 Initialize Node class with data and next attributes.

Step 2: Define the Queue Class:

 Initialize Queue class with front and rear attributes.

 Define is_empty method to check if the queue is empty.

 Define enqueue method to add elements to the rear of the queue.

 Define dequeue method to remove elements from the front of the

queue.

 Define display method to print the elements of the queue.

Step 3: Test Queue ADT:

 Create an instance of Queue.

 Enqueue elements into the queue.

 Display the contents of the queue.

 Dequeue an element from the queue.

 Display the updated contents of the queue.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 6 Periyar University – CDOE| Self-Learning Material

CODING:

Stack ADT using a Singly Linked List:

class Node:

 def __init__(self, data):

 self.data = data

 self.next = None

class Stack:

 def __init__(self):

 self.top = None

 def is_empty(self):

 return self.top is None

 def push(self, value):

 new_node = Node(value)

 new_node.next = self.top

 self.top = new_node

 def pop(self):

 if self.is_empty():

 print("Stack is empty")

 return None

 popped_value = self.top.data

 self.top = self.top.next

 return popped_value

 def peek(self):

 if self.is_empty():

 print("Stack is empty")

 return None

CDOE - ODL B.Sc Computer Science – SEMESTER II

 7 Periyar University – CDOE| Self-Learning Material

 return self.top.data

 def display(self):

 current = self.top

 stack_str = ""

 while current:

 stack_str += str(current.data) + " "

 current = current.next

 print("Stack:", stack_str)

Test Stack ADT

stack = Stack()

stack.push(10)

stack.push(20)

stack.push(30)

stack.display()

print("Peek:", stack.peek())

print("Popped:", stack.pop())

stack.display()

OUTPUT:

Stack: 30 20 10

Peek: 30

Popped: 30

Stack: 20 10

CDOE - ODL B.Sc Computer Science – SEMESTER II

 8 Periyar University – CDOE| Self-Learning Material

Queue ADT using a Singly Linked List:

class Node:

 def __init__(self, data):

 self.data = data

 self.next = None

class Queue:

 def __init__(self):

 self.front = None

 self.rear = None

 def is_empty(self):

 return self.front is None

 def enqueue(self, value):

 new_node = Node(value)

 if self.is_empty():

 self.front = new_node

 self.rear = new_node

 else:

 self.rear.next = new_node

 self.rear = new_node

 def dequeue(self):

 if self.is_empty():

 print("Queue is empty")

 return None

 dequeued_value = self.front.data

 if self.front == self.rear:

 self.front = None

 self.rear = None

 else:

CDOE - ODL B.Sc Computer Science – SEMESTER II

 9 Periyar University – CDOE| Self-Learning Material

 self.front = self.front.next

 return dequeued_value

 def display(self):

 current = self.front

 queue_str = ""

 while current:

 queue_str += str(current.data) + " "

 current = current.next

 print("Queue:", queue_str)

Test Queue ADT

queue = Queue()

queue.enqueue(10)

queue.enqueue(20)

queue.enqueue(30)

queue.display()

print("Dequeued:", queue.dequeue())

queue.display()

OUTPUT:

Queue: 10 20 30

Dequeued: 10

Queue: 20 30

RESULT:

The python program to implement Stack ADT and Queue ADT using a singly linked

list has been executed and the results are verified successfully.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 10 Periyar University – CDOE| Self-Learning Material

. PROGRAM -3

AIM:

To write a python program that reads an infix expression, converts the expression to

postfix form and then evaluates the postfix expression using stack ADT.

ALGORITHM:

Step 1: Define the Stack Class:

 Initialize Stack class with items attribute as an empty list.

 Define is_empty method to check if the stack is empty.

 Define push method to push items onto the stack.

 Define pop method to pop the top item from the stack.

 Define peek method to return the top item of the stack without

removing it.

 Define __str__ method to return a string representation of the stack.

Step 2: Define infix_to_postfix function:

 Define a dictionary precedence to store operator precedence.

 Initialize an empty string postfix to store the postfix expression.

 Initialize a stack.

 Iterate through each character in the infix expression:

 If the character is an operand, append it to the postfix string.

 If the character is an opening parenthesis, push it onto the

stack.

 If the character is a closing parenthesis, pop operators from the

stack and append them to postfix until an opening parenthesis

is encountered.

