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Graphy Theory and Applcations

OBJECTIVES: The objective of the course is to introduce students with

the fundamental concepts in graph theory, with a sense to know some of

the new developments and its modern applications. They will be able

to use these concepts/techniques in subsequent courses in the design and

analysis of algorithms, software engineering and computer systems.

UNIT I: Graphs and Digraphs

Basic concepts – subgraphs – degrees of vertices – paths and connect-

edness – automorphism of a simple graphs – line graphs –operations on

graphs –applications to social psychology - basic concepts in digraphs –

tournaments.

UNIT II: Connectivity and trees

Vertex cuts and edge cuts - connectivity and edge connectivity - Cycli-

cal edge connectivity of a graph - Definition, Characterization and simple

properties of trees - centers and centraoids - counting spanning trees -

Cayley’s formula - Applications: Connector Problem - Kruskal’s Algo-

rithm.

UNIT III: Independent sets, Matchings and Cycles

Independents sets and coverings (both vertex & edge) - matchings and

factors - matchings in bipartite graphs - Eularian graphs and Hamilto-

nian graphs - Introduction - Eulerian Graphs - Hamiltonian Graphs - 2-

Factorable Graphs.

[] Peiyar University-ODL | Self-Learning Material



M.Sc. MATHEMATICS-SEMESTER-I

UNIT IV:Graph colorings

Vertex colorings – applications of graph coloring - critical graphs - Brooks

Theorem - other coloring parameters - b-colorings; Edge colorings - the

time table problem - Vizings theorem - Kirkman’s Schoolgirl Problem -

chromatic polynomials.

UNIT V: Planar Graphs Planar and non planar graphs – Euler formula

and its consequences – K5 and K3,3 are non planar graphs – dual of a

plane graph – The four color theorem and the Heawood five color theo-

rem – Hamiltonian plane graphs – Tait coloring.
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Second Edition, Springer, New York, 2012.
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1. J. Clark and D.A. Holton, A First look at Graph Theory, Allied Pub-

lishers, New Delhi, 1995.

2. R.J. Wilson and J.J. Watkins, Graphs: An Introductory Approach,

John Wiley and Sons, New York, 1989.

3. S.A. Choudum, A First Course in Graph Theory, MacMillan India

Ltd. 1987.

4. J.A. Bondy and U.S.R. Murty, Graph Theory and Applications, Macmil-

lan, London, 1976.
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Unit 1

Graphs and Digraphs

Objectives

1. To understand the basic concepts of graph theory, including defini-

tions, diagrammatic representation of graphs, and types of graphs

2. To understand the significance of paths and cycles

3. To gain knowledge about graphs like Line graphs, and various oper-

ations on graphs

4. To understand the basic concepts of directed graphs

5. To learn about some important results on tournaments

1.1 Introduction

In mathematics, graph theory is the study of graphs, which are math-

ematical structures used to model pairwise relations between objects. A

graph in this context is made up of vertices (also called nodes or points)

which are connected by edges (also called links or lines).

Graphs serve as mathematical models to analyze many concrete real-

world problems successfully. Some puzzles and several problems of a

3
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practical nature have been instrumental and played major role in the de-

velopment of various topics in graph theory.

1.2 Basic Concepts

Definition 1. A graph is an ordered triple G =
(
v(G), E(G), I(G)

)
,

where V (G) is a non-empty set, E(G) is a set disjoint from V (G), and

I(G) is an Incidence relation that associates with each element of E(G)

to an unordered pair of elements (same or distinct) of V (G). Elements of

V (G) are called the vertices ofG and the elements ofE(G) are called the

edges of G. If, for the edge e of G, IG(e) = {u, v}, we write IG(e) = uv.

Example 2. If the vertex set V (G) = {v1, v2, v3, v4, v5}, the edge set

E(G) = {e1, e2,
e3, e4, e5, e6} and IG is given by

IG(e1) = {v1, v5}
IG(e2) = {v2, v3}
IG(e3) = {v2, v4}
IG(e4) = {v2, v5}
IG(e5) = {v2, v5}
IG(e6) = {v3, v3}

Then G =
(
v(G), E(G), I(G)

)
is a graph.

Note: Diagrammatic representation of a graph. Each graph can be rep-

resented by a diagram in the plane. In this diagram, each vertex of the

graph is represented by a point and each edge is represented by a line

joining two vertices.

Definition 3.

[4] Peiyar University-ODL | Self-Learning Material
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bb bb bbb

b

bb

v1 v5 v2

v4

v3
e1

e5

e4

e6

e2

e3

Figure 1.1: The graph
(
v(G), E(G), I(G)

)
described in example 2

(i) If IG(e) = uv the the vertices u and v are called the end vertices or

ends of the edge e. The vertices u and v are then said to be incident with

e.

(ii) A set of two or more edges of a graph G is called a set of multiple or

parallel edges if they have the same pair of distinct ends.

(iii) An edge for which the two ends are the same called a loop at the

common vertex.

(iv) A vertex u is a neighbor of v in G, if uv is an edge of G and u ̸= v.

(v) The set of all neighbors of v is the open neighborhood of v or the

neighbor set of v, and is denoted by NG(v).

(vi) The set NG(v) = NG(v) ∪ {v} is the closed neighborhood of v in G.

(vii) Vertices u and v are adjacent each other G if and only if there is an

edge of G with u and v as its ends.

(viii) Two distinct edges e and f are said to be adjacent if and only if they

have a common end vertex.

(ix) A graph is simple if it has no loops and no multiple edges. Thus, for a

simple graph the incidence function In is one-to-one.

Example 4. In the graph of Fig 1.1,

(i) The vertices v1 and v5 are end vertices of the edge e1.

[5] Peiyar University-ODL | Self-Learning Material
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(ii) The edges e4 and e5 are parallel edges.

(iii) The edge e6 is a loop at v3.

(iv) The vertex v4 is a neighbor of v2.

(v) NG(v2) = {v3, v4, v5}.

(vi) NG(v2) = {v2, v3, v4, v5}.

(vii) The vertices v1 and v5 are adjacent, where as the vertices v1 and v2

are non-adjacent.

(viii) The edges e2 and e3 are adjacent, where as the edges e1 and e2 are

non-adjacent.

(ix) As there are multiple edges and a loop, the graph is not a simple

graph. Example of a simple graph is given in Fig.1.2.

bb bb

b bb

v1 v2

v4 v3

e1

e2

e3

e4

Figure 1.2: A simple graph

Definition 5. A graph is called finite if both v(G) and E(G) are finite. A

graph that is not finite is called infinite graph. The number of vertices of

a graph G is denoted by n(G) and the number of edges of G is denoted by

m(G). The number n(G) is called the order of G and m(G) is the size of

G.

[6] Peiyar University-ODL | Self-Learning Material
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Example 6. In example 2, both V (G) and E(G) are finite, hence the

graph G is finite.In this graph G, n(G) = Order of G = |V (G)| = 5

m(G) = Size of G = |E(G)| = 6. Example of an infinite graph is given

in Fig.1.3.

b bb b

b b bb

bb b b

Figure 1.3: An infinite graph

Definition 7. A graph is said to be labelled if its n vertices are distin-

guished from one another by labels such as v1, v2, . . . , vn.

Example 8. The graph given in Fig. 1.2 is a labelled graph and the graph

given in Fig 1.3 is an unlabelled graph.

Definition 9. Let G =
(
V (G), E(G), IG

)
and H =

(
V (H), E(H), IH

)
be two graphs. A graph isomorphism from G to H is a pair (ϕ, θ) where

ϕ : V (G) → V (H) and θ : E(G) → E(H) are bijections with the

property that IG(e) = uv if and only if IH(θ(e)) = ϕ(u)ϕ(v).

Example 10. Fig 1.4 exhibits two isomorphic graphs P and H , where P

is the well-known Petersen Graph. We say that P is isomorphic to H and

denote it by P ∼= H .

Definition 11.

[7] Peiyar University-ODL | Self-Learning Material
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u3

u7

u8u9

u10

u6

v10

v7

v2 v1 v6

v9v3

v4

v5 v8

P
H

Figure 1.4: Isomorphic graphs

(i) A simple graph is said to be complete if every pair of distinct vertices

of G are adjacent in G. A complete graph on n vertices is denoted by

Kn. The number of edges in Kn is
(
n
2

)
= n(n−1)

2

(iii) A graph may possess no edge at all such a graph is called a totally

disconnected graph. Thus for a simple graph G, 0 ≤ m(G) = n(n−1)
2

[8] Peiyar University-ODL | Self-Learning Material
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Example 12.

(i) In Fig.1.5, the complete graph K1, K2, K3, K4 and K5 are given.

b b

bbbb

b

b

b b

b

b

b

b

b

b

b b

b

b

K1 K2 K3 K5K4

Figure 1.5: Some simple graphs

(ii) In Fig.1.6, A totally disconnected graph on five vertices is given.

b

b b

b b

Figure 1.6: A totally disconnected graph on five vertices

Definition 13.

(i) A graph is trivial if its vertex set is singleten and it contains no edges.

(ii) A graph is bipartite if its vertex set can be partitioned into two non-

empty subsets X and Y such that each edge of G has one end in X and

the other in Y . The pair (X, Y ) is called a bipartitioned of the bipar-

tite graph. The bipartite graph G with bipartition (X, Y ) is denoted by

G(X, Y ).

(iii) A simple bipartite graph G(X, Y ) is complete if each vertex of X is

adjacent to all the vertices of Y . If G(X, Y ) is complete with |X| = p

and |Y | = q then G(X, Y ) is denoted by Kp,q.

(iv) A complete bipartite graph of the form K1,q is called a star.

[9] Peiyar University-ODL | Self-Learning Material
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Example 14.

(i) K1 is a trivial graph.

(ii) A bipartite graph G(X, Y ) is given in Fig.1.7

b

b

b

b

b

b

b

b

b

X Y

Figure 1.7: A bipartite graph

(iii) The complete bipartite graph K2,3 is given in Fig.1.8

bb

bb

b

b

b

Figure 1.8: The graph K2,3

(iv) A star graph is shown in Fig.1.9

[10] Peiyar University-ODL | Self-Learning Material
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bb

b

b

bb

b

Figure 1.9: The Star graph K1,5

Definition 15.

(i) Let G be a simple graph. The complement Gc of G is defined by taking

V (Gc) = V (G) and two vertices u and v are adjacent in Gc if and only if

they are non-adjacent in G.

(ii) A simple graph G is called self-complementary if G ∼= Gc

Example 16.

(i) A graph G and its complement Gc is shown in Fig.1.10

b bbb

bb b bb

bbb

b b

bb

b

u1 u2

u3 u4 u5

u1

u3 u4 u5

u2

G Gc

Figure 1.10: A graph G and its complement Gc

(ii) A self complementary graph is shown in Fig.1.11

Let us Sum Up:

In this section, we have studied definitions of graph, parallel edges, loop,

neighborhood (open/closed), trivial representation of graph, order, labeled/

[11] Peiyar University-ODL | Self-Learning Material
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b

bbb b

bb bb

b

b

bb

G Gc

Figure 1.11: A self complementary graph

unlabeled graph, isomorphism of graphs, complete graph, bipartite graphs,

self complementary graphs, etc. with relevant diagrams for better under-

standing.

Check your progress:

1. If G is disconnected, then G is .......

(a) connected (b) disconnected

(c) bipartite (d) complete bipartite

2. If G is self-complementary graph of order n, then ..........

(a) x ≡ 0, 1(mod4) (b) x ≡ 2(mod4)

(c) x ≡ 3(mod4) (d) b & c

Illustration:

1. Every simple graph G is a subgraph of a complete graph, m(G) ≤
m(Kn).

2. If G is self complementary, then we define m(G) +m(Gc) = m(Kn).

Hence m(Kn) must be even.

[12] Peiyar University-ODL | Self-Learning Material
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1.3 Subgraphs

Definition 17.

(i) A graphH is called a subgraph ofG if V (H) ⊆ V (G), E(H) ⊆ E(G)

and IH is the restriction of IG to E(H). If H is a subgraph of G then G is

said to be a super graph of H . A subgraph H of a graph G is a proper

subgraph of G if either V (H) ̸= V (G) or E(H) ̸= E(G).

(ii) A subgraph H of G is said to be an induced subgraph of G if each

edge of G having its ends in V (H) is also an edge of H .

(iii) A subgraphH ofG is said to be a spanning subgraph ofG if V (H) =

V (G).

(iv) The induced subgraph of G with vertex set S ⊆ V (G) is called the

subgraph of G induced by S and is denoted by G[S].

(v) The edge induced subgraph of G with E′ ⊆ E(G) is called the sub-

graph of G induced by the edge set E′ and is denoted by G[E′].

(vi) Let u and v be the vertices of a graph G. By G + uv, we mean the

graph obtained by adding a new edge uv to G.

(vii) A clique of G is a complete subgraph of G. A clique of G is a maxi-

mal clique of G if it is not properly contained in another clique of G.

Example 18.

(i) In Fig.1.12 a subgraph of a graph G (given in example 1.2.2) is given.

b bb bb
v1 v5 v2e1 e4

Figure 1.12: A subgraph of G

[13] Peiyar University-ODL | Self-Learning Material
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b b b
v1 v5 v2

e1

e4

e2

Figure 1.13: An induced subgraph of G

(ii) In Fig.1.13 an induced subgraph H of G is given, where, V (H) =

{v1, v2, v5}.

(iii) A spanning subgraph of G is given in Fig.1.14

b b bb

bb

bb

v1 v5 v2

v4

v3

e1

e4

e3

e6

Figure 1.14: A spanning subgraph of G

(iv) Let S = {v1, v2, v3}. The induced subgraph G[S] is given in Fig.1.15

b bb

bb

v1 v2

v3

e6

e2

Figure 1.15: An induced subgraph of G induced by S = {v1, v2, v3}

(v) Let E ′ = {e1, e2, e3}. The edge induced subgraph G[E′] is given in

Fig.1.16

(vi) In Fig. 1.17, the graph G+ v3v4 is given.

(vii) A clique of G is given in Fig.1.18. Note that it is also a maximal

clique. A clique of G, that is not maximal is given in Fig.1.19

[14] Peiyar University-ODL | Self-Learning Material
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b bb

bb

v5 v2

v3
e2

b

b
v4

v1 e1

e3

Figure 1.16: An edge-induced subgraph ofG induced byE′ = {e1, e2, e3}

b bb

bb

v5 v2

v3

e6

e2
b

b
v4

v1

e1

e4

e5

e3

e7

Figure 1.17: G+ v3v4

b
v5

b
v1 e1

Figure 1.18: A clique of G

b
v1

Figure 1.19: A clique of G that is not maximal

Definition 19. Deletion of vertices and edges in a graph:

(i) Let G be a graph and S ⊆ V (G). The subgraph G[V \ S] is said to be

obtained from G by deletion of S. This subgraph is denoted by G− S. If

S = {v}, then G− S is denoted by G− v

(ii) Let E′ ⊆ E(G). The spanning subgraph of G with the edge set E \E′

is the subgraph obtained from G by deleting the edge subset F ′. This

subgraph is denoted by G − E′. If E′ = {e}, then G − E′ is denoted by

[15] Peiyar University-ODL | Self-Learning Material
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G− e.

Example 20.

(i) Let S = {v1, v3, v4}. The subgraph G− S is given in Fig.1.20(a). The

graph G− v2 is given in Fig.1.20(b).

b
v5

b
v2

e5

e4

(a) : G− S

bb bb

bb

bbb

v1 v5

v4

v3

e6

e1

(b) : G− v2

Figure 1.20: G− S and G− v2

(ii) Let S = {e1, e2, e4}. The subgraph G−E ′ is given in Fig.1.21(a). The

graph G− e1 is given in Fig.1.21(b).

bb b b

bb

bbb

v1 v5 v2

v4

v3

e6

e3

e5

(a) : G− E′

[16] Peiyar University-ODL | Self-Learning Material



M.Sc. MATHEMATICS-SEMESTER-I

bb b b

bb

bbb

v1 v5 v2

v4

v3

e6

e3

e5

e2e4

(b) : G− e1

Figure 1.21: G− E′ and G− e1

Note: When a vertex deleted from G, all the edges incident to it are also

deleted from G, whereas the deletion of an edge from G does not affect

the vertices of G.

Let us Sum Up:

In this section, we have studied different types of subgraphs namely, in-

duced subgraphs, spanning subgraphs, clique etc. with examples and dia-

grams for better understanding.

Answer: 1. (c)

Check your progress:

1. Whether the subgraphs containing all the edges of a given graph is

spanning?

(a) yes (b) no (c) not always (d) never

1.4 Degrees of Vertices

Definition 21.

(i) let G be a graph and v ∈ V . The number of edges incident at v in G

[17] Peiyar University-ODL | Self-Learning Material
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is called the degree (or valency) of the vertex v in G and is denoted by

dG(v) or d(v).

(ii) A loop at v is to be counted twice in computing the degree of v. The

minimum of the degrees of the vertices of a graph G is denoted by δ(G)

and the maximum degree of the vertices of a graphG is denoted by ∆(G).

(iii) A graph G is called k-regular if every vertex of G has degree k.

(iv) A graph is said to be regular if it is k-regular for some non-negative

integer k.

(v) A 3- regular graph is called a cubic graph.

Example 22.

(i) For the graph G, given in example 1.2.2
d(v1) = 1; d(v2) = 4; d(v3) = 3;

d(v4) = 1; d(v5) = 3

(ii) In the same graph G, δ(G) = 1; ∆(G) = 4

(iii) The graph K3 is 2-regular.

(iv) All complete graphs are regular graphs. The graph Kn is (n − 1)-

regular.

(v) The graph K4 is cubic.

Definition 23.

(i) A spanning 1-regular subgraph of G is called a 1-factor or a perfect

matching of G.

(ii) A vertex of degree 0 is an isolated vertex of G. A vertex of degree 1 is

called a pendant vertex of G and the unique edge of G incident to such

a vertex of G is a pendent edge of G.

[18] Peiyar University-ODL | Self-Learning Material
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(iii) A sequence formed by the degree of the vertices ofG, when the vertices

are taken in the same order, is called a degree sequence of G.

Example 24.

(i) In Fig. 1.22, a graph G and its 1-factor is shown.

bb

bbb bb

b bb

bb bb

b

a b

d c d c

a b

A graph G An 1- factor of G

Figure 1.22: A graph G and its 1- factor

(ii) In the graph G given in Fig.1.23, the vertex v7 is an isolated vertex,

the vertex v6 is a pendent vertex and v5v6 is a pendent edge.

bb

bbb bb

b

v5 v4

v1 v2

Gb
v6

b
v7

bbv3

Figure 1.23: Isolated and pendent vertices in a graph

(iii) The degree sequence of G is (0, 1, 2, 2, 4, 4, 5)

Theorem 25. (Euler) The sum of the degrees of the vertices of a graph is

equal to twice the number of its edges.
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Proof. If e = uv is an edge of G, then e is counted once while counting

the degrees of each of u and v. Hence, each edge contributes 2 to the sum

of the degrees of the vertices. Thus, the m edges of G contributes 2m to

the degree sum.

Corollary 26. In any graph G, the number of vertices of odd degree is

even.

Proof. Let V1 and V2 be the subsets of vertices of G with odd and even

degrees respectively. By Theorem 25, we have

2m =
∑
v∈V

dG(v)

2m =
∑
v∈V1

dG(v) +
∑
v∈V2

dG(v)

we know that 2m and
∑

v∈V2
dG(v) are even. Hence,

∑
v∈V2

dG(v) is even.

Since for each v ∈ V1, dG(v) is odd, we have |V1| must be even.

Definition 27. Graphical Sequences: A sequence of non-negative in-

tegers d = (d1, d2, . . . , dn) is called graphical if there exists a simple

graph whose degree sequence is d. Clearly, a necessary condition for

d = (d1, d2, . . . , dn) to be graphical is that
∑n

i=1 di is even and di ≥
0, 1 ≤ i ≤ n.

These conditions, however, are not sufficient, as example 28. shows.

Example 28. The sequence d = (7, 6, 3, 3, 2, 1, 1, 1) is not graphical.

Even though each term of d is a non-negative integers and the sum of

the terms is even, d is not graphical. Suppose, if d is graphical, then there

exists a simple graph G with eight vertices whose degree sequence is d.

Let v1 be the vertex of G with degree 7. Since G is simple, v1 is adjacent

to all the remaining vertices of G. Let v2 be the vertex of G with degree 6.
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Then v2 must be adjacent to another five vertices (already v1 is adjacent

to v2. Continuing in this way, we observe that we can’t get three pendent

vertices.

Theorem 29. In any group of n persons(n ≥ 2), there are at least two

with the same number of friends.

Proof. Denote the n persons by v1, v2, v3, . . . , vn. Let G be the simple

graph with vertex set V = {v1, v2, v3, . . . , vn} in which vi and vj are

adjacent if and only if the corresponding persons are friends. Then the

number of friends of v1 is just the degree of vi in G. Hence, to solve

the problem, we must prove that there are vertices in G with the same

degree. Suppose this is not true. Then the degree of the vertices of G

must be distinct. i.e., 0, 1, 2, . . . , (n − 1). Vertex of degree (n − 1) must

be adjacent to all the other vertices of G. Hence, there can not be a vertex

of degree 0 in G. This contradiction shows that the degrees of the vertices

of G can not all be distinct and hence at least two of them should have the

same degree.

Let us Sum Up:

Regular graph need not be a factor and factor need not be regular graph.

No odd regular graph of odd order exist, since nowhere of odd degree

vertex must always be even.

Check your progress:

1. If G is a regular bipartite graph with bipartite (X, Y ), then .......

(a) |X| ≤ |Y | (b) |X| < |Y | |X| = |Y | (c) |X| ≠ |Y |
Answer: 1. (c)
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1.5 Paths and Connectedness

Definition 30.

(i) A walk in a graphG is an alternating sequenceW = v0e1v1e2v2 . . . epvp

of vertices and edges beginning and ending with vertices in which vi−1

and vi are the ends of ei; v0 is the origin and vp is the terminus of W .

(ii) The walk W is said to join v0 and vp; it is also referred to as a v0 − vp

walk.

(iii) If the graph is simple, a walk is determined by the sequence of its

vertices. The walk is closed if v0 = vp and is open otherwise.

(iv) A walk is called a trail if all the edges appearing in the walk are

distinct. It is called a path if all the vertices are distinct.

(v) A cycle is a closed trail in which the vertices are all distinct. The length

of a walk is the number of edges in it. A walk of length 0 consists of just a

single vertex.

Example 31. In the graph of Fig.1.24,

(i) v5e7v1e1v2e4v4e5v1e7v5e9v6 is a walk but not a trail (as edge e7 is re-

peated).

(ii) v1e1v2e2v3e3v2e1v1 is a closed walk.

(iii) v1e1v2e4v4e5v1e7v5 is a trail.

(iv) v6e8v1e1v2e2v3 is a path.

(v) v1e1v2e4v4e6v5e7v1 is a cycle.

Definition 32.
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Figure 1.24: graph illustrating walks, trails, paths, and cycles

(i) A cycle of length k is denoted by Ck. Further, Pk denotes a path on

k vertices. In particular, C3 is often referred to as a triangle, C4 as a

square, and C5 as a pentagon.

(ii) If P = v0e1v1e2v2 . . . ekvk is a path, then P−1 = vkekvk−1ek−1vk−2 . . . v1e1v0

is also a path and P−1 is called the inverse of the path P .

(iii) The subsequence viei+1vi+1 . . . ejvj of P is called the vi − vj section

of P .

Definition 33.

(i) Let G be a graph. Two vertices u and v of G are said to be connected

if there is a u− v path in G. The relation ”connected” is an equivalence

relation on V (G).

(ii) Let V1, V2, . . . , Vω be the equivalence classes. The subgraphsG[V1], G[V2], . . . , G[Vω]

are called the components of G.

(iii) If ω = 1; the graph G is connected; otherwise, the graph G is discon-

nected with ω ≥ 2 components. (see Fig. 1.25).

Definition 34. The components of G are clearly the maximal connected

subgraphs of G. We denote the number of components of G by ω(G).

