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REAL ANALYSIS - I

OBJECTIVE: The objective of this course is to work comfortably with functions of

bounded variation, Riemann-Stieltjes Integration, convergence of infinite series, in-

finite product and uniform convergence and its interplay between various limiting

operations.
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Unit 1

Functions of Bounded Variation

Objectives

After the successful completion of this unit, the students are expected to

• recall the basic concepts of monotonic function, bounded functions, convergent

series and conditionally convergent series.

• find whether a give series converge (or) diverge.

• understand the fundamental concepts of sequence and series.

• analyse and work with problems related to functions of bounded variation.

1.1 Introduction

Functions of bounded variation is an important class of functions in real analysis. They

have important applications across various areas of mathematics and applied disci-

plines. Functions of bounded variation play a key role in defining and working with

the Riemann-Stieltjes integral, a generalization of the Riemann integral. In probability

theory, any cumulative distribution function of a probability distribution is a function

of bounded variation. In calculus of variations, functions of bounded variation are

used to formulate and solve problems that involve optimizing functionals. In image

processing, the total variation norm is used to reduce noise in images while preserving

edges.
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1.2 Properties of Monotonic Functions

Theorem 1.2.1. Let f be an increasing function defined on [a, b] and let x0, x1, · · · , xn be

n+1 points such that

a = x0 < x1 < x2 < · · · < xn = b.

Then we have the inequality
n−1∑
k=1

[f(xk+)− f(xk−)] ≤ f(b)− f(a).

Proof. Assume that f is an increasing function on [a, b] and let x0, x1, · · · , xn be n + 1

points such that

a = x0 < x1 < x2 < · · · < xn = b.

Let yk ∈ (xk, xk+1), for 1 ≤ k ≤ n− 1.

Since f is an increasing function on [a, b], xk < yk implies f(xk+) ≤ f(yk). (1)

Also, xk > yk−1 implies f(xk−) ≥ f(yk−1).

=⇒ −f(xk−) ≤ −f(yk−1). (2)

Adding (1) and (2), we get

f(xk+)− f(xk−) ≤ f(yk)− f(yk−1). (3)

Putting k = 1 in (3), we get

f(x1+)− f(x1−) ≤ f(y1)− f(y0).

Putting k = 2 in (3), we get

f(x2+)− f(x2−) ≤ f(y2)− f(y1).

and so on. Putting k = n− 1 in (3), we get

f(xn−1+)− f(xn−1−) ≤ f(yn−1)− f(yn−2).

Adding all the above inequalities, we get

n−1∑
k=1

f(xk+)− f(xk−) ≤ f(yn−1)− f(y0) ≤ f(b)− f(a).

Hence the proof.
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Note: The difference f(xk+1) − f(xk) is the jump of f at xk. The foregoing theorem

tells us that for every finite collection of points xk in (a, b), the sum of the jumps at

these points is always bounded by f(b) − f(a). This result can be used to prove the

following theorem.

Theorem 1.2.2. If f is monotonic on [a, b], then the set of discontinuities of f is count-

able.

Proof. Assume that f is increasing on [a, b].

Let Sm be the set of points in (a, b) at which the jump of f exceeds 1/m, m > 0.

If x1 < x2 < · · · < xn−1 are in Sm, then, by Theorem 1.2.1, we have

n−1∑
k=1

[f(xk+)− f(xk−)] ≤ f(b)− f(a).

Since the jump of f exceeds
1

m
, f(xk+) − f(xk−) > 1/m, for all k = 1, 2, · · · , n − 1.

Therefore, we have

n−1∑
k=1

1

m
≤

n−1∑
k=1

[f(xk+)− f(xk−)] ≤ f(b)− f(a).

which implies that
n− 1

m
≤ f(b)− f(a).

Since f(b), f(a) are finite and
n− 1

m
must be finite for any n. The set Sm must be a

finite set.

But the set of discontinuities of f in (a, b) is a subset of the union
∞⋃

m=1

Sm.

Hence,
∞⋃

m=1

Sm is countable, since the countable union of countable sets is countable.

Hence, the set of discontinuous of f is countable.

Note: If f is decreasing, the argument can be applied to −f .

Let us sum up

• We have discussed the properties of monotonic functions.

• We have shown that set of discontinuities of a monotonic function must be at

most countable.
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Check your progress

1. Define a monotonic function.

2. Give an example of monotonically increasing function.

1.3 Functions of Bounded Variation

Definition 1.3.1. If [a, b] is a compact interval, a set of points

P = {x0, x1, x2, ..., xn} ,

satisfying the inequalities

a = x0 < x1 < · · · < xn−1 < xn = b,

is called a partition of [a, b]. The interval [xk−1, xk] is called the kth subinterval of P and

we write ∆xk = xk − xk−1, so that
n∑

k=1

∆xk = b− a.

The collection of all possible partitions of [a, b] will be denoted by ℘[a, b].

Definition 1.3.2. Let f be defined on [a, b]. If P = {x0, x1, x2, · · · , xn} is a partition of

[a, b], write ∆fk = f(xk) − f(xk−1), for k = 1, 2, · · · , n. If there exists a positive number

M such that
n∑

k=1

|∆fk| ≤ M,

for all partitions of [a, b], then f is said to be bounded variation on[a, b].

Theorem 1.3.3. If f is monotonic on [a, b], then f is of bounded variation on [a, b].

Proof. Let P = {x0, x1, x2, · · · , xn} be a partition of [a, b] such that

a = x0 < x1 < · · · < xn−1 < xn = b.

Since f is an increasing function on [a, b], we have f(xk−1) ≤ f(xk), for all k =

1, 2, · · · , n.

This implies ∆fk = f(xk)− f(xk−1) ≥ 0 and we have

n∑
k=1

|∆fk| =
n∑

k=1

∆fk =
n∑

k=1

[f(xk)− f(xk−1)]
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= f(x1)− f(x0) + f(x2)− f(x1)+

· · ·+ f(xn−1)− f(xn−2) + f(xn)− f(xn−1)

= f(xn)− f(x0) = f(b)− f(a).

Hence, f is of bounded variation on [a, b].

Theorem 1.3.4. If f is continuous on [a, b] and if f ′exists and is bounded in the interior,

say |f ′(x)| ≤ A, for all x in (a, b). Then f is of bounded variation on [a, b].

Proof. Assume that f is continuous on [a, b] and f(x) is differentiable for all x in (a, b)

such that |f ′(x)| ≤ A.

Let P = {x0, x1, x2, · · · , xn} be a partition of [a, b] such that

a = x0 < x1 < · · · < xn−1 < xn = b.

Applying the Mean-Value theorem on (xk−1, xk), we have

f ′(tk) =
f(xk)− f(xk−1)

xk − xk−1

, where tk ∈ (xk−1, xk),

and

∆fk = f(xk)− f(xk−1) = f ′(tk)(xk − xk−1) = f ′(tk)∆xk.

Thus, we have

n∑
k=1

|∆fk| =
n∑

k=1

|f ′(tk)∆xk|

=
n∑

k=1

|f ′(tk)||∆xk|

≤ A
n∑

k=1

|∆xk|

= A(b− a).

Hence, f is of bounded variation on [a, b].

Theorem 1.3.5. If f is of bounded variation on [a, b], say
∑

|∆fk| ≤ M, for all partitions

of [a, b]. Then f is bounded on [a, b]. In fact,

|f(x)| ≤ |f(a)|+M, for all x in [a, b].
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Proof. Assume that f is of bounded variation on [a, b]. There exists a positive number

M such that

∑
|∆fk| ≤ M for all partitions of [a, b]. (4)

Let x ∈ (a, b) be arbitrary and take P = {a, x, b} be the special partition such that

a < x < b.

Now by (4), we have

|f(x)− f(a)|+ |f(b)− f(x)| ≤ M.

This implies

|f(x)− f(a)| ≤ M.

Since |f(x)− f(a)| ≥ |f(x)| − |f(a)|, we have

|f(x)| − |f(a)| ≤ |f(x)− f(a)| ≤ M

and hence

|f(x)| ≤ |f(a)|+M.

This inequality remains true when x = a or x = b.

Hence, f is bounded on [a, b].

We provide an example of a continuous function which is not of bounded variation.

Example 1: Consider the function f : [0, 1] → R defined by f(x) = x cos
(

π
2x

)
, if x ̸= 0,

f(0) = 0.

Let f1 : (0, 1] → R be defined by f1(x) = x and f2 : (0, 1] → R be defined by

f2(x) = cos

(
π
2x

)
.

Since f1 and f2 are continuous on (0, 1] and we know that product of two continu-

ous functions is continuous, x cos

(
π
2x

)
is continuous on (0, 1].

Now to prove f is continuous at 0.

Suppose xn → 0 as n → ∞, we have

|f(xn)− f(0)| =
∣∣∣∣xncos

(
π

2xn

)∣∣∣∣ = |xn|
∣∣∣∣ cos( π

2xn

) ∣∣∣∣ ≤ |xn|.
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Hence,

xn → 0 as n → ∞, f(xn) → 0 as n → ∞.

Thus, f is continuous on [0, 1].

Let us choose a P be the partition of [0, 1] into 2n sub-intervals such that

P =

{
0,

1

2n
,

1

2n− 1
, · · · , 1

3
,
1

2
, 1

}
.

Then,

2n∑
k=1

|∆fk| =
2n∑
k=1

|f(xk)− f(xk−1)|

=
2n∑
k=1

∣∣∣∣xkcos

(
π

2xk

)
− xk−1cos

(
π

2xk−1

)∣∣∣∣
=

∣∣∣∣x1cos

(
π

2x1

)
− x0cos

(
π

2x0

)∣∣∣∣+ ·+
∣∣∣∣xncos

(
π

2xn

)
− xn−1cos

(
π

2xn−1

)∣∣∣∣
=

∣∣∣∣ 12ncos
(

π

2( 1
2n
)

)
− 0

∣∣∣∣+ ∣∣∣∣ 1

2n− 1
cos

(
π

2( 1
2n−1

)

)
− 1

2n
cos

(
π

2( 1
2n
)

)∣∣∣∣
+ · · ·+

∣∣∣∣cos(π

2

)
− 1

2
cos

(
π

2(1
2
)

)∣∣∣∣
=

1

2n
+

1

2n
+

1

2n− 2
+

1

2n− 2
+ ......+

1

2
+

1

2
(1.1)

= 1 +
1

2
+ .....+

1

n
.

=
n∑

k=1

1

k

n∑
k=1

|∆fk| =
n∑

k=1

1

k
.

This is not bounded for all n, since the series
∞∑
k=1

(1/k) diverges.

Thus, the function f is not of bounded variation.

Let us sum up

• We have defined a function of bounded variation.

• We have derived sufficient conditions for a function to be of bounded variation.

• We have seen that a function of bounded variation must be bounded.
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Check your progress

1. When a function is said to be of bounded variation on [a, b]?

2. Give an example of a continuous function which is not of bounded variation.

3. Give an example of a bounded function which is not of bounded variation.

1.4 Total Variation

Definition 1.4.1. Let f be of bounded variation on [a, b], and let
∑

(P )denote the sum
n∑

k=1

|∆fk| corresponding to the partition P = {x0, x1, ...., xn} of [a, b]. The number

Vf (a, b) = sup
{∑

(P ) : P ∈ ℘[a, b]
}
,

is called the total variation of f on the interval [a, b].

Note: For simplicity of notation, we will write Vf instead of Vf (a, b).

Since f is of bounded variation on [a, b], the number Vf is finite. Also, Vf ≥ 0. Since,

for each sum
∑

(P ) ≥ 0. Moreover, Vf (a, b) = 0 if and only if f is constant on [a, b].

Theorem 1.4.2. Assume that f and g are each of bounded variation on [a, b]. Then so

are their sum, difference and product. Also, we have

Vf±g ≤ Vf + Vg and Vf.g ≤ AVf +BVg,

where

A = sup {|g(x)| : x ∈ [a, b]} and B = sup {|f(x)| : x ∈ [a, b]} .

Proof. Assume that f and g are each of bounded variation on [a, b].

For any partition of [a, b], there exist a positive number M1 > 0 such that

n∑
k=1

|∆fk| ≤ M1.

Similarly, for any partition of [a, b], there exist a positive number M2 > 0 such that

n∑
k=1

|∆gk| ≤ M2.
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Let M = max {M1,M2}. Therefore, we have

n∑
k=1

|∆fk| ≤ M and
n∑

k=1

|∆gk| ≤ M.

To prove:f + g is of bounded variation on [a, b].

Let h(x) = f(x) + g(x), x ∈ [a, b] and P = {x0, x1, x2, · · · , xn} be a partition of [a, b]

such that

a = x0 < x1 < · · · < xn−1 < xn = b.

To prove: h is of bounded variation on [a, b], we have

n∑
k=1

|∆hk| =
n∑

k=1

|h(xk)− h(xk−1)|

=
n∑

k=1

|(f(xk) + g(xk))− (f(xk−1) + g(xk−1))|

=
n∑

k=1

|f(xk)− f(xk−1) + g(xk)− g(xk−1)|

=
n∑

k=1

|∆fk +∆gk|

≤
n∑

k=1

|∆fk|+
n∑

k=1

|∆gk|

≤ M +M = 2M
n∑

k=1

|∆hk| ≤ 2M.

Therefore, h is of bounded variation on [a, b].

i.e., f + g is of bounded variation on [a, b].

To prove: Vf+g ≤ Vf + Vg. Consider,

n∑
k=1

|∆hk| ≤
n∑

k=1

|∆fk|+
n∑

k=1

|∆gk|

=⇒
n∑

k=1

|∆hk| ≤ sup

{
n∑

k=1

|∆fk| : P ∈ ℘[a, b]

}

+ sup

{
n∑

k=1

|∆gk| : P ∈ ℘[a, b]

}

=⇒
n∑

k=1

|∆hk| ≤ Vf + Vg

9



=⇒ sup

{
n∑

k=1

|∆hk| : P ∈ ℘[a, b]

}
≤ Vf + Vg

=⇒ Vh(a, b) ≤ Vf + Vg

=⇒ Vf+g ≤ Vf + Vg.

Now, we prove f − g is of bounded variation on [a, b].

Let h(x) = f(x) − g(x), x ∈ [a, b] and P = {x0, x1, x2, · · · , xn} be a partition of [a, b]

such that

a = x0 < x1 < · · · < xn−1 < xn = b.

To prove: h is of bounded variation on [a, b]. Consider,

n∑
k=1

|∆hk| =
n∑

k=1

|h(xk)− h(xk−1)|

=
n∑

k=1

|(f(xk)− g(xk))− (f(xk−1)− g(xk−1))|

=
n∑

k=1

|f(xk)− g(xk)− f(xk−1) + g(xk−1)|

=
n∑

k=1

|f(xk)− f(xk−1) + g(xk−1)− g(xk)|

≤
n∑

k=1

(|f(xk)− f(xk−1)|+ |g(xk)− g(xk−1)|)

≤
n∑

k=1

(|∆fk|+ |∆gk|)

≤
n∑

k=1

|∆fk|+
n∑

k=1

|∆gk|

≤ M +M = 2M.

Therefore,h is of bounded variation on [a, b].

i.e., f − g is of bounded variation on [a, b].

To prove:Vf−g ≤ Vf + Vg. Consider,

n∑
k=1

|∆hk| ≤
n∑

k=1

|∆fk|+
n∑

k=1

|∆gk|

=⇒
n∑

k=1

|∆hk| ≤ sup

{
n∑

k=1

|∆fk| : P ∈ ℘[a, b]

}

10



+ sup

{
n∑

k=1

|∆gk| : P ∈ ℘[a, b]

}

=⇒
n∑

k=1

|∆hk| ≤ Vf + Vg

=⇒ sup

{
n∑

k=1

|∆hk| : P ∈ ℘[a, b]

}
≤ Vf + Vg

=⇒ Vh(a, b) ≤ Vf + Vg

=⇒ Vf−g ≤ Vf + Vg.

To prove: fg is of bounded variation on [a, b].

Let h(x) = f(x)g(x), x ∈ [a, b] and P = {x0, x1, x2, · · · , xn} be a partition of [a, b] such

that

a = x0 < x1 < · · · < xn−1 < xn = b.

To prove: h is bounded variation on [a, b]. Consider,
n∑

k=1

|∆hk| =
n∑

k=1

|h(xk)− h(xk−1)|

=
n∑

k=1

|f(xk)g(xk)− f(xk−1)g(xk−1)|

=
n∑

k=1

|f(xk)g(xk)− f(xk−1)g(xk) + f(xk−1)g(xk)− f(xk−1)g(xk−1)|

=
n∑

k=1

|g(xk)(f(xk)− f(xk−1)) + f(xk−1)(g(xk)− g(xk−1))|

=
n∑

k=1

|g(xk)∆fk + f(xk−1)∆gk|

≤
n∑

k=1

(
|g(xk)∆fk|+ |f(xk−1)∆gk|

)
(1.2)

≤
n∑

k=1

|g(xk)||∆fk|+
n∑

k=1

|f(xk−1)||∆gk|

≤
n∑

k=1

A|∆fk|+
n∑

k=1

B|∆gk|

= A

n∑
k=1

|∆fk|+B

n∑
k=1

|∆gk|

≤ AM +BM

= (A+B)M.

11



Hence, h is of bounded variation on [a, b].

i.e., f.g is of bounded variation on [a, b].

To prove: Vf.g ≤ AVf+BVg, where A = sup {|g(x)| : x ∈ [a, b]} and B = sup {|f(x)| : x ∈ [a, b]} .