 If the character is an operator, pop operators from the stack and

append them to postfix if they have higher precedence than the

current operator. Then push the current operator onto the stack.

 Pop any remaining operators from the stack and append them to

postfix.

 Return the postfix expression.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 11 Periyar University – CDOE| Self-Learning Material

Step 3: Define evaluate_postfix function:

 Initialize a stack.

 Iterate through each character in the postfix expression:

 If the character is a digit, push it onto the stack.

 If the character is an operator, pop two operands from the stack,

perform the operation, and push the result back onto the stack.

 After iterating through the postfix expression, the result will be the only

item left on the stack.

 Return the result.

Step 4: Define main function:

 Prompt the user to enter an infix expression.

 Convert the infix expression to postfix using the infix_to_postfix

function.

 Print the postfix expression.

 Evaluate the postfix expression using the evaluate_postfix function.

 Print the result of the evaluation.

CODING:

class Stack:

 def __init__(self):

 self.items = []

 def is_empty(self):

 return len(self.items) == 0

 def push(self, item):

 self.items.append(item)

 def pop(self):

 if not self.is_empty():

 return self.items.pop()

 else:

 print("Stack is empty")

CDOE - ODL B.Sc Computer Science – SEMESTER II

 12 Periyar University – CDOE| Self-Learning Material

 def peek(self):

 if not self.is_empty():

 return self.items[-1]

 else:

 print("Stack is empty")

 def __str__(self):

 return str(self.items)

def infix_to_postfix(expression):

 precedence = {'+': 1, '-': 1, '*': 2, '/': 2, ' '̂: 3}

 postfix = ""

 stack = Stack()

 for char in expression:

 if char.isalnum():

 postfix += char

 elif char == '(':

 stack.push(char)

 elif char == ')':

 while not stack.is_empty() and stack.peek() != '(':

 postfix += stack.pop()

 stack.pop() # Remove the opening parenthesis

 else:

 while not stack.is_empty() and precedence.get(stack.peek(), 0) >=

precedence.get(char, 0):

 postfix += stack.pop()

 stack.push(char)

 while not stack.is_empty():

 postfix += stack.pop()

CDOE - ODL B.Sc Computer Science – SEMESTER II

 13 Periyar University – CDOE| Self-Learning Material

 return postfix

def evaluate_postfix(postfix):

 stack = Stack()

 for char in postfix:

 if char.isdigit():

 stack.push(int(char))

 else:

 operand2 = stack.pop()

 operand1 = stack.pop()

 if char == '+':

 stack.push(operand1 + operand2)

 elif char == '-':

 stack.push(operand1 - operand2)

 elif char == '*':

 stack.push(operand1 * operand2)

 elif char == '/':

 stack.push(operand1 / operand2)

 return stack.pop()

def main():

 infix_expression = input("Enter the infix expression: ")

 postfix_expression = infix_to_postfix(infix_expression)

 print("Postfix expression:", postfix_expression)

 result = evaluate_postfix(postfix_expression)

 print("Result of evaluation:", result)

if __name__ == "__main__":

 main()

CDOE - ODL B.Sc Computer Science – SEMESTER II

 14 Periyar University – CDOE| Self-Learning Material

OUTPUT:

Enter the infix expression: a+b-c*d/e^f

Postfix expression: ab+cd*ef^/-

RESULT:

The python program that reads an infix expression, converts the expression to

postfix form and then evaluates the postfix expression using stack ADT has been

executed and the results are verified successfully.

.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 15 Periyar University – CDOE| Self-Learning Material

PROGRAM -4

AIM:

To write a python program to implement priority queue ADT.

ALGORITHM:

Step 1: Define the PriorityQueue Class:

 Initialize PriorityQueue class with items attribute as an empty list.

 Define is_empty method to check if the priority queue is empty.

 Define enqueue method to add items to the priority queue with a

specified priority.

 Define dequeue method to remove and return the item with the highest

priority from the priority queue.

 Define peek method to return the item with the highest priority without

removing it.

 Define __str__ method to return a string representation of the priority

queue.

Step 2: Test the Priority Queue ADT:

 Create an instance of PriorityQueue.

 Enqueue tasks with priorities into the priority queue.

 Print the contents of the priority queue.

 Peek at the task with the highest priority.