Let u and v be two vertices of G. If u and v are in the same component

[23] Peiyar University-ODL | Self-Learning Material



M.Sc. MATHEMATICS-SEMESTER-I

b

b bb

bb bb

bb b

b

G[v1] G[v2] G[v3]

Figure 1.25: A graph G with three components

of G, we define d(u, v) to be the length of a shortest u − v path in G,

otherwise, we define d(u, v) to be ∞. If G is a connected graph, then

d is a distance function or metric on V (G) that is, d(U, V ) satisfies the

following conditions:

(i) d(u, v) ≥ 0, and d(u, v) = 0 if and only if u = v.

(ii) d(u, v) = d(v, u).

(iii) d(u, v) ≤ d(u,w) + d(w, v), for every w in V (G)

Proposition 35. If G is simple and δ ≥ n−1
2 , then G is connected.

Proof. Assume the contrary. Then G has at least two components, say

G1, G2. Let v be any vertex of G1, As δ ≥ n−1
2 , d(v) ≥ n−1

2 . All the

vertices adjacent to v in G must belong to G1. Hence, G1 contains at least

d(v) + 1 ≥ n−1
2 + 1 = n−1

2 vertices. Similarly, G2 contains at least n+1
2

vertices. Therefore G has at least n+1
2 + n+1

2 = n+ 1 vertices, which is a

contradiction.

Theorem 36. If a simple graph G is not connected, then Gc is connected.

Proof. Let u and v be any two vertices of Gc (and therefore of G). If

u and v belong to different components of G, then obviously u and v

are nonadjacent in G and so they are adjacent in Gc. Thus u and v are

[24] Peiyar University-ODL | Self-Learning Material



M.Sc. MATHEMATICS-SEMESTER-I

connected in Gc. In case u and v belong to the same component of G,

take a vertex w of G not belonging to this component of G. Then uw and

vw are not edges of G and hence they are edges of Gc. Then uwv is a

u− v path in Gc. Thus Gc is connected.

Theorem 37. The number of edges of a simple graph of order n having ω

components cannot exceed (n−ω)(n−ω+1)
2 .

Proof. LetG1, G2, . . . , Gω be the components of a simple graph G and let

ni be the number of vertices of Gi, 1 ≤ i ≤ ω. Then m(Gi) ≤ ni(ni−1)
2 ,

and hence m(Gi) ≤ ∑ω
i=1

ni(ni−1)
2 Since ni ≥ 1 for each i, 1 ≤ i ≤ ω.

n1 = (n1+n2+. . .+ni−1+. . .+ni+1+. . .+nω). Hence,
∑ω

i=1
ni(ni−1)

2 ≤∑ω
i=1

(n−ω+1)(ni−1)
2 = (n−ω+1)

2

∑ω
i=1(ni−1) = (n−ω+1)

2 [(
∑ω

i=1 ni)−ω] =
(n−ω+1)(n−ω)

2 .

Definition 38.

(i) A graph G is called locally connected if, for every vertex v of G, the

subgraph induced by the neighbor set NG(v) in G is connected.

(ii) A cycle is odd or even depending on whether its length is odd or even.

Theorem 39. A graph is bipartite if and only if it contains no odd cycles.

Proof. Suppose thatG is a bipartite graph with the bipartition (X, Y ). Let

C = v1e1v2e2v3e3 . . . vkekv1 be a cycle in G. Without loss of generality,

we can suppose that v1 ∈ X . As v2 is adjacent to v1, v2 ∈ Y . Similarly,

v3 belongs to X , v4 to Y , and so on. Thus, vi ∈ X or Y according as i is

odd or even,1 ≤ i ≤ k. Since vkv1 is an edge of G and v1 ∈ X, vk ∈ Y .

Accordingly, k is even and C is an even cycle.

Conversely, let us suppose that G contains no odd cycles. We first

assume that G is connected. Let u be a vertex of G. Define X = {v ∈
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V |d(u, v)is even} and Y = {v ∈ V |d(u, v)is even}. We will prove that

(X, Y ) is a bipartition of G. To prove this we have only to show that no

two vertices of X as well as no two vertices of Y are adjacent in G. Let

v, w be two vertices of X . Then p = d(u, v)and q = d(u,w) are even.

Further, as d(u, u) = 0, u ∈ X . Let P be a u − v shortest path of length

p and Q. a u − w shortest path of length q. (See Fig. 1.26.) Let w1 be

a vertex common to P and Q such that the w1 − v section of P and the

w1 − w section of Q contain no vertices common to P and Q. Then the

u−w1 sections of both P and Q have the same length. Hence, the lengths

b
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b b

b
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b b
b b

b
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b b
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u w1
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Figure 1.26: Graph for proof of Theorem 39

of the w1 − v section of P and the w1 − w section of Q are both even or

both odd. Now if e = vw is an edge of G, then the w1 − v section of P

followed by the edge vw and the w−w1 section of the w− u path Q−1 is

an odd cycle inG, contradicting the hypothesis. This contradiction proves

that no two vertices of X are adjacent in G. Similarly, no two vertices of

Y are adjacent in G. This proves the result when G is connected.

If G is not connected, let G1, G2, . . . , Gω be the components of G. By

hypothesis, no component of G contains an odd cycle. Hence, by the

previous paragraph, each component Gi, 1 ≤ i ≤ ω, is bipartite. Let

(Xi, Yi) be the bipartition of Gi. Then (X, Y ), where X =
⋃ω

i=1Xi and

Y =
⋃ω

i=1 Yi is a bipartition of G, and G is a bipartite graph.

Example 40. Prove that in a connected graph G with at least three ver-

tices, any two longest paths have a vertex in common.
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Proof. Suppose P = u1u2 . . . uk and Q = v1v2 . . . vk are two longest

paths in G having no vertex in common. As G is connected, there exists

a u1 − v1 path P ′ in G. Certainly there exist vertices ur and vs of P ′,

1 ≤ r ≤ k, 1 ≤ s ≤ k such that the ur − vs section P ′′ of P ′ has no

internal vertex in common with P or Q.

Now, of the two sections u1−ur and ur−uk of P , one must have length

at least k
2 . Similarly, of the two sections v1 − vs and vs − vk of Q, one

must have length at least k
2 . Let these sections be P1 and Q1, respectively.

Then P1 ∪ P ′′ ∪ Q1 is a path of length at least k
2 + 1 + k

2 , contradicting

that k is the length of a longest path in G.

Let us sum pp:

1. Locally connected graph need not be connected and vice-versa.

Example: rKs is locally connected but not connected. K1,n is connected

but not locally connected.

2. Acyclic graphs are bipartite but the converse not true.

Check your Progress:

1. Does Km,n posses regular factor?

(a) yes (b) no (c) yes when m = n (d) never

Answer: 1. (c)

1.6 Automorphism of a Simple Graph

Definition 41. An automorphism of a graph G is an isomorphism of G

onto itself.
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Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibu-
lum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.
Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec
vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Mauris ut leo.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibu-
lum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.
Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec
vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Mauris ut leo.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibu-
lum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.
Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec
vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Mauris ut leo.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Figure 1.27: Graph for the solution to Example 1.40

Theorem 42. The set Aut(G) of all automorphisms of a simple graph G

is a group with respect to the composition ◦ of mappings as the group
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operation.

Proof. We shall verify that the four axioms of a group are satisfied by the

pair (Aut(G), ◦).

(i) Let ϕ1 and ϕ2 be bijections on V (G) preserving adjacency and non-

adjacency. Clearly, the mapping ϕ1 ◦ ϕ2 is a bijection on V (G). If u and

v are adjacent in G, then ϕ2(u) and ϕ2(v) are adjacent in G. But (ϕ1 ◦
ϕ2)(u) = ϕ1(ϕ2(u)) and (ϕ1 ◦ ϕ2)(v) = ϕ1(ϕ2(v)). Hence, (ϕ1 ◦ ϕ2)(u)
and (ϕ1 ◦ ϕ2)(v) are adjacent in G; that is, ϕ1 ◦ ϕ2 preserves adjacency. A

similar argument shows that ϕ1◦ϕ2 preserves nonadjacency. Thus, ϕ1◦ϕ2
is an automorphism of G.

(ii) It is a well-known result that the composition of mappings of a set onto

itself is associative

(iii) The identity mapping I of V (G) onto itself is an automorphism of G,

and it satisfies the condition ϕ ◦ I = I ◦ ϕ for every ϕ ∈ Aut(G). Hence,

I is the identity element of Aut(G).

(iii) Finally, if ϕ is an automorphism of G, the inverse mapping ϕ−1 is also

an automorphism of G.

Theorem 43. For any simple graph G, Aut(G) = Aut(Gc).

Since V (Gc) = V (G), every bijection on V (G) is also a bijection on

V (Gc). As an automorphism of G preserves the adjacency and nonadja-

cency of vertices of G, it also preserves the adjacency and nonadjacency

of vertices of Gc. Hence, every element of Aut(G) is also an element of

Aut(Gc), and vice versa.

Let us Sum Up:

Any automorphism of G is also an automorphism of Gc.
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1.7 Line Graphs

Let G be a loopless graph. We construct a graph L(G) in the following

way: The vertex set of L(G) is in 1− 1 correspondence with the edge set

of G and two vertices of L(G) are joined by an edge if and only if the

corresponding edges of G are adjacent in G. The graph L(G) (which is

always a simple graph) is called the line graph or the edge graph of G.

Fig.1.28, shows a graph and its line graph in which vi of L(G) corre-

sponds to the edge ei of G for each i. Some simple properties of the line
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v5
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v1

G
L(G)

Figure 1.28: A graph G and its line graph L(G)

graph L(G) of a graph G follow:

1. G is connected if and only if L(G) is connected.

2. If H is a subgraph of G, then L(H) is a subgraph of L(G).

3. The edges incident at a vertex of G give rise to a maximal complete

subgraph of L(G).

4.If e = uv is an edge of a simple graph G, the degree of e in L(G) is

the same as the number of edges of G adjacent to e in G. This number is

dG(u) + dG(v)− 2. Hence, dL(G)(e) = dG(u) + dG(v)− 2.
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5. Finally, if G is a simple graph,∑
e∈V (L(G))

dL(G)(e) =
∑

uv∈E(G)

(dG(u) + dG(v)− 2)

=

[ ∑
u∈V (G)

dG(u)
2

]
− 2m(G)

=

[ n∑
i=1

d2i

]
− 2m.

(since uv belongs to the stars at u and v.

where (d1, d2, . . . , dn) is the degree sequence of G, and m = m(G). By

Euler’s theorem (Theorem 25), it follows that the number of edges of

L(G) is given by

m(L(G)) = 1
2

[∑n
i=1 d

2
i

]
−m.

Theorem 44. The line graph of a simple graph G is a path if and only if

G is a path.

Proof. Let G be the path Pn on n vertices. Then clearly, L(G) is the path

Pn−1 on n − 1 vertices. Conversely, let L(G) be a path. Then no vertex

of G can have degree greater than 2 because if G has a vertex v of degree

greater than 2, the edges incident to v would form a complete subgraph

of L(G) with at least three vertices. Hence, G must be either a cycle or a

path. But G cannot be a cycle, because the line graph of a cycle is again a

cycle.

Theorem 45. If the simple graphsG1 andG2 are isomorphic, then L(G1)

and L(G2) are isomorphic.

Proof. Let (ϕ, θ) be an isomorphism of G1 onto G2 Then θ is a bijection

of E(G1) onto E(G2). We show that θ is an isomorphism of L(G1) to

L(G2). We prove this by showing that θ preserves adjacency and non-
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adjacency. Let ei and ej be two adjacent vertices of L(G1). Then there

exists a vertex v of G1 incident with both ei and ej , and so ϕ(v) is a ver-

tex incident with both θ(ei) and θ(ej). Hence, θ(ei) and θ(ej) are adjacent

vertices in L(G2).

Now, let θ(ei) and θ(ej) be adjacent vertices in L(G2). This means that

they are adjacent edges in G2 and hence there exists a vertex v0 of G2

incident to both θ(ei) and θ(ej) in G2. Then ϕ−1(v′) is a vertex of G1

incident to both ei and ej , so that ei and ej are adjacent vertices of L(G1).

Thus, ei and ej are adjacent vertices ofL(G1) if and only if θ(ei) and θ(ej)

are adjacent vertices of L(G2). Hence, θ is an isomorphism of L(G1) onto

L(G2). (Recall that a line graph is always a simple graph.)

Definition 46. A graph H is called a forbidden subgraph for a prop-

erty P of graphs if it satisfies the following condition: If a graph G has

property P , then G cannot contain an induced subgraph isomorphic to

H .

Theorem 47. If G is a line graph, then K1,3 is a forbidden subgraph of

G.

Proof. Suppose that G is the line graph of graph H and that G contains a

K1,3 as an induced subgraph. If v is the vertex of degree 3 in K1,3 and v1,

v2, and v3 are the neighbors of v in this K1,3, then the edge e correspond-

ing to v in H is adjacent to the three edges e1, e2, and e3 corresponding

to the vertices v1, v2, and v3. Hence, one of the end vertices of e must

be the end vertex of at least two of e1, e2, and e3 in H , and hence v to-

gether with two of v1, v2, and v3 form a triangle in G. This means that the

K1,3 subgraph of G considered above is not an induced subgraph of G, a

contradiction.
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Let us Sum Up:

1. We have studied a type of trivial graph called line graph.

2. The graph G and L(G) are isomorphic iff G = Ca.

Check your Progress:

1. Check the statement G has a cyclic iff L(G) has a cyclic.

(a) true (b) false (c) never true (d) converse not true

Answer: 1. (d)

1.8 Operations on Graphs

Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs

Definition 48. Union of two graphs: The graph G = (V,E), where

V = V1 ∪ V2 and E = E1 ∪ E2 is called the union of G1 and G2 and is

denoted by G1 ∪G2.

When G1 and G2 are vertex disjoint, G1 ∪G2 is denoted by G1 +G2 and

is called the sum of the graphs G1 and G2.

Definition 49. Intersection of two graphs: If V1 ∩ V2 ̸= ∅, the graph

G = (V,E), where V = V1 ∩ V2 and E = E1 ∩ E2 is the intersection of

G1 and G2 and is written as G1 ∩G2.

Definition 50. Join of two graphs: Let G1 and G2 be two vertex-disjoint

graphs. Then the join G1∨G2 of G1 and G2 is the supergraph of G1+G2

in which each vertex of G1 is also adjacent to every vertex of G2. Fig.1.29

illustrates the graph G1 ∨G2. If G1 = K1 and G2 = Cn, then G1 ∨G2 is

called the wheel Wn. W5 is shown in Fig. 1.30. It is worthwhile to note
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Figure 1.29: G1 ∨G2
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Figure 1.30: Wheel W5

that Km,n = Kc
m ∨Kc

n and Kn = K1 ∨Kn−1.

It follows from the above definitions that

(i) n(G1∪G2) = n(G1)+n(G2)−n(G1∩G2),m(G1∪G2) = m(G1)+

m(G2)−m(G1 ∩G2).

(ii) n(G1 +G2) = n(G1) + n(G2),m(G1 +G2) = m(G1) +m(G2) and

(iii) n(G1 ∨ G2) = n(G1) + n(G2),m(G1 ∨ G2) = m(G1) +m(G2) −
n(G1)n(G2).
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Let us Sum Up:

IfG1 andG2 are disjoint, we can writeG1∨G2 = G1∪G2∪Km,n, where

m1 and m2 are order G1 and G2 respectively.

1.9 Application to Social Psychology

Group dynamics is the study of social relationships between people within

a particular group. The graphs that are commonly used to study these re-

lationships are signed graphs. A signed graph is a graph G with sign +

or − attached to each of its edges. An edge of G is positive (respectively,

negative) if the sign attached to it is + (respectively, −). A positive sign

between two persons u and v would mean that u and v are “related”, that

is, they share the same social trait under consideration. A negative sign

would indicate the opposite. The social trait may be “same political ide-

ology”, “friendship”, “likes certain social customs”, and so on. A group

of people with such relations between them is called a social system. A

social system is called balanced if any two of its people have a positive

relation between them, or if it is possible to divide the group into two

subgroups so that any two persons in the same subgroup have a positive

relation between them while two persons of different subgroups have a

negative relation between them. This of course means that if both u and

v have negative relation to w, then u and v must have positive relation

between them. In consonance with a balanced social system, a balanced

signed graph G is defined as a graph in which the vertex set V can be

partitioned into two subsets Vi, i = 1, 2, one of which may be empty, so

that any edge in each G[Vi] is positive, while any edge between V1 and V2

is negative.
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1.10 Directed Graphs

Directed graphs arise in a natural way in many applications of graph the-

ory. The street map of a city, an abstract representation of computer

programs, and network flows can be represented only by directed graphs

rather than by graphs. Directed graphs are also used in the study of se-

quential machines and system analysis in control theory.

Definition 51. A directed graphD is an ordered triple (V (D), A(D), ID),

where V (D), is a nonempty set called the set of vertices of D;A(D) is a

set disjoint from V (D), called the set of arcs ofD; and ID is an incidence

map that associates with each arc of D an ordered pair of vertices of D.

If a is an arc of D, and ID(a) = (u, v), u is called the tail of a, and v is

the head of a. The arc a is said to join v with u.u and v are called the

ends of a. A directed graph is also called a digraph.

With each digraph D, we can associate a graph G (written G(D) when

reference to D is needed) on the same vertex set as follows: Correspond-

ing to each arc of D, there is an edge of G with the same ends. This graph

G is called the underlying graph of the digraph D. Thus, every digraph

D defines a unique (up to isomorphism) graph G. Conversely, given any

graph G, we can obtain a digraph from G by specifying for each edge of

G an order of its ends. Such a specification is called an orientation of G.

A digraph and its underlying graph are shown in Fig.2.1 Many of the con-

cepts and terminology for graphs are also valid for digraphs. However,

there are many concepts of digraphs involving the notion of orientation

that apply only to digraphs.

Definition 52. If a = (u, v) is an arc of D, a is said to be incident out of

u and incident into v.v is called an outneighbor of u, and u is called an
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Figure 1.31: Diagraph D and its underlying graph G(D)

inneighbor of v. N+
D(u) denotes the set of outneighbors of u in D. Simi-

larly, N−
D(u) denotes the set of inneighbors of u in D. When no explicit

reference to D is needed, we denote these sets by N+(u) and N−(u), re-

spectively. An arc a is incident with u if it is either incident into or incident

out of u. An arc having the same ends is called a loop of D. The number

of arcs incident out of a vertex v is the outdegree of v and is denoted by

d+D(v) or d+(v). The number of arcs incident into v is its indegree and

is denoted by d−D(v) or d−(v). For the digraph D of Fig. 2.1, we have,

d+(v1) = 3; d+(v2) = 3; d+(v3) = 0; d+(v4) = 2; d+(v5) = 0; d+(v6) =

2; d−(v1) = 2; d−(v2) = 1; d−(v3) = 4; d−(v4) = 1; d−(v5) = 1; d−(v6) =

1. (The loop at v1 contributes 1 each to d+(v1) and d−(v1)).

The degree dD(v) of a vertex v of a digraph D is the degree of v in G(D).

Thus,d(v) = d+(v)+d−(v). As each arc of a digraph contributes 1 to the

sum of the outdegrees and 1 to the sum of indegrees, we have∑
v∈V (D)

d+(v) =
∑

v∈V (D)

d−(v) = m(D)

where m(D) is the number of arcs of D.

A vertex of D is isolated if its degree is 0; it is pendant if its degree is

[37] Peiyar University-ODL | Self-Learning Material



M.Sc. MATHEMATICS-SEMESTER-I

1. Thus, for a pendant vertex v, either d+(v) = 1 and d−(v) = 0, or

d+(v) = 0 and d−(v) = 1.

Figure 1.32: A strong diagraph (left) and a symmetric diagraph (right)

Definition 53.

1. A digraphD′ is a subdigraph of a digraphD if V (D′) ⊆ V (D), A(D′) ⊆
A(D), and ID′ is the restriction of ID to A(D′).

2. A directed walk joining the vertex v0 to the vertex vk inD is an alternat-

ing sequence W = v0a1v1a2v2 . . . akvk, 1 ≤ i ≤ k, with ai incident out of

vi−1 and incident into vi. Directed trails, directed paths, directed cycles,

and induced subdigraphs are defined analogously as for graphs.

3. A vertex v is reachable from a vertex u of D if there is a directed path

in D from u to v.

4. Two vertices of D are diconnected if each is reachable from the other

in D. Clearly, diconnection is an equivalence relation on the vertex set of

D, and if the equivalence classes are V1, V2, . . . , Vω, the subdigraphs of

D induced by V1, V2, . . . , Vω are called the dicomponents of D.

5. A digraph is diconnected (also called strongly-connected) if it has ex-

actly one dicomponent. A diconnected digraph is also called a strong

digraph.
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6. A digraph is strict if its underlying graph is simple. A digraph D is

symmetric if, whenever (u, v) is an arc of D, then (u, v) is also an arc of

D (see Fig. 2.3).

7. A directed spanning path is called directed Hamilton path.

8. A directed spanning cycle is called directed Hamilton cycle.

1.11 Tournaments

A digraph D is a tournament if its underlying graph is a complete graph.

Thus, in a tournament, for every pair of distinct vertices u and v, either

(u, v) or (v, u), but not both, is an arc of D. Figures 2.3 a, b display all

tournaments on three and four vertices, respectively.

Figure 1.33: Tournaments on (a) three and (b) four vertices

Theorem 54. (Rèdei). Every tournament contains a directed Hamilton

path.

Proof. (By induction on the number of vertices n of the tournament.) The

result can be directly verified for all tournaments having two or three ver-

tices. Hence, suppose that the result is true for all tournaments on n ≥ 3
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vertices. Let T be a tournament on n + 1 vertices v1, v2, . . . , vn+1. Now,

delete vn+1 from T . The resulting subdigraph T ′ of T is a tournament

on n vertices and hence by the induction hypothesis contains a directed

Hamilton path. Assume that the Hamilton path is v1v2 . . . vn, relabeling

the vertices, if necessary.

If the arc joining v1 and vn+1 has vn+1 as its tail, then vn+1v1v2 . . . vn is a

directed Hamilton path in T and the result stands proved (see Fig. 2.4a).

If the arc joining vn and vn+1 is directed from vn to vn+1, then v1v2 . . . vnvn+1

is a directed Hamilton path in T (see Fig. 2.4b). Now suppose that none

Figure 1.34: Digraphs for proof of Theorem 54

of (vn+1, v1) and vn, vn+1 is an arc of T . Hence, (v1, vn+1) and (vn+1, vn)

are arcs of T -the first arc incident into vn+1 and the second arc incident

out of vn+1. Thus, as we pass on from v1 to vn, we encounter a reversal of

the orientation of edges incident with vn+1. Let vi, 2 ≤ i ≤ n, be the first

vertex where this reversal takes place, so that (vi−1, vn+1) and (vn+1, vi)

are arcs of T . Then v1v2 . . . vi−1vn+1vivi+1 . . . vn is a directed Hamilton

path of T (see Fig. 2.4c).
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Theorem 55. (Moon) Every vertex of a diconnected tournament T on n

vertices with n ≥ 3 is contained in a directed k-cycle, 3 ≤ k ≤ n. (T is

then said to be vertex-pancyclic.)

Proof. Let T be a diconnected tournament with n ≥ 3 and u, a vertex of

T . Let S = N+(u), the set of all outneighbors of u in T , and S′ = N−(u),

the set of all inneighbors of u in T . As T is diconnected, none of S and

S′ is empty. If [S, S′] denotes the set of all arcs of T having their tails

in S and heads in S′, then [S, S ′] is also nonempty for the same reason.

If (v, w) is an arc of [S, S ′], then (u, v, w, u) is a directed 3-cycle in T

containing u. (see Fig. 2.5a.) Suppose that u belongs to directed cycles

Figure 1.35: Digraphs for proof of Theorem 55

of T of all lengths k, 3 ≤ k ≤ p, where p < n. We shall prove that there

is a directed (p+ 1)-cycle of T containing u.