Consider,

n∑
k=1

|∆hk| ≤ A
n∑

k=1

|∆fk|+B
n∑

k=1

|∆gk|

=⇒
n∑

k=1

|∆hk| ≤ A sup

{
n∑

k=1

|∆fk| : P ∈ ℘[a, b]

}

+B sup

{
n∑

k=1

|∆gk| : P ∈ ℘[a, b]

}
≤ A Vf +B Vg.

=⇒ sup

{
n∑

k=1

|∆hk| : P ∈ ℘[a, b]

}
≤ A Vf +B Vg.

Hence,

Vf.g ≤ A Vf +B Vg.

Note: The reciprocal of a function of bounded variation need not be of bounded

variation. For example, if f(x) → 0 as x → x0, then 1/f will not be bounded on

any interval containing x0and hence, by Theorem 1.3.3 1/f cannot be of bounded

variation on such an interval. To extend Theorem 1.4.1 to quotients, it suffices to

exclude functions whose values become arbitrarily close to zero.

Theorem 1.4.3. Let f be of bounded variation on[a, b] and assume that f is bounded

away from zero; that is, suppose that there exists a positive number m such that 0 <

m ≤ |f(x)| for all x in [a, b]. Then g = 1/f is also of bounded variation on [a, b], and

Vg ≤ Vf/m
2.

Proof. Assume that,f is of bounded variation on [a, b] and let f be bounded away from

zero.

i.e., there exists a positive number m such that 0 < m ≤ |f(x)| for allx in [a, b].

Let P = {x0, x1, x2, · · · , xn} be a partition of [a, b] such that

a = x0 < x1 < · · · < xn−1 < xn = b.

12



Since f is of bounded variation on [a, b], there exist a positive number M > 0 such that

n∑
k=1

|∆fk| ≤ M.

Let g = 1/f.

To prove: g is of bounded variation on [a, b].

Consider,
n∑

k=1

|∆gk| =
n∑

k=1

|g(xk)− g(xk−1)|

=
n∑

k=1

∣∣∣∣ 1

f(xk)
− 1

f(xk−1)

∣∣∣∣
=

n∑
k=1

∣∣∣∣f(xk−1)− f(xk)

f(xk)f(xk−1)

∣∣∣∣
=

n∑
k=1

|f(xk−1)− f(xk)|
|f(xk)f(xk−1)|

=
n∑

k=1

|∆fk|
|f(xk)f(xk−1)|

(∵ ∆fk = f(xk)− f(xk−1))

=
n∑

k=1

|∆fk|
|f(xk)||f(xk−1)|

≤
n∑

k=1

|∆fk|
m.m

(∵
1

|f(x)|
≤ 1

m
, ∀ x ∈ [a, b])

=
n∑

k=1

|∆fk|
m2

=
1

m2

n∑
k=1

|∆fk|

≤ M

m2
(∵

n∑
k=1

|∆fk| ≤ M)

∴
n∑

k=1

|∆gk| ≤
M

m2
.

Hence, g = 1/f is of bounded variation on [a, b].

Consider,
n∑

k=1

|∆gk| ≤
n∑

k=1

|∆fk|
m2

=⇒
n∑

k=1

|∆gk| ≤
1

m2
sup

{
n∑

k=1

|∆fk| : P ∈ ℘[a, b]

}
(1.3)
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=⇒ sup

{
n∑

k=1

|∆gk| : P ∈ ℘[a, b]

}
≤ Vf

m2

=⇒ Vg ≤
Vf

m2
.

This completes the proof.

Let us sum up

• We have introduced the concept of total Variation.

• Also we have discussed if two functions are bounded variation, then their sum,

difference and product also bounded variation.

• We have discussed function is bounded away from zero, their reciprocal function

also bounded variation.

Check your progress

1. Define total variation.

2. If f and g are bounded variation, then show that f + g and f · g are of bounded

variation.

1.5 Additive Property of Total Variation

In the last two theorems the interval [a, b] was kept fixed and Vf (a, b) was considered

as a function of f. If we keep f fixed and study the total variation as a function of the

interval [a, b], we can prove the following additive property.

Theorem 1.5.1. Let f be of bounded variation on [a, b], and assume that c ∈ (a, b).Then

f is of bounded variation on [a, c] and on [c, b] and we have

Vf (a, b) = Vf (a, c) + Vf (c, b).

Proof. Assume that f is of bounded variation on [a, b] and c ∈ (a, b).

We first prove that f is of bounded variation on [a, c]and on [c, b].

Let P1 be a partition of [a, c], and P2 be a partition of [c, b].

14



Then P0 = P1 ∪ P2 is a partition of [a,b].

=⇒
∑

(P0) =
∑

(P1) +
∑

(P2), (5)

where
∑

(P0) denotes the sum
n∑

k=1

|∆fk| corresponding to the partition P0 of [a, b];∑
(P1) denotes the sum

n∑
k=1

|∆fk| corresponding to the partition P1 of [a, c];
∑

(P2) de-

notes the sum
n∑

k=1

|∆fk| corresponding to the partition P2 of [c, b];

Since f is of bounded variation on [a, b], we have

∑
(P0) =

n∑
k=1

|∆fk|

≤ sup
{∑

(P0) : P0 ∈ ℘[a, b]
}

= Vf (a, b).

Hence (5) implies

∑
(P1) +

∑
(P2) =

∑
(P0) ≤ Vf (a, b) (6)

=⇒
∑

(P1) ≤ Vf (a, b) and
∑

(P2) ≤ Vf (a, b).

This shows that f is of bounded variation on [a, c] and [c, b].

By using Theorem 1.15, from (6), we have

sup
{∑

(P1) : P1 ∈ ℘[a, c]
}
+ sup

{∑
(P2) : P2 ∈ ℘[c, b]

}
≤ Vf (a, b)

Hence,

Vf (a, c) + Vf (c, b) ≤ Vf (a, b), (7)

Next, we prove Vf (a, c) + Vf (c, b) ≥ Vf (a, b).

Let P = {x0, x1, · · · , xn} ∈ ℘[a, b] and P0 = P ∪ {x∗} be the partition obtained by

adjoining the point x∗ to P. If x∗ ∈ [xk−1, xk], we have

|f(xk)− f(xk−1)| ≤ |f(xk)− f(x∗)|+ |f(x∗)− f(xk−1)|

15



=⇒
∑

(P ) ≤
∑

(P0).

Now, the points of P0 in [a, c] determine a partition P1 of [a, c] and the points of P0 in

[c, b] determine a partition P2 of [c, b].

Now,

∑
(P ) ≤

∑
(P0).

=⇒
∑
P

|∆fk| ≤
∑
P0

|∆fk|

=⇒
∑
P

|∆fk| ≤
∑
P1

|∆fk|+
∑
P2

|∆fk|

≤ Vf (a, c) + Vf (c, b)

and hence

∑
P

|∆fk| ≤ Vf (a, c) + Vf (c, b)

=⇒ sup
{∑

(P ) : P ∈ ℘[a, b]
}
≤ Vf (a, c) + Vf (c, b)

=⇒ Vf (a, b) ≤ Vf (a, c) + Vf (c, b) (8).

From (7) and (8), we have

Vf (a, b) = Vf (a, c) + Vf (c, b).

Hence the proof.

Let us sum up

• We have discussed the additive property of total variation.

Check your progress

1. State the additive property of total variation.

2. If f is of bounded variation on [a, b], then show that f is of bounded variation on

[a, c] and [c, b] where c ∈ (a, b).
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1.6 Total Variation on [a, x] as a Function ofx

Now we keep the function f and the left endpoint of the interval fixed and study

the total variation as a function of the right endpoint. The additive property implies

important consequences for this function.

Theorem 1.6.1. Let f be of bounded variation on [a, b]. Let V be defined on [a, b] as

follows V (x) = Vf (a, x) if a < x ≤ b, V (a) = 0. Then

i) V is an increasing function on [a, b].

ii) V − f is an increasing function on [a, b].

Proof. To prove that V is an increasing function on [a, b], we need to show that for any

x1 < x2 in [a, b], V (x1) ≤ V (x2).

Given that f is of bounded variation on [a, b] and V (x) = Vf (a, x) for a < x < b, we

know that V is the total variation of f on the interval [a, x].

Let’s consider x1 < x2 in [a, b]. Then we have

V (x1) = Vf (a, x1) and V (x2) = Vf (a, x2)

Since f is of bounded variation, the total variation of f on any subinterval of [a, b] is

non-negative. Therefore, we have

Vf (a, x1) ≤ Vf (a, x2)

This implies that V (x1) ≤ V (x2), which proves that V is an increasing function on

[a, b].

To prove that V − f is an increasing function on [a, b], we can consider the function

g(x) = V (x) − f(x). To show that g is increasing, we need to show that g′(x) ≥ 0 for

all x ∈ [a, b].

Since V is increasing on [a, b] and f is of bounded variation, we have that both V

and f are continuous functions. Therefore, the difference g(x) = V (x) − f(x) is also

continuous on [a, b].

Now, let’s compute the derivative of g with respect to x and show that it is non-

negative

g′(x) = V ′(x)− f ′(x)
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Since V is increasing, V ′(x) ≥ 0 for all x ∈ [a, b]. Since f is of bounded variation,

f ′(x) exists almost everywhere and the total variation of f is non-negative. Therefore,

f ′(x) can be non-positive, but the term −f ′(x) will not exceed the increase of V (x),

making g′(x) ≥ 0 for all x ∈ [a, b].

Hence, V − f is an increasing function on [a, b].

Note: For some functions f, the total variation Vf (a, x) can be expressed as an integral.

Let us sum up

• We have studied the total variation as a function.

Check your progress

1. If f is of bounded variation on [a, b] and V (x) = Vf (a, x) if a < x ≤ b, V (a) = 0,

then show that V is an increasing function on [a, b].

1.7 Functions of Bounded Variation Expressed as the
Difference of Increasing Functions

The following simple and elegant characterization of functions of bounded variation

is a consequence of Theorem 1.6.1.

Theorem 1.7.1. Let f be defined on [a,b].Then f is of bounded variation on [a,b] if and

only if f can be expressed as the difference of two increasing functions.

Proof. Assume that f is of bounded variation on [a,b].

To prove:f can be expressed as the difference of two increasing functions.

Let V be a function defined as follows

V (x) = Vf (a, b), if a < x < b, V (a) = 0

Now f = V − V + f = V − (V − f) = V −D, where V − f = D.

Let x and y be any points such that

a < x < y ≤ b

18



First, we prove V is an increasing function on [a, b].

We can write

Vf (a, y) = Vf (a, x) + Vf (x, y)

=⇒ Vf (a, y)− Vf (a, x) = Vf (x, y).

Since Vf (x, y) ≥ 0, we have

Vf (a, y)− Vf (a, x) ≥ 0

=⇒ Vf (a, y) ≥ Vf (a, x)

i.e., Vf (a, x) ≤ Vf (a, y)

=⇒ V (x) ≤ V (y).

Hence V is an increasing function on [a, b].

Next, we prove D is an increasing function on [a, b].

Let x and y be any two points such that

a < x < y ≤ b

By hypothesis, V − f is a function defined on [a, b].

Let D = V − f , we have

D(y)−D(x) = (V − f)(y)− (V − f)(x)

= V (y)− f(y)− V (x) + f(x)

= V (y)− V (x)− [f(y)− f(x)]

= Vf (a, y)− Vf (a, x)− [f(y)− f(x)] = Vf (x, y)− [f(y)− f(x)]. (10)

By the definition of Vf (x, y), it follows that

f(y)− f(x) ≤ Vf (x, y)

=⇒ Vf (x, y)− [f(y)− f(x)] ≥ 0.

From (10), we have

D(y)−D(x) ≥ 0.
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=⇒ D(y) ≥ D(x).

Hence, both V and D = V − f are increasing functions on [a, b].

Hence, f can be expressed as the difference of two increasing function.

Conversely,

assume that f can be expressed as the difference of two increasing functions.

To prove:f is of bounded variation on [a, b].

Let f = f1 − f2, where f1 and f2 are increasing functions on [a, b].

Hence, by Theorem 1.3.1, the functions f1 and f2 are of bounded variation on [a, b].

Hence, by Theorem 1.4.1, f1 − f2 is also of bounded variation on [a, b].

Hence, f is of bounded variation on [a, b].

Hence the proof.

Note: The representation of a function of bounded variation as a difference of two

increasing functions is by no means unique. If f = f1− f2,where f1 and f2 are increas-

ing,we also have f = (f1 + g) − (f2 + g),where g is an arbitrary increasing function,

and we get a new representation of f. If g is strictly increasing, the same will be true

of f1 + g and f2 + g. Therefore, Theorem 1.7.1 also holds if increasing is replaced by

strictly increasing.

Let us sum up

• We have shown that a function of bounded variation can be expressed as a dif-

ference of two monotonic functions.

Check your progress

1. Give an example of a function of bounded variation as a difference of two in-

creasing functions.

2. Show that the difference of two increasing function is a function of bounded

variation.
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1.8 Continuous Functions of Bounded Variation

Theorem 1.8.1. Let f be of bounded variation on [a, b]. If x ∈ (a, b], let V (x) = Vf (a, x)

and put V (a) = 0. Then every point of continuity of f is also a point of continuity of V.

The converse is also true.

Proof. Given, f be of bounded variation on [a, b]. Let x ∈ (a, b] be arbitrary and Let

V (x) = Vf (a, x) and putV (a) = 0, by Theorem 1.6.1, V (x) is an increasing function.

Hence, the right- and left- hand limits V (x+) and V (x−) exist for each point x in (a, b).

By Theorem 1.7.1, the same is true for f(x+) and f(x−).

Let a < x < y ≤ b, by the definition of Vf (x, y),

0 ≤ |f(y)− f(x)| ≤ Vf (a, y)− Vf (a, x) = V (y)− V (x).

Letting y → x, we have

0 ≤ |f(x+)− f(x)| ≤ |V (x+)− V (x)|.

This implies that a point of continuous of V is a point of an an function of f . Similarly,

0 ≤ |f(x)− f(x−)| ≤ |V (x)− V (x−)|.

Conversely, assume that f is continuous at the point c in (a, b).

To prove: V is continuous function.

Since f is continuous atc, given ϵ > 0, there exists a δ > 0 such that

0 < |x− c| < δ =⇒ |f(x)− f(c)| < ϵ/2.

For this same ϵ, there also exist a partition P of [c, b], say

P = {x0, x1, · · · , xn} , x0 = c, xn = b,

such that

Vf (c, b)−
ϵ

2
<

n∑
k=1

|∆fk|.
(

∵
n∑

k=1

|∆fk| ≤ Vf (c, b)

)
(11)

Adding more points to P can only increase the sum
∑

|∆fk| and hence

we can assume that 0 < x1 − x0 < δ, we have

|∆f1| = |f(x1)− f(c)| < ϵ

2
. (12)
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From (11), we have

Vf (c, b)−
ϵ

2
<

n∑
k=1

|∆fk|

= |∆f1|+
n∑

k=2

|∆fk|

Vf (c, b)−
ϵ

2
<

ϵ

2
+

n∑
k=2

|∆fk|

≤ ϵ

2
+ Vf (x1, b) (Since, {x1, x2, · · · , xn} is a partition of [x1, b])

=⇒ Vf (c, b)− Vf (x1, b) <
ϵ

2
+

ϵ

2
= ϵ

Therefore, we have

Vf (c, b)− Vf (x1, b) < ϵ.

But

0 ≤ V (x1)− V (c) = Vf (a, x1)− Vf (a, c) = Vf (c, x1)

= Vf (c, b)− Vf (x1, b) < ϵ.

Hence we have shown that

0 < x1 − c < δ implies 0 ≤ V (x1)− V (c) < ϵ.

Hence,

V (c+) = V (c)

Similarly, we can prove that

V (c−) = V (c)

Hence, V is continuous at c.

Theorem 1.8.2. Let f be continuous on [a,b]. Then f is of bounded variation on [a,b]

if and only if, f can be expressed as the difference of two increasing continuous functions.
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Proof. Let f be continuous on [a,b] and assume that f is of bounded variation on

[a,b].

To prove:f can be expressed as the difference of two increasing functions.

Let V be a function defined as follows

V (x) = Vf (a, b) if a < x < b, V (a) = 0.

Now, f = V − V + f = V − (V − f) = V −D, where V − f = D.

Let x and y be any points such that

a < x < y ≤ b.

First, we prove V is an increasing function on [a, b].

We can write

Vf (a, y) = Vf (a, x) + Vf (x, y).

=⇒ Vf (a, y)− Vf (a, x) = Vf (x, y).

Since Vf (x, y) ≥ 0, we have

Vf (a, y)− Vf (a, x) ≥ 0

=⇒ Vf (a, y) ≥ Vf (a, x)

i.e., Vf (a, x) ≤ Vf (a, y)

=⇒ V (x) ≤ V (y).

Hence V is an increasing function on [a, b].

Next, we prove D is an increasing function on [a, b].

Let x and y be any two points such that

a < x < y ≤ b

By hypothesis, V − f is a function defined on [a, b].

Let D = V − f , we have

D(y)−D(x) = (V − f)(y)− (V − f)(x)
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= V (y)− f(y)− V (x) + f(x)

= V (y)− V (x)− [f(y)− f(x)]

= Vf (a, y)− Vf (a, x)− [f(y)− f(x)] = Vf (x, y)− [f(y)− f(x)]. (∗)

By the definition of Vf (x, y), it follows that

f(y)− f(x) ≤ Vf (x, y)

=⇒ Vf (x, y)− [f(y)− f(x)] ≥ 0.