 Dequeue the task with the highest priority.

 Print the updated contents of the priority queue.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 16 Periyar University – CDOE| Self-Learning Material

CODING:

class PriorityQueue:

 def __init__(self):

 self.items = []

 def is_empty(self):

 return len(self.items) == 0

 def enqueue(self, item, priority):

 self.items.append((item, priority))

 self.items.sort(key=lambda x: x[1], reverse=True)

 def dequeue(self):

 if not self.is_empty():

 return self.items.pop(0)[0]

 else:

 print("Priority queue is empty")

 def peek(self):

 if not self.is_empty():

 return self.items[0][0]

 else:

 print("Priority queue is empty")

 def __str__(self):

 return str([item[0] for item in self.items])

Test the Priority Queue ADT

pq = PriorityQueue()

pq.enqueue("Task 1", 3)

CDOE - ODL B.Sc Computer Science – SEMESTER II

 17 Periyar University – CDOE| Self-Learning Material

pq.enqueue("Task 2", 1)

pq.enqueue("Task 3", 2)

print("Priority Queue:", pq)

print("Peek:", pq.peek())

print("Dequeue:", pq.dequeue())

print("Priority Queue:", pq)

OUTPUT:

Priority Queue: ['Task 1', 'Task 3', 'Task 2']

Peek: Task 1

Dequeue: Task 1

Priority Queue: ['Task 3', 'Task 2']

RESULT:

The python program to implement priority queue ADT has been executed and the

results are verified successfully.

.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 18 Periyar University – CDOE| Self-Learning Material

PROGRAM -5

AIM:

To write a python program to perform Insertion, Deletion and search operations in a

binary search tree

ALGORITHM:

Step 1: Define the TreeNode Class:

 Initialize TreeNode class with key, left, and right attributes.

Step 2: Define the insert Function:

 Define insert function to insert a new node with a given key into the

BST.

 If the root is None, create a new node and return it.

 If the key is less than the root's key, recursively insert into the left

subtree.

 If the key is greater than the root's key, recursively insert into the right

subtree.

 Return the root.

Step 3: Define the minValueNode Function:

 Define minValueNode function to find the node with the minimum key

value in a given subtree.

 Traverse the left subtree until a node with a None left child is found.

 Return the current node.

Step 4: Define the deleteNode Function:

CDOE - ODL B.Sc Computer Science – SEMESTER II

 19 Periyar University – CDOE| Self-Learning Material

 Define deleteNode function to delete a node with a given key from the

BST.

 If the root is None, return None.

 If the key is less than the root's key, recursively delete from the left

subtree.

 If the key is greater than the root's key, recursively delete from the right

subtree.

 If the key is found, handle three cases:

 If the node has no left child, replace it with its right child.

 If the node has no right child, replace it with its left child.

 If the node has both left and right children, replace it with the

node containing the minimum key value from the right subtree.

 Return the root.

Step 5: Define the search Function:

 Define search function to search for a key in the BST.

 If the root is None or the key is found at the root, return the root.

 If the key is greater than the root's key, recursively search the right

subtree.

 Otherwise, recursively search the left subtree.

Step 6: Define the inorder Function:

 Define inorder function to perform an inorder traversal of the BST.

 Recursively traverse the left subtree.

 Print the key of the current node.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 20 Periyar University – CDOE| Self-Learning Material

 Recursively traverse the right subtree.

Step 7: Test the operations:

 Initialize an empty root node.

 Insert keys into the BST.

 Print the inorder traversal of the BST.

 Delete a key from the BST.

 Print the inorder traversal of the BST after deletion.

 Search for a key in the BST and print whether it's found or not.

CODING:

class TreeNode:

 def __init__(self, key):

 self.key = key

 self.left = None

 self.right = None

def insert(root, key):

 if root is None:

 return TreeNode(key)

 if key < root.key:

 root.left = insert(root.left, key)

 elif key > root.key:

 root.right = insert(root.right, key)

 return root

def minValueNode(node):

 current = node

 while current.left is not None:

CDOE - ODL B.Sc Computer Science – SEMESTER II

 21 Periyar University – CDOE| Self-Learning Material

 current = current.left

 return current

def deleteNode(root, key):

 if root is None:

 return root

 if key < root.key:

 root.left = deleteNode(root.left, key)

 elif key > root.key:

 root.right = deleteNode(root.right, key)

 else:

 if root.left is None:

 temp = root.right

 root = None

 return temp

 elif root.right is None:

 temp = root.left

 root = None

 return temp

 temp = minValueNode(root.right)

 root.key = temp.key

 root.right = deleteNode(root.right, temp.key)

 return root

def search(root, key):

 if root is None or root.key == key:

 return root

 if root.key < key:

 return search(root.right, key)

 return search(root.left, key)

CDOE - ODL B.Sc Computer Science – SEMESTER II

 22 Periyar University – CDOE| Self-Learning Material

def inorder(root):

 if root:

 inorder(root.left)

 print(root.key, end=" ")

 inorder(root.right)

Test the operations

root = None

keys = [50, 30, 20, 40, 70, 60, 80]

for key in keys:

 root = insert(root, key)

print("Inorder traversal of the BST:")

inorder(root)

print("\n")

print("Deleting 20 from the BST:")

root = deleteNode(root, 20)

print("Inorder traversal after deletion:")

inorder(root)

print("\n")

print("Searching for 30 in the BST:")

result = search(root, 30)

if result:

 print("Key found in the BST")

else:

 print("Key not found in the BST")

CDOE - ODL B.Sc Computer Science – SEMESTER II

 23 Periyar University – CDOE| Self-Learning Material

OUTPUT:

Inorder traversal of the BST:

20 30 40 50 60 70 80

Deleting 20 from the BST:

Inorder traversal after deletion:

30 40 50 60 70 80

Searching for 30 in the BST:

Key found in the BST

RESULT:

The python program to perform Insertion, Deletion and search operations in a binary

search tree has been executed and the results are verified successfully.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 24 Periyar University – CDOE| Self-Learning Material

PROGRAM -6

AIM:

To write a python program to perform insertion and deletion in into an AVL-tree

ALGORITHM:

Step 1: Define the TreeNode Class:

 Initialize TreeNode class with key, left, right, and height attributes.

Step 2: Define the height Function:

 Define height function to return the height of a node.

 If the node is None, return 0.

 Otherwise, return the height attribute of the node.

Step 3: Define the get_balance Function:

 Define get_balance function to calculate the balance factor of a node.

 If the node is None, return 0.

 Otherwise, return the difference in heights between the left and right

subtrees.

Step 4: Define the right_rotate Function:

 Define right_rotate function to perform a right rotation on a given

node.

 Store the left child and the right child of the given node.

 Update the pointers to perform the rotation.

 Update the heights of the rotated nodes.

 Return the new root after rotation.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 25 Periyar University – CDOE| Self-Learning Material

Step 5: Define the left_rotate Function:

 Define left_rotate function to perform a left rotation on a given node.

 Store the left child and the right child of the given node.

 Update the pointers to perform the rotation.

 Update the heights of the rotated nodes.

 Return the new root after rotation.

Step 6: Define the insert Function:

 Define insert function to insert a new key into the AVL tree.

 If the root is None, create a new node with the key and return it.

 If the key is less than the root's key, recursively insert into the left

subtree.

 If the key is greater than the root's key, recursively insert into the right

subtree.

 Update the height of the current node.

 Check the balance factor of the current node and perform rotations if

necessary.

 Return the root after insertion.

Step 7: Define the minValueNode Function:

 Define minValueNode function to find the node with the minimum key

value in a given subtree.

 Traverse the left subtree until a node with a None left child is found.

 Return the current node.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 26 Periyar University – CDOE| Self-Learning Material

Step 8: Define the deleteNode Function:

 Define deleteNode function to delete a node with a given key from the

AVL tree.

 Follow the standard procedure for deleting a node in a BST.

 After deletion, update the heights of the ancestors of the deleted node.

 Check the balance factor of the ancestors and perform rotations if

necessary.

 Return the root after deletion.

Step 9: Define the pre_order_traversal Function:

 Define pre_order_traversal function to perform a preorder traversal of

the AVL tree.

 Print the key of the current node.

 Recursively traverse the left subtree.

 Recursively traverse the right subtree.

Step 10: Test the AVL tree operations:

 Initialize an empty root node.

 Insert keys into the AVL tree.

 Print the preorder traversal of the AVL tree after insertion.

 Delete a key from the AVL tree.