Let C : (v0, v1, . . . , vp−1, v0) be a directed p-cycle containing u, where

vp−1 = u. Suppose that v is a vertex of T not belonging to C such

that for some i and j, 0 ≤ i, j ≤ p − 1, i ̸= j, there exist arcs (vi, v)

and (v, vj) of T (see Fig. 2.6b). Then there must exist arcs (vr, v) and

(v, vr+1) of A(T ), i ≤ r ≤ j − 1 (suffixes taken modulo p), and hence
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(v0, v1, . . . , vr, v, vr+1, . . . , vp−1; v0) is a directed (p + 1)- cycle contain-

ing u (see Fig. 2.5b).

If no such v exists, then for every vertex v of T not belonging to V (C),

either (vi, v) ∈ A(T ) for every i, 0 ≤ i ≤ p − 1, or (v, vi) ∈ A(T )

for every i, 0 ≤ i ≤ p − 1. Let S = {v ∈ V (T ) \ V (C) : (vi, v) ∈
A(T )for eachi, 0 ≤ i ≤ p − 1} and S′ = {w ∈ V (T ) \ V (C) : (wvi) ∈
A(T ) for eachi; 0 ≤ i ≤ p − 1}. The diconnectedness of T implies that

none of S, S ′, and [S, S ′], is empty. Let (v, w) be an arc of [S, S ′], Then

(v0, v, w, v2, . . . , vp−1, v0) is a directed (p + 1)-cycle of T . containing

vp−1 = u (see Fig. 2.5c).

Let us Sum Up

1. For a simple graph G, The incidence function IG is one-to-one.

2. The complete graph Kn has the maximum number of edges among all

simple graphs.

3. The totally disconnected graph has no edges at all.

4. For a simple graph G, 0 ≤ m(G) ≤ n(n−1)
2 .

5. For a simple graph G, we have (Gc)c = G.

6. If |V (G)| = n, then |E(G)|+ |E(Gc)| = |E(Kn)| = n(n−1)
2 .

7.If d = (d1, d2, . . . , dn) is the degree sequence ofG, then
∑n

i=1 di = 2m,

where n and m are the orders and size of G, respectively.

8. A graph is bipartite if and only if it contains no odd cycles.

9. If G is simple and δ ≤ k, then G contains a path of length at least k.

10. The automorphism group ofKn is isomorphic to the symmetric group

Sn of degree n.

11. The graphs for which the automorphism groups consists of just the

identity permutation are called identity graph.
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12. The line graph L(G) is always a simple graph.

13. A graph G is connected if and only if L(G) is connected.

14. A digraph is strict if its underlying graph is simple.

15. A digraph is a tournament if its underlying graph is a complete graph.

Check your Progress

1. An edge for which the two ends are the same is called a

a. loop b. pendent edge c. multiple edge d. parallel edge

2. The order of a graph G is

a. number of paths in G

b. number of components in G

c. b. number of vertices in G

d. number of edges in G

3. Complete bipartite of the form K1,q is called a

a. complete graph b. cycle c. path d. star

4. A subgraph H of G is a spanning subgraph of G if

a. V (H) < V (G) b. V (H) ≤ V (G) c. V (H) > V (G) d.

V (H) = V (G)

5. A clique of G is a of G.

a. subgraph b. complete subgraph c. induced subgraph d. spanning

subgraph

6. A spanning 1-regular subgraph of G is called a of G.

a. perfect matching b. walk c. cycle d. components

7. A walk is called a trail if

a. all the vertices are distinct
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b. all the edges are distinct

c. origin and terminus are the same

d. the components are distinct

8. If w ≥ 2, then the graph is

a. connected b. disconnected c. simple d. complete

9. For any simple graph G, Aut(G) =

a. Aut(Kn) b. Aut(Kc
n) c. Aut(Gc) d. L(G)

10. A graph G is connected if and only if

a. G contains a path b. G contains a cycle c. L(G) is disconnected

d. L(G) is connected

11. The graph K1 ∨ Cn = a. Wn b. Kn+1 c. Kn d. K1,n

12. The notation N+
D(u) denote the set of

a. inneighbors of u in D

b. neighbors of u in D

c. outneighbors of u in D

d. arcs of D

13. A digraph is disconnected if it has exactly

a. one directed path

b. two directed path

c. one dicomponent

d. two dicomponent

15. A digraph D is a tournament if its underlying graph is

a. simple b. connected c. bipartite d. complete

[44] Peiyar University-ODL | Self-Learning Material



M.Sc. MATHEMATICS-SEMESTER-I

Answers for Check your Progress

(1) a (2) c (3) d (4) d (5) b (6) a (7) b (8) b (9)c (10) d

(11) a (12) c (13) c (14) b (15) d

Exercises

1. Show that Herschel graph is bipartite.

2. Show that Km,n,m ̸= n has no spanning cycle.
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Unit 2

Connectivity and Trees

Objectives

1. To learn vertex cuts and edge cuts

2. To understand the significance of connectivity and edge connectivity.

3. To discuss the properties of tress and counting the number of span-

ning trees.

4. To apply the concept of trees in everyday life problems.

5. To introduce algorithms to find minimum-weight spanning trees.

2.1 Introduction:

The connectivity of a graph is a “measure ”of its connectedness. Some

connected graphs are connected rather “loosely ”in the sense that the dele-

tion of a vertex or an edge from the graph destroys the connectedness of

the graph. There are graphs at the other extreme as well, such as the com-

plete graphs Kn, n ≥ 2, which remain connected after the removal of any

k vertices, 1 ≤ k ≤ n− 1.
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In this chapter, we study the two graph parameters, namely, vertex con-

nectivity and edge connectivity.

Definition 56.

1. A subset V ′ of the vertex set V (G) of a connected graph G is a vertex

cut of G if G − V ′ is disconnected; it is a k-vertex cut if |V ′| = k.V ′

is then called a separating set of vertices of G. A vertex v of G is a cut

vertex of G if {v} is a vertex cut of G.

2. Let G be a nontrivial connected graph with vertex set V (G) and let S

be a nonempty subset of V (G). For S̄ = V \ S ̸= ∅, let [S, S̄] denote the

set of all edges of G that have one end vertex in S and the other in S̄. A

set of edges of G of the form [S, S̄], is called an edge cut of G. An edge e

is a cut edge of G if {e} is an edge cut of G. An edge cut of cardinality k

is called a k-edge cut of G.

G :
v1 v2

v3 v5

v4 v6

Figure 2.1: Graph illustrating vertex cuts and edge cuts

Example 57. For the graph of Fig. 2.1, {v2} and {v3, v4}, are vertex

cuts. The edge subsets {v3v5, v4v5, v1v2}, and {v4v6} are all edge cuts. Of

these, v2 is a cut vertex,and v1v2 and v4v6 are both cut edges. For the edge

cut {v3v5, v4v5}, we may take S = {v5} so that S̄ = {v1, v2, v3, v4, v6}.

Theorem 58. An edge e = xy of a connected graph G is a cut edge of G

if and only if e belongs to no cycle of G.
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Proof. Let e be a cut edge of G and let [S, S̄] = e be the partition of V

defined by G − e so that one of x and y belongs to S, and the other to

S̄, say, x ∈ S and y ∈ S̄. If e belongs to a cycle of G, then [S, S̄] must

contain at least one more edge, contradicting that e = [S, S̄]. Hence, e

cannot belong to a cycle.

Conversely, assume that e is not a cut edge ofG. ThenG−e is connected,

and hence there exists an x− y path P in G− e. Then P ∪ {e} is a cycle

in G containing e.

Theorem 59. An edge e = xy is a cut edge of a connected graph G if and

only if there exist vertices u and v such that e belongs to every u− v path

in G.

Proof. Let e = xy be a cut edge of G. Then G − e has two components,

say, G1 and G2. Let u ∈ V (G1) and v ∈ V (G2). Then, clearly, every

u− v path in G contains e.

Conversely, suppose that there exist vertices u and v satisfying the condi-

tion of the theorem. Then there exists no u−v path in G−e so that G−e
is disconnected. Hence, e is a cut edge of G.

Theorem 60. A connected graph G with at least two vertices contains at

least two vertices that are not cut vertices.

Proof. First, suppose that n(G) ≥ 3. Let u and v be vertices of G such

that d(u, v) is maximum. Then neither u nor v is a cut vertex of G. For

if u were a cut vertex of G, G− u would be disconnected, having at least

two components. The vertex v belongs to one of these components. Let

w be any vertex belonging to a component of G − u not containing v.

Then every v − w path in G must contain u (see Fig. 2.2). Consequently,

d(v, w) > d(v, u), contradicting the choice of u and v. Hence, u is not a
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Figure 2.2: Graph for proof of Theorem 60

Figure 2.3: Graph for proof of Proposition 61

cut vertex of G. Similarly, v is not a cut vertex of G.

If n(G) = 2, then K2 is a spanning subgraph of G, and so no vertex of G

is a cut vertex of G. This completes the proof of the theorem.

Proposition 61. A simple cubic (i.e., 3-regular) connected graph G has a

cut vertex if and only if it has a cut edge.

Proof. Let G have a cut vertex v0. Let v1, v2, v3 be the vertices of G

that are adjacent to v0 in G. Consider G − v0, which has either two or

three components. If G − v0 has three components, no two of v1, v2, and

v3 can belong to the same component of G − v0. In this case, each of

v0v1, v0v2, and v0v3 is a cut edge of G. (See Fig. 2.3a.) In the case when

G − v0 has only two components, one of the vertices, say v1, belongs to
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one component of G − v0, and v2 and v3 belong to the other component.

In this case, v0v1 is a cut edge. (See Fig. 2.3b.)

Conversely, suppose that e = uv is a cut edge of G. Then the deletion

of u results in the deletion of the edge uv. Since G is cubic, G − u is

disconnected. Accordingly, u is a cut vertex of G.

Let us Sum Up:

In this section, we have studied definition and some important proposition

of connectivity and edge-connectivity of graphs.

1. Note that an r - connected graph need not be (r+1)- connected where

us it is (r − 1)- connected.

2. We say that the graphG is r-connected if the removal of (r−1) vertices

does not disconnected. If does not removal of r vertices also connects the

graph G. Similarly concepts holds for edge connectivity also.

Check your progress:

1. The graph Kn, n ≥ 3 is .....

(a) r connected (b) n− 1 connected (c) r(≤ n− 1) connected (d)

n connected

2. The graph Kn,n, n ≥ 2 is .....

(a) n-edge connected (b) r(≤ n)-edge connected

(d) r- connected (d) (n− 1)-edge connected.

Answer: 1. (c) 2. (b)
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2.2 Connectivity and Edge Connectivity

Definition 62. For a nontrivial connected graph G having a pair of non-

adjacent vertices, the minimum k for which there exists a k-vertex cut is

called the vertex connectivity of simply the connectivity of G; it is de-

noted by κ(G) or simply κ (kappa) when G is understood. If G is trivial

or disconnected, κ(G) is taken to be zero, whereas if G contains Kn as a

spanning subgraph, κ(G) is taken to be n− 1.

A set of vertices and/or edges of a connected graph G is said to be

disconnect G if its deletion results in a disconnected graph.

Definition 63. The edge connectivity of a connected graphG is the small-

est k for which there exists a k-edge (i.e., an edge cut having k edges). The

edge connectivity of a trial or disconnected graph is taken to be 0. The

edge connectivity of G is denoted by λ(G). If λ is the edge connectivity of

a connected graph G, there exists a set of λ edges whose deletion results

in a disconnected graph, and so subset of edges of G of size less than λ

has this property.

Definition 64. A graph G is r-connected if κ(G) ≥ r. Also, G is r-edge

connected if λ(G) ≥ r.

For the graph G of Fig. 2.4, κ(G) = 1 and λ(G) = 2.

Theorem 65. For any loopless connected graph G, k(G) ≤ λ(G) ≤
δ(G).

Proof. We observe that k = 0 if and only if λ = 0. Also, δ = 0 implies

that D = 0 and λ = 0. Hence we may assume that k, λ, and δ are all at

least 1. Let E be an edge cut of G with λ edges. Let u and v be the end

vertices of an edge of E. For each edge of E that does not have both u
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Figure 2.4: A 1-connected graph

Figure 2.5: Graph G with κ = 1, λ = 2 and δ = 3

and v as end vertices, remove an end vertex that is different from u and

v. If there are t such edges, at most t vertices have been removed. If

the resulting graph, say H , is disconnected, then k ≤ t < λ. Otherwise,

there will remain a subset of edges of E having u and v as end vertices,

the removal of which from H would disconnect G. Hence, in addition to

the already removed vertices, the removal of one of u and v will result in

either a disconnected graph or a trivial graph. In the process, a set of at

most t+ 1 vertices has been removed and k ≤ t+ 1 ≤ λ.

Finally, it is clear that λ ≤ δ. In fact, if v is a vertex of G with dG(v) = δ.

then the set [{v}, V \ {v}] of δ edges of G incident at v forms an edge cut

of G. Thus, λ ≤ δ.
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Note: It is possible that the inequlities in Theorem 65 can be strict. See

the graph G of Fig. 2.5, for which κ = 1, λ = 2, and δ = 3.

Figure 2.6: Connected cubic graph for proof of Theorem 66

Theorem 66. The connectivity and edge connectivity of a simple cubic

graph G are equal.

Proof. We need only consider the case of a connected cubic graph. Again,

since κ ≤ λ ≤ δ = 3, we have only to consider the cases when κ = 1, 2,

or 3. Now, Proposition 61 implies that for a simple cubic graph G, κ = 1

if and only if λ = 1.

If κ = 3, then by Theorem 65, 3 = κ ≤ λ ≤ δ = 3, and hence λ = 3.

We shall now prove that κ = 2 implies that λ = 2.

Suppose κ = 2 and {u, v} is a 2-vertex cut of G. The deletion of

{u, v} results in a disconnected subgraph G′ of G. Since each of u and
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v must be joined to each component of G′, and since G is cubic, G′ can

have at most three components. If G′ has three components, G1, G2, and

G3, and if ei and fi, i = 1, 2, 3, join, respectively, u and v with Gi, then

each pair {ei, fi} is an edge cut of G (see Fig. 2.6a).

If G′ has only two components, G1 and G2, then each of u and v is

joined to one of G1 and G2 by a single edge, say, e and f , respectively, so

that {e, f} is an edge cut G (see Fig. 2.6b-d).

Hence, in either case there exists an edge cut consisting of two edges.

As such, λ ≥ 2. But by Theorem 65, λ ≥ κ = 2. Hence λ = 2. Finally,

the above arguments show that if λ = 3, then κ = 3, and if λ = 2, then

κ = 2.

Definition 67. A family of two or more paths in a graph G is said to be

internally disjoint if no vertex of G is an internal vertex of more than one

path in the family.

Figure 2.7: Graph for proof of Theorem 68

Theorem 68. (Whitney [?]). A graph G with at least three vertices is 2-

connected if and only if any two vertices of G are connected by at least
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two internally disjoint paths.

Proof. Let G be 2-connected. Then G contains no cut vertex. Let u and

v be two distinct vertices of G. We now use induction on d(u, v) to prove

that u and v are joined by two internally disjoint paths.

If d(u, v) = 1, let e = uv. As G is 2-connected and n(G) ≥ 3, e

cannot be a cut edge of G, since if e were a cut edge, at least one of u and

v must be a cut vertex. By Theorem 58, e belongs to a cycle C in G. Then

C − e is a u− v path in G, internally disjoint from the path uv.

Now assume that any two vertices x and y of G with d(x, y) = k −
1, k ≥ 2, are joined by two internally disjoint x − y paths in G. Let

d(u, v) = k. Let P be a u − v path of length k and w be the vertex of G

just preceding v on P . Then d(u,w) = k−1. By an induction hypothesis,

there are two internally disjoint u − w paths, say P1 and P2, in G. As G

has no cut vertex, G−w is connected and hence there exists a u− v path

Q in G−w. Q is clearly a u− v path in G not containing w. Let x be the

vertex of Q such that the x− v section of Q contains only the vertex x in

common with P1 ∪ P2 (see Fig. 2.7).

We may suppose, without loss of generality, that x belongs to P1. Then

the union of the u−x section of P1 and x− v section of Q and P2∪ (wv)

are two internally disjoint u − v paths in G. This gives the proof in one

direction.

In the other direction, assume that any two distinct vertices of G are

connected by at least two internally disjoint paths. Then G is connected.

Further, G cannot contain a cut vertex, since if v were a cut vertex of G,

there must exist vertices u and w such that every u − w path contains v,

contradicting the hypothesis. Hence, G is 2-connected.

Theorem 69. A graph G with at least three vertices is 2-connected if and
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only if any two vertices of G lie on a common cycle.

Proof. Let u and v be any two vertices of a 2-connected graph G. By

Theorem 68, there exist two internally disjoint paths in G joining u and v.

The union of these two paths is a cycle containing u and v.

Conversely, if any two vertices u and v lie on a cycle C, then C is the

union of two internally disjoint u− v paths. Again, by Theorem 68, G is

2-connected.

Figure 2.8: Graphs for proof of Theorem 70

Theorem 70. In a 2-connected graph G, any two longest cycles have at

least two vertices in common.

Proof. Let C1 = u1u2 · · ·uku1 and C2 = v1v2 · · · vkv1 be two longest

cycles in G. If C1 and C2 are disjoint, there exist (since G is 2-connected)

two disjoint paths, say P1 joining ui and vj and P2 joining ul and vp,

connecting C1 and C2 such that ui ̸= ul and Vj ̸= vp. ui and ul divide

C1 into two subpaths. Let L1 be the longer of these subpaths. (If both

subpaths are of equal length, we take either one of them to be L1.) Let

L2 be defined in a similar manner in C2. Then L1 ∪ P1 ∪ L2 ∪ P2 is a

cycle of length greater than that of C1 (or C2). Hence, C1 and C2 cannot

be disjoint. (see Fig. 2.8).

Suppose that C1 and C2 have exactly one vertex, say u1 = v1, in com-

mon. Since G is 2-connected, u1 is not a cut vertex of G, and so there
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exists a path P with one end vertex ui in C1−u1 and the other end vertex

vj in C1− v1, which is internally disjoint from C1∪C2. Let P1 denote the

longer of the two u1 − ui sections of C1, and Q1 denote the longer of the

two v1 − vj sections of C2. If the two sections of C1 or of C2 are of equal

length, take any one of then. Then P1 ∪ P ∪Q1 is a cycle longer than C1

(or C2). But this is impossible. Thus, C1 and C2 must have at least two

vertices in common.

Theorem 71 gives a simple characterization of 3-edge connected graphs.

Figure 2.9: Graphs for proof of Theorem 71

Theorem 71. A connected simple graphG is 3-edge connected if and only

if every edge of G is the (exact) intersection of the edge sets of two cycles

of G.

Proof. Let G be 3-edge connected and let x = uv be an edge of G. Since

G − x is 2-edge connected, there exist two edge-disjoint u − v paths P1

and P2 in G − x. Now, P1 ∪ {x} and P2 ∪ {x} are two cycles of G, the

intersection of whose edge sets is precisely {x} (see Fig. 2.9).

Conversely, suppose that for each edge x = uv there exit two cycles C

andC ′ such that {x} = E(C)∩E(C ′). G cannot have a cut edge since, by
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hypothesis, each edge belongs to two cycles and no cut edge can belong

to a cycle; nor can G contain an edge cut consisting of two edges x and

y. (Since any cycles that contains x also contains y, the intersection of

any two such cycles must contain both x and y, a contradiction.) Hence,

λ(G) ≥ 3, and G is 3-edge connected.

2.3 Cyclical Edge Connectivity of a Graph

Definition 72. Let G be a simple connected graph containing at least

two disjoint cycles. Then the cyclical edge connectivity of G is defined to

be the minimum number of edges of G whose deletion results in a graph

having two components, each containing a cycle. It is denoted by λc(G).

It is clear that λ ≤ λc. The graphs G and H of Fig. ?? show that both

λ = λc and λ < λc can happen.

2.4 Definition, Characterization, and Simple Proper-

ties of Trees

A connected graph without cycles is defined as a tree. A graph without

cycles is called an acyclic graph or a forest. So each component of a

forest is a tree. Figure 2.10 displays two trees.

Theorem 73. A simple graph is a tree if and only if any two distinct ver-

tices are connected by a unique path.

Proof. Let T be a tree. Suppose that two distinct vertices u and v are

connected by two distinct u − v paths. Then their union contains a cycle

in T , contradicting that T is a tree.
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Figure 2.10: Examples of trees

Conversely, suppose that any two vertices of a graph G are connected

by a unique path. Then G is obviously connected. Also, G cannot contain

a cycle, since any two distinct vertices of a cycle are connected by two

distinct paths. Hence G is a tree

Definition 74. A spanning subgraph of a graph G, which is also a tree, is

called a spanning tree ofG. A connected graphG and two of its spanning

trees T1 and T2 are shown in Fig. 2.11.

A loop cannot be an edge of any spanning tree, since such a loop consti-

tutes a cycle (of length 1). On the other hand, a cut edge of G must be an

edge of every spanning tree of G.

Theorem 75. Every connected graph contains a spanning tree.

Proof. Let G be a connected graph. Let C be the collection of all con-

nected spanning subgraphs of G. C is nonempty as G ∈ C. Let T ∈ C
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have the fewest number of edges. Then T must be a spanning tree of G.

If not, T would contain a cycle of G, and the deletion of any edge of this

cycle would give a (spanning) subgraph in C having one edge less than

that of T . This contradicts the choice of T . Hence, T has no cycles and

is therefore a spanning tree of G.

G

T1

Theorem 76. The number of edges in a tree on n vertices is n− 1. Con-

versely, a connected graph on n vertices and n− 1 edges is a tree.

Proof. Let T be a tree.We use induction on n to prove that m = n − 1.

When n = 1 or n = 2, the result is straightforward.

Now assume that the result is true for all trees on n(n − 1) or fewer

vertices, n ≥ 3. Let T be a tree with n vertices. Let e = uv be an edge

of T . Then uv is the unique path in T joining u and v. Hence the deletion
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T2

Figure 2.11: Graph G and two of its spanning trees T1 and T2.

of e from T results in a disconnected graph having two components T1

and T2. Being connected subgraphs of a tree, T1 and T2 are themselves

trees. As n(T1) and n(T2) are less than n(T ), by an induction hypothesis,

m(T1) = n(T1)−1 andm(T2) = n(T2)−1. Therefore, m(T ) = m(T1)+

m(T2)+1 = n(T1)−1+n(T2)−1+1 = n(T1)+n(T2)−1 = n(T )−1.

Hence, the result is true for T . By induction, the result follows in one

direction.

Conversely, letG be a connected graph with n vertices and n−1 edges.

By Theorem 75, there exists a spanning tree T of G. T has n vertices and

being a tree has (n− 1) edges. Hence G = T , and G is a tree.

Theorem 77. A connected graph G is a tree if and only if every edge of

G is a cut edge of G.

Proof. If G is a tree, there are no cycles in G. Hence, no edge of G can

belong to a cycle. By Theorem 58, each edge of G is a cut edge of G.

Conversely, if every edge of a connected graph G is a cut edge of G, then

G cannot contain a cycle, since no edge of a cycle is a cut edge of G.

Hence, G is a tree.

Theorem 78. Prove that for a simple connected graph G, L(G) is iso-

morphic to G if and only if G is a cycle.
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Proof. If G is a cycle, then clearly L(G) is isomorphic to G. Conversely,

letG ≃ L(G). Then n(G) = n(L(G)), andm(G) = m(L(G)). But since

n(L(G)) = m(G), we have m(G) = n(G). We know that G is unicyclic.

Let C = v1v2 · · · vkv1 be the unique cycle in G. If G ̸= C, there must be

an edge e /∈ E(C) incident with some vertex vi of C (as G is connected).

Thus, there is a star with at least three edges at vi. This star induces a

clique of size at least 3 in L(G)(≃ G). This shows that there exists at

least one more cycle in L(G) distinct from the cycle corresponding to C

in G. This contradicts the fact that L(G) ≃ G (as G is unicyclic).