From (*), we have

D(y)−D(x) ≥ 0.

=⇒ D(y) ≥ D(x).

Hence, both V and D = V − f are increasing functions on [a, b].

Hence, f can be expressed as the difference of two increasing function.

Conversely, assume that f can be expressed as the difference of two increasing func-

tions.

To prove : f is of bounded variation on [a, b].

Let f = f1 − f2, where f1 and f2 are increasing functions on [a, b].

By our assumption f is continuous function on [a, b], f1 and f2 are both continuous

function on [a, b]. Hence, by Theorem 1.3.1, functions f1 and f2 are of bounded vari-

ation on [a, b]. Hence, by Theorem 1.4.1, f1 − f2 is also of bounded variation on [a, b].

Hence, f is of bounded variation on [a, b].

Note: The above theorem also holds if the increasing nature of the function is replaced

by strictly increasing.

Let us sum up

• We have discussed if f is of bounded variation on [a, b] and V (x) = Vf (a, x), V (a) =

0, then continuity of f implies continuity of V.

• We have studied if function is continuous and bounded variation, then it can be

expressed as the difference of two increasing continuous functions.
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Check your progress

1. Give an example of continuous function which is of bounded variation.

2. If f can be expressed as the difference of two increasing continuous functions,

then show that f is of bounded variation.

1.9 Absolute and Conditional Convergence

Definition 1.9.1. A series
∑

ak is said to converge absolutely if
∑

|ak| converges. A series∑
ak is said to converge conditionally if

∑
ak converges but

∑
|ak| diverges.

Theorem 1.9.2. Absolute convergence of
∑

ak implies convergence.

Proof. Let
∑

ak converges absolutely, i.e., the series
∑

|ak| converges.

Therefore, by Cauchy criterion, given ϵ > 0, there exists a positive integer N such

that
m∑

k=n

|ak| < ϵ, for m ≥ n ≥ N.

Now, ∣∣∣∣ m∑
k=n

ak

∣∣∣∣ ≤ m∑
k=n

|ak| < ϵ, for m ≥ n ≥ N.

Hence, for every ϵ > 0, there is a positive integer N such that∣∣∣∣ m∑
k=n

ak

∣∣∣∣ ≤ ϵ, for m ≥ n ≥ N.

Hence
∑

ak converges.

Theorem 1.9.3. Let
∑

an be a given series with real-valued terms and define

pn =
|an|+ an

2
and qn =

|an| − an
2

(n = 1, 2, · · · ).

Then

i) If
∑

an is conditionally convergent, both
∑

pn and
∑

qn diverge.

ii) If
∑

|an| converges, both
∑

pn and
∑

qn converge and we have
∞∑
n=1

an =
∞∑
n=1

pn −
∞∑
n=1

qn.

Note : pn = an and qn = 0, if an ≥ 0,whereas qn = −an and pn = 0, if an ≤ 0.
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Proof. Note that if an ≥ 0,

pn =
|an|+ an

2
=

an + an
2

= an

qn =
|an| − an

2
=

an − an
2

= 0

and similarly if an ≤ 0, we have qn = −an and pn = 0.

pn + qn =
|an|+ an

2
+

|an| − an
2

=
|an|+ an + |an| − an

2
=

2|an|
2

= |an| (13)

pn − qn =
|an|+ an

2
− [|an| − an]

2
=

|an|+ an − |an|+ an
2

=
2an
2

= an. (14)

Assume that
∑

an is conditionally convergent, i.e.,
∑

an converges but
∑

|an| di-

verges.

To prove:
∑

pn and
∑

qn diverge.

From (14), we see that pn = an + qn.

Hence, if
∑

qn converges, then
∑

pn also converges.

Similarly, if
∑

pn converges then
∑

qn also converges.

Hence, if either
∑

pn or
∑

qn converges, both must converge.

Hence
∑

|an| converges, since |an| = pn + qn.

This is a contradiction since
∑

|an| diverges. Hence both
∑

pn and
∑

qn diverge.

ii) Assume that
∑

|an| converges.

To prove:
∑

pn and
∑

qn converges and
∑

an =
∑

pn −
∑

qn.

Since
∑

an converges absolutely,
∑

an also converges.

Therefore,
∑

pn converges, since pn =
|an|+ an

2
.

Similarly,
∑

qn converges, since qn =
|an| − an

2
.

Hence,
∑

(pn − qn) converges.

From (14), pn − qn = an.

Therefore, ∑
an =

∑
(pn − qn) =

∑
pn −

∑
qn.

Hence the proof.

Let us sum up

• We have provided some imporant results
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Check your progress

1. Given that
∑

an converge absolutely. Show that
∑

a2n converges absolutely.

1.10 Dirichlet’s Test and Abel’s Test

Theorem 1.10.1. If {an} and {bn} are two sequences of complex numbers, define

An = a1 + · · ·+ an.

Then we have the identity

n∑
k=1

akbk = Anbn+1 −
n∑

k=1

Ak(bk+1 − bk).

Therefore,
n∑

k=1

akbk converges if both the series
∞∑
k=1

Ak(bk+1−bk) and the sequence {Anbn+1}

converge.

Proof. Assume A0 = 0.

Now,

n∑
k=1

akbk =
n∑

k=1

(Ak − Ak−1)bk

=
n∑

k=1

Akbk −
n∑

k=1

Ak−1bk − Anbn+1 + Anbn+1

=
n∑

k=1

Akbk −
n∑

k=1

Akbk+1 + Anbn+1

= Anbn+1 −
n∑

k=1

Ak(bk+1 − bk)

n∑
k=1

akbk = Anbn+1 −
n∑

k=1

Ak(bk+1 − bk).

Theorem 1.10.2. (Dirichlet’s test). Let
∑

an be a series of complex terms whose partial

sums form a bounded sequence. Let{bn} be a decreasing sequence which converges to 0.

Then
∑

anbn converges.

Proof. Let An = a1 + a2 + · · ·+ an be the n-th partial sum of the series
∑

an.
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Since the sequence of partial sums of the series
∑

an is bounded, there exists a

positive number M such that

|An| ≤ M, for all n.

Since {bn} is a decreasing sequence which converges to zero, we have

lim
n→∞

Anbn+1 ≤ M lim
n→∞

bn+1 = 0

Now, by Theorem 1.9.3, we have

n∑
k=1

akbk = Anbn+1 −
n∑

k=1

Ak(bk+1 − bk).

To prove the convergence of
∑

anbn, we need only to show that
∑

Ak(bk+1 − bk) is

convergent. Consider,

|Ak(bk+1 − bk)| = |Ak||bk+1 − bk|

≤ M |bk+1 − bk| (|Ak| ≤ M )

= M(bk+1 − bk) ({bn} is increasing)

By the Telescoping series Theorem, “ Let {an} and {bn} be two sequences such that

an = bn+1 − bn for n = 1, 2, .... Then
∑

an converges if and only if lim
n→∞

bn exists, in

which case we have
∞∑
n=1

= lim
n→∞

bn − b1.ȷ∑
(bk+1 − bk) is convergent.

By the comparison test,
∑

Ak(bk+1 − bk) is absolutely convergent.

Hence,
∑

anbn converges.

Theorem 1.10.3. (Abel’s test). The series
∑

anbn converges if
∑

an converges and if

{bn} is a monotonic convergent sequence.

Proof. Let
∑

an be a convergent series, {bn} be a monotonic convergent sequence,

An =
n∑

k=1

ak and let b = limn→∞ bn.

Since {an} converges, {An} converges.

Hence, {An} is bounded.
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Case (i):

Suppose {bn} is an increasing sequence

i.e., b1 ≤ b2 ≤ · · · ≤ bn ≤ bn+1 ≤ · · ·

Let cn = b− bn. Then cn ≥ 0 and

lim
n→∞

cn = lim
n→∞

(b− bn)

= b− lim
n→∞

bn

= b− b = 0.

Now,

cn − cn+1 = b− bn − (b− bn+1)

= b− bn − b+ bn+1

= bn+1 − bn ≥ 0 (∵ {bn} is increasing)

=⇒ cn − cn+1 ≥ 0

=⇒ cn ≥ cn+1.

Therefore, {cn} is a decreasing sequence, and lim
n→∞

cn = 0.

By Dirichlet’s test,
∞∑
n=1

ancn converges.

Now, cn = b− bn =⇒ bn = b− cn.

=⇒
∞∑
n=1

anbn =
∞∑
n=1

an(b− cn)

=
∞∑
n=1

anb−
∞∑
n=1

ancn

=
∞∑
n=1

anb−
∞∑
n=1

ancn

Since
∑

an converges,
∑

ban also converges.

Hence,
∑

bnan converges.

Case (ii):

Suppose {bn} is a decreasing sequence

i.e., b1 ≥ b2 ≥ · · · ≥ bn ≥ bn+1 ≥ · · ·
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Let cn = bn − b, where b = limn→∞ bn.

∴ lim
n→∞

cn = 0

Now,

cn − cn+1 = bn − b− bn+1 + b

= bn − bn+1 ≥ 0

cn − cn+1 ≥ 0 =⇒ cn ≥ cn+1.

Therefore, {cn} is a decreasing sequence and limn→∞ cn = 0.

Hence, by Dirichlet’s test,
∑

ancn converges.

cn = bn − b =⇒ bn = cn + b.

=⇒
∑

anbn =
∑

ancn +
∑

anb.

Since
∑

an converges,
∑

ban also converges.

Hence,
∑

anbn converges.

1.11 Rearrangement of Series

We recall that Z+ denotes the set of positive integers,Z+ = {1, 2, 3, · · · }.

Definition 1.11.1. Let f be a function whose domain is Z+ and whose range is Z+,and

assume that f is one-to-one on Z+. Let
∑

an and
∑

bn be two series such that

bn = af(n), for n = 1, 2, ... (15)

Then
∑

bn is said to be a rearrangement of
∑

an.

Note : Equation (15) implies an = bf−1(n) and hence
∑

an is also a rearrangement of∑
bn.

Theorem 1.11.2. Let
∑

an be an absolutely convergent series having sum s. Then every

rearrangement of
∑

an also converges absolutely and has sum s.
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Proof. Let {bn} be defined by bn = af(n). Then, we have

|b1|+ |b2|+ · · ·+ |bn| = |af(1)|+ · · ·+ |af(n)| ≤
∞∑
k=1

|ak|,

Hence, the partial sums of the series
∑

|bn| is bounded.

Hence
∑

bn converges absolutely.

To show that
∑

bn = s, let tn = b1 + b2 + · · ·+ bn, sn = a1 + a2 + · · ·+ an.

Since, {sn} converges, given ϵ > 0, there exists N so that |sN − s| < ϵ/2

and
∞∑
k=1

|aN+k| ≤ ϵ/2 by Cauchy criterion. Now,

|tn − s| = |tn − sN + sN − s| ≤ |tn − sN |+ |sN − s| < |tn − sN |+
ϵ

2
.

Choose M so that {1, 2, ..., N}⊆ {f(1), f(2), ....., f(M)} .

Then n > M implies f(n) > N. For such n,

|tn − sN | = |b1 + .....+ bn − (a1 + .....+ aN)

= |af(1) + .....+ af(n) − (a1 + .....+ aN)|

≤ |aN+1|+ |aN+2|+ · · · ≤ ϵ

2
,

since all the terms a1, a2, ..., aN cancel out in the subtraction. Hence, n > M implies

|tn − s| < ϵ.

Hence, {tn} converges to s.

i.e., the series
∑

bn converges.

1.12 Riemann’s Theorem on Conditionally Convergent
Series

Theorem 1.12.1. Let
∑

an be a conditionally convergent series with real valued terms.

Let x and y be given numbers in the closed interval [−∞,+∞], with x ≤ y. Then there

exists a rearrangement
∑

bn of
∑

an such that

lim
n→∞

inf tn = x and lim
n→∞

sup tn = y,

where tn = b1 + b2 + .....+ bn.
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Proof. Let
∑

an be a conditionally convergent series with real valued terms.

Let x and y be given numbers in the closed interval [−∞,+∞], with x ≤ y.

Discarding those terms of a series which are zero does not affect its convergence or

divergence.

Hence, we can assume that no terms of
∑

an are zero.

Let pn denote the nth positive term of
∑

an and −qn denote the nth negative term of∑
an.

Therefore, pn = |an|+an
2

and qn = |an|−an
2

=⇒ pn − qn = an and pn + qn = |an|.

Now the series
∑

pn and
∑

qn must both diverge.

Suppose both the series
∑

pn and
∑

qn converge. Then,

∞∑
n=1

(pn + qn) =
∞∑
n=1

|an| converges.

which is contradiction since
∑

an is conditionally convergent.

Suppose
∑

pn diverges and
∑

qn converges.

Now,

N∑
n=1

an =
N∑

n=1

(pn − qn) =
N∑

n=1

pn −
N∑

n=1

qn.

Hence,
∑

an diverges.

which is contradiction since
∑

an is conditionally convergent.

Similarly, if
∑

pn converges and
∑

qn diverges, then
∑

an diverges.

which is contradiction since
∑

an is conditionally convergent.

Hence, the series
∑

pn and
∑

qn must both diverge.

Next, construct two sequences of real numbers, say {xn} and {yn} , such that

lim
n→∞

xn = x, lim
n→∞

yn = y

with xn < yn, y1 > 0.

We take k1(say) positive terms such that

p1 + · · ·+ pk1 > y1.

Similarly, we take r1(say) negative terms such that

p1 + · · ·+ pk1 − q1 − ....− qr1 < x1.

32



Next, we take upto k2 positive terms such that

p1 + · · ·+ pk1 − q1 − · · · − qr1 + pk1+1 + · · ·+ pk2 > y2.

Similarly, we take upto r2 negative terms such that

p1 + · · ·+ pk1 − q1 − · · · − qr1 + pk1+1 + · · ·+ pk2 − qr1+1 − · · · − qr2 < x2.

These steps are possible, since
∑

pn and
∑

qn are both divergent series of positive

terms.

Continuing this process, we obviously obtain a rearrangement
∑

bn of
∑

an given by

p1 + · · ·+ pk1 − q1 − · · · − qr1 + pk1+1 + · · ·+ pk2 − qr1+1 − · · · − qr2 + · · · (16)

Let αn andβn denote the partial sums of
∑

bn whose last terms are pkn and qrn respec-

tively.

Since p1 + ......+ pk1 − q1 − ....− qr1 + pkn−1 + pkn > yn.

=⇒ p1 + · · ·+ pk1 − q1 − · · · − qr1 + pkn−1 ≤ yn

=⇒ p1 + · · ·+ pk1 − q1 − · · · − qr1 + pkn−1 + pkn ≤ yn + pkn

=⇒ αn ≤ yn + pkn

=⇒ αn − yn ≤ pkn

|αn − yn| ≤ pkn as αn > yn and pkn > 0.

Similarly, we have

|βn − xn| ≤ qrn .

Since
∑

an is convergent, an → 0 as n → ∞.

=⇒ pn → 0 and qn → 0 as n → ∞ =⇒ pkn → 0 and qrn → 0 as n → ∞.

Since pkn → 0 as n → ∞, for given ϵ > 0, there exist a positive integer N1 such that

pkn < ϵ/2, for n ≥ N1.
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Again, since yn → y as n → ∞, there exist a positive integer N2 such that

|yn − y| < ϵ/2, for n ≥ N2.

Choose N = Max {N1, N2}. Then for n ≥ N, we have

|αn − y| = |αn − yn + yn − y|

≤ |αn − yn|+ |yn − y|

≤ pkn + |yn − y| < ϵ/2 + ϵ/2 = ϵ.

=⇒ αn → y as n → ∞.

Similarly, we can obtain βn → x as n → ∞.

Finally, it is clear that no number less than x or no number greater then y can be

sub-sequential limit of the partial sums of (16).

∴ lim
n→∞

inf tn = x and lim
n→∞

sup tn = y,

where tn = b1 + b2 + .....+ bn.

Let us sum up

• We have discussed Absolute convergence.

• Also discussed Conditional Convergence.

• We have studied Dirichlet’s Test and Abel’s Test.

• We have discussed Rearrangement of Series.

• We have discussed Riemann’s Theorem on Conditionally Convergent Series.

Check your progress

1. Define absolute and conditional convergence of a series.

2. Give an example of a series that converges absolutely and a series that converges

conditionally.

3. State Dirichlet’s Test.
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4. State Abel’s Test.

5. Define Rearrangement of Series.

6. State Riemann’s Theorem on Conditionally Convergent Series.

Check your progress

1. Which of the following statements is/are true?

a) If f : [a, b] → R is monotonic, then it is of bounded variation.

b) If f ∈ C1[a, b], then it is bounded variation.

c) If f : [a, b] → R and g : [a, b] → R are of bounded variation, then f + g is also

of bounded variation.

d) If f : [a, b] → R is monotonic, then it is not of bounded variation.

2. f(x) =

{
x2 cos( 1

x
), x ̸= 0

0, x = 0
then

a) f is of bounded variation on [−1, 1]

b) f ′ is of bounded variation on [−1, 1]

c) |f ′| ≤ 1

d) |f ′| ≤ 4

3. For non-negative integers k ≥ 1 define

fk(x) =
xk

(1 + x)2
∀ x ≥ 0.