 Print the preorder traversal of the AVL tree after deletion.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 27 Periyar University – CDOE| Self-Learning Material

CODING:

class TreeNode:

 def __init__(self, key):

 self.key = key

 self.left = None

 self.right = None

 self.height = 1

def height(node):

 if node is None:

 return 0

 return node.height

def get_balance(node):

 if node is None:

 return 0

 return height(node.left) - height(node.right)

def right_rotate(y):

 x = y.left

 T2 = x.right

 x.right = y

 y.left = T2

 y.height = 1 + max(height(y.left), height(y.right))

 x.height = 1 + max(height(x.left), height(x.right))

 return x

def left_rotate(x):

 y = x.right

 T2 = y.left

CDOE - ODL B.Sc Computer Science – SEMESTER II

 28 Periyar University – CDOE| Self-Learning Material

 y.left = x

 x.right = T2

 x.height = 1 + max(height(x.left), height(x.right))

 y.height = 1 + max(height(y.left), height(y.right))

 return y

def insert(root, key):

 if root is None:

 return TreeNode(key)

 if key < root.key:

 root.left = insert(root.left, key)

 else:

 root.right = insert(root.right, key)

 root.height = 1 + max(height(root.left), height(root.right))

 balance = get_balance(root)

 if balance > 1 and key < root.left.key:

 return right_rotate(root)

 if balance < -1 and key > root.right.key:

 return left_rotate(root)

 if balance > 1 and key > root.left.key:

 root.left = left_rotate(root.left)

 return right_rotate(root)

 if balance < -1 and key < root.right.key:

CDOE - ODL B.Sc Computer Science – SEMESTER II

 29 Periyar University – CDOE| Self-Learning Material

 root.right = right_rotate(root.right)

 return left_rotate(root)

 return root

def minValueNode(node):

 current = node

 while current.left is not None:

 current = current.left

 return current

def deleteNode(root, key):

 if root is None:

 return root

 if key < root.key:

 root.left = deleteNode(root.left, key)

 elif key > root.key:

 root.right = deleteNode(root.right, key)

 else:

 if root.left is None:

 temp = root.right

 root = None

 return temp

 elif root.right is None:

 temp = root.left

 root = None

 return temp

 temp = minValueNode(root.right)

 root.key = temp.key

 root.right = deleteNode(root.right, temp.key)

 if root is None:

CDOE - ODL B.Sc Computer Science – SEMESTER II

 30 Periyar University – CDOE| Self-Learning Material

 return root

 root.height = 1 + max(height(root.left), height(root.right))

 balance = get_balance(root)

 if balance > 1 and get_balance(root.left) >= 0:

 return right_rotate(root)

 if balance < -1 and get_balance(root.right) <= 0:

 return left_rotate(root)

 if balance > 1 and get_balance(root.left) < 0:

 root.left = left_rotate(root.left)

 return right_rotate(root)

 if balance < -1 and get_balance(root.right) > 0:

 root.right = right_rotate(root.right)

 return left_rotate(root)

 return root

def pre_order_traversal(root):

 if root:

 print(root.key, end=" ")

 pre_order_traversal(root.left)

 pre_order_traversal(root.right)

Test the AVL tree operations

root = None

keys = [9, 5, 10, 0, 6, 11, -1, 1, 2]

for key in keys:

 root = insert(root, key)

CDOE - ODL B.Sc Computer Science – SEMESTER II

 31 Periyar University – CDOE| Self-Learning Material

print("AVL tree after insertion:")

pre_order_traversal(root)

print("\n")

print("AVL tree after deleting 10:")

root = deleteNode(root, 10)

pre_order_traversal(root)

OUTPUT:

AVL tree after insertion:

9 1 0 -1 5 2 6 10 11

AVL tree after deleting 10:

1 0 -1 9 5 2 6 11 >

RESULT:

The python program to perform insertion and deletion in into an AVL-tree has been

executed and the results are verified successfully.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 32 Periyar University – CDOE| Self-Learning Material

PROGRAM -7

AIM:

To write a python program for the implementation of BFS and DFS for a given graph.

ALGORITHM:

Step 1: Import Required Modules:

 Import the defaultdict class from the collections module.

Step 2: Define the Graph Class:

 Initialize the Graph class with a graph attribute, which is a defaultdict of

lists.