Let us Sum Up:

We studied definition of different types of trees and its interesting proper-

ties.

1. Note that disconnected graphs does not contain tree but contains fac-

tors.

Check your Progress:

1. Simple graph on n vertices and m edges with ω components have ......

cyclic.

(a) m− n+ ω (b) n− ω (c) m− ω (d) n−m− ω

Answer: 1. (a)

2.5 Centers and Centroids

Definition 79. Let G be a connected graph.
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1. The diameter of G is defined as max{d(u, v) : u, v ∈ V (G)} and is

denoted by diam(G).

2. If v is a vertex of G, its eccentricity e(v) is defined by e(v) =

max{d(v, u) : u ∈ V (G)}.

3. The radius r(G) of G is the minimum eccentricity of G; that is,

r(G) = min{e(v) : v ∈ V (G)}. Note that diam(G) = max{e(v) :
v ∈ V (G)}.

4. A vertex v of G is called a central vertex if e(v) = r(G). The set of

central vertices of G is called the center of G.

Example 80. Figure 2.12 displays two graphs T and G with the eccen-

tricities of their vertices. We find that r(T ) = 4 and diam(T ) = 7. Each

of u and v is a central vertex of T . Also, r(G) = 3 and diam(G) = 4.

Further, G has five central vertices.

Remark 81. It is obvious that r(G) ≤ diam(G). For a complete graph,

r(G) = diam(G) = 1. For a complete bipartite graph G(X, Y ) with

|X| ≥ 2 and |Y | ≥ 2, r(G) = diam(G) = 2. For the graphs of Fig. 2.12,

r(G) < diam(G).

Theorem 82. (Jordan [?]) Every tree has a center consisting of either a

single vertex or two adjacent vertices.

Proof. The result is obvious for the trees K1 and K2. The vertices of K1

and K2 are central vertices. Now let T be a tree with n(T ) ≥ 3. Then T

has at least two pendant vertices. Clearly, the pendant vertices of T cannot

be central vertices. Delete all the pendant vertices from T . This results in

a subtree T ′ of T . As any maximum-distance path in T from any vertex

of T ′ ends at a pendant vertex of T , the eccentricity of each vertex of T ′ is
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Figure 2.12: Eccentricities of vertices for graphs G and T

one less than the eccentricity of the same vertex in T . Hence the vertices

of minimum eccentricity of T ′ are the same as those of T . In other words,

T and T ′ have the same center. Now, if T ′′ is the tree obtained from T ′

by deleting all the pendant vertices of T ′, then T ′′ and T ′ have the same

center. Hence the centers of T ′′ and T are the same. Repeat the process

of deleting the pendant vertices in the successive subtrees of T until there

results a K1 or K2. This will always be the case as T is finite. Hence the

center of T is either a single vertex or a pair of adjacent vertices.

Definition 83. 1. A branch at a vertex u of a tree T is a maximal sub-

tree containing u as an end vertex. Hence the number of branches

at u is d(u).
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Figure 2.13: Determining the center of tree T

For instance, in Fig. 2.14, there are three branches of the tree at u.

2. The weight of a vertex u of T is the maximum number of edges in

any branch at u.

3. A vertex v is a centroid vertex of T if v has minimum weight. The set

of all centroid vertices is called the centroid of T .

In Fig. 2.15 the numbers in the parentheses indicate the weights of the
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Figure 2.14: Tree showing three branches at u

Figure 2.15: Weights of vertices of a tree

corresponding vertices. It is clear that all the end vertices of T have the

same weight, namely, m(T ).

Let us Sum Up:

1 Note that the end vertices have largest weight.

2. Radius and diameter of complete graphs and complete bipartite graphs

are equal.

Check your Progress:

1. Radius and diameter of the Peterson graph are .....

(a) (3, 3) (b) (2, 3) (c) (2, 2) (d) (1, 2)
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Figure 2.16: Edge contraction

2.6 Counting the Number of Spanning Tress

The number of spanning trees of a connected labeled graph G will be

denoted by τ(G). If G is disconnected, we take τ(G) = 0.

Definition 84. An edge e of a graph G is said to be contracted if it is

deleted from G and its ends are identified. The resulting graph is denoted

by G ◦ e.

Edge contraction is illustrated in Fig. 2.16.

If e is not a loop of G, then n(G ◦ e) = n(G) − 1, m(G ◦ e) =

m(G) − 1, and w(G ◦ e) = w(G). For a loop e, n(G ◦ e) = n(G),

m(G ◦ e) = m(G)− 1, and w(G ◦ e) = w(G).

Theorem 85. If e is not a loop of a connected graph G, τ(G) = τ(G −
e) + τ(G ◦ e).

Proof. τ(G) is the sum of the number of spanning trees of G containing

e and the number of spanning trees of G not containing e.

Since V (G−e) = V (G), every spanning tree ofG−e is a spanning tree

of G not containing e, and conversely, any spanning tree of G for which

e is not an edge is also a spanning tree of G − e. Hence the number of

spanning trees of G not containing e is precisely the number of spanning
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trees of G − e, that is, τ(G − e). If T is a spanning tree of G containing

e, the contraction of e in both T and G results in a spanning tree T ◦ e of

G ◦ e.

Conversely, if T0 is a spanning tree of G ◦ e, there exists a unique

spanning tree T of G containing e such that T ◦ e = T0. Thus, the number

of spanning trees of G containing e is τ(G ◦ e). Hence τ(G) = τ(G −
e) + τ(G ◦ e).

We illustrate below the use of Theorem 85 in calculating the number of

spanning trees. In this illustration, each graph within parentheses stands

for the number of its spanning trees. For example, stands for the

number of spanning trees of C4.

Example 86. Find τ(G) for the following graph G:

Proof.
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Theorem 87. A simple connected graph G contains k pairwise edge-

disjoint spanning trees if and only if for each partition P of V (G) into

p parts, the number m(P) of edges of G joining distinct parts is at least

k(p− 1), 2 ≤ p ≤ |V (G)|.

Proof. We prove only the easier part of the theorem (necessity of the con-

dition). Suppose G has k pairwise edge-disjoint spanning trees. If T is

one of them and if P = {V1, V2, · · ·Vp} is a partition of V (G) into p parts,

then G must have at least |P| − 1 edges of T . As this is true for each

of the k pairwise edge-disjoint trees of G, the number of edges joining

distinct parts of P is at least k(p− 1).
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2.7 Cayley’s Formula

Cayley was the first mathematician to obtain a formula for the number of

spanning trees of a labeled complete graph.

Before we prove Theorem 90, we establish two lemmas.

Lemma 88. Let (d1, · · · , dn) be a sequence of positive integers with
∑n

i=1 di =

2(n − 1). Then there exists a tree T with vertex set {v1, v2, · · · , vn} and

d(vi) = di, 1 ≤ i ≤ n.

Proof. It is easy to prove the result by induction on n.

Lemma 89. Let {v1, · · · , vn}, n ≥ 2 be given and let {d1, · · · .dn} be

a sequence of positive integers such that
∑n

i=1 di = 2(n − 1). Then the

number of tress with {v1, · · · , vn} as the vertex set in which vi has degree

di, 1 ≤ i ≤ n, is (n−2)!
(d1−1)!···(dn−1)! .

Theorem 90. (Cayley ??) τ(Kn) = nn−2, whereKn is a labeled complete

graph on n vertices, n ≥ 2.

Proof. The total number of tress Tn with vertex set {v1, · · · , vn} is ob-

tained by summing over all possible sequences (d1, · · · , dn) with
∑n

i=1 =

2n− 2. Hence,

τ(Kn) =
∑
di≥1

(n− 2)!

(d1 − 1)! · · · (dn − 1)!
with

∑
i=1

di = 2n− 2

=
∑
ki≥0

(n− 2)!

k1! · · · kn!
with

n∑
i=1

ki = n− 2,

where ki = di − 1, 1 ≤ i ≤ n.

Putting x1 = x2 = · · · = xn = 1 and m = n − 2 in the multinomial

expansion (x1+x2+ · · ·+xn)m =
∑
ki≥0

x
k1
1 x

k2
2 ···xkn

n

k1!k2!···kn! m! with (k1+k2+ · · ·+
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kn) = m, we get nn−2 =
∑
ki≥0

x
k1
1 x

k2
2 ···xkn

n

k1!k2!···kn! with (k1+k2+ · · ·+kn) = n−2.

Thus, τ(Kn) = nn−2.

2.8 The Connector Problem

Problem 91. Various cities in a country are to be linked via roads. Given

the various possibilities of connecting the cities and the costs involved,

what is the most economical way of laying roads so that in the resulting

road network, any two cities are connected by a chain of roads? Similar

problems involve designing railroad networks and water-line transports.

Problem 92. layout for a housing settlement in a city is to be prepared.

Various locations of the settlement are to be linked by roads. Given the

various possibilities of linking the locations and their costs, what is the

minimum-cost layout so that any two locations are connected by a chain

of roads?

Problem 93. layout for the electrical wiring of a building is to be pre-

pared. Given the costs of the various possibilities, what is the minimum-

cost layout?

These three problems are particular cases of a graph-theoretical prob-

lem known as the connector problem.

Definition 94. Let G be a graph. To each edge e of G, we associate

a nonnegative number w(e) called its weight. The resulting graph is a

weighted graph. If H is a subgraph of G, the sum of the weights of the

edges of H is called the weight of H . In particular, the sum of the weights

of the edges of a path is called the weight of the path.
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2.9 Kruskal’s Algorithm

LetG be a simple connected weighted graph with edge setE = {e1, e2, · · · ,
em}. The three steps of the algorithm are as follows:

Step 1: Choose an edge e1 with its weight w(e1) as small

as possible.

Step 2: If the edges e1, e2, · · · , ei, i ≥ 1, have already been

chosen, choose ei+1 from the set E \ {e1, e2, · · · , ei}
such that

(i) The subgraph induced by the edge set

{e1, e2, · · · , ei+1} is acyclic, and

(ii) w(ei + 1) is as small as possible subject to (i).

Step 3: Stop when step 2 cannot be implemented further.

We now show that Kruskal’s algorithm does indeed produce a minimum-

weight spanning tree.

Theorem 95. Any spanning tree produced by Kruskal’s algorithm is a

minimum weight spanning tree.

Proof. LetG be a simple connected graph of order nwith edge setE(G) =

{e1, e2, · · · , em}. Let T ∗ be a spanning tree produced by Kruskal’s algo-

rithm and let E(T ∗) = {e1, e2, · · · , en−1}. For any spanning tree T of G,

let f(T ) be the least value of i such that ei /∈ E(T ). Suppose T ∗ is not

of minimum weight. Let T0 be any minimum-weight spanning tree with

f(T0) as large as possible.

Suppose f(T0) = k. This means that e1, · · · , ek−1 are in both T0 and

T ∗, but ek /∈ T0. Then T0 + ek contains a unique cycle C. Since not every

edge of C can be in T ∗, C must contain an edge e′k not belonging to T ∗.
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Let T ′
0 = T0 + ek − e′k. Then T ′

0 is another spanning tree of G. Moreover,

w(T ′
0) = w(T0) + w(ek)− w(e′k). (2.1)

Now, in Kruskal’s algorithm, ek was chosen as an edge with the smaller

weight such that G[{e1, · · · , ek−1, ek}] was acyclic. Since is G[{e1, · · · ,
ek−1, e

′
k}] a subgraph of the tree T0, it is also acyclic. Hence,

w(ek) ≤ w(e′k), (2.2)

and therefore from (2.1) and (2.2),

w(T0) = w(T0) + w(ek)− w(e′k)

≤ w(T0).

But T0 is of minimum weight. Hence, w(T ′
0) = w(T0), and so T ′

0 is also

of minimum weight. However, as {e1, · · · , ek} ⊂ E(T ′
0),

f(T ′
0) > k = f(T0),

contradicting the choice of T0. Thus, T ∗ is a minimum-weight spaniing

tree of G.
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Let us sum up

1. If e is a cut edge of a connected graph G, then G− e has exactly two

components.

2. A simple cubic connected graph G has a cut vertex if and only if it

has a cut edge.

3. For a loopless connected graph G, κ(G) ≤ λ(G) ≤ δ(G).

4. A connected graph G with at least two vertices contains at least two

vertices that are not cut vertices.

5. If G is trivial or disconnected, then κ(G) = 0.

6. A graph G is r-connected, if κ(G) ≥ r.

7. A graph G is r-edge connected, if λ ≥ r.

8. Each component of a forest is a tree.

9. A simple graph is a tree if and only if any two distinct vertices are

connected by a unique path.

10. Every connected graph contains a spanning tree.

11. The number of edges in a tree on n vertices is n− 1.

12. If m(a) = n(a) for a simple connected graph G, then G is acyclic.

13. For a simple connected graph G, L(a) ≃ G if and only if G is a

cycle.

14. Every tree has a center consisting of either a single vertex or two

adjacent vertices.

15. A vertex v is a centroid vertex of T if V has minimum weight.
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Check your progress

1. In a graph G, which is a cut vertex?

G :
v1 v2

v3 v5

v4 v6

(a) {v1} (b) {v2} (c) {v2, v4} (d) {v4}

2. Find λ(G),for the following graph:

G :

(a) 1 (b) 2 (c) 3 (d) 4

3. Which one of the following is tree, regarding the cyclical edge con-

nectivity λc?

(a) λ ≤ λc (b) λ < λc (c) λ = λc (d) λ ≥ λc

4. For a simple cubic graph G,

(a) κ(G) < λ(G) (b) κ(G) > λ(G) (c) κ(G) = λ(G)

(d) κ(G) ≤ λ(G).

5. The edge connectivity of a graph is denoted by

(a) κ (b) λ (c) δ (d) λc

6. If v is a cut vertex of G, then G− v is

(a) connected

(b) disconnected and has at least two components

(c) disconnected and has at least two components

(d) disconnected and has at least three components
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7. A connected graph without cycles is called as a

(a) simple graph (b) path (c) forest (d) tree

8. The number of edges is a tree on n vertices is

(a) n (b) n+ 1 (c) n− 1 (d) n(n− 1).

9. If m(G) = n(G) for a simple connected graph G, then G is

(a) unicyclic (b) acyclic (c) bipartite

(d) a complete graph

10. The minimum eccentricity of G is called as

(a) diameter of G (b) radius of G

(c) degree of G (d) weight of G

11. If e(v) = r(G), then v is called a

(a) central vertex (b) isolated vertex

(c) pendant vertex (d) branch

12. The number of branches at a vertex v is

(a) weight of v (b) eccentricity of v

(c) center of the graph (d) degree of v

13. The maximum number of edges in any branch at a vertex v is

(a) weight of v (b) eccentricity of v

(c) number of pendant edges at v (d) degree of v

14. If G is disconnected, then τ(G) is

(a) 0 (b) 1 (c) 2 (d) ∞

15. For n ≥ 2, τ(Kn) =

(a)n (b) n− 1 (c) n(n− 1) (d) nn−2
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Answers

1. (b) 2. (b) 3. (a) 4. (c) 5. (b)

6. (c) 7. (d) 8. (c) 9. (a) 10. (b)

11. (a) 12. (d) 13. (a) 14. (a) 15. (d).

Exercises

1. Show that Herschel graph is bipartite.

2. Show that Km,n,m ̸= n has no spanning cycle.
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Unit 3

Independent Sets, Matchings and

Cycles

3.1 Vertex-Independent Sets and Vertex Coverings

Objectives

1. To introduce the concepts of independent sets and coverings.

2. To improve the knowledge in matchings and factors.

3. To understand the concept of matchings in bipartite graphs.

4. To provide a foundation for Eulerian and Hamiltonian graphs.

5. To gain knowledge about 2-factorable graphs.

Definition 96. A subset S of the vertex set V of a graph G is called inde-

pendent if no two vertices of S are adjacent in G. S ⊆ V is a maximum

independent set of G if G has no independent set S′ with |S′| > |S|. A

maximal independent set of G is an independent set that is not a proper

subset of another independent set of G.
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For example, in the graph of Fig. 3.1, {u, v, w}is a maximum indepen-

dent set and {x, y}; is a maximal independent set that is not maximum.

Definition 97. A subset K of V is called a covering of G if every edge of

G is incident with at least one vertex of K. A covering K is minimum if

there is no covering K ′ of G such that |K ′| < |K|; it is minimal if there

is no covering K1 of G such that K1 is a proper subset of K.

In the graph W5 of Fig. 3.2, {v1, v2, v3, v4} is a covering of W5 and

{v1, v3, v4, v6} is a minimal covering. Also, the set {x, y} is a minimum

covering of the graph of Fig. 3.1.

Figure 3.1: Graph with maximum independent set {u, v, w} and maximal
independent set {x, y}

Figure 3.2: Wheel W5
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Theorem 98. A subset S of V is independent if and only if V \ S is a

covering of G.

Proof. S is independent if and only if no two vertices in S are adjacent in

G. Hence, every edge of G must be incident to a vertex of V \ S. This is

the case if and only if V \ S is a covering of G.

Definition 99. The number of vertices in a maximum independent set of

G is called the independence number (or the stability number) of G and

is denoted by α(G). The number of vertices in a minimum covering of G

is the covering number of G and is denoted by α(G). We denote these

numbers simply by α and β when there is no confusion.

Corollary 100. For any graph G, α + β = n.

Proof. Let S be a maximum independent set of G. By Theorem 98, V \S
is a covering of G and therefore |V \S| = n−α ≥ β. Similarly, let K be

a minimum covering of G. Then V \K is independent and so |V \K| =
n− β ≤ α. These two inequalities together imply that n = α + β.

Let us sum up:

In this section, we have studied definitions and some interesting relation-

ships between independent sets and coverings.

Note that α(Kn) = 1 and β(Kn) = n− 1, α(Km,n) = n and β(Km,n) =

m, m ≤ n.

Check your progess:

1. For the petersen graph, (α, β)=

(a) (5,5) (b) (4,6) (c) (6,4) (d) (3,7)

Answer: 1. (b)
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3.2 Edge-Independent Sets

Definition 101. 1. 1. A subset M of the edge set E of a loopless graph

G is called independent if no two edges of M are adjacent in G.

2. A matching in G is a set of independent edges.

3. An edge covering of G is a subset L of E such that every vertex of

G is incident to some edge of L. Hence, an edge covering ofG exists

if and only if δ > 0.

4. A matching M of G is maximum if G has no matching M ′ with

|M ′| > |M |. M is maximal if G has no matching M ′ strictly con-

taining M . α′(G) is the cardinality of a maximum matching and

β′(G) is the size of a minimum edge covering of G.

5. set S of vertices of G is said to be saturated by a matching M of

G or M -saturated if every vertex of S is incident to some edge of

M . A vertex v of G is M -saturated if {v} is M -saturated. v is

M -unsaturated if it is not M -saturated.

For example, in the wheel W5 (Fig. 3.2), M = {v1v2, v4v6} is a max-

imal matching; {v1v5, v2v3, v4v6} is a maximum matching and a min-

imum edge covering; the vertices v1, v2, v4, and v6 are M -saturated,

whereas v3 and v5 are M -unsaturated.

Theorem 102. For any graph G for which δ > 0, α′ + β′ = n.

Proof. Let M be a maximum matching in G so that |M | = α′. Let U

be the set of M -unsaturated vertices in G. Since M is maximum, U is

an independent set of vertices with |U | = n − 2α′. Since δ > 0, we

can pick one edge for each vertex in U incident with it. Let F be the set
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of edges thus chosen. Then M ∪ F is an edge covering of G. Hence,

|M ∪ F | = |M |+ |F | = α′ + n− 2α′ ≥ β′, and therefore

n ≥ α′ + β′. (3.1)

Now let L be a minimum edge covering of G so that |L| = β′. Let

H = G[L] be the edge subgraph of G defined by L, and let MH be a

maximum matching in H . Denote the set of MH-unsaturated vertices in

H by U . As L is an edge covering of G, H is a spanning subgraph of G.

Consequently, |L| − |MH | = |L \MH | ≥ |U | = n − 2|MH | and so

|L|+ |MH | ≥ n. But since MH is a matching in G, |MH | ≤ α′.

Thus,

n ≤ |L|+ |MH | ≤ β′ = α′. (3.2)

Inequalities (3.1) and (3.2) imply that α′ + β′ = n.

Let us Sum Up:

Edge independent set and edge covering set are not complement of one

another. However, their sum is n.

Check your Progess:

1. For the petersen graph, (α′, β′)=

(a) (4,6) (b) (5,5) (c) (6,4) (d) (3,7)

Answer: 1. (b)
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3.3 Matchings and Factors

Definition 103. A matching of a graph G is (as given in Definition 101)

a set of independent edges of G. If e = uv is an edge of a matching M of

G, the end vertices u and v of e are said to be matched by M .

If M1 and M2 are matchings of G, the edge subgraph defined by M1 △

M2, the symmetric difference of M1 and M2, is a subgraph H of G whose

components are paths or even cycles of G in which the edges alternate

between M1 and M2.

Definition 104. An M -augmenting path in G is a path in which the edges

alternate between E \M and M and its end vertices are M -unsaturated.

An Malternating path inG is a path whose edges alternate betweenE\M
and M .

Figure 3.3: Graphs for proof of Theorem 106

Example 105. In the graph G of Fig. 3.2, M1 = {v1v2, v3v4, v5v6},

M2 = {v1v2, v3v6, v5v5}, and M3 = {v3v4, v5v6} are matchings of

G. Moreover, G[M1 △ M2] is the even cycle (v3v4v5v6v3). The path

v2v3v4v6v5v1 is an M3-augmenting path in G.
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Maximum matching have been characterized by Berge [?].

Theorem 106. A matching M of a graph G is maximum if and only if G

has no M -augmenting path.

Proof. Assume first that M is maximum. If G has an M -augmenting path

P : v0v1v2 · · · v2t+1 in which the edges alternate between E \M and M ,

then P has one edge of E \M more than that of M . Define

M ′ = (M ∪ {v0v1, v2v3, · · · , v2tv2t+1}) \ {v1v2, v3v4, · · · , v2t−1v2t}.

Clearly, M ′ is a matching of G with |M ′| = |M | + 1, which is a contra-

diction since M is a maximum matching of G.

Conversely, assume that G has no M -augmenting path. Then M must

be maximum. If not, there exists a matching M ′ of G with |M ′| > |M |.
Let H be the edge subgraph G[M △M ′] defined by the symmetric differ-

ence of M and M ′. Then the components of H are paths or even cycles in

which the edges alternate between M and M ′. Since |M ′| > |M |, at least

one of the components ofH must be a path starting and ending with edges

of M ′. But then such a path is an M -augmenting path of G, contradicting

the assumption (see Fig. 3.3).

Definition 107. A factor of a graph G is a spanning subgraph of G. A

k-factor of G is a factor of G that is k-regular. Thus, a 1-factor of G is a

matching that saturates all the vertices of G. For this reason, a 1-factor

of G is called a perfect matching of G. A 2-factor of G is a factor of G

that is a disjoint union of cycles of G. A graph G is k-factorable if G is

an edge-disjoint union of k-factors of G.

Example 108. In Fig. 3.4, G1 is 1-factorable and G2 is 2-factorable,

whereas G3 has neither a 1-factor nor a 2-factor. The dotted, solid, and
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ordinary lines of G1 give the three distinct 1-factors, and the dotted and

ordinary lines of G2 give its two distinct 2-factors.

Figure 3.4: Graphs illustrating facrorability

3.4 Matchings in Bipartite Graphs

For a subset S ⊆ V in a graphG,N(S) denotes the neighbor set of S, that

is, the set of all vertices each of which is adjacent to at least one vertex in

S.

Theorem 109. (Hall) Let G be a bipartite graph with bipartition (X, Y ).
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Then G has a matching that saturates all the vertices of X if and only if

|N(S)| ≥ |S| (3.3)

for every subset S of X .

Proof. If G has a matching that saturates all the vertices of X , then dis-

tinct vertices of X are matched to distinct vertices of Y . Hence, trivially,

|N(S)| ≥ |S| for every subset S ⊆ X .