Which of the following statements are true?

a) For each k, fk is a function of bounded variation on compact intervals

b) For every k,

∫ ∞

0

fk(x)dx < ∞

c) lim
k→∞

∫ 1

0

fk(x)dx exists

d) The sequence of functions fk converge uniformly on [0, 1] as k → ∞

4. Which of the following is not function of bounded variation.

a) x2 + x+ 1 for x ∈ (−1, 1)

b) tan πx
2

for x ∈ (−1, 1)

c) sin x
2

for x ∈ (−π, π)

d)
√
1− x2 for x ∈ (−1, 1)
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5. f(x) =

{
xα cos( 1

xβ ), x ̸= 0

0, x = 0.
Then

a) f(x) is bounded variation on [0, 1] if α < β.

b) f(x) is bounded variation on [0, 1] if α > β.

c) f(x) is bounded variation on [0, 1] if α ≥ β.

d) All of the above.

6. f(x) =

{
x sin( 1

x
), x ∈ (0, 1]

0, x = 0.
and g(x) = xf(x) for 0 ≤ x ≤ 1. Then which of

the following are true?

a) f is of bounded variation

b) f is not of bounded variation

c) g is of bounded variation

d) g is not of bounded variation

7. Let [a, b] ⊂ R be a finite interval. Let f : [a, b] → R be a bounded and Riemann

integrable function. Define, for x ∈ [a, b],

F (x) =

∫ x

a

f(t)dt

which of the following statements is/are true?

a) The function F is uniformly continuous.

b) The function F is of bounded variation.

c) The function F is differentiable on (a, b).

d) The function F is not uniformly continuous.

8. The lim
n→∞

12 + 22 + · · ·+ n2

n3
equals

a) 1 b) 1
2

c) 1
3

d) None of the above

Summary

• Discussed the properties of Monotonic Functions.

• Introduced the concept of function of bounded variation and total variation.

• Proved some important properties of function of bounded variation.

• Derived sufficient conditions for a function to be of bounded variation.
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• Introduced the concept of absolute and conditional Convergence of a series.

• Proved some important test for absolute and conditional Convergence of a series.

• Discussed rearrangement of series.

• Discussed Riemann’s Theorem for conditionally convergent series.

Glossary

• Increasing function: A real-valued function f defined on a subset S of R is said

to be increasing (or decreasing) on S if

x < y =⇒ f(x) ≤ f(y)

for every x, y ∈ S

• Monotonic function: A function f is said to be monotonic on S if it is increasing

or decreasing on S.

• Additive property of Total variation : Let f be of bounded variation on [a, b],

and assume that c ∈ (a, b).Then f is of bounded variation on [a, c] and on [c, b]

and we have

Vf (a, b) = Vf (a, c) + Vf (c, b).

• Telescoping series Theorem: Let {an} and {bn} be two sequences such that

an = bn+1 − bn, for n = 1, 2, .... Then
∑

an converges if and only if lim
n→∞

bn exists,

in which case we have
∞∑
n=1

= lim
n→∞

bn − b1.

• Cauchy Condition: The series
∑

an converges if and only if, for every ϵ > 0

there exists an integer N such that

n > N =⇒ |an+1 + · · ·+ an+p| < ϵ, for each p = 1, 2, . . .

(or)

m ≥ n > N =⇒ |
m∑

k=n

ak| < ϵ
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Self-Assessment Questions

Short-Answer Questions

1. State and prove Dirichlet’s test.

2. State and prove Abel’s test.

3. Absolute convergence of series implies convergence.

4. If f is of bounded variation on [a, b], say
∑

|∆fk| ≤ M for all partitions of [a, b],

then f is bounded on [a, b]. In fact,

|f(x)| ≤ |f(a)|+M, for all x in [a, b].

5. If f is monotonic on [a, b], then f is of bounded variation on [a, b].

Long-Answer Questions

1. State and prove Riemann’s Theorem on Conditionally Convergent Series.

2. Let f be defined on [a,b].Then f is of bounded variation on [a,b] if and only if f

can be expressed as the difference of two increasing functions.

3. Assume that f and g are each of bounded variation on [a, b]. Then so are their

sum, difference and product. Also, we have

Vf±g ≤ Vf + Vg and Vf.g ≤ AVf +BVg,

where A = sup {|g(x)| : x ∈ [a, b]} and B = sup {|f(x)| : x ∈ [a, b]} .

Exercises

1. Determine which of the following functions are of bounded variation on [0, 1].

a) f(x) = x2 sin( 1
x
) if x ̸= 0, f(0) = 0.

b) f(x) =
√
x sin( 1

x
) if x ̸= 0, f(0) = 0.

2. Show that a polynomial f is of bounded variation on every compact interval

[a, b]. Describe a method for finding the total variation of f on [a, b] if the zeros

of the derivative f ′ are known.
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3. Let f be a real-valued function defined on [0, 1] such that f(0) > 0, f(x) ̸= x

for all x, and f(x) ≤ f(y) whenever x ≤ y. Let A = x : f(x) > x. Prove that

supA ∈ A and that f(1) > 1.

4. Given that
∑

an converges absolutely. Show that each of the following series

also converges absolutely:

a)
∑

a2n, b)
∑

an
1+an

(if no an = −1), c)
∑ a2n

1+a2n
.

5. Praove the following statements:

a)
∑

anbn converges if
∑

an converges and if
∑

(bn − bn+1) converges abso-

lutely.

b)
∑

anbn converges if
∑

an has bounded partial sums and if
∑

(bn − bn+1)

converges absolutely, provided that bn → 0 as n → ∞.
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Unit 2

THE RIEMANN-STIELTJES INTEGRAL

Objectives

After the successful completion of this unit; the students are expected

• To recall the basic concepts of bounded real-valued function, partition, upper

and lower Riemann integral.

• To analyze the properties of Riemann integral.

• To understand the fundamental concepts of Riemann-Stieltjes integral.

• To analyse and work with problems related to Riemann-Stieltjes integral func-

tion.

2.1 Introduction

First let us define the notion of Riemann integral of a function.

Let f be a bounded real-valued function defined on [a, b]. There exists a real number

M > 0 such that

|f(x)| ≤ M ( a ≤ x ≤ b )

Let P = {x0, x1, · · · , xn} be a partition of [a, b] such that

a = x0 < x1 < · · · < xn = b.

Let us define the following:

∆xk = xk − xk−1.

41



Mk = sup {f(x) : x ∈ [xk−1, xk]} = sup
x∈[xk−1,xk]

f(x).

mk = inf {f(x) : x ∈ [xk−1, xk]} = inf
x∈[xk−1,xk]

f(x).

U(P, f) =
n∑

k=1

Mk∆xk and L(P, f) =
n∑

k=1

mk∆xk.

Now let us define ∫ b

ā

f = sup
P

L(P, f) and

∫ b̄

a

f = inf
P

U(P, f),

where the sup and inf are taken over all possible partitions P ∈ ℘[a, b].

If
∫ b

ā

f =

∫ b̄

a

f, then the common value is denoted by
∫ b

a

f or
∫ b

a
f(x)dx and the

function f is said to be Riemann integrable on [a, b].

Let R[a, b] denotes the set of all Riemann integrable functions on [a, b].

Now, we are ready to define Riemann-Stieltjes integral:

Let f : [a, b] → R and α be a monotonically increasing function on [a, b].

Let f : [a, b] → R be a bounded function and let P = {x0, x1, ....., xn} be any partition

of [a, b] such that

a = x0 < x1 < · · · < xn−1 < xn = b.

Define ∆αk = α(xk)− α(xk−1).

Let Mk = sup
α∈[xk−1,xk]

f(x) and mk = inf
α∈[xk−1,xk]

f(x).

Let U(P, f) =
n∑

k=1

Mk∆αk and L(P, f) =
n∑

k=1

mk∆αk.

Define
∫ b̄

a

fdα = inf U(P, f, α) and
∫ b

ā

fdα = supL(P, f, α)

If
∫ b

ā

fdα =

∫ b̄

a

fdα =

∫ b

a

fdα(say), then f is said to be Riemann integrable on

[a, b].

i.e.,f ∈ R(α), where R(α) denotes the set of all Riemann integrable on [a, b].

Let us sum up

• We have discussed definition of Riemann integrable.

• Also discussed bounded function.

• We have defined Upper and Lower Riemann integrable.
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2.2 Notation

1. Let f be a bounded function defined on [a, b]. Let α be also a bounded function

defined on [a, b].

2. A partition P = {x0, x1, · · · , xn} of [a, b] is a finite set of points such that

a = x0 < x1 < · · · < xn−1 < xn = b.

3. A partition P ∗ of [a, b] is said to be refinement of P if P ⊆ P ∗.

4. ∆αk = α(xk)− α(xk−1)

n∑
k=1

∆αk = [α(x1)− α(x0)] + · · ·+ [α(xn)− α(xn−1)]

= α(xn)− α(x0)

= α(b)− α(a).

5. The set of all possible partitions of [a, b] is denoted by ℘[a, b].

6. The norm of a partition P is the length of the largest subinterval of P is denoted

by ∥P∥. Note that

P ⊆ P ′ =⇒ ∥P ′∥ ≤ ∥P∥.

7. If we need to subdivide [a, b] into n intervals, then the length of each sub-interval

is given by
b− a

n
.

Let us sum up

• We have discussed basic notations for Riemann integable.

2.3 The Definition of the Riemann-Stieltjes Integral

Definition 2.3.1. Let P = {x0, x1, · · · , xn} be a partition of [a, b] and let tk be a point in

the sub-interval [xk−1, xk]. A sum of the form

S(P, f, α) =
n∑

k=1

f(tk)∆αk

43



is called a Riemann-Stieltjes sum of f with respect to α. We say f is Riemann-integrable

with respect to α on [a, b], and we write f ∈ R(α) on [a, b], if there exists a number A

having the following property: For every ϵ > 0, there exists a partition Pϵ of [a, b] such

that for every partition P finer than Pϵ and for every choice of the points tk in [xk−1, xk],

we have |S(P, f, α)− A| < ϵ.

When such a number A exists, it is uniquely determined and it is denoted by
∫ b

a
fdα or∫ b

a
f(x)dα(x). We also say that the Riemann-Stieltjes integral

∫ b

a
fdα exists. The functions

f and α are referred to as the integrand and the integrator, respectively. In the special case

when α(x) = x, we write S(P, f) instead of S(P, f, α), and f ∈ R instead of f ∈ R(α).

The integral is then called a Riemann integral and is denoted by
∫ b

a
fdx or

∫ b

a
f(x)dx.

2.4 Linear Properties

Theorem 2.4.1. If f ∈ R(α) and g ∈ R(α) on [a, b], then c1f + c2g ∈ R(α) on [a, b],

where c1 and c2 are constants and we have∫ b

a

(c1f + c2g) dα = c1

∫ b

a

f dα + c2

∫ b

a

g dα.

Proof. Let h = c1f + c2g and P be a partition of [a, b], we have

S(P, h, α) =
n∑

k=1

h(tk)∆αk

= c1

n∑
k=1

f(tk)∆αk + c2

n∑
k=1

g(tk)∆αk

= c1S(P, f, α) + c2S(P, g, α).

Let ϵ > 0 and f, g ∈ R(α), we can choose partitions P ′
ϵ and P

′′
ϵ such that for every

partition P with P ′
ϵ ⊆ P and P

′′
ϵ ⊆ P, we have∣∣∣∣S(P, f, α)− ∫ b

a

fdα

∣∣∣∣ < ϵ

2|c1|

and ∣∣∣∣S(P, g, α)− ∫ b

a

gdα

∣∣∣∣ < ϵ

2|c2|
.

Take Pϵ = P ′
ϵ ∪ P

′′
ϵ , then for every partition P finer than Pϵ we have∣∣∣∣S(P, h, α)− c1

∫ b

a

fdα− c2

∫ b

a

gdα

∣∣∣∣ = ∣∣∣∣c1S(P, f, α) + c2S(P, g, α)− c1

∫ b

a

fdα− c2

∫ b

a

gdα

∣∣∣∣
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≤ |c1|
∣∣∣∣S(P, f, α)− ∫ b

a

fdα

∣∣∣∣+ |c2|
∣∣∣∣S(P, g, α)− ∫ b

a

gdα

∣∣∣∣
< |c1|

ϵ

2|c1|
+ |c2|

ϵ

|c2|
=

ϵ

2
+

ϵ

2
= ϵ.

Since ϵ was arbitrary, we have∫ b

a

(c1f + c2g) dα = c1

∫ b

a

f dα + c2

∫ b

a

g dα.

Theorem 2.4.2. If f ∈ R(α) and f ∈ R(β) on [a, b], then f ∈ R(c1α + c2β) on [a, b],

where c1 and c2 are constants and we have∫ b

a

fd(c1α + c2β) = c1

∫ b

a

f dα + c2

∫ b

a

f dβ.

Proof. Let η = c1α + c2β, and P be a partition of [a, b], we have

S(P, f, η) =
n∑

k=1

f(tk)∆ηk

=
n∑

k=1

f(tk)[ηk − ηk−1]

=
n∑

k=1

f(tk)[c1αk + c2βk − c1αk−1 − c2βk−1]

=
n∑

k=1

f(tk)c1∆αk +
n∑

k=1

f(tk)c2∆βk

= c1

n∑
k=1

f(tk)∆αk + c2

n∑
k=1

f(tk)∆βk

= c1S(P, f, α) + c2S(P, f, β).

Let ϵ > 0, and f ∈ R(α) and f ∈ R(β) we can choose partitions P ′
ϵ and P

′′
ϵ such that

for every partition P ′
ϵ ⊆ P and P

′′
ϵ ⊆ P, we have∣∣∣∣S(P, f, α)− ∫ b

a

fdα

∣∣∣∣ < ϵ

2|c1|

and ∣∣∣∣S(P, f, β)− ∫ b

a

fdβ

∣∣∣∣ < ϵ

2|c2|
.
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Take Pϵ = P ′
ϵ ∪ P

′′
ϵ , then for every partition P finer than Pϵ, we have∣∣∣∣S(P, f, η)− c1

∫ b

a

fdα− c2

∫ b

a

fdβ

∣∣∣∣ = ∣∣∣∣c1S(P, f, α) + c2S(P, g, α)− c1

∫ b

a

fdα− c2

∫ b

a

fdβ

∣∣∣∣
≤ |c1|

∣∣∣∣S(P, f, α)− ∫ b

a

fdα

∣∣∣∣+ |c2|
∣∣∣∣S(P, f, β)− ∫ b

a

fdβ

∣∣∣∣
≤ |c1|

ϵ

2|c1|
+ |c2|

ϵ

|c2|
=

ϵ

2
+

ϵ

2
= ϵ.

Since ϵ was arbitrary, we have∫ b

a

f d(c1α + c2β) = c1

∫ b

a

f dα + c2

∫ b

a

f dβ.

Theorem 2.4.3. Assume that c ∈ (a, b). If two of the three integrals in (17) exist, then

the third also exists and we have∫ c

a

f dα+

∫ b

c

f dα =

∫ b

a

f dα. (17)

Proof. Let P be a partition of [a, b] such that c ∈ P and P ′ = P ∩ [a, c] and P
′′
= P ∩

[c, b], denote the corresponding partitions of [a, c] and [c, b], respectively. The Riemann-

Stieltjes sums for these partitions satisfy the equation

S(P, f, α) = S(P ′, f, α) + S(P
′′
, f, α).

Assume that
∫ c

a
fdα and

∫ b

c
fdα exist.

Let ϵ > 0 be given. Then we can choose a partition P ′
ϵ of [a, c] such that∣∣∣∣S(P ′, f, α)−

∫ c

a

fdα

∣∣∣∣ < ϵ

2
,

whenever P ′ is finer than P ′
ϵ . Similarly, we can choose a partition P

′′
ϵ of [c, b] such

that ∣∣∣∣S(P ′′
, f, α)−

∫ b

c

fdα

∣∣∣∣ < ϵ

2
,

whenever P
′′ is finer than P

′′
ϵ . Then, Pϵ = P ′

ϵ ∪ P
′′
ϵ is a partition of [a, b] such that P

finer than Pϵ implies P ′
ϵ ⊆ P ′ and P

′′
ϵ ⊆ P

′′
.

Hence, if P is finer than Pϵ, we have∣∣∣∣S(P, f, α)− ∫ c

a

fdα−
∫ b

c

fdα

∣∣∣∣ = ∣∣∣∣S(P ′, f, α) + S(P
′′
, f, α)−

∫ c

a

fdα−
∫ b

c

fdα

∣∣∣∣
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≤
∣∣∣∣S(P ′, f, α)−

∫ c

a

fdα

∣∣∣∣+ ∣∣∣∣S(P ′′
, f, α)−

∫ b

c

fdα

∣∣∣∣
<

ϵ

2
+

ϵ

2
= ϵ.

This proves that
∫ b

a
fdα exists. Hence∫ b

a

f dα =

∫ c

a

f dα+

∫ b

c

f dα.

Definition 2.4.4. If a < b, we define
∫ a

b

fdα = −
∫ b

a

fdα whenever
∫ b

a

fdα exists. We

also define
∫ a

a

fdα = 0.

Let us sum up

• We have discussed the linear properties of Riemann-stieltjes integral.

2.5 Integration by Parts

Theorem 2.5.1. If f ∈ R(α) on [a, b], then α ∈ R(f) on [a, b] and we have∫ b

a

f(x)dα(x) +

∫ b

a

α(x)df(x) = f(b)α(b)− f(a)α(a).

This equation is known as the formula for integration by parts.