Step 3: Define the add_edge Method:

 Define the add_edge method to add an edge between two vertices.

 Append the second vertex to the list corresponding to the first vertex in

the graph.

Step 4: Define the bfs Method:

 Define the bfs method to perform breadth-first search traversal of the

graph.

 Initialize a list called visited to keep track of visited vertices.

 Initialize a queue to store vertices to be visited.

 Append the start vertex to the queue and mark it as visited.

 While the queue is not empty, pop a vertex from the queue, print it, and

mark its neighbors as visited by adding them to the queue.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 33 Periyar University – CDOE| Self-Learning Material

Step 5: Define the dfs_util Method:

 Define the dfs_util method to perform depth-first search traversal of the

graph recursively.

 Mark the current vertex as visited and print it.

 Recursively call the dfs_util method for each unvisited neighbor of the

current vertex.

Step 6: Define the dfs Method:

 Define the dfs method to initiate depth-first search traversal of the

graph.

 Initialize a list called visited to keep track of visited vertices.

 Call the dfs_util method for the start vertex.

Step 7: Test the BFS and DFS Algorithms:

 Create an instance of the Graph class.

 Add edges to the graph.

 Print the BFS traversal starting from a specific vertex.

 Print the DFS traversal starting from a specific vertex.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 34 Periyar University – CDOE| Self-Learning Material

CODING:

from collections import default dict

class Graph:

 def __init__(self):

 self.graph = defaultdict(list)

 def add_edge(self, u, v):

 self.graph[u].append(v)

 def bfs(self, start):

 visited = [False] * len(self.graph)

 queue = []

 queue.append(start)

 visited[start] = True

 while queue:

 vertex = queue.pop(0)

 print(vertex, end=" ")

 for neighbor in self.graph[vertex]:

 if not visited[neighbor]:

 queue.append(neighbor)

 visited[neighbor] = True

 def dfs_util(self, vertex, visited):

 visited[vertex] = True

 print(vertex, end=" ")

 for neighbor in self.graph[vertex]:

 if not visited[neighbor]:

 self.dfs_util(neighbor, visited)

 def dfs(self, start):

CDOE - ODL B.Sc Computer Science – SEMESTER II

 35 Periyar University – CDOE| Self-Learning Material

 visited = [False] * len(self.graph)

 self.dfs_util(start, visited)

Test the BFS and DFS algorithms

g = Graph()

g.add_edge(0, 1)

g.add_edge(0, 2)

g.add_edge(1, 2)

g.add_edge(2, 0)

g.add_edge(2, 3)

g.add_edge(3, 3)

print("BFS starting from vertex 2:")

g.bfs(2)

print("\n")

print("DFS starting from vertex 2:")

g.dfs(2)

OUTPUT:

BFS starting from vertex 2:

2 0 3 1

DFS starting from vertex 2:

2 0 1 3 >

RESULT:

The python program for the implementation of BFS and DFS for a given graph has

been executed and the results are verified successfully.

.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 36 Periyar University – CDOE| Self-Learning Material

PROGRAM -8

AIM:

To write a python programs for implementing Linear search and Binary search.

ALGORITHM:

Linear search

Step 1: Define the linear_search Function:

 Define the linear_search function to search for a target element in an

array.

 Iterate over each element in the array using a loop.

 If the current element matches the target, return its index.

 If the target is not found after iterating through the entire array, return -

1.

Step 2: Test the Linear Search:

 Initialize an array with elements.

 Define the target element to be searched.

 Call the linear_search function with the array and target as arguments.

 If the result is not -1, print the index at which the target is found.

 If the result is -1, print a message indicating that the target is not found.

 Binary search.

Step 1: Define the binary_search Function:

 Define the binary_search function to search for a target element in a

sorted array using binary search.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 37 Periyar University – CDOE| Self-Learning Material

 Initialize left as 0 and right as the index of the last element in the array.

 While the left index is less than or equal to the right index:

 Calculate the mid index as the average of left and right.

 If the element at the mid index equals the target, return the mid

index.

 If the element at the mid index is less than the target, update the

left index to mid + 1.

 If the element at the mid index is greater than the target, update

the right index to mid - 1.

 If the target is not found after the loop, return -1.

Step 2: Test the Binary Search:

 Initialize a sorted array arr.

 Define the target element to be searched.