Conversely, assume that the condition (3.3) above holds but that G has

no matching that saturates all the vertices of X . Let M be a maximum

matching of G. As M does not saturate all the vertices of X , there exists

a vertex x0 ∈ X that is M -unsaturated. Let Z denote the set of all vertices

of G connected to x0 by Malternating paths. Since M is a maximum

matching, by Theorem 106, G has no M -augmenting path. As x0 is M -

unsaturated, x0 is the only vertex of Z that is M -unsaturated. Let A =

Z ∩ X and B = Z ∩ Y . Then the vertices of A \ {x0} get matched

under M to the vertices of B, and N(A) = B. Thus, since |B| = A− 1,

|N(A)| = |B| = |A| − 1 < |A|, and this contradicts the assumption (3.3)

(see Fig. 3.5).

We now give some important consequences of Hall’s theorem

Theorem 110. A k(≥ 1)-regular bipartite graph is 1-factorable.

Proof. Let G be k-regular with bipartition (X, Y ). Then E(G)= the set

of edges incident to the vertices of X= the set of edges incident to the

vertices of Y . Hence, k|X| = |E(G)| = k|Y |; and therefore |X| = |Y |.
If S ⊆ X , then N(S) ⊆ Y , and N(N(S)) contains S. Let E1 and E2

be the sets of edges of G incident to S and N(S), respectively. Then

E1 ⊆ E2, |E1| = k|S|, and |E2| = k|N(S)|. Hence, as E2| ≥ E1,

[87] Peiyar University-ODL | Self-Learning Material



ONLINE M.Sc. MATHEMATICS-SEMESTER-I UNIT-III

Figure 3.5: Figure for proof of Theorem 109 (matching edges are bold-
faced)

|N(S)| ≥ |S|. So by Hall’s theorem (Theorem 109), G has a matching

that saturates all the vertices of X; that is, G has a perfect matching M .

Deletion of the edges of M from G results in a k − 1-regular bipartite

graph. Repeated application of the above argument shows that G is 1-

factorable

Lemma 111. Let K be any covering and M any matching of a graph G

with |K| = |M |. Then K is a minimum covering and M is a maximum

matching.

Proof. let M∗ be a maximum matching and K∗ a minimum covering of

G. Then |M | ≤ |M∗| and |K| ≥ |K∗|. Hence, we have |M | ≤ |M∗| ≤
|K∗| ≤ |K|. Since |M | = |K|, we must have |M | = |M∗| = |K∗| = |K|,
proving the lemma.

Theorem 112. In a bipartite graph the minimum number of vertices that

cover all the edges of G is equal to the maximum number of independent

edges; that is, α′(G) = β(G).
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Figure 3.6: Graph for proof of Theorem 112

Proof. Let G be a bipartite graph with bipartition (X, Y ). Let M be a

maximum matching in G. Denote by A the set of vertices of X unsatu-

rated by M (see Fig. 3.6). As in the proof of Theorem 109, let Z stand

for the set of vertices connected to A by M -alternating paths starting in

A. Let S = X ∩ Z and T = Y ∩ Z. Then clearly, T = N(S) and

K = T ∪ (X \ S) is a covering of G, because if there is an edge e not

incident to any vertex in K, then one of the end vertices of e must be in

S and the other in Y \ T , contradicting the fact that N(S) = T . Clearly,

|K| = |M |, and so by Lemma 111, M is a maximum matching and K a

minimum covering of G.

Theorem 113. (Matrix version of KRonig’s theorem) In a binary matrix,

the minimum number of lines that cover all the 1’s is equal to the maxi-

mum number of independent 1’s.

Proof. Let A = (aij) be a binary matrix of size p by q. Form a bipartite

graph G with bipartition (X, Y ), where X and Y are sets of cardinality p

and q, respectively, say,X = {v1, v2, · · · , vp} and Y = {w1, w2, · · · , wq}.
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Make vi adjacent to wj in G if and only if aij = 1. Then an entry 1 in

A corresponds to an edge of G, and two independent 1’s in A correspond

to two independent edges of G. Further, each vertex of G corresponds

to a line of A. Thus, the matrix version of Konig’s theorem is actually a

restatement of Konig’s theorem.

A consequence of Theorem 109 is the theorem on the existence of a

system of distinct representatives (SDR) for a family of subsets of a given

finite set.

Definition 114. Let F = {Aα : α ∈ J} be a family of sets. An SDR for

the family F is a family of elements {xα : α ∈ J} such that xα ∈ Aα for

every α ∈ J and xα ̸= xβ whenever α ̸= β.

Example 115. For instance, if A1 = {1}, A2 = {2, 3}, A3 = {3, 4},

A4 = {1, 2, 3, 4}, and A5 = {2, 3, 4}, then the family {A1, A2, A3, A4}
has {1, 2, 3, 4} as an SDR, whereas the family {A1, A2, A3, A4, A5} has

no SDR. It is clear that for F to have an SDR, it is necessary that for any

positive integer k, the union of any k sets of F must contain at least k

elements. That this condition is also sufficient when F is a finite family of

finite sets is the assertion of Hall’s theorem on the existence of an SDR

Theorem 116. (Hall’s theorem on the existence of an SDR [?]). Let F =

{Ai : 1 ≤ i ≤ r} be a family of finite sets. Then F has an SDR if and

only if the union of any k members of F , 1 ≤ k ≤ r, contains at least k

elements.

Definition 117. A component of a graph is odd or even according to

whether it has an odd or even number of vertices. Let o(G) denote the

number of odd components of G.
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Theorem 118. (Tutte’s 1-factor theorem [?]). A graph G has a 1-factor

if and only if

o(G− S) ≤ |S|, (3.4)

for all S ⊆ V .

Proof. While considering matchings in graphs, we are interested only in

the adjacency of pairs of vertices. Hence, we may assume without loss

of generality that G is simple. If G has a 1-factor M , each of the odd

components ofG−S must have at least one vertex, which is to be matched

only to a vertex of S under M . Hence, for each odd component of G −
S, there exists an edge of the matching with one end in S. Hence, the

number of vertices in S should be at least as large as the number of odd

components in G − S; that is, o(G − S) ≤ |S|. Conversely, assume that

Figure 3.7: Supergraph G∗ for proof of Theorem 118. Unbroken lines
correspond to edges of G∗ and broken lines correspond to edges not be-
longing to G∗

condition (3.4) holds. If G has no 1-factor, we join pairs of non adjacent

vertices of G until we get a maximal supergraph G∗ of G with G∗ having

no 1-factor. Condition (3.4) holds clearly for G∗ as

o(G∗ − S) ≤ o(G− S). (3.5)

(When two odd components are joined by an edge, the result is an even

component.)
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Taking S = ϕ in (3.4), we see that o(G) = 0, and so n(G∗)(= n(G)) =

n is even. Further, for every pair of non adjacent vertices u and v of G∗,

G∗+uv has a 1-factor, and any such 1-factor must necessarily contain the

edge uv.

LetK be the set of vertices ofG∗ of degree (n−1). K ̸= V , since oth-

erwise G∗ = Kn has a perfect matching. We claim that each component

of G∗ − K is complete. Suppose to the contrary that some component

G1 of G∗ − K is not complete. Then in G1 there are vertices x, y and z

such that xy ∈ E(G∗), yz ∈ E(G∗), but xz does not belong to E(G∗).

Moreover, since y ∈ V (G1), dG∗(y) < n − 1 and hence there exists a

vertex w of G∗ with yw /∈ E(G∗). Necessarily, w does not belong to K.

(See Fig. 3.7.)

By the choice of G∗, each of G∗ ∈ xz and G∗ ∈ yw has a 1-factor, say

M1 and M2, respectively. Necessarily, xz ∈ M1 and yw ∈ M2. Let H

be the subgraph of G∗ + {xz, yw} induced by the edges in the symmetric

difference M1 △M2 of M1 and M2. Since M1 and M2 are 1-factors, each

vertex of G∗ is saturated by both M1 and M2, and H is a disjoint union of

even cycles in which the edges alternate between M1 and M2. There arise

two cases:
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Case 1. xz and yw belong to different components of H (Fig. 3.8a).

If yw belongs to the even cycle C, then the edges of M1 in C

together with the edges of M2 not belonging to C form a

1-factor in G∗, contradicting the choice of G∗.

Case 2. xz and yw belong to the same component C of H . Since each

component of H is a cycle, C is a cycle (Fig. 3.8b). By the

symmetry of x and z, we may suppose that the vertices x, y,

w, and z occur in that order on C. Then the edges of M1

belonging to the yw · · · z section of C together with the edge

yz and the edges of M2 not in the yw · · · z section of C form a

1-factor of G∗, again contradicting the choice of G∗. Thus,

each component of G∗ −K is complete.
By condition (3.5), o(G∗ −K) ≤ |K|. Hence, a vertex of each of the odd

components of G∗ − K is matched to a vertex of K. (This is possible

since each vertex of K is adjacent to evry other vertex of G∗). Also, the

remaining vertices in each of the odd and even components ofG∗−K can

be matched among themselves (see Fig. 3.9). The total number of ver-

tices thus matched is even. Since |V (G∗)| is even, the remaining vertices,

if any, of K can be matched among themselves. This gives a 1-factor of

G∗. Note that if K = ϕ, 0(G∗) = 0, and the existence of a 1-factor in

G∗ is trivially true. But by choice, G∗ has no 1-factor. This contradiction

proves that G has a 1-factor.

Corollary 119. (Petersen [?]). Every connected 3-regular graph having

no cut edges has a 1-factor.

Proof. Let G be a connected 3-regular graph without cut edges. Let S ⊆
V . Denote by G1, G2, · · · , Gk the odd components of G− S. Let mi be

the number of edges of G having one end in V (Gi) and the other end in
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Figure 3.8: 1-factors M1 and M2 for (a) case 1 and (b) case 2 in proof of
Theorem 118. Ordinary lines correspond to edges of M1 and bold lines
correspond to edges of M2

S. Since G is a cubic graph,∑
v∈V (Gi)

d(v) = 3n(Gi), and (3.6)

∑
v∈S

= 3|S|. (3.7)

Now E(Gi) = [V (Gi), V (Gi)∪S]\ [V (Gi), S], where [A,B] denotes the

set of edges having one end in A and the other end in B, A ⊆ V , B ⊆ V .

Hence, mi = |[V (Gi), S] =
∑

v∈V (Gi)

d(v) − 2m(Gi), and since d(v) is 3

for each v and V (Gi) is an odd component, mi is odd for each i. Further,

as G has no cut edges, mi ≥ 3. Thus, o(G − S) = k ≤ 1
3

∑k
i=1mi ≤
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1
3

∑
v∈s d(v) = 1

33|S| = |S|. Therefore, by Tutte’s theorem (Theorem

118), G has a 1-factor.

Figure 3.9: Components of G∗ −K for proof of Theorem 118

Figure 3.10: (a) 3-regular graph with cut edges having no 1-factor; (b)
cubic graph with a 1-factor having a cut edge

Example 120. A 3-regular graph with cut edges may not have a 1-factor

(see Fig. 3.10a). Again, a cubic graph with a 1-factor may have cut edges

(see Fig. 3.10b).

In Fig. 3.10a, if S = {v0}, o(G − S) = 3 > 1 = |S|, and so G has

no 1-factor. In Fig. 3.10b, {e1, e2, e3, e4, e5} is a 1-factor, and e3 is a cut

edge of G.
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If G has no 1-factor, by Theorem 118 there exists S ⊂ V (G) with

o(G−S) > |S|. Such a set S is called an antifactor set of G; clearly, S is

a proper subset of V (G).

Let G be a graph of even order n and let S be an antifactor set of G.

Then |S| and o(G−S) have the same parity, and therefore o(G−S) ≡ |S|
(mod 2). Thus, we make the following observation

Figure 3.11: Figure for the proof of Corollary 122

Observation 121. If S is an antifactor set of a graph G of even order,

then 0(G− S) ≥ |S|+ 2.

Corollary 122. (W. H. Cunnigham; see [?]). The edge set of a simple

2-edge-connected cubic graph G can be partitioned into paths of length

3.

Proof. By Corollary 119, G is a union of a 1-factor and a 2-factor. Orient

the edges of each cycle of the above 2-factor in any manner so that each

cycle becomes a directed cycle. Then if e1 is any edge of the 1-factor, and

f1, f
′
1 are the two arcs of G having their tails at the end vertices of e1,

then {e1, f1, f ′1} forms a typical 3-path of the edge partition ofG (see Fig.

3.11).
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Corollary 123. A (p− 1)-regular connected simple graph on 2p vertices

has a 1-factor.

Proof. Proof is by contradiction. Let G be a (p − 1)-regular connected

simple graph on 2p vertices having no 1-factor. Then G has an antifactor

set S. By Observation 121, o(G−S) ≥ |S|+2. Hence, |S|+(|S|+2) ≤
2p, and therefore |S| ≤ p− 1. Let |S| = p− r. Then r ̸= 1 since if r = 1.

|S|+(|S|+2) ≤ 2p,, and therefore o(G−S) = p+1. (Recall that G has

2p vertices.) Hence, each odd component of (G − S) is a singleton, and

therefore each such vertex must be adjacent to all the p − 1 vertices of S

[asG is (p−1)-regular]. But thismeans that every vertex of S is of degree

at least p+ 1, a contradiction. Thus, |S| = p− r, 2 ≤ r ≤ p− 1. If G′ is

any component ofG−S and v ∈ V (G′), then v can be adjacent to at most

|S| vertices of S. Therefore, as G is (p − 1)-regular, v must be adjacent

to at least (p − 1) − (p − r) = r − 1 vertices of G′. Thus, |V (G′)| ≥ r.

Counting the vertices of all the odd components of G−S and the vertices

of S, we get (|S|+ 2)r + |S| ≤ 2p, or (p− r + 2)r + (p− r) ≤ 2p. This

gives (r − 1)(r − p) ≥ 0, violating the condition on r.

Theorem 124. (D. P. Sumner [?]). Let G be a connected graph of even

order n. If G is claw-free (i.e., contains no K1,3 as an induced subgraph),

then G has a 1-factor.

Proof. If G has no 1-factor, G contains a minimal antifactor set S of G.

There must be an edge between S and each odd component of G − S.

Since (G− S) > |S| and G is of even order, by Observation 121, o(G−
S) ≥ |S| + 2. Hence, there are two possibilities: (i) There exists v ∈ S,

and vx, vy, vz are edges of G with x, y and z belonging to distinct odd

components of G − S. This cannot occur since by hypothesis G is K1,3-

free. (ii) There exist a vertex v of S, and edges vu and vw ofGwith u and
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w in distinct odd components of G− S. Suppose Gu and Gw are the odd

components containing u and w, respectively. Then < Gu ∪ Gw{v} > is

an odd component ofG−S1, where S1 = S−{v}. Further o(G−S)−1 >

|S|−1 = |S1|, and hence S1 is an antifactor set ofGwith |S1| = |S|−1, a

contradiction to the choice of S. Thus, G must have a 1-factor. [Note that

by Observation 121, the case |S| = 1 and o(G−S) = 2 cannot arise.]

Let us Sum Up:

In this section, we have studied factors and some interesting properties

like Hall’s theorem, Tutte’s theorem, Petersen theorem, etc.

Note that K2n and Km,n are 1-factorable. Further, by the application of

Hall’s theorem, every regular bipartate graph is 1-factorable.

Check your Progess:

1. Does Km,n posses a 1-factor

(a) Yes (b) No (c) Yes, when m = n (d) Never

2. How many edge-disjoint 1-factor petersen graph have?

(a) 1 (b) 2 (c) 3 (d) 0

Answers: 1. (c) 2. (a)

3.5 Eulerian Graphs

Definition 125. An Euler trail in a graph G is a spanning trail in G that

contains all the edges of G. An Euler tour of G is a closed Euler trail of

G. G is called Eulerian (Fig. 3.12a) if G has an Euler tour. It was Euler

who first considered these graphs, and hence their name.
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Euler showed in 1736 that the celebrated Konigsberg bridge problem

has no solution. The city of Konigsberg (now called Kaliningrad) has

seven bridges linking two islands A and B and the banks C and D of the

Pregel (now called Pregalya) River, as shown in Fig. 3.13.

The problem was to start from any one of the four land areas, take a

stroll across the seven bridges, and get back to the starting point without

crossing any bridge a second time. This problem can be converted into

one concerning the graph obtained by representing each land area by a

vertex and each bridge by an edge. The resulting graph H is the graph of

Fig. 3.12b. The Konigsberg bridge problem will have a solution provided

that this graph H is Eulerian. But this is not the case since it has vertices

of odd degrees.

Figure 3.12: (a) Eulerian graph G; (b) non- Eulerian graph H

Figure 3.13: Konigsberg bridge problem
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Theorem 126. For a nontrivial connected graph G, the following state-

ments are equivalent:

(i) G is Eulerian.

(ii) The degree of each vertex of G is an even positive integer.

(iii) G is an edge-disjoint union of cycles.

Proof. (i) ⇒ (ii): Let T be an Euler tour of G described from some

vertex v0 ∈ V (G). If v ∈ V (G), and v ̸= v0, then every time T enters v,

it must move out of v to get back to v0. Hence two edges incident with v

are used during a visit to v, and therefore, d(v) is even. At v0, every time

T moves out of v0, it must get back to v0. Consequently, d(v0) is also

even. Thus, the degree of each vertex of G is even.

(ii) ⇒ (iii): As δ(G) ≥ 2, G contains a cycle C1. In G \ E(C1),

remove the isolated vertices if there are any. Let the resulting subgraph of

G be G1. If G1 is nonempty, each vertex of G1 is again of even positive

degree. Hence δ(G1) ≥ 2, and so G1 contains a cycle C2. It follows that

after a finite number, say r, of steps, G \ E(C1 ∪ · · · ∪ Cr) is totally dis-

connected. ThenG is the edge disjoint union of the cycles C1, C2, · · · , Cr

(iii) ⇒ (i): Assume that G is an edge-disjoint union of cycles.

Since any cycle is Eulerian, G certainly contains an Eulerian subgraph.

Let G1 be a longest closed trail in G. Then G1 must be G. If not, let

G2 = G \ (G1). Since G is an edge disjoint union of cycles, every vertex

of G is of even degree ≥ 2. Further, since G1 is Eulerian, each vertex

of G1 is of even degree ≥ 2. Hence each vertex of G2 is of even degree.

Since G2 is not totally disconnected and G is connected, G2 contains a

cycle C having a vertex v in common with G1. Describe the Euler tour of

G1. starting and ending at v and follow it by C. Then G1 ∪ C is a closed
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trail in G longer than G1. This contradicts the choice of G1, and so G1

must be G. Hence G is Eulerian.

If G1, · · · , Gr are subgraphs of a graph G that are pairwise edge-

disjoint and their union is G, then this fact is denoted by writing G =

G1 ⊕ · · · ⊕Gr. In the above equation, if Gi = Ci, a cycle of G for each i,

thenG = C1⊕· · ·⊕Cr. The set of cycles S = {C1, · · · , Cr} is then called

a cycle decomposition of G. Thus, Theorem 126 implies that a connected

graph is Eulerian if and only if it admits a cycle decomposition.

Let us Sum Up:

In this section, we have studied the historical development of graph theory

and some interesting equivalent conditions on Eulerian graphs.

Note that complete graphs are not Eulerian always. Kn is Eulerian only

when n is odd. Similarly, Km,n is Eulerian only when both m and n are

even.

Check your Progess:

1. Whether G = P − I is Eulerian? when P is the Petersen graph and

I is a 1-fractor.

(a) Yes (b) No (c) Depends on I (d) Never

Answer: 1. (d)

3.6 Hamiltonian Graphs

Definition 127. A graph is called Hamiltonian if it has a spanning cycle

(see Fig. 3.14a). These graphs were first studied by Sir William Hamilton,
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a mathematician. A spanning cycle of a graph G, when it exists, is often

called a Hamilton cycle (or Hamiltonian cycle) of G.

Definition 128. A graph G is called traceable if it has a spanning path of

G (see Fig. 3.14b). A spanning path of G is also called a Hamilton path

(or Hamiltonian path) of G.

Figure 3.14: (a) Hamiltonian graph; (b) non-Hamiltonian but traceable
graph

Theorem 129. If G is Hamiltonian, then for every nonempty proper sub-

set S of V , w(G− s) ≤ |S|.

Proof. Let C be a Hamilton cycle in G. Then, since C is a spanning

subgraph of G, w(G − S) ≤ w(C − S). If |S| = 1, C − S is a path,

and therefore w(C − S) = 1 = |S|. The removal of a vertex from a path

P results in one or two components, according to whether the removed

vertex is an end vertex or an internal vertex of P . Hence, by induction,

the number of components in C − S cannot exceed |S|. This proves that

w(G− s) ≤ w(C − S) ≤ |S|.

Theorem 130. (Ore [?]). Let G be a simple graph with n ≥ 3 vertices.

If, for every pair of nonadjacent vertices u, v of G, d(u) + d(v) ≥ n, then

G is Hamiltonian.

[102] Peiyar University-ODL | Self-Learning Material



ONLINE M.Sc. MATHEMATICS-SEMESTER-I UNIT-III

Figure 3.15: Hamilton path for proof of Theorem 130

Proof. Suppose that G satisfies the condition of the theorem, but G is

not Hamiltonian. Add edges to G (without adding vertices) and get a

supergraph G∗ of G such that G∗ is a maximal simple graph that satisfies

the condition of the theorem, but G∗ is non-Hamiltonian. Such a graph

G∗ must exist since G is non-Hamiltonian while the complete graph on

V (G) is Hamiltonian. Hence, for any pair u and v of nonadjacent vertices

of G∗, G∗ + uv must contain a Hamilton cycle C. This cycle C would

certainly contain the edge e = uv. Then C − e is a Hamilton path u =

v1v2v3 · · · vn = v of G∗ (see Fig. 3.15).

Now, if vi ∈ N(u), vi−1 /∈ N(v); otherwise, v1v2 · · · vi−1vnvn−1vn−2 · · · vi+1viv1

would be a Hamilton cycle in G∗. Hence, for each vertex vi adjacent to u,

the vertex vi−1 of V − {v} is nonadjacent to v. But then

dG∗(v) ≤ (n− 1)− dG∗(u).

This gives that dG∗(u) + dG∗(v) ≤ n− 1, and therefore dG(u) + dG(v) ≤
n− 1, a contradiction.

Corollary 131. (Direc [?]). If G is a simple graph with n ≥ 3 and δ ≥ n
2 ,

then G is Hamiltonian.

Corollary 132. Let G be a simple graph with n ≥ 3 vertices. If d(u) +

d(v) ≥ n− 1 for every pair of nonadjacent vertices u and v of G, then G

is traceable.

Proof. Choose a new vertexw and letG0 be the graphG∨{w}. Then each
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vertex of G has its degree increased by one, and therefore in G′, d(u) +

d(v) ≥ n+1 for every pair of nonadjacent vertices. Since |V (G′)| = n+1,

by Theorem 130, G′ is Hamiltonian. If C ′ is a Hamilton cycle of G′, then

C ′ − w is a Hamilton path of G. Thus, G is traceable.

Definition 133. The closure of a graph G, denoted cl(G), is defined to

be that supergraph of G obtained from G by recursively joining pairs of

nonadjacent vertices whose degree sum is at least n until no such pair

exists.

Theorem 134. The closure cl(G) of a graph G is well defined.

Proof. Let G1 and G2 be two graphs obtained from G by recursively join-

ing pairs of nonadjacent vertices whose degree sum is at least n until no

such pair exists. We have to prove that G1 = G2.

Let {e1, · · · , ep} and {f1, · · · , fp} be the sets of new edges added toG

in these sequential orderings to get G1 and G2, respectively. We want to

show that each ei is some fj (and therefore belongs to G1) and that each

fk is some el (and therefore belongs to G1). Let ei be the first edge in

{e1, e2, · · · , ep} not belonging to G2. Then {e1, · · · , ei−1} are all in both

G1 and G2, and uvei /∈ E(G2). Let H = G+ {e1, · · · , ei−1}. Then H is

a subgraph of both G1 and G2. By the way cl(G) is defined,

dH(u) + dH(v) ≥ n, and hence

dG2(u) + dG2(v) ≥ n. (3.8)

But this is a contradiction since u and v are nonadjacent vertices of G2,

and G2 is a closure of G. Thus ei ∈ E(G2) for each i and similarly,

fk ∈ E(G1) for each k.
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Figure 3.16: Closure of a graph

Theorem 135. (Chvatal and Erdos). If, for a simple 2-connected graph

G, α ≤ κ, then G is Hamiltonian. (α is the independence number of G

and κ is the connectivity of G.)