Proof. Let ϵ > 0, and
∫ b

a
fdx exists, there is a partition Pϵ of [a, b] such that for every

partition P ′ finer than Pϵ, we have∣∣∣∣S(P ′, f, α)−
∫ b

a

fdα

∣∣∣∣ < ϵ. (18)

Consider an arbitrary Riemann-Stieltjes sum for the integral
∫ b

a
αdf, say

S(P, α, f) =
n∑

k=1

α(tk)∆fk

=
n∑

k=1

α(tk)[f(xk)− f(xk−1)

=
n∑

k=1

α(tk)f(xk)−
n∑

k=1

α(tk)f(xk−1),
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where P is finer than Pϵ. Let A = f(b)α(b)− f(a)α(a), then

A =
n∑

k=1

f(xk)α(xk)−
n∑

k=1

f(xk−1)α(xk−1).

Therefore, we have

A− S(P, α, f) =
n∑

k=1

f(xk)α(xk)−
n∑

k=1

f(xk−1)α(xk−1)−
n∑

k=1

α(tk)f(xk) +
n∑

k=1

α(tk)f(xk−1)

=
n∑

k=1

f(xk)[α(xk)− α(tk)] +
n∑

k=1

f(xk−1)[α(tk)− α(xk−1)].

The two sums on the right can be combined into a single sum of the form S(P ′, f, α),

where P ′ is that partition of [a, b] obtained by taking the points xk and tk together.

Then P ′ is finer than P and P ′ is also finer than Pϵ.

Now,

A− S(P, α, f) = S(P ′, α, f).

From (18), we have ∣∣∣∣A− S(P, α, f)−
∫ b

a

fdα

∣∣∣∣ < ϵ,

where P is finer than Pϵ.

This implies that α ∈ R(f) and∫ b

a

αdf = A−
∫ b

a

f dα = f(b)α(b)− f(a)α(a)−
∫ b

a

f dα.

Therefore, we get ∫ b

a

fdα+

∫ b

a

αdf = f(b)α(b)− f(a)α(a).

Let us sum up

• We have derived the formula for integration by parts.

48



2.6 Change of Variable in a Riemann-Stieltjes Integral

Theorem 2.6.1. Let f ∈ R(α) on [a, b] and g be a strictly monotonic continuous function

defined on an interval S having endpoints c and d. Assume that a = g(c), b = g(d). Let h

and β be the composite functions defined as follows:

h(x) = f [g(x)], β(x) = α[g(x)], if x ∈ S.

Then h ∈ R(β) on S and we have
∫ b

a

f dα =

∫ d

c

h dβ. That is,

∫ g(d)

g(c)

f(t) dα(t) =

∫ d

c

f [g(x)] d {α[g(x)]} .

Proof. Assume that g is strictly increasing function on S. Also g is continuous.

Hence, g is one to one and onto function from [c, d] to [a, b].

Then g−1 exists, which is also strictly increasing function on [a, b].

Therefore, for every partition P = {y0, y1, · · · , yn} of [c, d], there corresponds one and

only one partition P ′ = {x0, · · · , xn} of [a, b] such that

xk = g(yk).

We can write

P ′ = g(P ) and P = g−1(P ′).

Let ϵ > 0, and f ∈ R(α) on [a, b], there is a partition P ′
ϵ of [a, b] with P ′

ϵ ⊆ P ′ such that∣∣∣∣S(P ′, f, α)−
∫ b

a

f dα

∣∣∣∣ < ϵ. (19)

Let Pϵ = g−1(P ′
ϵ) be the corresponding partition of [c, d], and let P = {y0, · · · , yn} be a

partition of [c, d] finer than Pϵ. Form a Riemann-Stieltjes sum

S(P, h, β) =
n∑

k=1

h(uk)∆βk,

where uk ∈ [yk−1, yk] and ∆βk = β(yk)− β(yk−1).

Put tk = g(uk) and xk = g(yk). Then P ′ = {x0, · · · , xn} is a partition of [a, b] finer than

P ′
ϵ . Now,

S(P, h, β) =
n∑

k=1

f [g(uk)] {∆α[g(yk)]}
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=
n∑

k=1

f [g(uk)] {α[g(yk)]− α[g(yk−1)]}

=
n∑

k=1

f(tk) {α(xk)− α(xk−1)}

=
n∑

k=1

f(tk)∆αk

= S(P ′, f, α) (∵ tk ∈ [xk−1, xk]).

From (19), we have ∣∣∣∣S(P, h, β)− ∫ b

a

f dα

∣∣∣∣ < ϵ

=⇒
∣∣∣∣S(P, h, β)− ∫ d

c

h dβ

∣∣∣∣ < ϵ

Therefore, h ∈ R(β) on [c, d]. Also∫ b

a

f dα =

∫ d

c

h dβ∫ g(d)

g(c)

f(t) dα(t) =

∫ d

c

f [g(x)] d {α[g(x)]} .

Hence the proof.

Let us sum up

• We have discussed the change of variable in a Riemann-Stieltjes integral.

2.7 Reduction to a Riemann Integral

The next theorem tells us that we are permitted to replace the symbol dα(x) by α′(x)dx

in the integral
∫ b

a
f(x)dα(x) whenever α has a continuous derivative α′.

Theorem 2.7.1. Assume f ∈ R(α) on [a, b] and assume that α has a continuous deriva-

tive α′ on [a, b]. Then the Riemann integral
∫ b

a
f(x)α′(x)dx exists and we have∫ b

a

f(x) dα(x) =

∫ b

a

f(x) α′(x) dx.
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Proof. Assume f ∈ R(α) on [a, b] and assume that α has a continuous derivative α′

on [a, b]. Let g(x) = f(x)α′(x) and P = {x0, x1, · · · , xn} be the partition of [a, b] and

tk ∈ (xk−1, xk).

Consider a Riemann sum

S(P, g) =
n∑

k=1

g(tk)∆xk

=
n∑

k=1

f(tk)α
′(tk)∆xk

=
n∑

k=1

f(tk)α
′(tk)[xk − xk−1].

For the same partition P and the same choice of the tk, consider the Riemann-Stieltjes

sum

S(P, f, α) =
n∑

k=1

f(tk)∆αk

=
n∑

k=1

f(tk)[α(xk)− α(xk−1)].

Since, α is continuous and differentiable on [a, b], by mean value theorem, we have

α(xk)− α(xk−1) = α′(vk)[xk − xk−1], where vk ∈ (xk−1, xk).

Therefore, we get

S(P, f, α) =
n∑

k=1

f(tk)α
′(vk)[xk − xk−1]

S(P, f, α)− S(P, g) =
n∑

k=1

f(tk)α
′(vk)∆xk −

n∑
k=1

f(tk)α
′(tk)∆xk

=
n∑

k=1

f(tk)[α
′(vk)− α′(tk)]∆xk.

Since f is bounded, there exist M > 0 such that |f(x)| ≤ M, for all x in [a, b].

Since α′ is continuous on [a, b], and [a, b] is closed and bounded, α′ is uniformly

continuous on [a, b].

i.e., Given ϵ > 0, there exist a δ > 0 such that

0 ≤ |x− y| < δ =⇒ |α′(x)− α′(y)| < ϵ

2M(b− a)
.
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If we take a partition P ′
ϵ with norm ∥P ′

ϵ∥ < δ, then for any finer partition P we have

|α′(vk)− α′(tk)| <
ϵ

2M(b− a)
.

For such partition P, we have

|S(P, f, α)− S(P, g)| =
∣∣∣∣ n∑
k=1

f(tk)[α
′(vk)− α′(tk)]∆xk

∣∣∣∣
≤

n∑
k=1

|f(tk)||α′(vk)− α′(tk)|∆xk

≤ M.
ϵ

2M(b− a)
(b− a) =

ϵ

2
.

Since f ∈ R(α) on [a, b], there exists a partition P
′′
ϵ such that P finer than P

′′
ϵ implies∣∣∣∣S(P, f, α)− ∫ b

a

f dα

∣∣∣∣ < ϵ

2

Let Pϵ = P ′
ϵ ∪ P

′′
ϵ with Pϵ ⊆ P. Consider,∣∣∣∣S(P, g)− ∫ b

a

f dα

∣∣∣∣ = ∣∣∣∣S(P, g)− S(P, f, α) + S(P, f, α)−
∫ b

a

f dα

∣∣∣∣
≤

∣∣∣∣S(P, g)− S(P, f, α)

∣∣∣∣+ ∣∣∣∣S(P, f, α)− ∫ b

a

f dα

∣∣∣∣
<

ϵ

2
+

ϵ

2
= ϵ.

Therefore,g is Riemann integrable.

i.e.,
∫ b

a

f(x)α′dx exists and∫ b

a

f(x) dα(x) =

∫ b

a

f(x) α′(x) dx.

Let us sum up

• We have permitted to replace the symbol dα(x) by α′(x)dx in the integral
∫ b

a
f(x)dα(x)

whenever α has a continuous derivative α′.

2.8 Euler’s Summation Formula

Theorem 2.8.1. (Euler’s summation formula). If f has a continuous derivative f ′ on

[a, b], then we have∑
a<n≤b

f(n) =

∫ b

a

f(x) dx+

∫ b

a

f ′(x)((x))dx+ f(a)((a))− f(b)((b)),
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where ((x)) = x− [x]. When a and b are integers, this becomes

b∑
n=a

f(n) =

∫ b

a

f(x) dx+

∫ b

a

f ′(x)

(
x− [x] +

1

2

)
dx +

f(a) + f(b)

2
.

Note.
∑

a<n≤b

means the sum from n = [a] + 1 to n = [b].

Proof. Using integration by parts rule, we have∫ b

a

f(x)dα(x) +

∫ b

a

α(x)df(x) = f(b)α(b)− f(a)α(a).

Put α(x) = [x− [x]], α(a) = [a− [a]], α(b) = [b− [b]], we have∫ b

a

f(x)d[x− [x]] +

∫ b

a

[x− [x]]df(x) = f(b)[b− [b]]− f(a)[a− [a]]∫ b

a

f(x)dx−
∫ b

a

f(x)d[x] +

∫ b

a

((x))df(x) = f(b)((b))− f(a)((a))∫ b

a

f(x)dx+

∫ b

a

((x))df(x)− f(b)((b)) + f(a)((a)) =

∫ b

a

f(x)d[x].

Since,
∑

a<n≤b

f(n) =

∫ b

a

f(x)d[x], we get

∑
a<n≤b

f(n) =

∫ b

a

f(x)dx+

∫ b

a

((x))df(x)− f(b)((b)) + f(a)((a)). (20)

For every a and b are integers,

((a)) = a− [a] = a− a = 0 and ((b)) = b− [b] = b− b = 0.

Substituting these values in (20), we get∑
a<n≤b

f(n) =

∫ b

a

f(x)dx+

∫ b

a

((x))df(x)

=

∫ b

a

f(x)dx+

∫ b

a

(x− [x])f ′(x) dx

=

∫ b

a

f(x)dx+

∫ b

a

f ′(x)(x− [x]) dx.

Adding and subtracting
1

2

∫ b

a

f ′(x)dx on RHS, we get

∑
a<n≤b

f(n) =

∫ b

a

f(x)dx+

∫ b

a

f ′(x)(x− [x]) dx− 1

2

∫ b

a

f ′(x)dx+
1

2

∫ b

a

f ′(x)dx
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=

∫ b

a

f(x)dx+

∫ b

a

f ′(x)

(
x− [x]− 1

2

)
dx+

1

2

∫ b

a

f ′(x)dx

=

∫ b

a

f(x)dx+

∫ b

a

f ′(x)

[
x− [x]− 1

2

]
dx+

1

2
[f(x)]ba

=

∫ b

a

f(x)dx+

∫ b

a

f ′(x)

[
x− [x]− 1

2

]
dx+

1

2
[f(b)− f(a)].

Adding f(a) on both sides, we have

∑
a<n≤b

f(n) + f(a) =

∫ b

a

f(x)dx+

∫ b

a

f ′(x)

[
x− [x]− 1

2

]
dx+

1

2
f(b)− 1

2
f(a) + f(a)

b∑
n=a

f(n) =

∫ b

a

f(x)dx+

∫ b

a

f ′(x)

[
x− [x]− 1

2

]
dx+

1

2
f(b) +

1

2
f(a)

b∑
n=a

f(n) =

∫ b

a

f(x)dx+

∫ b

a

f ′(x)

[
x− [x]− 1

2

]
dx+

f(b) + f(a)

2
.

Hence the proof.

Let us sum up

• We have derived Euler’s Summation Formula.

2.9 Monotonically Increasing Integrators Upper and Lower
Integrals

Definition 2.9.1. Let P be a partition of [a, b] and let

Mk = sup {f(x) : x ∈ [xk−1, xk]} and

mk = inf {f(x) : x ∈ [xk−1, xk]} .

The numbers

U(P, f, α) =
n∑

k=1

Mk(f)∆αk and L(P, f, α) =
n∑

k=1

mk(f)∆αk,

are called, respectively, the upper and lower Stieltjes sums of f with respect to α for the

partition P.

Note: We always have mk(f) ≤ Mk(f).

If α increasing on [a, b], then ∆αk ≥ 0. Therefore
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mk(f)∆αk ≤ Mk(f)∆αk.

i.e., the lower sums do not exceed the upper sums.

Furthermore, if tk ∈ [xk−1, xk], then

mk(f) ≤ f(tk) ≤ Mk(f).

Therefore, when α ↗, we have the inequalities

L(P, f, α) ≤ S(P, f, α) ≤ U(P, f, α)

relating the upper and lower sums to the Riemann-Stieltjes sums.

Theorem 2.9.2. Assume that α ↗ on [a, b]. Then

i) If P ′ is finer than P, we have

U(P ′, f, α) ≤ U(P, f, α) and L(P ′, f, α) ≥ L(P, f, α).

ii) For any two partitions P1 and P2, we have

L(P1, f, α) ≤ U(P2, f, α).

Proof. (i) First we prove U(P ′, f, α) ≤ U(P, f, α).

It suffices to prove this when P ′ contains exactly one more point than P, say the point

x∗.

Let x∗ is in the ith sub-interval of P.

i.e., x∗ ∈ [xi−1, xi], i = 1, 2, · · · , n we can write

U(P ′, f, α) =
n∑

k=1,k ̸=i

Mk(f)∆αk +M ′[α(x∗)− α(xi−1)] +M
′′
[α(xi)− α(x∗)],

where

M ′ = sup {f(x) : x ∈ [xi−1, x
∗]}

and

M
′′
= sup {f(x) : x ∈ [x∗, xi]} .

Since, M ′ ≤ Mi(f) and M
′′ ≤ Mi(f), we have

U(P ′, f, α) ≤
n∑

k=1,k ̸=i

Mk(f)∆αk +Mi(f)[α(x
∗)− α(xi−1)] +Mi(f)[α(xi)− α(x∗)]
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=
n∑

k=1,k ̸=i

Mk(f)∆αk +Mi(f)[α(xi)− α(xi−1)]

=
n∑

k=1,k ̸=i

Mk(f)∆αk +Mi(f)∆αi

= U(P, f, α).

Next, we prove L(P ′, f, α) ≥ L(P, f, α).

It suffices to prove this when P ′ contains exactly one more point than P, say the point

x∗. Let x∗ is in the ith sub-interval of P.

i.e., x∗ ∈ [xi−1, xi], we can write

L(P ′, f, α) =
n∑

k=1,k ̸=i

mk(f)∆αk +m′[α(x∗)− α(xi−1)] +m
′′
[α(xi)− α(x∗)],

where

m′ = inf {f(x) : x ∈ [xi−1, x
∗]}

and

m
′′
= inf {f(x) : x ∈ [x∗, xi]} .

Since m′ ≥ mi(f) and m
′′ ≥ mi(f), we have

L(P ′, f, α) ≥
n∑

k=1,k ̸=i

mk(f)∆αk +mi(f)[α(x
∗)− α(xi−1)] +mi(f)[α(xi)− α(x∗)]

=
n∑

k=1,k ̸=i

mk(f)∆αk +mi(f)[α(xi)− α(xi−1)]

=
n∑

k=1,k ̸=i

mk(f)∆αk +mi(f)∆αi

= L(P, f, α).

To prove (ii). Let P = P1 ∪ P2. Then by (i), we have

L(P1, f, α) ≤ L(P, f, α) ≤ U(P, f, α) ≤ U(P2, f, α).

Note: If M = sup
a≤x≤b

f(x) and m = inf
a≤x≤b

f(x), then

m[α(b)− α(a)] ≤ L(P1, f, α) ≤ U(P2, f, α) ≤ M [α(b)− α(a)].
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Definition 2.9.3. Assume that α↗ on [a, b]. The upper Stieltjes integral of f with respect

to α is defined as follows∫ b̄

a

fdα = inf {U(P, f, α) : P ∈ ℘[a, b]} .

The lower Stieltjes integral is similarly defined∫ b

ā

fdα = sup {L(P, f, α) : P ∈ ℘[a, b]} .

Note: I(f, α) =
∫ b̄

a
fdα.

I(f, α) =
∫ b

ā
fdα.

If α(x) = x, then U(P, f, α) = U(P, f) and L(P, f, α) = L(P, f).

Theorem 2.9.4. Assume that α ↗ on [a, b]. Then I(f, α) ≤ I(f, α).

Proof. Let ϵ > 0, then I(f, α)+ϵ is not a lower bound to the set {U(P, f, α) : P ∈ ℘[a, b]}

and so there is a partition P1 such that

U(P1, f, α) < I(f, α) + ϵ.

By Theorem 2.9.1 (ii), for any partition P of [a, b], we have

L(P, f, α) ≤ U(P1, f, α) < I(f, α) + ϵ.

i.e., I(f, α) + ϵ is an upper bound to all lower sums L(P, f, α).