 Call the binary_search function with the array and target as arguments.

 If the result is not -1, print the index at which the target is found.

 If the result is -1, print a message indicating that the target is not found.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 38 Periyar University – CDOE| Self-Learning Material

CODING:

Linear Search:

def linear_search(arr, target):

 for i in range(len(arr)):

 if arr[i] == target:

 return i

 return -1

Test the linear search

arr = [3, 5, 7, 2, 8, 4]

target = 7

result = linear_search(arr, target)

if result != -1:

 print(f"Element {target} found at index {result}")

else:

 print(f"Element {target} not found")

output:

Element 7 found at index 2

CDOE - ODL B.Sc Computer Science – SEMESTER II

 39 Periyar University – CDOE| Self-Learning Material

Binary Search (for sorted arrays):

def binary_search(arr, target):

 left, right = 0, len(arr) - 1

 while left <= right:

 mid = (left + right) // 2

 if arr[mid] == target:

 return mid

 elif arr[mid] < target:

 left = mid + 1

 else:

 right = mid - 1

 return -1

Test the binary search

arr = [2, 4, 6, 8, 10, 12, 14, 16]

target = 10

result = binary_search(arr, target)

if result != -1:

 print(f"Element {target} found at index {result}")

else:

 print(f"Element {target} not found")

output:

Element 10 found at index 4

RESULT:

The python program for implementing Linear search and Binary search has been

executed and the results are verified successfully.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 40 Periyar University – CDOE| Self-Learning Material

.PROGRAM -9

AIM:

To write a programs for implementing Bubble sort , Selection sort, Insertion sort and

Radix sort.

ALGORITHM:

 Bubble sort

Step 1: Define the bubble_sort Function:

 Define the bubble_sort function to sort an array using the bubble sort

algorithm.

 Initialize n as the length of the array.

 Iterate over the array using two nested loops:

 The outer loop runs from 0 to n-1 and represents the pass

number.

 The inner loop runs from 0 to n-i-1 and represents the

comparisons within each pass.

 Compare adjacent elements and swap them if they are in the

wrong order.

 After completing the inner loop for each pass, the largest element will

be placed at its correct position.

 Repeat this process for all elements by decrementing the range of the

inner loop in each iteration.

Step 2: Test the Bubble Sort:

 Initialize an array arr with elements.

 Call the bubble_sort function with the array arr as an argument to sort

it.

 Print the sorted array.

 Selection sort

Step 1: Define the selection_sort Function:

CDOE - ODL B.Sc Computer Science – SEMESTER II

 41 Periyar University – CDOE| Self-Learning Material

 Define the selection_sort function to sort an array using the selection

sort algorithm.

 Initialize n as the length of the array.

 Iterate over the array using a loop from 0 to n-1:

 Set min_index as the current index i.

 Iterate over the unsorted portion of the array using a nested loop

from i+1 to n:

 If the element at index j is smaller than the element at

min_index, update min_index to j.

 Swap the element at index i with the element at min_index,

effectively placing the smallest unsorted element in its correct

position.

Step 2: Test the Selection Sort:

 Initialize an array arr with elements.

 Call the selection_sort function with the array arr as an argument to

sort it.

 Print the sorted array.

Insertion sort

Here's an algorithm to represent the given code for insertion sort:

Step 1: Define the insertion_sort Function:

 Define the insertion_sort function to sort an array using the insertion

sort algorithm.

 Initialize n as the length of the array.

 Iterate over the array using a loop from the second element (index 1) to

the last element (index n-1):

 Set key as the current element at index i.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 42 Periyar University – CDOE| Self-Learning Material

 Set j as the index preceding i.

 While j is greater than or equal to 0 and the element at index j is

greater than key:

 Move the element at index j one position ahead to make

space for key.

 Decrement j to continue checking elements to the left.

 Place key in its correct sorted position after the while loop.

Step 2: Test the Insertion Sort:

 Initialize an array arr with elements.

 Call the insertion_sort function with the array arr as an argument to sort

it.

 Print the sorted array.

 Radix sort.

Step 1: Define the counting_sort Function:

 Define the counting_sort function to sort an array using the counting

sort algorithm.

 Initialize an output array of size n with all elements as 0.

 Initialize a count array of size 10 with all elements as 0.