Proof. Suppose α ≤ κ but G is not Hamiltonian. Let C : v0v1 · · · v(p−1)

be a longest cycle of G. We fix this orientation on C. By Dirac’s theorem,

p ≥ κ. Let v ∈ V (G) \ V (C). Then by Menger’s theorem, there exist κ

internally disjoint paths P1, · · · , Pκ from v to C. Let vi1, vi2, · · · , viκ be

the end vertices (with suffixes in the increasing order) of these paths on

C. No two of the consecutive vertices vi1, vi2, · · · , viκ, vi1 can be adjacent

vertices of C, since otherwise we get a cycle of G longer than C. Hence,
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between any two consecutive vertices of {vi1, vi2, · · · , viκ, vi1} there exists

at least one vertex of G. Let uij be the vertex next to vij in the vij − vij+1

path along C (see Fig. 3.17a).

We claim that {ui1, · · · , uiκ} is an independent set of G. Suppose uij
is adjacent to uim, m > j (suffixes taken modulo κ ); then

uij · · · vij+1 · · · vimP−1
m vPjvij · · · vij−1 · · ·uimuij

is a cycle of G longer than C, a contradiction.

Further, {v, ui1, · · · , uik} is also an independent set of G. [Otherwise,

vuim ∈ E(G) for some m. See Fig. 3.17b. Then

vuim · · · vim+1 · · · vik · · · vi1 · · · vimP−1
m v

is a cycle longer than C, a contradiction.] But this implies that α > κ, a

contradiction to our hypothesis. Thus G is Hamiltonian.

Theorem 136. IfG is a simple graph with n ≥ 3 vertices such that d(u)+

d(v) ≥ n + 1 for every pair of nonadjacent vertices of G, then G is

Hamiltonian-connected.

Proof. Let u and v be any two vertices of G. Our aim is to show that a

Hamilton path exists from u to v in G.

Choose a new vertex w, and let G∗ = G ∪ {wu,wv}. We claim that

cl(G∗) = Kn+1. First, the recursive addition of the pairs of nonadjacent

vertices u and v of G with d(u) + d(v) ≥ n + 1 gives Kn. Further,

each vertex of Kn is of degree n − 1 in Kn and d(G∗)(w) = 2. Hence,

cl(G∗) = Kn+1. So G∗ is Hamiltonian. Let C be a Hamilton cycle in G∗.

Then C − w is a Hamilton path in G from u to v.
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Figure 3.17: Graphs for proof of Theorem 135

Let us Sum Up:

In this section, we have studied the Hamiltonian graph and some neces-

sary and sufficient conditions.

Note that there is no relationship between Eulerian and Hamiltonian graphs.

For example, all the complete graphs are Hamiltonian, whereas they are

not Eulerian. On the other hand, Km,n are mn Hamiltonian, whereas if is

Eulerian when both m and n are even.

Check your Progress:

1. G is a Hamiltonian graph. Then G is

(a) 1-connected (b) 2-connected
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(c) 3-connected (d) 4-connected

Answer: 1. (b)

3.7 2-Factorable Graphs

Theorem 137. (Peterson). Every 2k-regular graph, k ≥ 1, is 2-factorable.

Proof. Let G be a 2k-regular graph with V = {v1, v2, · · · , vn}. We may

assume without loss of generality that G is connected. (Otherwise, we

can consider the components of G separately.) Since each vertex of G

is of even degree, by Theorem 126, G is Eulerian. Let T be an Eu-

ler tour of G. Form a bipartite graph H with bipartition (V,W ), where

V {v1, v2, · · · , vn} and W = {w1, w2, · · · , wn} and in which vi is made

adjacent to wj if and only if vj follows vi immediately in T . Since at

every vertex of G there are k incoming edges and k outgoing edges along

T ,H is k-regular. Hence, by Theorem 110,H is 1-factorable. Let the k 1-

factors beM1, · · · ,Mk. Label the edges ofMi with the label i; 1 ≤ i ≤ k.

Then the k edges incident at each vi of H receive the k labels 1, 2, · · · , k,

and hence if the edges viwj and vjwr are in Mp, 1 ≤ p ≤ k, identifying

the vertex wj with the vertex vj for each j in Mp gives an edge labeling to

G in which the edges vivj and vjvr receive the label p. It is then clear that

the edges of Mp yield a 2-factor of G with label p. Note that vi is nonad-

jacent to wi in H , 1 ≤ i ≤ k. Since this is true for each of the 1-factors

Mp, 1 ≤ p ≤ k, we get a 2-factorization of G into k 2-factors.

Theorem 138. K2p+1 is 2-factorable into p Hamilton cycles.

Proof. Label the vertics K2p+1 as v0, v1, · · · , v2p. For i = 0, 1, · · · , p, let

P be the path vivi−1vi+1vi−2vi+2 · · · vi+p−1vi−(p−1) (suffixes taken mod-

ulo 2p) and let Ci ba the Hamilton cycle obtained from Pi by joining

[108] Peiyar University-ODL | Self-Learning Material



ONLINE M.Sc. MATHEMATICS-SEMESTER-I UNIT-III

v2p to the end vertices of Pi. The cycles Ci are edge-disjoint. This may

seen by placing the 2p vertices v0, v1, · · · , v2p−1 symmertically on a cir-

cle and placing v2p at the center of the circle and nothing that the edges

vivi−1, vi+1vi−2, · · · , vi+p−1vi−p from a set of p parallel chords of this cir-

cle.

Figure 3.18: Parallel chords and edge-disjoint Hamilton cycles in K7

Figure 3.18 displays the three sets of parallel chords and three edge-

disjoint Hamilton cycles in K7. The 2-factors are

F1 : v6v0v5v1v4v2v3v6,

F2 : v6v1v0v2v5v3v4v6,

F3 : v6v2v1v3v0v4v5v6

.
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Let us sum up

1. A subset S of V is independent if and only if V \ S is a covering of

G.

2. The number of vertices in a maximum independent set of G is called

the independence number of G.

3. The number of vertices in a minimum covering of G is the covering

number of G.

4. A matching of G is a set of independent edges.

5. A matching M of a graph G is maximum if and only if G has no

M -augmenting path.

6. A k-factor of G is a factor of G that is k-regular.

7. A 1-factor of G is called a perfect matching of G.

8. Every connected 3-regular graph having no cut edges has a 1-regular.

9. An Euler trail in a graph G is a spanning trial in G that contains all

the edges of G.

10. A graph is called Hamiltonian if it has a spanning cycle.

11. A graph is called traceable if it has a spanning path.

12. The graph K2p+1 is 2-factorable into p Hamilton cycles.

13. Every 2k-regular graph is 2-factorable.

14. A graph G with at least three vertices is Hamilton-connected if any

two vertices of G are connected by Hamilton path in G.

15. For n ≥ 4, Cn is not Hamilton-connected.

[110] Peiyar University-ODL | Self-Learning Material



ONLINE M.Sc. MATHEMATICS-SEMESTER-I UNIT-III

Check your progress

1. The independent number is denoted by

(a) α (b) β (c) α′ (d) β′

2. For any graph for which δ > 0, α′ + β′ =

(a) δ (b) ∆ (c) n (d) m

3. A matching in G is a set of

(a) independent vertices (b) independent edges

(c) parallel edges (d) loops

4. The notation β′(G) denotes the size of

(a) minimum covering of G

(b) minimum edge covering of G

(c) matching in G

(d) maximum matching on G

5. A 1-factor of G is a of a

(a) matching (b) subgraph (c) spanning (d) perfect matching

6. A component of a graph is odd if it has an odd number of

(a) vertices (b) edges (c) cycles (d) paths

7. A spanning cycle is called

(a) an Euler trial (b) an Euler tour

(c) a Hamilton cycle (d) a Hamilton path

8. If G is Hamiltonian, then for every non-empty proper subset S of V

(a) w(G− s) ≤ |S| (b) w(G− s) < |S|
(c) w(G− S) = |S| (d) w(G− S) > |S|
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9. If G is a simple graph with n ≥ 3 and δ ≥ n
2 , then G is

(a) Eulerian (b) traceable

(c) Hamiltonian (d) Hamiltonian- connected

10. In a graph G, if any two vertices are connected by a spanning path

then G is

(a) Eulerian (b) traceable

(c) Hamiltonian (d) Hamiltonian- connected

11. The graph K2p+1 is 2-factorable is Hamilton cycles.

(a) p+ 1 (b) p (c) p− 1 (d) p
2

12. For a simple 2-connected graph G, if α ≤ k, then G is

(a) factorable (b) traceable

(c) Hamiltonian (d) Eulerian

13. if cl(G) is complete, then G is

(a) Hamiltonian (b) Eulerian

(c) traceable (d) complete

14. A spanning path is called a

(a) Euler trial (b) Euler tour

(b) trial (d) Hamilton path

15. A graph having a spanning path is called

(a) Eulerian (b) Hamiltonian (c) Traceable (d) factor

Answers

1. (a) 2. (c) 3. (b) 4. (b) 5. (d)

6. (a) 7. (c) 8. (a) 9. (c) 10. (d)

11. (b) 12. (c) 13. (a) 14. (d) 15. (c)
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Exercises

1. Show that Herschel graph is bipartite.

2. Show that Km,n,m ̸= n has no spanning cycle.
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Unit 4

Graph Colorings

Objectives

1. To learn the significance of vertex colorings.

2. To gain knowledge about the applications of graph coloring con-

cepts.

3. To introduce various coloring parameters.

4. To apply the concept of edge coloring to solve time table problem.

5. To compute chromatic polynomials.

4.1 Introduction

Graph theory would not be what it is today if there had been no coloring

problems. In fact, a major portion of the 20th-century research in graph

theory has its origin in the four-color problem.

In this chapter, we present basic concepts and important results con-

cerning vertex colorings and edge colorings of graphs.
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4.2 Vertex Colorings

Definition 139. The chromatic number χ(G) of a graph G is the min-

imum number of independent subsets that partition the vertex set of G.

Any such minimum partition is called a chromatic partition of V (G).

Definition 140. A vertex coloring ofG is a map f : V → S, where S is a

set of distinct colors; it is proper if adjacent vertices of G receive distinct

colors of S. This means that if uv ∈ E(G), then f(u) ̸= f(v). Thus, χ(G)

is the minimum cardinality of S for which there exists a proper vertex

coloring of G by colors of S. Clearly, in any proper vertex coloring of G,

the vertices that receive the same color are independent. The vertices that

receive a particular color make up a color class.

Definition 141. The chromatic number of a graph G is the minimum

number of colors needed for a proper vertex coloring of G. G is k-

chromatic if χ(G) = k.

Definition 142. A k-coloring of a graph G is a vertex coloring of G that

uses at most k colors.

Definition 143. A graph G is said to be k-colorable if G admits a proper

vertex coloring using at most k colors.

It is clear that χ(Kn) = n. Further, χ(G) = 2 if and only if G is

bipartite having at least one edge. In particular, χ(T ) = 2 for any tree T

with at least one edge (since any tree is bipartite).

χ(Cn) =

2 if n is even

3 if n is odd.
(4.1)
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Theorem 144. For any graph G with n vertices and independent number

α,

n

α
≤ χ ≤ n− α + 1.

Proof. There exists a chromatic partition {V1, V2, · · · , Vχ} of V . Since

each Vi is independent, |Vi| ≤ α, 1 ≤ i ≤ χ. Hence, n =
∑χ

i=1 |Vi| ≤
αχ, and this gives the inequality on the left.

To prove the inequality on the right, consider a maximum independent

set S of α vertices. Then the subsets of V \ S of cardinality 1 together

with S yield a partition of V into (n− α) + 1 independent subsets.

For a simple graph G, the number χc = χc(G) = χ(Gc) the chromatic

number of Gc is the minimum number of subsets in a partition of V (G)

into subsets each inducing a complete subgraph of G.

Theorem 145. (Nordhaus and Gaddum [?]). For any simple graph G,

2
√
n ≤ χ+ χc ≤ n+ 1, and n ≤ χχc ≤

(
n+ 1

2

)2

.

Proof. Let χ(G) and let V1, V2, · · · , Vk be the k color classes in a chro-

matic partition of G. Then
∑k

i=1 |Vi|, and so max1≤i≤k|Vi| ≥ n
k . Since

each Vi is an independent set of G, it induces a complete subgraph in Gc.

Hence, χc ≥ max1≤i≤k|Vi|, and so χχc = kχc ≥ k ◦ max1≤i≤k|Vi| ≥
k ◦ n

k = n. Further, since the arithmetic mean of χ and χc is greater

than or equal to their geometric mean, χ+χc

2 ≥ √
χχc ≥ √

n. Hence,

χ+ χc ≥ 2
√
n. This establishes both the lower bounds.

To show that χ + χc ≤ n + 1, we use induction on n. When n =

1, χ = χc = 1, and so we have equality in this case. So assume that

χ+ χc ≤ (n− 1) + 1 = n for all graphs G having n− 1 vertices, n ≥ 2.
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Let H be any graph with n vertices, and let v be any vertex of H . Then

G = H − v is a graph with n− 1 vertices and Gc = (H − v)c = Hc − v.

By the induction assumption, χ(G) + χ(Gc) ≤ n.

Now χ(H) ≤ χ(G) + 1 and χ(Hc) ≤ χ(Gc) + 1. If either χ(H) ≤
χ(G) or χ(Hc) ≤ χ(Gc), then χ(H)+χ(Hc) ≤ χ(G)+χ(Gc)+1 ≤ n+1.

Suppose then χ(H) = χ(G)+1 and χ(Hc) = χ(Gc)+1. χ(H) = χ(G)+

1 implies that removal of v from H decreases the chromatic number, and

hence dH(v) ≥ χ(G). [ if dH(v) < χ(G),then in any proper coloring of

G with χ(G) colors at most χ(G) − 1 colors would have been used to

color the neighbors of v in G, and hence v can be given one of the left-out

colors, and therefore we have a coloring of H with χ(G) colors. Hence,

χ(H) = χ(G), a contradiction.] For a similar reason, χ(Hc) = χ(Gc)+1

implies that n − 1 − dH(v) = dHc(v) ≥ χ(Gc); thus, χ(G) + χ(Gc) ≤
dH(v) + n − 1 − dH(v) = n − 1. This implies, however, that χ(H) +

χ(Hc) = χ(G) + χ(Gc) + 2 ≤ n + 1. Finally, applying the inequality
√
χχc ≤ χ+χc

2 , we get χχc ≤
(
χ+χc

2

)2

≤
(
n+1
2

)2
.

Let us Sum Up:

We studied definition of proper coloring, chromatic number and some

interesting results. Note that χ(h) ≥ 3 of G contains a odd cycle. If G is

a k− partite graph, then χ(h) ≤ k.

4.3 Critical Graphs

Definition 146. A graph G is called critical if for every proper subgraph

H of G, χ(H) < χ(G). Equivalently, χ(G − e) < χ(G) for each edge e

of G. Also, G is k-critical if it is k-chromatic and critical.
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Theorem 147. If G is k-critical, then δ(G) ≥ k − 1.

Proof. Suppose δ(G) ≤ k − 2. Let v be a vertex of minimum degree in

G. Since G is k-critical, χ(G − v) = χ(G) − 1 = k − 1. Hence, in any

proper (k− 1)-coloring of G− v, at most (k− 2) colors would have been

used to color the neighbors of v in G. Thus, there is at least one color,

say c, that is left out of these k − 1 colors. If v is given the color c, a

proper (k − 1)-coloring of G is obtained. This is impossible since G is

k-chromatic. Hence, δ(G) ≥ (k − 1).

Corollary 148. For any graph G, χ(G) ≤ 1 + ∆(G).

Proof. Let G be a k-chromatic graph, and let H be a k-critical subgraph

of G. Then χ(H) = χ(G) = k. By Theorem 147, δ(H) ≥ k − 1, and

hence k ≤ 1 + δ(H) ≤ 1 + ∆(H) ≤ 1 + ∆(G).

Theorem 149. In a critical graph G, no vertex cut is a clique.

Proof. Suppose G is a k-critical graph and S is a vertex cut of G that is

a clique of G (i.e., a complete subgraph of G). Let Hi, 1 ≤ i ≤ r, be

the components of G \ S, and let Gi = G[V (Hi) ∪ S]. Then each Gi

is a proper subgraph of G and hence admits a proper (k − 1)-coloring.

Since S is a clique, its vertices must receive distinct colors in any proper

(k − 1)-coloring of Gi. Hence, by fixing the colors for the vertices of S,

and coloring for each i the remaining vertices of Gi so as to give a proper

(k − 1)-coloring of Gi, we obtain a proper (k − 1)-coloring of G. This

contradicts the fact that G is k-chromatic.

Theorem 150. (Brook’s theorem) If a connected graph G is neither an

odd cycle nor a complete graph, then χ(G) ≤ ∆(G).
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Proof. If ∆(G) ≤ 2, thenG is either a path or a cycle. For a pathG (other

thanK1 andK2), and for an even cycleG, χ(G) = 2 = ∆(G). According

to our assumption, G is not an odd cycle. So let ∆(G) ≥ 3.

The proof is by contradiction. Suppose the result is not true. Then

there exists a minimal graph G of maximum degree ∆(G) = ∆ ≥ 3

such that G is not ∆- colorable, but for any vertex v of G, G − v is ∆-

colorable.

Claim 1. Let v be any vertex of G. Then in any proper ∆-coloring of

G − v, all the ∆ colors must be used for coloring the neighbors v in G.

Otherwise, if some color i is not represented in NG(v), then v could be

colored using i, and this would give a ∆-coloring of G, a contradiction to

the choice of G. Thus, G is a ∆-regular graph satisfying Claim 1.

For v ∈ V (G), let N(v) = {v1, v2, · · · , vg}. In a proper ∆-coloring of

G = v = H , let vi receive color i, 1 ≤ i ≤ ∆. For i ̸= j, let Hij be the

subgraph of H induced by the vertices receiving the ith and jth colors.

Claim 2. vi and vj belong to the same component of Hij . Otherwise, the

colors i and j can be interchanged in the component of Hij that contains

the vertex vj . Such an interchange of colors once again yields a proper

∆-coloring of H . In this new coloring, both vi and vj receive the same

color, namely, i, a contradiction to Claim 1. This proves Claim 2.

Claim 3. If Cij is the component of Hij containing vi and vj , then Cij is

a path in Hij . As before, NH(vi) contains exactly one vertex of color j.

Further, Cij cannot contain a vertex, say y, of degree at least 3; for, if y

is the first such vertex on a vi − vj path in Cij that has been colored, say,

with i, then at least three neighbors of y in Cij have the color j. Hence,

we can recolor y in H with a color different from both i and j, and in this

new coloring of H , vi and vj would belong to distinct components of Hij
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(see Fig. 4.1a). (Note that by our choice of y; any vi−vj path in Hij must

contain y.) But this contradicts Claim 3.

Claim 4. Cij ∩ Cik = {vi} for j ̸= k. Indeed, if w ∈ Cij ∩ Cik, w ̸= vi,

then w is adjacent to two vertices of color j on Cij and two vertices of

color k on Cik (see Fig. 4.1b). Again, we can recolor w in H by giving

a color different from the colors of the neighbors of w in H . In this new

coloring of H , vi and vj belong to distinct components of Hij , a contra-

diction to Claim 2. This completes the proof of Claim 4.

We are now in a position to complete the proof of the theorem. By hypoth-

esis, G is not complete. Hence,G has a vertex v, and a pair of nonadjacent

vertices v1 and v2 inNG(v). Then the v1−v2 pathC12 inH12 ofH = G−v
contains a vertex y(̸= v2) adjacent to v1. Naturally, y would receive color

2. Since ∆ ≥ 3, by Claim 1, there exists a vertex v3 ∈ NG(v). Now

interchange colors 1 and 3 in the path C13 of H13. This would result in a

new coloring of H = G− v. Denote the vi − vj path in H under this new

coloring by C ′
ij (see Fig. 4.1c). Then y ∈ C ′

23 since v1 receives color 3 in

the new coloring (whereas y retains color 2). Also, y ∈ C12 − v1 − C ′
12.

Thus, y ∈ C ′
23 ∩ C ′

12. This contradicts Claim 4 (since y ̸= v2), and the

proof is complete.

Definition 151. Let f be a k-coloring (not necessarily proper) of G, and

let (V1, V2, · · · , Vk) be the color classes of G induced by f . Coloring

f is pseudocomplete if between any two distinct color classes, there is

at least one edge of G. f is complete if it is pseudocomplete and each

Vi, 1 ≤ i ≤ k, is an independent set of G. Thus, χ(G) is the minimum k

for which G has a complete k-coloring f .

Definition 152. The achromatic number a(G) of a graph G is the max-

imum k for which G has a complete k-coloring.
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Figure 4.1: Graphs for proof of Theorem 150 (The numbers inside the
parentheses denote the vertex colors)

Definition 153. The pseudoachromatic number ψ(G) of G is the maxi-

mum k for which G has a pseudocomplete k-coloring.

Example 154. Figure 4.2 gives (a) a chromatic, (b) an achromatic, and

(c) a pseudoachromatic coloring of K3,3 − e.

It is clear that for any graph G, χ(G) ≤ a(G) ≤ ψ(G).

Figure 4.2: Different colorings of K3,3 − e
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Definition 155. A b-coloring of a graph G is a proper coloring with the

additional property that each color class contains a color-dominating ver-

tex (c.d.v.), that is, a vertex that has a neighbor in all the other color

classes. The b-chromatic number of G is the largest k such that G has a

b-coloring using k colors, it is denoted by b(G).

For any graph G and shows that χ(G) ≤ b(G). Note that b(Kn) = n

while b(Km,n) = 2.

Let G be a bipartite graph with bipartition (X, Y ). A vertex x ∈ X

(respectively, y ∈ Y ) is called a full vertex (or a charismatic vertex) of

X (respectively, Y ) if it is adjacent to all the vertices of Y (respectively,

X).

Theorem 156. [?] Let G be a nontrivial connected graph. Then b(G) =

2 if and only if G is bipartite and has a full vertex in each part of the

bipartition.

Proof. SupposeG is bipartite and has a full vertex in each part, say x ∈ X

and y ∈ Y . Naturally, in any b-coloring, the color class containing x, say

W1, is a subset of X and that containing y, say W2, is a subset of Y . If G

has a third color class W3 disjoint from W1 and W2, then W3 must have a

c.d.v. adjacent to a vertex of W1 and a vertex of W2. This is impossible,

as G is bipartite. Therefore, b(G) = 2.

Conversely, let b(G) = 2. Then χ(G) = 2 and therefore G is bipartite.

Let (X, Y ) be the bipartition of G. Assume that G does not have a full

vertex in at least one part, say, X . Let x1 ∈ X . As x1 is not a full vertex,

there exists a vertex y1 ∈ Y to which it is not adjacent. Let X1 be the

maximal subset of X such that V 1 = X1{y1} is independent in G. Now

choose a new vertex x2 ∈ X \X1. Again, as X has no full vertex, we can

find a y2 ∈ Y \ {y1} to which x2 is not adjacent. Let X2 be the maximal
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subset of X \ X1 such that V2X2 ∪ {y1} is independent in G. In this

way, all the vertices of X would be exhausted and let V1, V2, · · · , Vk be

the independent sets thus formed. Also, let Y0 denote the set of uncovered

vertices of Y , if any. Since G is connected, G ̸= ⟨V1 ∪ Y0⟩, i, j, l ∈
{1, 2, · · · , k}. Hence, k ≥ 2 when Y0 ̸= ϕ; and k ≥ 3 when Y0 = ϕ.