Thus,

sup {L(P, f, α) : P ∈ ℘[a, b]} ≤ I(f, α) + ϵ

=⇒ I(f, α) ≤ I(f, α) + ϵ.

Since ϵ was arbitrary.

I(f, α) ≤ I(f, α).

Example: Let α(x) = x and define a function f on [0, 1] as follows:

f(x) = 1, if x is rational, f(x) = 0, if x is irrational.
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Let P be any partition of [0, 1], we have

Mk(f) = 1 and mk(f) = 0.

Therefore,

U(P, f, α) =
n∑

k=1

Mk(f)∆xk =
n∑

k=1

1. ∆xk = 1(1− 0) = 1.

and

L(P, f, α) = 0.

Thus,

I(f, α) = sup {L(P, f, α) : P ∈ ℘[0, 1]} = 0,

I(f, α) = inf {U(P, f, α) : P ∈ ℘[0, 1]} = 1.

Hence,

I(f, α) < I(f, α).

Let us sum up

• We have discussed the definition of upper and lower Stieltjes sums of the function

with respect to α for the partition.

• We also discussed the definition of upper and lower Stieltjes integral.

2.10 Additive and Linearity Properties of Upper and
Lower Integrals

Additive property:∫ b

a

f dα =

∫ c

a

f dα+

∫ b

c

f dα, for any c ∈ (a, b)∫ b

a

f dα =

∫ c

a

f dα+

∫ b

c

f dα, for any c ∈ (a, b)

Linearity property: ∫ b

a

(f + g) dα =

∫ b

a

f dα+

∫ b

a

g dα.
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Let us sum up

• We have discussed the Additive and Linearity Properties of Upper and Lower

Integrals.

2.11 Riemann’s Condition

Definition 2.11.1. We say that f satisfies Riemann’s condition with respect to α on [a, b],

if for every ϵ > 0, there exists a partition Pϵ such that P finer than Pϵ implies

0 ≤ U(P, f, α)− L(P, f, α) < ϵ.

Theorem 2.11.2. Assume that α ↗ on [a, b]. Then the following three statements are

equivalent:

i) f ∈ R(α) on [a, b].

ii) f satisfies Riemann’s condition with respect to α on [a, b].

iii) I(f, α) = I(f, α).

Proof. We will prove (i) =⇒ (ii) =⇒ (iii) =⇒ (i).

To prove (i) =⇒ (ii):

Assume that f ∈ R(α) on [a, b].

If α(a) = α(b), then for given ϵ > 0 and for any partition Pϵ ∈ ℘[a, b], we have

U(Pϵ, f, α)− L(Pϵ, f, α) =
n∑

k=1

Mk(f)∆αk −
n∑

k=1

mk(f)∆αk

=
n∑

k=1

[Mk(f)−mk(f)]∆αk

≤
n∑

k=1

(M −m)∆αk (where M = sup
x∈[a,b]

f(x) and m = inf
x∈[a,b]

f(x))

= (M −m)
n∑

k=1

∆αk

= (M −m)[α(b)− α(a)]

= 0 < ϵ.(since α(a) = α(b))

Thus, for any partition P finer than Pϵ, we have

U(P, f, α)− L(P, f, α) ≤ U(Pϵ, f, α)− L(Pϵ, f, α) < ϵ.
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Hence, we can assume that α(a) ≤ α(b).

Given ϵ > 0, there is a partition Pϵ on [a, b] such that for any partition P finer than Pϵ

and all choices tk and t′k ∈ [xk−1, xk], we have∣∣∣∣ n∑
k=1

f(tk)∆αk −
∫ b

a

f dα

∣∣∣∣ < ϵ

3
and∣∣∣∣ n∑

k=1

f(t′k)∆αk −
∫ b

a

f dα

∣∣∣∣ < ϵ

3
.

Combining the above inequalities, we have∣∣∣∣ n∑
k=1

[f(tk)− f(t′k)]∆αk

∣∣∣∣ = ∣∣∣∣ n∑
k=1

f(tk)∆αk −
∫ b

a

f dα+

∫ b

a

f dα−
n∑

k=1

f(t′k)∆αk

∣∣∣∣
≤

∣∣∣∣ n∑
k=1

f(tk)∆αk −
∫ b

a

f dα

∣∣∣∣+ ∣∣∣∣ ∫ b

a

f dα−
n∑

k=1

f(t′k)∆αk

∣∣∣∣
<

ϵ

3
+

ϵ

3
=

2ϵ

3
.

We know that Mk(f)−mk(f) = sup {f(x)− f(x′) : x, x′ ∈ [xk−1, xk]} .

Hence, for any h > 0, Mk(f)−mk(f)− h is not an upper bound of

the set {f(x)− f(x′) : x, x′ ∈ [xk−1, xk]} .

Hence, we can choose tk and t′k ∈ [xk−1, xk] so that

Mk(f)−mk(f)− h < f(tk)− f(t′k).

Let h =
ϵ

3[α(b)− α(a)]
. Thus, for any partition P finer than Pϵ, we have

U(P, f, α)− L(P, f, α) =
n∑

k=1

[Mk(f)−mk(f)]∆αk

<

n∑
k=1

[f(tk)− f(t′k) + h]∆αk

=
n∑

k=1

[f(tk)− f(t′k)]∆αk + h

n∑
k=1

∆αk

<
2ϵ

3
+

ϵ

3[α(b)− α(a)]
(α(b)− α(a))

=
2ϵ

3
+

ϵ

3
= ϵ.

Hence,

(i) =⇒ (ii).
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To prove (ii) =⇒ (iii):

Assume that f satisfies Riemann’s condition with respect to α on [a, b].

Let ϵ > 0, then there is a partition Pϵ such that for any partition P finer than Pϵ, we

have

U(P, f, α)− L(P, f, α) < ϵ

=⇒ U(P, f, α) < L(P, f, α) + ϵ.

For such P we have

I(f, α) ≤ U(P, f, α) < L(P, f, α) + ϵ ≤ I(f, α) + ϵ

i.e., I(f, α) < I(f, α) + ϵ.

Since ϵ was arbitrary,

I(f, α) ≤ I(f, α).

By Theorem 2.9.2, we have I(f, α) ≤ I(f, α). Hence I(f, α) = I(f, α).

Hence (ii) =⇒ (iii).

To prove (iii) =⇒ (i):

Assume that I(f, α) = I(f, α) = A(say).

We shall prove that
∫ b

a
fdα exists and is equal to A.

Given ϵ > 0, choose P ′
ϵ such that

U(P, f, α) < I(f, α) + ϵ, for all P finer than P ′
ϵ .

Also choose P
′′
ϵ such that

L(P, f, α) > I(f, α)− ϵ, for all P finer than P
′′
ϵ .

Let Pϵ = P ′
ϵ ∪ P

′′
ϵ , we have

I(f, α)− ϵ < L(P, f, α) ≤ S(P, f, α) ≤ U(P, f, α) < I(f, α) + ϵ,

for every P finer than Pϵ.

Since, I(f, α) = I(f, α) = A, from the above inequality we have

A− ϵ < S(P, f, α) < A+ ϵ
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=⇒ −ϵ < S(P, f, α)− A < ϵ

=⇒ |S(P, f, α)− A| < α,

where A =

∫ b

a

fdα.

This proves that
∫ b

a

fdα exists and is equal to A.

i.e., f ∈ R(α) on [a, b].

∴ (iii) =⇒ (i).

Let us sum up

• We have discussed the equivalent conditions for the existence of Riemann inte-

gral.

2.12 Comparison Theorems

Theorem 2.12.1. Assume that α ↗ on [a, b]. If f ∈ R(α) and g ∈ R(α) on [a, b] and if

f(x) ≤ g(x) for all x in [a, b], then we have∫ b

a

f(x) dα(x) ≤
∫ b

a

g(x) dα(x).

Proof. Given that f(x) ≤ g(x) for all x ∈ [a, b], let P be any partition of [a, b].

Since, α ↗ on [a, b], we have ∆αk ≥ 0.

Now f(tk) ≤ g(tk), for every tk ∈ [xk−1, xk], we have

∆αk f(tk) ≤ ∆αk g(tk)

=⇒
n∑

k=1

f(tk)∆αk ≤
n∑

k=1

g(tk)∆αk.

The corresponding Riemann-Stieltjes sums satisfy

S(P, f, α) =
n∑

k=1

f(tk)∆αk ≤
n∑

k=1

g(tk)∆αk = S(P, g, α).
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Therefore, we get ∫ b

a

f(x) dα(x) ≤
∫ b

a

g(x) dα(x).

Hence the proof.

Note: If g(x) ≥ 0 and α ↗ on [a, b], then
∫ b

a
g(x) dα(x) ≥ 0.

Theorem 2.12.2. Assume that α ↗ on [a, b]. If f ∈ R(α) on [a, b], then |f | ∈ R(α) on

[a, b] and we have the inequality∣∣∣∣ ∫ b

a

f(x) dα(x)

∣∣∣∣ ≤ ∫ b

a

|f(x)| dα(x).

Proof.

Let Mk = sup {f(x) : x ∈ [xk−1, xk]} and mk = inf {f(x) : x ∈ [xk−1, xk]} .

We can write

Mk(f)−mk(f) = sup {f(x)− f(y) : x, y ∈ [xk−1, xk]} .

We know that |f(x)| − |f(y)| ≤ |f(x)− f(y)|. Therefore, we have

sup {|f(x)| − |f(y)| : x, y ∈ [xk−1, xk]} ≤ sup {|f(x)− f(y)| : x, y ∈ [xk−1, xk]}

=⇒ Mk(|f |)−mk(|f |) ≤ Mk(f)−mk(f).

=⇒
n∑

k=1

Mk(|f |)∆αk −
n∑

k=1

mk(|f |)∆αk ≤
n∑

k=1

Mk(f)∆αk −
n∑

k=1

mk(f)∆αk

Hence, U(P, |f |, α)− L(P, |f |, α) ≤ U(P, f, α)− L(P, f, α), for any partition P of [a, b].

Since f ∈ R(α), for given ϵ > 0 we can choose a partition Pϵ of [a, b] such that

U(P, f, α)− L(P, f, α) < ϵ, for P finer than Pϵ.

Thus, for all partition P finer than Pϵ, we have

U(P, |f |, α)− L(P, |f |, α) < ϵ.

Hence,

|f | ∈ R(α).
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We know that f(x) ≤ |f(x)|, for all x ∈ [a, b].

Hence, by using Theorem 2.12.1 with g = |f |, we have∣∣∣∣ ∫ b

a

f(x) dα(x)

∣∣∣∣ ≤ ∫ b

a

|f(x)| dα(x).

Theorem 2.12.3. Assume that α ↗ on [a, b]. If f ∈ R(α) on [a, b], then f 2 ∈ R(α) on

[a, b].

Proof. Let ϵ > 0 and f ∈ R(α), by Theorem 2.12.2, |f | ∈ R(α).

We can choose a partition Pϵ of [a, b] such that for all P finer than Pϵ, we have

U(P, |f |, α)− L(P, |f |, α) < ϵ
2M

. (where M = sup
x∈[a,b]

f(x))

For this partition Pϵ, we shall prove that

U(P, f, α)− L(P, f, α) < ϵ for all P finer than Pϵ.

Now,

Mk(f
2) = sup

x∈[xk−1,xk]

f 2(x) =

(
sup

x∈[xk−1,xk]

|f(x)|
)2

= [Mk(|f |)]2.

Similarly, we have

mk(f
2) = [mk(|f |)]2.

Consider

Mk(f
2)−mk(f

2) = [Mk(|f |)]2 − [mk(|f |)]2

= [Mk(|f |) +mk(|f |)][Mk(|f |)−mk(|f |)]

≤ (M +M)[Mk(|f |)−mk(|f |)]

= 2M [Mk(|f |)−mk(|f |)],

where M = sup
x∈[a,b]

|f(x)| is an upper bound for |f | on [a, b]. Therefore,

Mk(f
2)−mk(f

2) ≤ 2M [Mk(|f |)−mk(|f |)]

=⇒
n∑

k=1

Mk(f
2)∆αk −

n∑
k=1

mk(f
2)∆αk ≤ 2M

[ n∑
k=1

Mk(|f |)∆αk −
n∑

k=1

mk(|f |)∆αk

]
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=⇒ U(P, f 2, α)− L(P, f 2, α) ≤ 2M

(
U(P, |f |, α)− L(P, |f |, α)

)
< 2M.

ϵ

2M
= ϵ

=⇒ U(P, f 2, α)− L(P, f 2, α) < ϵ,

Hence,

f 2 ∈ R(α).

Theorem 2.12.4. Assume that α ↗ on [a, b]. If f ∈ R(α) and g ∈ R(α) on [a, b], then

the product f.g ∈ R(α) on [a, b].

Proof. Consider

2f(x)g(x) = [f(x) + g(x)]2 − [f(x)]2 − [g(x)]2.

By using Linearity property of Riemann-Stieltjes integral, we have f + g ∈ R(α).

Since f + g, f, g ∈ R(α) on [a, b], by Theorem 2.12.3, we have

(f + g)2, f 2, g2 ∈ R(α) on [a, b]. Therefore,

fg ∈ R(α) on [a, b].

Let us sum up

• We have discussed the product of two Riemann functions is also Riemann func-

tion.

• We have discussed the modulus function of Riemann function is also Riemann

function.

Check your progress

1. Give an example of a bounded function f and an increasing function α defined

on [a, b] such that |f | ∈ R(α) but for which
∫ b

a
fdα does not exist.
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Summary

• Defined the notion of Riemann-Stieltjes integral of a bounded funcion f with

respect to an arbitrary α.

• Derived the formula for integration by parts.

• Discussed the change of variable in a Riemann-Stieltjes integral.

• Permitted to replace the symbol dα(x) by α′(x)dx in the integral
∫ b

a
f(x)dα(x)

whenever α has a continuous derivative α′.

• Derived Euler’s Summation Formula.

• Defined the notion of Riemann-Stieltjes integral of a bounded funcion f with

respect to an monotonic function α.

Exercises

1. Prove that
∫ b

a

dα(x) = α(b)− α(a).

2. If f ∈ R(α) on [a, b] and if
∫ b

a
dα = 0 for every f whichi is monotonic on [a, b],

prove that α must be constant on [a, b].

3. Use Euler’s summation formula, or integration by parts in a Stieltjes integral, to

derive the following identities:

a)
n∑

k=1

1

ks
=

1

ns−1
+ s

∫ n

1

[x]

xs+1
dx if s ̸= 1.

b)
n∑

k=1

1

k
= log n+ s

∫ n

1

x− [x]

xs+1
dx+ 1.

4. Assume f ′ is continuous on [1, 2n] and use Euler’s summation formula or inte-

gration by parts to prove that

2n∑
k=1

(−1)kf(k) =

∫ 2n

1

f ′([x]− 2[x/2])dx.
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5. Let ϕ1(x) = x − [x] − 1
2

if x ̸= integer, and let ϕ1(x) = 0 if x = integer. Also,

let ϕ2(x) =
∫ x

0
ϕ1(t)dt. If f ′′ is continuous on [1, n] prove that Euler’s summation

formula implies that
n∑

k=1

f(k) =

∫ n

1

f(x)dx−
∫ n

1

ϕ2(x)f
′′dx+

f(1) + f(n)

2
.

6. If α ↑ on [a, b], prove that we have

a)
∫ b

a

fdα =

∫ c

a

fdα+

∫ b

c

fdα, (a < c < b),

b)
∫ b

a

(f + g)dα ≤
∫ b

a

fdα+

∫ b

a

gdα

c)
∫ b

a

(f + g)dα ≥
∫ b

a

fdα+

∫ b

a

gdα
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Unit 3

THE RIEMANN-STIELTJES INTEGRAL

Objectives

After the successful completion of this unit; the students are expected to

• To recall the basic concepts of total variation, integral exist and integrators.

• To analyze the properties of Riemann-Stieltjes integral.

• To understand the fundamental concepts of Riemann-Stieltjes integral.

• To analyse and work with problems related to Riemann-Stieltjes integral func-

tion.

We have see that that every function α of bounded variation on [a, b] can be expressed

as the difference of two increasing functions. However, the converse is not always

true. If f ∈ R(α) on [a, b], it is quite possible to choose increasing functions α1 and

α2 such that α = α1 − α2, but such that neither integral
∫ b

a
f dα1,

∫ b

a
f dα2 exists. The

difficulty, of course, is due to the nonuniqueness of the decomposition α = α1 − α2.

However, we can prove that there is at least one decomposition for which the converse

is true, namely, when α1 is the total variation of α and α2 = α1 − α.

3.1 Integrators of Bounded Variation

Theorem 3.1.1. Assume that α is of bounded variation on [a, b]. Let V (x) denote the

total variation of α on [a, x] if a < x ≤ b, and let V (a) = 0. Let f be a bounded function

defined on [a, b]. If f ∈ R(α) on [a, b], then f ∈ R(V ) on [a, b].
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Proof. If V (b) = 0, then V is constant and the result is trivial.

Assume that V (b) > 0 and f is bounded on [a, b], there is a number M > 0 such that

|f(x)| ≤ M, a ≤ x ≤ b.

Since V is increasing, we need only to verify that f satisfies Riemann’s condition with

respect to V on [a, b].

Since f ∈ R(α) on [a, b], given ϵ > 0, and choose Pϵ so that for any finer P and all

choices of points tk and t′k in [xk−1, xk], we have∣∣∣∣ n∑
k=1

[f(tk)− f(t′k)]∆αk

∣∣∣∣ < ϵ

4
.