 Iterate over the array arr:

 Calculate the index based on the current element and the exp

value.

 Increment the count at the calculated index.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 43 Periyar University – CDOE| Self-Learning Material

 Update the count array to store the cumulative count of elements.

 Iterate over the array arr in reverse order:

 Calculate the index based on the current element and the exp

value.

 Place the element at the correct position in the output array

based on the count array.

 Decrement the count at the calculated index.

 Update the original array arr with the sorted output array.

Step 2: Define the radix_sort Function:

 Define the radix_sort function to sort an array using the radix sort

algorithm.

 Find the maximum value in the array to determine the number of digits.

 Initialize exp as 1.

 While the maximum value divided by exp is greater than 0:

 Call the counting_sort function with the array and exp as

arguments.

 Multiply exp by 10 for the next iteration.

Step 3: Test the Radix Sort:

 Initialize an array arr with elements.

 Call the radix_sort function with the array arr as an argument to sort it.

 Print the sorted array.

CDOE - ODL B.Sc Computer Science – SEMESTER II

 44 Periyar University – CDOE| Self-Learning Material

CODING:

 Bubble sort

def bubble_sort(arr):

 n = len(arr)

 for i in range(n):

 for j in range(0, n-i-1):

 if arr[j] > arr[j+1]:

 arr[j], arr[j+1] = arr[j+1], arr[j]

Test the Bubble Sort

arr = [64, 34, 25, 12, 22, 11, 90]

bubble_sort(arr)

print("Sorted array using Bubble Sort:", arr)

OUTPUT:

Sorted array using Bubble Sort: [11, 12, 22, 25, 34, 64, 90]

CDOE - ODL B.Sc Computer Science – SEMESTER II

 45 Periyar University – CDOE| Self-Learning Material

 Selection sort

def selection_sort(arr):

 n = len(arr)

 for i in range(n):

 min_index = i

 for j in range(i+1, n):

 if arr[j] < arr[min_index]:

 min_index = j

 arr[i], arr[min_index] = arr[min_index], arr[i]

Test the Selection Sort

arr = [64, 34, 25, 12, 22, 11, 90]

selection_sort(arr)

print("Sorted array using Selection Sort:", arr)

OUTPUT:

Sorted array using Selection Sort: [11, 12, 22, 25, 34, 64, 90]

CDOE - ODL B.Sc Computer Science – SEMESTER II

 46 Periyar University – CDOE| Self-Learning Material

 Insertion sort:

def insertion_sort(arr):

 n = len(arr)

 for i in range(1, n):

 key = arr[i]

 j = i - 1

 while j >= 0 and key < arr[j]:

 arr[j + 1] = arr[j]

 j -= 1

 arr[j + 1] = key

Test the Insertion Sort

arr = [64, 34, 25, 12, 22, 11, 90]

insertion_sort(arr)

print("Sorted array using Insertion Sort:", arr)

output:

 Sorted array using Insertion Sort: [11, 12, 22, 25, 34, 64, 90]

CDOE - ODL B.Sc Computer Science – SEMESTER II

 47 Periyar University – CDOE| Self-Learning Material

 Radix Sort:

def counting_sort(arr, exp):

 n = len(arr)

 output = [0] * n

 count = [0] * 10

 for i in range(n):

 index = arr[i] // exp

 count[index % 10] += 1

 for i in range(1, 10):

 count[i] += count[i - 1]

 i = n - 1

 while i >= 0:

 index = arr[i] // exp

 output[count[index % 10] - 1] = arr[i]

 count[index % 10] -= 1

 i -= 1

 i = 0

 for i in range(n):

 arr[i] = output[i]

def radix_sort(arr):

 max_value = max(arr)

 exp = 1

 while max_value // exp > 0:

 counting_sort(arr, exp)

 exp *= 10

CDOE - ODL B.Sc Computer Science – SEMESTER II

 48 Periyar University – CDOE| Self-Learning Material

Test the Radix Sort

arr = [170, 45, 75, 90, 802, 24, 2, 66]

radix_sort(arr)

print("Sorted array using Radix Sort:", arr)

output:

Sorted array using Radix Sort: [2, 24, 45, 66, 75, 90, 170, 802]

RESULT:

The python program for implementing Bubble sort , Selection sort, Insertion sort and

Radix sort has been executed and the results are verified successfully.