Thus, the partition V = V1 ∪ V2 ∪ · · · ∪ Vk ∪ {Vk+1 = Y0} has at least 3

parts. If each of these parts has a c.d.v., we get a contradiction to the fact

that b(G) = 2. If not, assume that the class Vl has no c.d.v. Then for each

vertex x of Vl, there exists a color class Vj, j ̸= l, having no neighbor

of x. Then x could be moved to the class Vj . In this way, the vertices

in Vl can be moved to the other Vi’s without disturbing independence.

Let us call the new classes V ′
1 , V

′
2 , · · · , V ′

l−1, V
′
l+1, · · · , V ′

k+1, If each of

these color classes contains a c.d.v., we get a contradiction as k ≥ 3.

Otherwise, argue as before and reduce the number of color classes. As G

is connected, successive reductions should end up in at least three classes,

contradicting the hypothesis that b(G) = 2.

Let us Sum Up:

Brook’s theorem stats that χ(G) ≤ ∆, where G is neither an odd cycle

nor a complete graph, where as χ(G) ≤ ∆+ 1 for any G.

Check your progress:

Chromatic number of the Petersan graph is

a) 2 b) 3 (c) 4 d) ≤ 3

Answer: (b).
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4.4 Edge Colorings of Graphs

Definition 157. An edge coloring of a loopless graph G is a function

π : E(G) → S, where S is a set of distinct colors; it is proper if no two

adjacent edges receive the same color. Thus, a proper edge coloring π of

G is a function π : E(G) → S such that π(e) ̸= π(e′) whenever edges

e and e′ are adjacent in G, and it is a proper k-edge coloring of G if

|S| = k.

Definition 158. The minimum k for which a loopless graph G has a

proper k-edge coloring is called the edge-chromatic number or chromatic

index of G. It is denoted by χ′(G). G is k-edge-chromatic if χ′(G) = k.

Theorem 159. If G is a bipartite graph χ′(G) = ∆(G).

Proof. The proof is by induction on the size (i.e., number of edges) m of

G. The result is true for m = 1. Assume the result for bipartite graphs

of size at most m − 1. Let G have m edges. Let e = uv ∈ E(G). Then

G−e has [since ∆(G−e) ≤ ∆(G)] a proper ∆-edge coloring, say c. Out

of these ∆ colors, suppose that one particular color is not represented at

both u and v. Then in this coloring the edge uv can be colored with this

color, and a proper ∆-edge coloring of G is obtained.

In the other case (that is, in the case in which each of the ∆ colors is

represented either at u or at v in G − e), since the degrees of u and v in

G− e are at most ∆−1, there exists a color out of the ∆ colors that is not

represented inG−e at u, and similarly there exists a color not represented

at v. Thus, if color j is not represented at u in c, then j is represented at

v in c, and if color i is not represented at v in c, then i is represented at

u in c. Since G is bipartite and u and v are not in the same parts of the

bipartition, there can exist no u−v path in G in which the colors alternate
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between i and j.

Let P be a maximal path in G− e starting from u in which the colors

of the edges alternate between i and j. Interchange the colors i and j in

P . This would still yield a proper edge coloring of G − e using the ∆

colors in which color i is not represented at both u and v. Now color the

edge uv by the color i. This results in a proper ∆-edge coloring of G.

Figure 4.3: Graph for proof of Theorem 160

Theorem 160. χ′(Kn) =

n− 1 if n is even

n if n is odd

Proof. (Berge) Since Kn is regular of degree n− 1, χ′(Kn) ≥ n− 1.

Case 1. n is even. We show that χ′(Kn) ≤ n − 1 by exhibiting a proper

(n−1)- edge coloring ofKn. Label the n vertices ofKn as 0, 1, · · · , n−1.

Draw a circle with center at 0 and place the remaining n− 1 numbers on

the circumference of the circle so that they form a regular (n − 1)-gon

(Fig. 4.3). Then the n
2 edges (0, 1), (2, n−1), (3, n−2), · · · ,

(
n
2 ,

n
2 + 1

)
form a 1-factor of Kn. These n

2 edges are the thick edges of Fig.4.3. Ro-

tation of these edges through the angle 2π
n−1 in succession gives (n − 1)
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edge-disjoint 1-factors of Kn. This would account for n
2 (n−1) edges and

hence all the edges of Kn. (Actually, the above construction displays a

1-factorization of Kn when n is even.) Each 1-factor can be assigned a

distinct color. Thus, χ′(Kn) ≤ n− 1. This proves the result in Case 1.

Case 2. n is odd. Take a new vertex and make it adjacent to all the n

vertices of Kn. This gives Kn+1. By Case 1, χ′(Kn+1) = n. The restric-

tion of this edge coloring to Kn yields a proper n-edge coloring of Kn.

Hence, χ′(Kn) ≤ n. However, Kn cannot be edge colored properly with

n− 1 colors. This is because the size of any matching of Kn can contain

no more than n−1
2 edges, and hence n − 1 matchings of Kn can contain

no more than (n−1)2

2 edges. But Kn has n(n−1)
2 edges. Thus, χ′(Kn) ≥ n,

and hence χ′(Kn) = n.

Figure 4.4: Graph for proof of Theorem 161

Theorem 161. (Vizing-Gupta). For any simple graphG, ∆(G) ≤ χ′(G) ≤
1 + ∆(G).

Proof. In a proper edge coloring of G, ∆(G), colors are to be used for

the edges incident at a vertex of maximum degree in G. Hence, χ′(G) ≥
∆(G).

We now prove that χ′(G) ≤ 1 + ∆, where ∆ = ∆(G).
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If G is not (1 + ∆)-edge-colorable, choose a subgraph H of G with

a maximum possible number of edges such that H is (1 + ∆)-edge-

colorable. We derive a contradiction by showing that there exists a sub-

graph H0 of G that is (1+∆)-edge-colorable and has one edge more than

H .

By our assumption, G has an edge uv1 /∈ E(H). Since d(u) ≤ ∆, and

1+∆ colors are being used in H , there is a color c that is not represented

at u (i.e., not used for any edge of H incident at u). For the same reason,

there is a color c1 not represented at v1. (See Fig. 4.4, where the color not

represented at a particular vertex is enclosed in a circle and marked near

the vertex.)

There must be an edge, say uv2 of H , colored c1 otherwise, uv1 can be

assigned the color c1, and H ∪ (uv1), which has one edge more than H ,

would have a proper (1 + ∆)-edge coloring. Again, there is a color, say

c2, not represented at v2. Then as above, there is an edge uv3 colored c2

and there is a color, say c3, not represented at v3.

In this way, we construct a sequence of edges {uv1, uv2, · · · , uvk}
such that color ci is not represented at vertex vi, 1 ≤ i ≤ k, and the

edge uvj+1 receives the color cj, 1 ≤ j ≤ k − 1 (see Fig. 4.4).

Suppose at some stage, say the rth stage, where 1 ≤ r ≤ k, c (the miss-

ing color at u) is not represented at vr. We then “cascade ”(i.e., shift in or-

der) the colors c1, · · · , cr−1 from uv2, uv3, · · · , uvr to uv1, uv2, · · · , uvr−1.

Under this new coloring, c is not represented both at u and at vr, and there-

fore we can color uvr with c. This yields a proper (1 + ∆)-edge coloring

to H ∪ (uv1), contradicting the choice of H . Hence, we may assume that

c is represented at each of the vertices v1, v2, · · · , vk.

Now we need to know why the sequence of edges uvi, 1 ≤ i ≤ k, had
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stopped. There are two possible reasons. Either there is no edge incident

to u that is colored ck, or the color ck = cj for some j < k− 1 and so has

already been represented at u. Note that the sequence must stop at some

finite stage since d(u) is finite; however, it may as well stop before all the

edges incident to u are exhausted.

If ck is not represented at u in H , then we can cascade as before so that

uvi gets color ci, 1 ≤ i ≤ k − 1, and then color uvk with color ck. Once

again, we have a contradiction to our assumption on H .

Thus, we must have ck = cj for come j < k − 1. In this case, cascade

the colors c1, c2, · · · , cj so that uvi has color ci, 1 ≤ i ≤ j, and leave

uvj+1 uncolored (Fig. 4.5). Let S = (H ∪ (uvi))− uvj+1. Then S and H

have the same number of edges.

Now consider Sccj , the subgraph of S defined by the edges of S with

colors c and cj . Clearly, each component of Sccj is either an even cycle or

a path in which the adjacent edges alternate with colors c and cj .

Now, c is represented at each of the vertices v1, v2, · · · , vk, and in par-

ticular at vj+1 and vk. But cj is not represented at vj+1 and vk, since we

have just moved cj to uvj , and cj = ck is not represented at vk. Hence

in Sccj , the degrees of vj+1 and vk are both equal to 1. Moreover, cj is

represented at u, but c is not. Therefore, u also has degree 1 in Sccj . As

each component of Sccj is either a path or an even cycle, not all of u, vj+1,

and vk can be in the same component of Sccj (since a nontrivial path has

only two vertices of degree 1).

If u and vj+1 are in different components of Sccj , interchange the colors

c and c + j + 1 in the component containing vj+1. Then c is not repre-

sented at both u and vj+1, and so we can color the edge uvj+1 with c. This

gives a (1 + ∆)-edge coloring to the graph S ∪ (uvj+1).
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Figure 4.5: Another graph for proof of Theorem 161

Suppose then u and vj+1 are in the same components of Sccj . Then,

necessarily, vk is not in this component. Interchange c and cj in the com-

ponent containing vk. In this case, further cascade the colors so that uvi

has color ci, 1 ≤ i ≤ k − 1. Now color uvk with color c.

Thus, we have extended our edge coloring of S with 1 + ∆ colors to

one more edge of G. This contradiction proves that H = G, and thus

χ′(G) = 1 + ∆.

Definition 162. Graph for which χ′ = ∆ are called Class 1 graphs and

those for which χ′ = 1 +∆ are called Class 2 graphs.

Example 163. Bipartite graphs are of class 1, whereas the Peterson graph

and any simple cubic graph with a cut edge are of class 2.

Lemma 164. Let M and N be disjoint matchings of a graph G with

|M | > |N |. Then there are disjoint matchings M ′ and N ′ of G with

|M ′| = |M | − 1 and |N ′| = |N |+ 1 and with M ′ ∪N ′ =M ∪N .

Proof. Consider the subgraph H = G[M ∪N ]. Each component of H is

either an even cycle or a path with edges alternating between M and N .

Since |M | > |N |, some path component P of H must have its initial and

terminal edges in M . Let P = v0e1v1e2v2 · · · e2r+1v2r+1.
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Now set

M ′ = (M \ {e1, e2, · · · , e2r+1}) ∪ {e2, e4, · · · , e2r}

and

N ′ = (N \ {e2, e4, · · · , e2r}) ∪ {e1, e3, · · · , e2r+1}

M ′ andN ′ are disjoint matchings ofG satisfying the conditions the lemma.

Theorem 165. If G is a bipartite graph (with m edges), and if m ≥ t ≥
∆, then there exist t disjoint matchings M1, M2, · · · ,Mt of G such that

E =M1 ∪M2 ∪ · · · ∪Mt

and for 1 ≤ i ≤ t,

⌊m/t⌋ ≤ |Mi| ≤ ⌈m/t⌉

.

Proof. By Theorem 159, χ′ = ∆. Hence E(G) can be partitioned into ∆

matchingsM ′
1,M

′
2, · · · ,M ′

∆. So for t ≥ ∆, there exist disjoint matchings

M ′
1,M

′
2, · · · ,M ′

t , where M ′
i = ϕ for ∆+ 1 ≤ i ≤ t, and

E =M ′
1 ∪M ′

2 ∪ · · · ∪M ′
t

. Now repeatedly apply Lemma 164 to pairs of matching that differ

by more than one in size. This would eventually result in matchings

M1,M2, · · · ,Mt of G satisfying the condition stated in the theorem.

[131] Peiyar University-ODL | Self-Learning Material



ONLINE M.Sc. MATHEMATICS-SEMESTER-I UNIT-IV

Let us Sum Up:

In this section, we have studied definition of edge chromatic number, crit-

ical graphs and important theorems for Vizing. Further, Vizing’s theorem

classifies graphs into Class 1 and Class 2.

Note that bipartite graph are Class 1.

Check your Progress:

Edge chromatic number of Herschel graph is

a) 2 b) 3 c) 4 d) 5

Answer: (c).

4.5 Chromatic Polynomials

For a graph G and a given set of λ colors, the function f(G;λ) is defined

to be the number of ways of (vertex) coloring G properly using the λ

colors. Hence, f(G;λ) when G has no proper λ-coloring. Clearly, the

minimum λ for which f(G;λ) is the chromatic number χ(G) of G. It is

easy to see that f(Kn;λ) = λ(λ − 1) · · · (λ − n + 1) for λ ≥ n. This is

because any vertex of Kn can be colored by any one of the given λ colors.

After coloring a vertex ofKn, a second vertex ofKn can be colored by any

one of the remaining (λ− 1) colors, and so on. In particular, f(K3;λ) =

λ(λ− 1)(λ− 2). Also, f(Kc
n : λ) = λ′′.

Theorem 166. Let G be any graph. Then f(G;λ) = f(G− e;λ)− f(G◦
e;λ) for any edge e of G.

Proof. f(G−e;λ) denotes the number of proper colorings of G−e using

λ colors. Hence, it is the sum of the number of proper colorings ofG−e in
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which u and v receive the same color and the number of proper colorings

of G − e in which u and v receive distinct colors. The former number is

f(G ◦ e;λ), and the latter number is f(G;λ).

the function f(G;λ) is called the chromatic polynomial of the graph

G.

Theorem 167. For a simple graph G of order n and size m, f(G;λ) is a

monic polynomial of degree n in λ with integer coefficients and constant

term zero. In addition, its coefficients alternate in sign and the coefficient

of λn−1 is −m:

Proof. The proof is by induction onm. Ifm = 0,G isKc
n and f(Kc

n;λ) =

λn, and if m = 1, G is K2 and f(K2;λ) = λ2 − λ. and the statement of

the theorem is trivially true in these cases. Suppose now that the theorem

holds for all graphs with fewer than m edges, where m ≥ 2. Let G be
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any simple graph of order n and size m, and let e be any edge of G. Both

G− e and G ◦ e (after removal of multiple edges, if necessary) are simple

graphs with at most m− 1 edges, and hence, by the induction hypothesis,

f(G− e;λ) = λn − a0λ
n−1 + a1λ

n−2 − · · ·+ (−1)n−1an−2λ

, and

f(G ◦ e;λ) = λn−1 − b1λ
n−2 + · · ·+ (−1)n−2bn−2λ,

where a0, · · · , an−2; b1, · · · , bn−2 are nonnegative integers (so that the

coefficients alternate in sign), and a0 is the number of edges in G − e,

which is m− 1. By Theorem 166, f(G;λ) = f(G− e;λ)− f(G ◦ e;λ),
and hence

f(G;λ) = λn−(a0+1)λn−1+(a1+b1)λ
n−2−· · ·+(−1)n−1(an−2+bn−2)λ

. Since a0 + 1 = m, f(G;λ) has all the stated properties.

Theorem 168. A simple graph G on n verices is a tree if and only if

f(G;λ) = λ(λ− 1)n−1.

Proof. LetG be a tree. We prove that f(G;λ) = λ(λ−1)n−1 by induction

on n. If n = 1, the result is trivial. So assume the result for trees with at

most n = 1 vertices, n ≥ 2. Let G be a tree with n vertices, and e be a

pendent edge ofG. By Theorem 166, f(G;λ) = f(G−e;λ)−f(G◦e;λ).
Now,G − e is a forest with two component trees of orders n − 1 and 1,

and hence f(G− e;λ) = (λ(λ− 1)n−2)λ. Since G ◦ e is a tree with n− 1

vertices, f(G ◦ e;λ) = λ(λ− 1)n−2. Thus, f(G;λ) = (λ(λ− 1)n−2)λ−
λ(λ− 1)n−2 = λ(λ− 1)n−1.

Conversely, assume that G is a simple graph with f(G;λ) = λ(λ −
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1)n−1 = λn− (n− 1)λn−1+ · · ·+(−1)n−1λ. Hence, by Theorem 167, G

has n vertices and n− 1 edges. Further, the last term, (−1)n−1λ, ensures

that G is connected. Hence, G is a tree.
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Let us Sum Up

1. The chromatic number χ(G) of a graph G is the minimum number

of independent subset that partition the vertex set of G.

2. A graph G is called critical if for every proper subgraph H of G,

ψ(H) < ψ(a).

3. if G is k-critical, then δ(G) ≥ k − 1

4. in a critical graph G, no vertex cut is a clique.

5. If a connected graph G is neither an odd cycle nor a complete graph,

then ψ(G) ≤ ∆(G).

6. An edge coloring of a loopless graph G is a function π : E(G) → S,

where S a set if distinct colors; it is proper if no two adjacent edges

receive the same color

7. The edge chromatic number is denoted by ψ′.

8. If G is a bipartite graph, then ψ′(G) = ∆(G).

9. χ′ =

n− 1 if n is even

n if is n is odd

10. For any simple G, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

11. Graphs for critical χ′ = ∆ are called class 1 graphs.

12. Graphs for which χ′ = ∆+ 1 are called class 2 graphs.

13. The chromatic polynomial of the complete graph Kn is f(Kn;λ) =

λ(λ− 1) · · · (λ− n+ 1), λ ≥ n.

14. For any graph G, f(G;λ) = f(G− e;λ)− f(G ◦ −e;λ).
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15. A simple graph G on n vertices is a tree if and only if f(G;λ) =

λ(λ− 1n−1).

Check Your Progress

1. A graph G is k-colorable, if

(a) χ(G) = k (b) χ(G) ≤ k (c) χ < k (d) χ(G) ≥ k.

2. Chromatic number of the complete graph Kn is

(a) 1 (b) n− 1 (c) n (d) n+ 1.

3. χ(G) = 2 if and only if G is

(a) cycle (b) star (c) tree (d) bipartite

4. For any tree T with at least one edge, χ(T ) =

(a) 1 (b) 2 (c) n− 1 (d) n.

5. If n is odd, χ(Cn) =

(a) 1 (b) 2 (c) 3 (d) n

6. If χ = 1, then G is complete

(a) complete (b) connected (c) disconnected

(d) totally disconnected

7. A graph G is 1-critical if and only if G is

(a) Cn (b) K1 (c) K2 (d) Kn.

8. A graph G is 2-critical if and only if G is

(a) Cn (b) K1 (c) K2 (d) Kn

9. A graph G is critical if for every proper subgraph H of G

(a) χ(H) < χ(G) (b) χ(H) ≤ χ(G) (c) χ(H) = χ(G)

(d) χ(H) > χ(G)
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10. In a critical graph G, no vertex cut is a

(a) cycle (b) clique (c) block (d) tree

11. if a connected graph G is neither an odd cycle nor a complete graph,

then

(a) χ(G) = ∆(G) (b) χ(G) < ∆(G) (c) χ(G) > ∆(G)

(d) χ(G) ≤ ∆(G)

12. If G is a bipartite graph, then

(a) χ′(G) = ∆(G) (b) χ′(G) ≤ ∆(G) (c) χ′(G) ≥ ∆(G)

(d) χ′(G) = 2.

13. If n is odd, then χ′(Kn) =

(a) 3 (b) n (c) n− 1 (d) 1

14. Graphs for which χ′ = ∆ are called

(a) class 1 graphs (b) class 2 graphs

(c) bipartite (d) complete

15. The chromatic polynomial of K3 is

(a) λ (b) λ(λ− 1) (c) λ(λ− 1)(λ− 2)

(d) λ(λ− 1)(λ− 2)(λ− 3)

Answers

1. (a) 2. (c) 3. (d) 4. (b) 5.(c) 6.(d) 7. (b) 8. (c) 9.(a) 10.(b)

11. (d) 12. (a) 13. (b) 14.(a) 15.(c)
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Exercises

1. Show that Herschel graph is bipartite.

2. Show that Km,n,m ̸= n has no spanning cycle.
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Unit 5

Planar Graphs

Objectives

1. To discuss the planar and nonplanar graphs.

2. To learn the significance of Euler’s formula for planar graphs.

3. To apply Kuratowski graphs in identifying graphs.

4. To gain knowledge about the famous Four color theorem.

5. To provide a foundation for Tait coloring.

5.1 Introduction

The study of planar and nonplanar graphs and, in particular, the several

attempts to solve the four-color conjecture have contributed a great deal

to the growth of graph theory. Actually, these efforts have been instru-

mental to the development of algebraic, topological, and computational

techniques in graph theory. In this chapter, we present some of the basic

results on planar graphs.

141



ONLINE M.Sc. MATHEMATICS-SEMESTER-I UNIT-V

5.2 Planar and Nonplanar Graphs

Definition 169. A graph G is planar if there exists a drawing of G in the

plane in which no two edges intersect in a point other than a vertex of G,

where each edge is a Jordan arc (that is, a simple arc). Such a drawing

of a planar graph G is called a plane representation of G. In this case,

we also say that G has been embedded in the plane. A plane graph is a

planar graph that has already been embedded in the plane.

Example 170. There exist planar as well as nonplanar graphs. In Fig.

5.1, a planar graph and two of its plane representations are shown. Note

that all trees are planar as also are cycles and wheels. The Petersen graph

is nonplanar.

Before proceeding further, let us recall here the celebrated Jordan curve

theorem. If J is any closed Jordan curve in the plane, the complement of J

(with respect to the plane) is partitioned into two disjoint open connected

subsets of the plane, one of which is bounded and the other unbounded.

The bounded subset is called the interior of J and is denoted by int J .

The unbounded subset is called the exterior of J and is denoted by ext

J . The Jordan curve theorem (of topology) states that if J is any closed

Jordan curve in the plane, any arc joining a point of int J and a point of

ext J must intersect J at some point (see Fig. 5.2). Let G be a plane

graph. Then the union of the edges (as Jordan arcs) of a cycle C of G

form a closed Jordan curve, which we also denote by C. A plane graph

G divides the rest of the plane (i.e., plane minus the edges and vertices of

G), say π, into one or more faces.

Definition 171. We say that for points A and B of π, A ∼ B if and only

if there exists a Jordan arc from A to B in π. Clearly, π is an equivalence
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Figure 5.1: A planar graph with two plane embeddings

Figure 5.2: Arc connecting point x in int J with point y in int J

relation on π. The equivalence classes of the above equivalence relation

are called the faces of G.

Remark 172. 1. We claim that a connected graph is a tree if and only

if it has only one face. Indeed, since there are no cycles in a tree T ,

the complement of a plane embedding of T in the plane is connected

(in the above sense), and hence a tree has only one face. Conversely,

it is clear that if a connected plane graph has only one face, then it

must be a tree.

2. Any plane graph has exactly one unbounded face. The unbounded

face is also referred to as the exterior face of the plane graph. All

other faces, if any, are bounded. Figure 5.3 represents a plane graph

with seven faces.

Definition 173. graph is embeddable on a sphere S if it can be drawn

on the surface of S so that its edges intersect only at its vertices. Such a

drawing, if it exists, is called an embedding of G on S. Embeddings on a

sphere are called spherical embeddings.
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Figure 5.3: A plane graph with seven faces

Figure 5.4: Stereographic projection of the sphere S from N

Definition 174. Let S be a sphere resting on a plane P so that P is a

tangent plane to S. Let N be the “north pole,”the point on the sphere

diametrically opposite the point of contact of S and P . Let the straight

line joiningN and a point s of S \{N} meet P at p. Then the mapping η :

S \ {N} → P defined by η(s) = p is called the stereographic projection

of S from N (see Fig. 5.4).

Theorem 175. A graph is planar if and only if it is embeddable on a

sphere.

Proof. Let a graph G be embeddable on a sphere and let G′ be a spherical

embedding of G. The image of G′ under the stereographic projection η of

the sphere from a pointN of the sphere not onG′ is a plane representation

of G on P . Conversely, if G′′ is a plane embedding of G on a plane P ,

then the inverse of the stereographic projection ofG′′ on a sphere touching

the plane P gives a spherical embedding of G.
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Figure 5.5: Plane graph with four faces

Theorem 176. (a) Let G be a plane graph and f be a face of G. Then

there exists a plane embedding of G in which f is the exterior face.