Since, V is increasing on [a, b], we have

V (b) <
n∑

k=1

|∆αk|+
ϵ

4M
.

For P finer than Pϵ we will establish the two inequalities

n∑
k=1

[Mk(f)−mk(f)](∆Vk − |∆αk|) <
ϵ

2

and

n∑
k=1

[Mk(f)−mk(f)]|∆αk| <
ϵ

2
.

Adding the above two inequalities, we get

n∑
k=1

[Mk(f)−mk(f)]∆Vk < ϵ

=⇒ U(P, f, V )− L(P, f, V ) < ϵ.

To prove the first inequality:

We know that ∆Vk − |∆αk| ≥ 0

∴
n∑

k=1

[Mk(f)−mk(f)](∆Vk − |∆αk|) ≤ 2M
n∑

k=1

(∆Vk − |∆αk|) (where M = sup
x∈[a,b]

f(x))

= 2M

(
V (b)−

n∑
k=1

|∆αk|
)

< 2M

(
ϵ

4M

)
=

ϵ

2
.

69



To prove the second inequality, let

A(P ) = {k : ∆αk ≥ 0} and B(P ) = {k : ∆αk < 0} .

Let h =
ϵ

4V (b)
. If k ∈ A(P ), choose tk and t′k so that

f(tk)− f(t′k) > Mk(f)−mk(f)− h

and if k ∈ B(P ), choose tk and t′k so that

f(t′k)− f(tk) > Mk(f)−mk(f)− h.

Then

n∑
k=1

[Mk(f)−mk(f)]|∆αk| <
∑

k∈A(P )

[f(tk)− f(t′k)]|∆αk|+
∑

k∈B(P )

[f(t′k)− f(tk)]|∆αk|

+ h
n∑

k=1

|∆αk|

=
∑

k∈A(P )

[f(tk)− f(t′k)]∆αk +
∑

k∈B(P )

[f(tk)− f(t′k)](−∆αk)+

+ h
n∑

k=1

|∆αk|

=
n∑

k=1

[f(tk)− f(t′k)]∆αk + h
n∑

k=1

|∆αk|

<
ϵ

4
+ h .V (b) =

ϵ

4
+ h .

ϵ

4h
=

ϵ

2
.

It follows that f ∈ R(V ) on [a, b].

Theorem 3.1.2. Let α be of bounded variation on [a, b] and assume that f ∈ R(α) on

[a, b]. Then f ∈ R(α) on every subinterval [c, d] of [a, b].

Proof. Let V (x) denote the total variation of α on [a, x], with V (a) = 0.

Then α = V − (V − α), where both V and V − α are increasing on [a, b] (by Theorem

1.7.1).

By Theorem 3.1.1, f ∈ R(α), and hence f ∈ R(V − α) on [a, b].

Therefore, if the theorem is true for increasing integrators, it follows that f ∈ R(V )

on [c, d] and f ∈ R(V − α) on [c, d]. Therefore, f ∈ R(α) on [c, d].

It suffices to prove the theorem when α ↗ on [a, b].
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By Theorem 2.4.3, it suffices to prove that each integral
∫ c

a
f dα and

∫ d

a
f dα exists.

Assume that a < c < b, and let P be a partition of [a, x] and ∆(P, x) denote the

difference of the upper and lower sums associated with the interval [a, x].

i.e., ∆(P, x) = U(P, f, α)− L(P, f, α).

Since f ∈ R(α) on [a, b], f satisfies Riemann’s condition.

Let ϵ > 0, then there is a partition Pϵ of [a, b] such that for all P finer than Pϵ,

∆(P, b) = U(P, f, α)− L(P, f, α) < ϵ.

We can assume that c ∈ Pϵ. The points of Pϵ in [a, c] form a partition P ′
ϵ of [a, c]. Let P ′

be a partition of [a, c] finer than P ′
ϵ , then P = P ′ ∪ Pϵ is a partition of [a, b] composed

of the points of P ′ along with those points of Pϵ in [c, b].

Now the sum ∆(P ′, c) contains only few terms in the sum ∆(P, b).

Since each term is nonnegative and P is finer than Pϵ, we have

∆(P ′, c) ≤ ∆(P, b) < ϵ.

i.e., P ′ finer than P ′
ϵ implies ∆(P ′, c) < ϵ.

Hence, f satisfies Riemann’s condition on [a, c] and
∫ c

a
f dα exists.

In a similar way, we can prove that
∫ d

a
f dα exists.

We know that ∫ d

a
f dα =

∫ c

a
f dα+

∫ d

c
f dα.

Hence, by Theorem 2.4.3,
∫ d

c
f dα exists.

Theorem 3.1.3. Assume f ∈ R(α) and g ∈ R(α) on [a, b], where α ↗ on [a, b]. Define

F (x) =

∫ x

a

f(t) dα(t)

and

G(x) =

∫ x

a

g(t) dα(t), if x ∈ [a, b].

Then f ∈ R(G), g ∈ R(F ), and the product f.g ∈ R(α) on [a, b], and we have∫ b

a

f(x)g(x) dα(x) =

∫ b

a

f(x) dG(x)

=

∫ b

a

g(x) dF (x).
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Proof. By Theorem 2.12.4, the integral
∫ b

a
f.g dα exists and let P be a partition of [a, b],

we have

S(P, f,G) =
n∑

k=1

f(tk)∆Gk

=
n∑

k=1

f(tk)[G(xk)−G(xk−1)]

=
n∑

k=1

f(tk)

∫ xk

xk−1

g(t) dα(t)

=
n∑

k=1

∫ xk

xk−1

f(tk).g(t) dα(t)

and ∫ b

a

f(x)g(x) dα(x) =
n∑

k=1

∫ xk

xk−1

f(t)g(t) dα(t).

Let Mg = sup {|g(x)| : x ∈ [a, b]} . Now,∣∣∣∣S(P, f,G)−
∫ b

a

f.g dα

∣∣∣∣ = ∣∣∣∣ n∑
k=1

∫ xk

xk−1

{f(tk)− f(t)} g(t) dα(t)
∣∣∣∣

≤
n∑

k=1

∫ xk

xk−1

|f(tk)− f(t)||g(t)| dα(t)

≤ Mg

n∑
k=1

∫ xk

xk−1

|f(tk)− f(t)| dα(t)

≤ Mg

n∑
k=1

∫ xk

xk−1

[Mk(f)−mk(f)]dα(t) (∵ |f(tk)− f(t)| ≤ Mk(f)−mk(f))

= Mg[U(P, f, α)− L(P, f, α)].

Since f ∈ R(α), for every ϵ > 0 there is a partition Pϵ such that P finer than Pϵ implies

U(P, f, α)− L(P, f, α) <
ϵ

Mg

∴

∣∣∣∣S(P, f,G)−
∫ b

a

f.g dα

∣∣∣∣ < Mg.
ϵ

Mg

= ϵ.
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This proves that f ∈ R(G) on [a, b] and
∫ b

a
f(t)g(t) dα(t) =

∫ b

a
f(t) dG(t).

To prove : g ∈ R(F ) on [a, b]

Let P be a partition of [a, b], we have

S(P, g, F ) =
n∑

k=1

g(tk)∆Fk

=
n∑

k=1

g(tk)[F (xk)− F (xk−1)]

=
n∑

k=1

g(tk)

∫ xk

xk−1

f(t) dα(t)

=
n∑

k=1

∫ xk

xk−1

g(tk).f(t) dα(t)

and ∫ b

a

f(x)g(x) dα(x) =
n∑

k=1

∫ xk

xk−1

f(t)g(t) dα(t).

Let Mf = sup {|f(x)| : x ∈ [a, b]} . Now,∣∣∣∣S(P, g, F )−
∫ b

a

f.g dα

∣∣∣∣ = ∣∣∣∣ n∑
k=1

∫ xk

xk−1

{g(tk)− g(t)} f(t) dα(t)
∣∣∣∣

≤
n∑

k=1

∫ xk

xk−1

|g(tk)− g(t)||f(t)| dα(t)

≤ Mf

n∑
k=1

∫ xk

xk−1

|g(tk)− g(t)| dα(t)

≤ Mf

n∑
k=1

∫ xk

xk−1

[Mk(g)−mk(g)]dα(t) (∵ |g(tk)− g(t)| ≤ Mk(g)−mk(g))

= Mf [U(P, g, α)− L(P, g, α)].

Since g ∈ R(α), for every ϵ > 0 there is a partition Pϵ such that P finer than Pϵ implies

U(P, g, α)− L(P, g, α) <
ϵ

Mf

∴

∣∣∣∣S(P, g, F )−
∫ b

a

f.g dα

∣∣∣∣ < Mf .
ϵ

Mf

= ϵ.

This proves that g ∈ R(F ) on [a, b] and
∫ b

a
f(t)g(t) dα(t) =

∫ b

a
g(t) dF (t).

Note: Theorem 3.1.3 is also valid if α is of bounded variation on [a, b].
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Let us sum up

• We have discussed α is of bounded variation on [a, b] and assume that f ∈ R(α)

on [a, b]. Show that f ∈ R(α) on every subinterval [c, d] of [a, b].

• We have discussed the integrators.

3.2 Sufficient Conditions for Existence of Riemann-Stieltjes
Integrals

Theorem 3.2.1. If f is continuous on [a, b] and if α is of bounded variation on [a, b], then

f ∈ R(α) on [a, b].

Proof. It suffices to prove the theorem when α ↗ on [a, b] with α(a) < α(b).

To prove: f ∈ R(α) on [a, b].

Since f is continuous on [a, b] and [a, b] is closed and bounded, f is uniformly continu-

ous on [a, b].

i.e., if ϵ > 0 is given, there exist δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ϵ
A
,

where A = 2[α(b)− α(a)].

Let Pϵ be a partition of [a, b] such that

∥Pϵ∥ < δ.

We know that Mk(f)−mk(f) = sup {f(x)− f(y) : x, y ∈ [xk−1, xk]} .

Hence, for any partition P finer than Pϵ, we have

Mk(f)−mk(f) ≤
ϵ

A

=⇒
n∑

k=1

Mk(f)∆αk −
n∑

k=1

mk(f)∆αk ≤
ϵ

A

n∑
k=1

∆αk

=⇒ U(P, f, α)− L(P, f, α) <
ϵ

2[α(b)− α(a)]
(α(b)− α(a)) = ϵ.

Hence, f ∈ R(α) on [a, b].

Theorem 3.2.2. Each of the following conditions is sufficient for the existence of the

Riemann integral
∫ b

a
f(x) dx

a) f is continuous on [a, b].

b) f is of bounded variation on [a, b].
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Proof. Assume f is continuous on [a, b].

It suffices to prove the theorem when α ↗ on [a, b] with α(a) < α(b).

To prove: f ∈ R(α) on [a, b].

Since f is continuous on [a, b] and [a, b] is closed and bounded, f is uniformly continu-

ous on [a, b].

i.e., if ϵ > 0 is given, there exist δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ϵ
A
,

where A = 2[α(b)− α(a)].

Let Pϵ be a partition of [a, b] such that

∥Pϵ∥ < δ.

We know that Mk(f)−mk(f) = sup {f(x)− f(y) : x, y ∈ [xk−1, xk]} .

Hence, for any partition P finer than Pϵ, we have

Mk(f)−mk(f) ≤
ϵ

A

=⇒
n∑

k=1

Mk(f)∆αk −
n∑

k=1

mk(f)∆αk ≤
ϵ

A

n∑
k=1

∆αk

=⇒ U(P, f, α)− L(P, f, α) <
ϵ

2[α(b)− α(a)]
(α(b)− α(a)) = ϵ.

Hence, f ∈ R(α) on [a, b].

Assume f is of bounded variation on [a, b].

Let us sum up

• We have discussed sufficient conditions for existence of Riemann-Stieltjes inte-

grals.

3.3 Necessary Conditions for Existence of Riemann-Stieltjes
Integrals

Theorem 3.3.1. Assume that α ↗ on [a, b] and let a < c < b. Assume further that both α

and f are discontinuous from the right at x = c that is, assume that there exists an ϵ > 0

such that for every δ > 0 there are values x and y in the interval (c, c+ δ) for which

|f(x)− f(c)| ≥ ϵ and |α(y)− α(c)| ≥ ϵ.
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Then the integral
∫ b

a
f(x) dα(x) cannot exist. The integral also fails to exist if α and f are

discontinuous from the left at c.

Proof. Let P be a partition of [a, b] containing c as a point of subdivision.

Consider

U(P, f, α)− L(P, f, α) =
n∑

k=1

[Mk(f)−mk(f)]∆αk.

If the ith subinterval has c as its left endpoint (i.e.,c < xi), then
n∑

k=1

[Mk(f)−mk(f)]∆αk ≥ [Mi(f)−mi(f)][α(xi)− α(c)], (∵ α(xi) > α(c)) (21)

If c is a common point of discontinuity from the right, we can assume that the point xi

is chosen so that α(xi)− α(c) ≥ ϵ.

Since Mi(f)−mi(f) ≥ f(xi)− f(c), by our assumption we have Mi(f)−mi(f) ≥ ϵ.

Hence, from (21) we have

∴ U(P, f, α)− L(P, f, α) ≥ ϵ2

Riemann’s condition cannot be satisfied.

Hence the integral
∫ b

a
f(x) dα(x) cannot exist.

Note: If c is a common discontinuity from the left, the argument is similar.

Let us sum up

• We derived the necessary condition for the existence of Riemann-Stieltjes inte-

grals.

3.4 Mean-Value Theorems for Riemann-Stieltjes Inte-
grals

Theorem 3.4.1. (First Mean-Value Theorem for Riemann-Stieltjes integrals). As-

sume that α ↗ and let f ∈ R(α) on [a, b]. Let M and m denote, respectively, the sup and

inf of the set {f(x) : x ∈ [a, b]} . Then there exists a real number c satisfying m ≤ c ≤ M

such that ∫ b

a

f(x) dα(x) = c

∫ b

a

dα(x) = c[α(b)− α(a)].

In particular, if f is continuous on [a, b], then c = f(x0) for some x0 in [a, b].
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Proof. If α(a) = α(b), then
∫ b

a
f(x) dα(x) = 0 and the theorem holds trivially.

Assume that α(a) < α(b) and let P be a partition of [a, b].

Given that M = sup {f(x) : x ∈ [a, b]} and m = inf {f(x) : x ∈ [a, b]} . Therefore, we

have

L(P, f, α) =
n∑

i=1

mi∆αi ≥ m

n∑
i=1

∆αi = m(α(b)− α(a)),

similarly

U(P, f, α) =
n∑

i=1

Mi∆αi ≤ M

n∑
i=1

∆αi = M(α(b)− α(a)).

All upper and lower sums satisfy

m[α(b)− α(a)] ≤ L(P, f, α) ≤ U(P, f, α) ≤ M [α(b)− α(a)].

Since f ∈ R(α), the integral
∫ b

a
f dα exists and

m[α(b)− α(a)] ≤ L(P, f, α) ≤
∫ b

a

f dα ≤ U(P, f, α) ≤ M [α(b)− α(a)]

=⇒ m[α(b)− α(a)] ≤
∫ b

a

f dα ≤ M [α(b)− α(a)]

=⇒ m ≤
∫ b

a
f dα∫ b

a
dα

≤ M.

Therefore, the quotient c =
∫ b
a f dα∫ b
a dα

satisfies m ≤ c ≤ M and

∫ b

a

f dα = c

∫ b

a

dα = c[α(b)− α(a)].

If f is continuous on [a, b], then by intermediate value theorem there is a point x0 ∈

[a, b] such that c = f(x0).

Theorem 3.4.2. (Second Mean-Value Theorem for Riemann-Stieltjes integrals). As-

sume that α is continuous and that f ↗ on [a, b]. Then there exists a point x0 in [a, b]

such that ∫ b

a

f(x) dα(x) = f(a)

∫ x0

a

dα(x) + f(b)

∫ b

x0

dα(x).
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Proof. By Theorem 2.5.1, we have∫ b

a

f(x)dα(x) = f(b)α(b)− f(a)α(a)−
∫ b

a

α(x)df(x).

By Theorem 3.4.1, for some x0 ∈ [a, b], we have∫ b

a

α(x)df(x) = α(x0)[f(b)− f(a)].

Therefore, ∫ b

a

f(x)dα(x) = f(b)α(b)− f(a)α(a)− α(x0)[f(b)− f(a)]

= f(a)[α(x0)− α(a)] + f(b)[α(b)− α(x0)]

= f(a)

∫ x0

a

dα(x) + f(b)

∫ b

x0

dα(x)

∴
∫ b

a

f(x) dα(x) = f(a)

∫ x0

a

dα(x) + f(b)

∫ b

x0

dα(x).

Let us sum up

• We have proved the first and second Mean-Value Theorems of Riemann-Stieltjes

integrals.

3.5 The Integral as a Function of The Interval

Theorem 3.5.1. Let α be of bounded variation on [a, b] and assume that f ∈ R(α) on

[a, b]. Define F by the equation

F (x) =

∫ x

a

f dα, if x ∈ [a, b].

Then we have te following

i) F is of bounded variation on [a, b].

ii) Every point of continuity of α is also a point of continuity of F.

iii) If α ↗ on [a, b], the derivative F ′(x) exists at each point x in (a, b) where α′(x) exists

and where f is continuous. For such x, we have

F prime(x) = f(x)α′(x).
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Proof. Without loss of generality, we may assume that α ↗ on [a, b].