(b) Let G be a planar graph. Then G can be embedded in the plane

in such a way that any specified vertex (or edge) belongs to the un-

bounded face of the resulting plane graph.

Proof.

(a) Let n be a point of int f . Let G′ = σ(G) be a spherical embedding of

G and let N = σ(n). Let η be the stereographic projection of the sphere

with N as the north pole. Then the map ησ (σ followed by η) gives a

plane embedding of G that maps f onto the exterior face of the plane

representation (ησ)(G) of G.

(b) Let f be a face containing the specified vertex (respectively, edge) in a

plane representation of G. Now, by part (a) of the theorem, there exists a

plane embedding ofG in which f becomes the exterior face. The specified

vertex (respectively, edge) then becomes a vertex (respectively, edge) of

the new unbounded face.

Remark 177. 1. Let G be a connected plane graph. Each edge of G

belongs to one or two faces of G. A cut edge of G belongs to exactly

one face, and conversely, if an edge belongs to exactly one face of
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G, it must be a cut edge of G. An edge of G that is not a cut edge

belongs to exactly two faces and conversely.

2. The union of the vertices and edges of G incident with a face f of

G is called the boundary of f and is denoted by b(f). The vertices

and edges of a plane graph G belonging to the boundary of a face

of G are said to be incident with that face. If G is connected, the

boundary of each face is a closed walk in which each cut edge of

G is traversed twice. When there are no cut edges, the boundary of

each face of G is a closed trail in G. (See, for instance, face f1 of

Fig. 5.3.) However, if G is a disconnected plane graph, then the

edges and the vertices incident with the exterior face will not define

a trail.

3. The number of edges incident with a face f is defined as the degree

of f . In counting the degree of a face, a cut edge is counted twice.

Thus, each edge of a plane graphG contributes two to the sum of the

degrees of the faces. It follows that if F denotes the set of faces of

a plane graph G, then
∑
f∈F

d(f) = 2m(G), where d(f) denotes the

degree of the face f .

In Fig. 5.5, d(f1) = 3, d(f2) = 9, d(f3) = 6, and d(f4) = 8.

Theorem 178. A graph G is planar if and only if each of its blocks is

planar.

Proof. If G is planar, then each of its blocks is planar, since a subgraph

of a planar graph is planar. Conversely, suppose that each block of G is

planar. We now use induction on the number of blocks of G to prove the

result. Without loss of generality, we assume that G is connected. If G

has only one block, then G is planar.
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Now suppose that G has k planar blocks and that the result is true for

all connected graphs having (k− 1) planar blocks. Choose any end block

B0 of G and delete from G all the vertices of B0 except the unique cut

vertex, say v0, of G in B0. The resulting connected subgraph G′ of G

contains (k − 1) planar blocks. Hence, by the induction hypothesis, G′

is planar. Let Ḡ′ be a plane embedding of G′ such that v0 belongs to the

boundary of the unbounded face, say f ′ (refer to Theorem 176). Let B̄0 be

a plane embedding of B0 in f ′ so that v0 is in the boundary of the exterior

face of B̄0. Then (by the identification of v0 in the two embeddings),

Ḡ′ ∪ B̄0 is a plane embedding of G.

Let us Sum Up:

We have studied definitions and some interesting properties of planar

graphs. Note that largest complete graph which is planar is K4. Note

that through Petersen graph is 3-regular which is not planar.

5.3 Euler Formula and Its Consequences

Theorem 179. (Euler formula). For a connected plane graph G, n−m+

ℓ = 2, where n,m,and ℓ denote the number of vertices, edges, and faces

of G, respectively.

Proof. We apply induction on ℓ.

If ℓ = 1, then G is a tree and m = n− 1. Hence, n−m+ ℓ = 2.

Now assume that the result is true for all plane graphs with ℓ−1 faces,

ℓ ≥ 2, and suppose that G has ℓ faces. Since ℓ ≥ 2, G is not a tree,

and hence contains a cycle C. Let e be an edge of C. Then e belongs

to exactly two faces, say f1 and f2, of G and the deletion of e from G
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results in the formation of a single face from f1 and f2 (see Fig. 5.5).

Also, since e is not a cut edge of G, G − e is connected. Further, the

number of faces of G− e is ℓ− 1. So applying induction to G− e, we get

n − (m − 1) + (ℓ − 1) = 2, and this implies that n −m + ℓ = 2. This

completes the proof of the theorem.

Corollary 180. If G is a simple planar graph with at least three vertices,

then m ≤ 3n ≤ 6.

Proof. Without loss of generality, we can assume that G is a simple con-

nected plane graph. Since G is simple and n ≥ 3, each face of G has de-

gree at least 3. Hence, if F denotes the set of faces ofG,
∑

f∈F d(f) ≥ 3ℓ.

But
∑

f∈F d(f) = 2m. Consequently, 2m ≥ 3ℓ, so that ℓ ≤ 2m
3 .

By the Euler formula, m = n + ℓ − 2. Now ℓ ≤ 2m
3 implies that

m ≤ n+
(
2m
3

)
− 2. This gives m ≤ 3n− 6.

Example 181. Show that the complement of a simple planar graph with

11 vertices is nonplanar.

Proof. LetG be a simple planar graph with n(G) = 11. SinceG is planar,

m(G) = 3n−6 = 27. IfGc were also planar, thenm(Gc) ≤ 3n−6 = 27.

On the one hand, m(G) +m(Gc) ≤ 27 + 27 = 54, whereas, on the other

hand, m(G) + m(Gc) = m(K11) =
(
11
2

)
= 55. Hence, we arrive at a

contradiction. This contradiction proves that Gc is nonplanar.

Corollary 182. For any simple planar graph G, δ(G) ≤ 5.

Proof. If n ≤ 6, then ∆(G) ≤ 5. Hence δ(G) ≤ ∆(G) ≤ 5, proving

the result for such graphs. So assume that n ≥ 7. By Corollary 180,

m ≤ 3n ≤ 6. Now, δn ≤ ∑
v∈V (G) dG(v) = 2m ≤ 2(3n− 6) = 6n− 12.

Hence n(δ − 6) ≤ −12. Consequently, δ − 6 is negative, implying that

δ ≤ 5.
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Theorem 183. If the girth k of a connected plane graph G is at least 3,

then m ≤ k(n−2)
(k−2) .

Proof. Let F denote the set of faces and ℓ, as before, denote the number

of faces of G. If f ∈ F , then d(f) ≥ k. Since 2m =
∑

f∈F d(f), we get

2m ≥ kℓ. By Theorem 183, ℓ = 2−n+m. Hence, 2m ≥ k(2−n+m),

implying that m(k − 2) ≤ k(n− 2). Thus, m ≤ k(n−2)
(k−2) .

Corollary 184. The Petersen graph P is nonplanar.

Proof. The girth of the Petersen graph P is 5, n(P ) = 10, andm(p) = 15.

Hence, if P were planar, 15 ≤ 5(10−2)
5−2 , which is not true. Hence, P is

nonplanar.

Definition 185. A graph G is maximal planar if G is planar, but for any

pair of nonadjacent vertices u and v of G, G+ uv is nonplanar.

Definition 186. A plane triangulation is a plane graph in which each of

its faces is bounded by a triangle. A plane triangulation of a plane graph

G is a plane triangulation H such that G is a spanning subgraph of H .

To any simple plane graph G that is not already a plane triangulation,

we can add a set of new edges to obtain a plane triangulation. The set of

new edges thus added need not be unique.

Figure 5.6a is a simple plane graph G and Fig. 5.6b is a plane trian-

gulation of G, Fig. 5.6c is a plane triangulation of G isomorphic to the

graph of Fig. 5.6b having only straight-line edges.

Let us Sum Up:

We have studied Euler’s formula, an important necessary condition for

a graph to be planar. It provides many interesting properties on planar
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Figure 5.6: (a) Graph G and (b), (c) are plane triangulations of G

graphs. Note that there exists no regular planar graph of degree greater

than 5.

5.4 K5 and K3,3 are Nonplanar Graphs

In this section we prove thatK5 andK3,3 are nonplanar. These two graphs

are basic in Kuratowski’s characterization of planar graphs. For this rea-

son, they are often referred to as the two Kuratowski graphs.

Theorem 187. K5 is nonplanar

First proof. This proof uses the Jordan curve theorem. Assume the con-

trary, namely, K5 is planar. Let v1, v2, v3, v4, and v5 be the vertices of K5

in a plane representation of K5. The cycle C = v1v2v3v4v1 (as a closed

Jordan curve) divides the plane into two faces, namely, the interior and

the exterior of C. The vertex v5 must belong either to int C or to ext C.

Suppose that v5 belongs to int C (a similar proof holds if v5 belongs to
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ext C). Draw the edges v5v1, v5v2, v5v3 and v5v4 in int C. Now there

remain two more edges v1v3 and v2v4 to be drawn. None of these can be

drawn in int C, since it is assumed that K5 is planar. Thus, v1v3 lies in

ext C. Then one of v2 and v4 belongs to the interior of the closed Jordan

curve C1 = v1v5v3v1 and the other to its exterior (see Fig. 5.7). Hence,

v2v4 cannot be drawn without violating planarity.

Second proof. If K5 were planar, it follows from Theorem 183 that 10 ≤
3(5−2)
(3−2) , which is not true. Hence K5 is nonplanar.

Figure 5.7: Graph for first proof of Theorem 187

Theorem 188. K3,3 is nonplanar.

First proof. The proof is by the use of the Jordan curve theorem. Suppose

that K3,3 is planar. Let U = {u1, u2, u3} and V = {v1, v2, v3} be the

bipartition of K3,3 in a plane representation of the graph. Consider the

cycle C = u1v1u2v2u3v3u1. Since the graph is assumed to be planar, the

edge u1v2 must lie either in the interior of C or in its exterior. For the

sake of definiteness, assume that it lies in int C (a similar proof holds if

one assumes that the edge u1v2 lies in ext C). Two more edges remain

to be drawn, namely, u2v3 and u3v1. None of these can be drawn in int
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C without crossing the edge u1v2. Hence, both of them are to be drawn

in ext C. Now draw u2v3 in ext C. Then one of v1 and u3 belongs to

the interior of the closed Jordan curve C1 = u1v2u2v3u1 and the other to

the exterior of C1 (see Fig. 5.8). Hence, the edge v1u3 cannot be drawn

without violating planarity. This shows that K3,3 is nonplanar.

Figure 5.8: Graph for first proof of Theorem 188

Second proof. Suppose K3,3 is planar. Let ℓ be the number of faces of

G = K3,3 in a plane embedding of G and F , the set of faces of G. As the

girth of K3,3 is 4, we have m = 1
2

∑
f∈F d(f) ≥ 4ℓ

2 = 2ℓ. By Theorem

179, n − m + ℓ = 2. For K3,3 have n = 6, and m = 9. Hence, ℓ =

2 +m− n = 5. Thus, 9 ≥ 2.5 = 10, a contradiction.

5.5 Dual of a Plane Graph

Let G be a plane graph. One can form out of G a new graph H in the

following way. Corresponding to each face f of G, take a vertex f∗ and

corresponding to each edge e of G, take an edge e∗. Then edge e∗ joins

vertices f∗ and g∗ in H if and only if edge e is common to the boundaries

of faces f and g in G. (It is possible that f may be the same as g.) The

graph H is then called the dual (or more precisely, the geometric dual) of

G (see Fig. 5.9). The definition of the dual implies that m(G∗) = m(G),
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Figure 5.9: A plane graph G and its dual H

Figure 5.10: Procedure for drawing the dual graph

n(G∗) = ℓ(G), and dG∗ = dG(f), where dGf denotes the degree of the

face f of G. From the manner of construction of G∗, it follows that

(i) An edge e of a plane graph G is a cut edge of G if and only if e∗ is a

loop of G∗, and it is a loop of G if and only if e∗ is a cut edge of G∗.
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(ii) G∗ is connected whether G is connected or not.

5.6 The Four-Color Conjecture and the Heawood Five-

Color Theorem

What is the minimum number of colors required to color the world map

of countries so that no two countries having a common boundary receive

the same color? This simple-looking problem manifested itself into one

of the most challenging problems of graph theory, popularly known as the

four-color conjecture (4CC).

An assignment of colors to the faces of a plane graph G so that no two

faces having a common boundary containing at least one edge receive the

same color is a face coloring of G. The face-chromatic number χ∗(G) of

a plane graph G is the minimum k for which G has a face coloring using

k colors.

Theorem 189. Every planar graph is 6-vertex-colorable.

Proof. The proof is by induction on n, the number of vertices of the graph.

The result is trivial for planar graphs with at most six vertices. Assume

the result for planar graphs with n− 1, n ≥ 7, vertices. Let G be a planar

graph with n vertices. By Corollary 182, δ(G) ≤ 5, and hence G has a

vertex v of degree at most 5. By hypothesis, G− v is 6-vertex-colorable.

In any proper 6-vertex coloring of G − v, the neighbors of v in G would

have used only at most five colors, and hence v can be colored by an

unused color. In other words, G is 6-vertex colorable.

Theorem 190. (Heawood’s five-color theorem). Every planar graph is

5-vertex colorable.

[154] Peiyar University-ODL | Self-Learning Material



ONLINE M.Sc. MATHEMATICS-SEMESTER-I UNIT-V

Proof. The proof is by induction on n(G) = n. Without loss of generality,

we assume thatG is a connected plane graph. If n ≤ 5, the result is clearly

true. Hence, assume that n ≥ 6 and that any planar graph with fewer than

n vertices is 5-vertex-colorable. G being planar, δ(G) ≤ 5 by Corollary

182, and so G contains a vertex v0 of degree not exceeding 5. By the

induction hypothesis, G− v0 is 5-vertex-colorable.

If d(v0) ≤ 4, at most four colors would have been used in coloring the

neighbors of v0 in G in a 5-vertex coloring of G − v0. Hence, an unused

color can then be assigned to v0 to yield a proper 5-vertex coloring of G.

If d(v0) = 5, but only four or fewer colors are used to color the neigh-

bors of v0 in a proper 5-vertex coloring of G − v0, then also an unused

color can be assigned to v0 to yield a proper 5-vertex coloring of G.

Hence assume that the degree of v0 is 5 and that in every 5-coloring

of G − v0, the neighbors of v0 in G receive five distinct colors. Let

v1, v2, v3, v4, and v5 be the neighbors of v0 in a cyclic order in a plane

embedding of G. Choose some proper 5-coloring of G − v0 with colors,

say, c1, c2, · · · , c5. Let {V1, V2, · · · , V5} be the color partition of G− v0,

where the vertices in Vi are colored ci, 1 ≤ i ≤ 5. Assume further that

vi ∈ Vi, 1 ≤ i ≤ 5.

Let Gij be the subgraph of G − v0 induced by Vi ∪ Vj . Suppose vi

and vj, 1 ≤ i, j ≤ 5, belong to distinct components of Gij . Then the

interchange of the colors ci and cj in the component of Gij containing vi

would give a recoloring of G− v0 in which only four colors are assigned

to the neighbors of v0. But this is against our assumption. Hence, vi and

vj must belong to the same component of Gij . Let Pi,j be a vi − vj path

in Gij . Let C denote the cycle v0v1P13v3v0 in G (Fig. 5.11). Then C

separates v2 and v4; that is, one of v2 and v4 must lie in int C and the other
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in ext C. In Fig. 5.11, v2 ∈ int C and v4 ∈ extC. Then P24 must cross

C at a vertex of C. But this is clearly impossible since no vertex of C

receives either of the colors c2 and c4. Hence this possibility cannot arise,

and G is 5-vertex-colorable.

Figure 5.11: Graph for proof of Theorem 190

Let us Sum Up:

We have studied very interesting result on coloring planar graph namely

5-color theorem, the best theoretical proof known. Note that Herschel

graph is 2- colorable.

5.7 Hamiltonian Plane Graphs

An elegant necessary condition for a plane graph to be Hamiltonian was

given by Grinberg [?].

Theorem 191. Let G be a loopless plane graph having a Hamilton cycle

C. Then
∑n

i=2(i− 2)(ϕ′ − ϕ′′) are the numbers of faces of G of degree i

contained in int C and ext C, respectively.
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Proof. Let E′ and E′′ denote the sets of edges of G contained in int C

and ext C, respectively, and let |E′| = m′ and |E′′| = m′′. Then int C

contains exactly m′ + 1 faces (see Fig. 5.12), and so

n∑
i=2

ϕ′i = m′ + 1. (5.1)

(Since G is loopless, ϕ′ = ϕ′′ = 0). Moreover, each edge in int C is on

the boundary of exactly two faces in int C, and each edge of C is on the

boundary of exactly one face in int C. Hence, counting the edges of all

the faces in int C, we get

n∑
i=2

iϕ′ = 2m′ + n (5.2)

Eliminating m′ from (5.1) and (5.2), we get

n∑
i=2

(i− 2)ϕ′i = n− 2. (5.3)

Similarly,

n∑
i=2

(i− 2)ϕ′′ = n− 2. (5.4)

Equqtions (5.3) and (5.4) give the required result.

Figure 5.12: Graph for proof of Theorem 191
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5.8 Tait Coloring

A 3-edge coloring of a cubic planar graph is often called a Tait coloring.

Figure 5.13: Graph for proof of (i) ⇒ (ii) in Theorem 192

Theorem 192. The following statements are equivalent:

(i) All plane graphs are 4-vertex-colorable.

(ii) All plane graphs are 4-face-colorable.

(iii) All simple 2-edge-connected cubic planar graphs are 3-edge-colorable

(i.e., Tait colorable).

Proof. (i) ⇒ (ii)

LetG be a plane graph. LetG∗ be the dual ofG. Then, sinceG∗ is a plane

graph, it is 4-vertex-colorable. If v∗ is a vertex of G∗, and fv is the face of

G corresponding to v∗, assign to fv the color of v∗ in a 4-vertex coloring

of ∗G. Then, by the definition of G∗, it is clear that adjacent faces of G

will receive distinct colors. (See Fig. 8.30, in which fv and fw receive the

colors of v∗ and w∗,respectively.) Thus, G is 4-face-colorable.

(ii) ⇒ (iii)

LetG be a plane embedding of a 2-edge-connected cubic planar graph. By
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assumption,G is 4-face-colorable. Denote the four colors by (0, 0), (1, 0), (0, 1),

and (1, 1) the elements of the ring Z2 × Z2. If e is an edge of G that sep-

arates the faces, say f1 and f2, color e with the color given by the sum (in

Z2 × Z2) of the colors of f1 and f2. Since G has no cut edge, each edge

is the common boundary of exactly two faces of G. This gives a 3-edge

coloring of G using the colors (1, 0), (0, 1), and (1, 1) since the sum of

any two distinct elements of Z2 × Z2 is not (0, 0) (see Fig. 5.14).

(iii) ⇒ (i)

LetG be a planar graph.We want to show thatG is 4-vertex-colorable. We

may assume without loss of generality that G is simple. Let G̃ be a plane

embedding of G. Then G̃ is a spanning subgraph of a plane triangulation

T , and hence it suffices to prove that T is 4-vertex-colorable.

Let T ∗ be the dual of T . Then T ∗ is a 2-edge-connected cubic plane

graph. By our assumption, T ∗ is 3-edge-colorable using, for example, the

colors c1, c2, and c3. Since T ∗ is cubic, each of the above three colors

is represented at each vertex of T ∗. Let T ∗
ij be the edge subgraph of T ∗

induced by the edges of T ∗ which have been colored using the colors

ci and cj . Then T ∗
ij is a disjoint union of even cycles, and thus it is 2-

face-colorable. But each face of T ∗ is the intersection of a face of T ∗
12

and a face of T ∗
23 (see Fig. 5.15). Now the 2-face colorings of T ∗

12 and

T ∗
23 induce a 4-face coloring of T ∗ if we assign to each face of T ∗ the

(unordered) pair of colors assigned to the faces whose intersection is f .

Since T ∗ = T ∗
12 ∪ T ∗

23, this defines a proper 4-face coloring of T ∗. Thus,

χ(G) = χ(G̃) ≤ χ(T ) = χ∗(T ∗) ≤ 4, and G is 4-vertex-colorable.

(Recall that χ∗(T ∗) is the face-chromatic number of T ∗.)
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Figure 5.14: Graph for proof of (ii) ⇒ (iii) in Theorem 192

Figure 5.15: Graph for proof of (iii) ⇒ (i) in Theorem 192
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Let Us Sum Up

1. A graph G is planar if there is a drawing of G in the plane in which

no two edges intersect in a point other than a vertex of G.

2. All trees, cycles and wheels are planar

3. The Petersen graph is nonplanar

4. The Jordan curve theorem states that if J is any closed Jordan curve

in the plane, any arc joining a point of int J and a point of ext J must

intersect J at some point

5. A plane graph G divides the rest of the plane into one or more faces.

6. A connected graph is a tree if and only if it has only one face.

7. Any plane graph has exactly one unbounded face.

8. Embeddings on a sphere are called spherical embeddings.

9. A graph is planar if and only if it is embeddable on a sphere.

10. A cut edge of G belongs to exactly one face.

11. The number of edges incident with a face f is defined as the degree

of f .

12. For a connected plane graph G, n −m + f = 2, where n,m and f

denote the number of vertices, edges and faces of G, respectively.

13. For any simple planar graph G, δ(G) ≤ 5.

14. A graph G is maximal planar if G is planar, but for any pair of non-

adjacent vertices u and v of G, G+ uv is nonplanar.

15. The graphsK5 andK3,3 are refered to as the two Kuratowski graphs.
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Check Your Progress

1. Which one of the following is a nonplanar graph?

(a) Tress (b) Cycles (c)Wheels (d) petersen graph

2. Which one of the following is a planar graph?

(a) K4 (b) K5 (c) K6 (d) K7

3. If F denotes the set of faces of a plane graph G, then
∑

f∈F d(f) =

(a) 2n(G) (b) 2m(G) (c) 3n(G) (d) 3m(G)

4. For any connected planar graph G, n−m+ f=

(a) 0 (b) 1 (c) 2 (d) 3

5. If G is a simple planar graph then

(a) m = 2n− b (b) m = 3n− b (c) m ≤ 3n− b (d) m ≤ 2n− 5

6. For any simple planar graph G,

(a) δ(G) = 5 (b) δ(G) ≤ 5 (c) δ(G) ≤ 6 (d) δ(G) = 6

7. If G∗ is the dual of a plane graph G, then M(G∗)=

(a) m(G) (b) n(G) (c) f(G) (d) 2m(G)

8. If G∗ is the dual of a plane graph G, then n(G∗)=

(a) m(G) (b) n(G) (c) f(G) (d) 2n(G)

9. An edge e of a plane graph G is a cut edge of G if and only if e∗ is a

(a) cut edge of G∗ (b) pendant edge of G∗

(c) parallel edge of G∗ (d) loop of G∗

10. A 3-edge coloring of a cubic planar graph is called a

(a) face coloring (b) Tait coloring

(c) chromatics index (d) b-coloring
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11. All simple 2-edge-connected cubic planar graphs are

(a) Tait colorable (b) b-colorable

(c) 3-vertex colorable (d) complete-3- colorable

12. Every planar graph is

(a) 4-vertex colorable (b) 5-vertex colorable

(c) Tait colorable (d) complete-3-colorable

13. The face-chromatic number of a planes graph G is denoted by

(a) χ(G) (b) χ′(G) (c) χ∗(G) (d) χ′(G∗)

14. the graph G∗∗ is isomorphic to G if and only if G is

(a) complete (b) bipartite (c) planar (d) connected

15. A graph is planar if and only if each of its blocks is

(a) complete (b) bipartite (c) planar (d) connected

Answers

1. (d) 2. (a) 3. (b) 4. (c) 5. (c) 6. (b) 7. (a) 8. (c) 9. (d) 10. (b)

11.(a) 12. (b) 13. (c) 14.(d) 15. (c)

Exercises

1. Show that Herschel graph is bipartite.

2. Show that Km,n,m ̸= n has no spanning cycle.
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