To prove (i):

By Theorem 3.4.1, for a ≤ x < y ≤ b we have∫ y

x

f(t) dα(t) = c[α(y)− α(x)],

where m ≤ c ≤ M, m = inf
x∈[a,b]

f(x) and M = sup
x∈[a,b]

f(x).

Now,

F (y)− F (x) =

∫ y

x

F ′(t) dt

=

∫ y

x

f(t) dα(t).

Therefore, we have

F (y)− F (x) = c[α(y)− α(x)].

For any subdivision of [a, b], we have

n∑
k=1

|∆Fk| =
n∑

k=1

|F (xk)− F (xk−1)|

= |c|
n∑

k=1

|α(xk)− α(xk−1)|.

Since α is of bounded variation on [a, b], there is a number M1 > 0 such that

n∑
k=1

|∆αk| ≤ M1

Hence,
n∑

k=1

|∆Fk| ≤ |c|M1 = M(say).

Hence F is of bounded variation on [a, b].

To prove (ii):

Let α be continuous at x0 ∈ [a, b].

Claim: F is continuous at x0.

Let ϵ > 0 be given. Then there is a δ > 0 such that

|x− x0| < δ =⇒ |α(x)− α(x0)| <
ϵ

|c|
∀ x ∈ [a, b]
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Hence, if |x− x0| < δ, then by (i), we have

|F (x)− F (x0)| = |c||α(x)− α(x0)| < |c|. ϵ
|c|

= ϵ.

Hence, F is continuous at x0.

To prove (iii):

Consider

F (y)− F (x) = c[α(y)− α(x)].

Dividing y − x on both sides, we get

F (y)− F (x)

y − x
= c

[α(y)− α(x)]

y − x
(22)

Since f is continuous on [a, b], then c = f(x0) for some x0 ∈ [a, b].

lim
x→x0

f(x) = f(x0) =⇒ c = f(x0).

Letting y → x in (22), we have

lim
y→x

F (y)− F (x)

y − x
= c lim

y→x

[α(y)− α(x)]

y − x

=⇒ F ′(x) = f(x0)α
′(x).

Theorem 3.5.2. If f ∈ R and g ∈ R on [a, b], let

F (x) =

∫ x

a

f(t) dt, G(x) =

∫ x

a

g(t) dt, if x ∈ [a, b].

Then F and G are continuous functions of bounded variation on [a, b]. Also, f ∈ R(G)

and g ∈ R(F ) on [a, b], and we have∫ b

a

f(x)g(x) dx =

∫ b

a

f(x) dG(x) =

∫ b

a

g(x) dF (x).

Proof. Assume that α ↗ on [a, b].

Let f ∈ R and g ∈ R on [a, b].

By parts (i) and (ii) of Theorem 3.5.1, F and G are continuous functions of bounded
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variation on [a, b].

Hence, by Theorem 3.1.3, we have f ∈ R(G) and g ∈ R(F ) on [a, b].

Also ∫ b

a

f(x)g(x) dα(x) =

∫ b

a

f(x) dG(x)

=

∫ b

a

g(x) dF (x).

Putting α(x) = x, we have∫ b

a

f(x)g(x) dx =

∫ b

a

f(x) dG(x)

=

∫ b

a

g(x) dF (x).

Note: When α(x) = x, part (iii) of Theorem 3.5.1 is sometimes called the first fundamental

theorem of integral calculus. It states that F ′(x) = f(x) at each point of continuity of

f.

Let us sum up

• We have discussed the sufficient conditions for the existence of Riemann-Stieltjes

Integrals.

3.6 Second Fundamental Theorem of Integral Calculus

Theorem 3.6.1. (Second fundamental theorem of integral calculus). Assume that

f ∈ R on [a, b]. Let g be a function defined on [a, b] such that the derivative g′ exists in

(a, b) and has the value

g′(x) = f(x), ∀ x ∈ (a, b).

At the endpoints assume that g(a+) and g(b−) exist and satisfy

g(a)− g(a+) = g(b)− g(b−).

Then we have ∫ b

a

f(x) dx =

∫ b

a

g′(x) dx = g(b)− g(a).
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Proof. For any partition of [a, b], we have

g(b)− g(a) = g(xn)− g(x0)

= g(xn)− g(xn−1) + g(xn−1)− .....− g(x1) + g(x1)− g(x0)

=
n∑

k=1

[g(xk)− g(xk−1)].

By mean value theorem, there is a point tk ∈ (xk−1, xk) such that

g(xk)− g(xk−1) = g′(tk)(xk − xk−1)

g(b)− g(a) =
n∑

k=1

g′(tk)∆xk

=
n∑

k=1

f(tk)∆xk.

Let ϵ > 0 be given. Since f ∈ R on [a, b], there is a partition Pϵ of [a, b] such that P

finer than Pϵ implies ∣∣∣∣S(P, f, α)− ∫ b

a

f(x) dx

∣∣∣∣ < ϵ

i.e.,
∣∣∣∣ n∑
k=1

f(tk)∆xk −
∫ b

a
f(x) dx

∣∣∣∣ < ϵ.

=⇒
∣∣∣∣g(b)− g(a)−

∫ b

a

f(x) dx

∣∣∣∣ < ϵ.

Since ϵ was arbitrary, ∫ b

a

f(x) dx = g(b)− g(a).

Theorem 3.6.2. Assume f ∈ R on [a, b]. Let α be a function which is continuous on [a, b]

and whose derivative α′ is Riemann integrable on [a, b]. Then the following integrals exist

and are equal: ∫ b

a

f(x) dα(x) =

∫ b

a

f(x)α′(x) dx.

Proof. By the second fundamental theorem of calculus we have, for each x in [a, b],

α(x)− α(a) =

∫ x

a

α′(t) dt.
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By Theorem 3.5.2, we have∫ b

a

f(x)g(x) dx =

∫ b

a

f(x) dG(x),

where G(x) =
∫ x

a
g(t) dt.

Putting g = α′, we get ∫ b

a

f(x)α′(x)dx =

∫ b

a

f(x)d

(∫ x

a

g(t)dt

)

=⇒
∫ b

a

f(x) α′(x)dx =

∫ b

a

f(x)g(x) dx.

Let us sum up

• We have prove the second fundamental theorem of integral calculus.

3.7 Change of Variable in a Riemann Integral

The formula
∫ b

a
f dα =

∫ d

c
h dβ of Theorem 2.6.1 for changing the variable in an

integral assumes the form∫ g(d)

g(c)

f(x) dx =

∫ d

c

f [g(t)]g′(t) dt,

when α(x) = x and when g is a strictly monotonic function with a continuous deriva-

tive g′. It is valid if f ∈ R on [a, b]. When f is continuous, we can use Theorem 3.5.1 to

remove the restriction that g be monotonic. In fact, we have the following theorem:

Theorem 3.7.1. (Change of variable in a Riemann integral). Assume that g has a

continuous derivative g′ on an interval [c, d]. Let f be continuous on g([c, d]) and define

F by the equation

F (x) =

∫ x

g(c)

f(t) dt, if x ∈ g([c, d]).

Then, for each x in [c, d] the integral
∫ x

c
f [g(t)]g′(t) dt exists and has the value F [g(x)]. In

particular, we have ∫ g(d)

g(c)

f(x) dx =

∫ d

c

f [g(t)]g′(t) dt.
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Proof. Assume that g has a continuous derivative g′ on an interval [c, d]. Let f be

continuous on g([c, d]).

Since both g′ and the composite function f ◦ g are continuous on [c, d], the product

g′.(f ◦ g) is also continuous on [c, d]. Therefore,
∫ x

c
f [g(t)]g′(t) dt exists for each x in

[c, d].

Define G on [c, d] as follows:

G(x) =

∫ x

c

f [g(t)]g′(t) dt.

Claim: G(x) = F [g(x)], for all x in [c, d].

By Theorem 3.5.1, we have

G′(x) = f [g(x)]g′(x).

By chain rule, we have

[F (g(x))]′ = F ′[g(x)].g′(x)

= f(g(x))g′(x) (∵ F ′(x) = f(x).)

G′(x) = [F (g(x))]′

=⇒ [G(x)− F (g(x))]′ = 0.

=⇒ G(x)− F (g(x))=constant.

But, when x = c, we get G(c) = 0 and F [g(c)] = 0, so this constant must be 0.

Hence G(x) = F [g(x)], for all x in [c, d].

In particular, when x = d, we get G(d) = F [g(d)]. Therefore,∫ d

c

f(g(t))g′(t) dt =

∫ g(d)

g(c)

f(t) dt.

Let us sum up

• We have discussed the change of variable in a Riemann integral.
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3.8 Second Mean-Value Theorem for Riemann Integrals

Theorem 3.8.1. Let g be continuous and assume that f ↗ on [a, b]. Let A and B be two

real numbers satisfying the inequalities

A ≤ f(a+) and B ≥ f(b−).

Then there exists a point x0 in [a, b] such that

i)

∫ b

a

f(x)g(x) dx = A

∫ x0

a

g(x) dx+B

∫ b

x0

g(x) dx.

In particular, if f(x) ≥ 0 for all x in [a, b], we have

ii)

∫ b

a

f(x)g(x) dx = B

∫ b

x0

g(x) dx,

where x0 ∈ [a, b].

Proof. To prove (i):

Let α(x) =
∫ x

a
g(t) dt. Then α′ = g.

Since g is continuous, α is continuous.

Since f is increasing on [a, b], by Theorem 3.4.2, there exists a point x0 in [a, b] such

that ∫ b

a

f(x) dα(x) = f(a)

∫ x0

a

dα(x) + f(b)

∫ b

x0

dα(x)

∫ b

a

f(x) α′(x)dx = f(a)

∫ x0

a

α′(x)dx+ f(b)

∫ b

x0

α′(x)dx

∫ b

a

f(x)g(x)dx = f(a)

∫ x0

a

g(x)dx+ f(b)

∫ b

x0

g(x)dx

= A

∫ x0

a

g(x)dx+B

∫ b

x0

g(x)dx,

where A = f(a) and B = f(b).

Now let A and B be any two real numbers satisfying A ≤ f(a+) and f(b−) ≤ B.

Then, we can redefine f at the endpoints a and b to have the values f(a) = A and

f(b) = B.
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The modified f is still increasing on [a, b].

Also we know that changing the value of f at a finite number of points does not affect

the value of a Riemann integral.

To prove (ii):

Consider ∫ b

a

f(x)g(x)dx = A

∫ x0

a

g(x)dx+B

∫ b

x0

g(x)dx.

Putting A = 0, we have ∫ b

a

f(x)g(x)dx = B

∫ b

x0

g(x)dx.

Note: Part (ii) is known as Bonnet’s Theorem.

Let us sum up

• We have discussed the second Mean-Value Theorem for Riemann Integrals.

3.9 Riemann-Stieltjes Integrals Depending on a Param-
eter

Theorem 3.9.1. Let f be continuous at each point (x, y) of a rectangle

Q = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} .

Assume that α is of bounded variation on [a, b] and let F be the function defined on [c, d]

by the equation

F (y) =

∫ b

a

f(x, y) dα(x).

Then F is continuous on [c, d]. In other words, if y0 ∈ [c, d], we have

lim
y→y0

∫ b

a

f(x, y) dα(x) =

∫ b

a

lim
y→y0

f(x, y) dα(x)

=

∫ b

a

f(x, y0) dα(x).
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Proof. Let f be continuous at each point (x, y) of a rectangle

Q = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} .

Assume that α ↗ on [a, b].

Since f is continuous and Q is compact, f is uniformly continuous on Q.

i.e., given ϵ > 0, there exists a δ > 0 such that for every pair of points z = (x, y) and

z′ = (x′, y′) in Q with |z − z′| < δ, we have

|f(x, y)− f(x′, y′)| < ϵ.

Let |y − y′| < δ, we have |(x, y) − (x, y′)| =
√

(x− x)2 + (y − y′)2 =
√

(y − y′)2 =

|y − y′| < δ. Now,

|F (y)− F (y′)| =
∣∣∣∣ ∫ b

a

f(x, y) dα(x)−
∫ b

a

f(x, y′) dα(x)

∣∣∣∣
=

∣∣∣∣ ∫ b

a

[f(x, y)− f(x, y′)]dα(x)

∣∣∣∣
≤

∫ b

a

|f(x, y)− f(x, y′)| dα(x)

< ϵ

∫ b

a

dα(x) = ϵ[α(b)− α(a)].

This shows that F is continuous on [c, d].

Hence, lim
y→y0

F (y) = F (y0) (23)

Since f is continuous, lim
y→y0

f(x, y) = f(x, y0).

Therefore, (23) =⇒

lim
y→y0

∫ b

a

f(x, y) dα(x) =

∫ b

a

f(x, y0) dα(x)

=

∫ b

a

lim
y→y0

f(x, y) dα(x),

where y0 ∈ [c, d].

Theorem 3.9.2. If f is continuous on the rectangle [a, b]× [c, d], and g ∈ R on [a, b], then

the function F defined by the equation

F (y) =

∫ b

a

g(x)f(x, y) dx,

is continuous on [c, d]. That is, if y0 ∈ [c, d], we have

lim
y→y0

∫ b

a

g(x)f(x, y) dx =

∫ b

a

g(x)f(x, y0) dx.
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Proof. Let G(x) =
∫ x

a
g(t) dt, then, by Theorem 3.1.3 we have

F (y) =

∫ b

a

f(x, y) dG(x).

Now applying Theorem 3.9.1, it follows that F is continuous on [c, d] and we have

lim
y→y0

∫ b

a

f(x, y) dG(x) =

∫ b

a

f(x, y0) dG(x).

∴ lim
y→y0

∫ b

a

f(x, y) G′(x)dx =

∫ b

a

f(x, y0) G
′(x)dx

=⇒ lim
y→y0

∫ b

a

f(x, y) g(x)dx =

∫ b

a

f(x, y0) g(x)dx.

Let us sum up

• We have derived the Riemann-Stieltjes integrals depending on a parameter.

3.10 Differentiation Under the Integral Sign

Theorem 3.10.1. Let Q = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} . Assume that α is of bounded

variation on [a, b], and for each fixed y in [c, d], assume that the integral

F (y) =

∫ b

a

f(x, y) dα(x),

exists. If the partial derivative D2f is continuous on Q, the derivative F ′(y) exists for each

y in (c, d) and is given by

F ′(y) =

∫ b

a

D2f(x, y) dα(x).

Proof. Let y0 ∈ (c, d) and y ̸= y0.

Consider

F (y)− F (y0) =

∫ b

a

f(x, y) dα(x)−
∫ b

a

f(x, y0) dα(x)

=⇒ F (y)− F (y0)

y − y0
=

∫ b

a

f(x, y)− f(x, y0)

y − y0
dα(x)
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=

∫ b

a

D2f(x, ȳ) dα(x),

where ȳ is between y and y0.

Since D2f is continuous on Q, by using Theorem 3.9.1, we have

lim
y→y0

F (y)− F (y0)

y − y0
= lim

y→y0

∫ b

a

D2f(x, ȳ) dα(x)

=

∫ b

a

D2f(x, ȳ) dα(x)

∴ F ′(y) =

∫ b

a

D2f(x, ȳ) dα(x).

Let us sum up

• We have discussed differentiation under the integral sign.

3.11 Interchanging the Order of Integration

Theorem 3.11.1. Let Q = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} . Assume that α is of bounded

variation on [a, b], β is of bounded variation on [c, d], and f is continuous on Q. If (x, y) ∈

Q, define

F (y) =

∫ b

a

f(x, y) dα(x), G(x) =

∫ d

c

f(x, y) dβ(y).

Then F ∈ R(β) on [c, d], G ∈ R(α) on [a, b], and we have∫ d

c

F (y) dβ(y) =

∫ b

a

G(x) dα(x).

In other words, we may interchange the order of integration as follows:∫ b

a

[ ∫ d

c

f(x, y) dβ(y)

]
dα(x) =

∫ d

c

[ ∫ b

a

f(x, y) dα(x)

]
dβ(y).

Proof. Let Q = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} and assume that α is of bounded varia-

tion on [a, b], β is of bounded variation on [c, d], and f is continuous on Q.

For (x, y) ∈ Q, define

F (y) =

∫ b

a

f(x, y) dα(x) and G(x) =

∫ d

c

f(x, y) dβ(y).
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Hence, by Theorem 3.9.1, F is continuous on [c, d] and hence F ∈ R(β) on [c, d].

Similarly, G ∈ R(α) on [a, b].

To prove:
∫ d

c
F (y) dβ(y) =

∫ b

a
G(x) dα(x).

Assume α ↗ on [a, b] and β ↗ on [c, d].

Since f is continuous on Q and Q is compact, f is uniformly continuous on Q.

i.e., Given ϵ > 0, there is a δ > 0 such that for every pair of points z = (x, y) and

z′ = (x′, y′) in Q, with |z − z′| < δ, we have

|f(x, y)− f(x′, y′)| < ϵ.

Let us now subdivide Q into n2 equal rectangles by subdividing [a, b] and [c, d] each

into n equal parts, where n is chosen so that

b− a

n
<

δ√
2
,

d− c

n
<

δ√
2
.

Let

xk = a+
k(b− a)

n
, yk = c+

k(d− c)

n
, (k = 0, 1, 2, ...., n).

For k = 0, 1, 2, ...., n, we have∫ b

a

(∫ d

c

f(x, y) dβ(y)

)
dα(x) =

n−1∑
k=0

n−1∑
j=0

∫ xk+1

xk

(∫ yj+1

yj

f(x, y) dβ(y)

)
dα(x).

We apply Theorem 3.4.1 twice on the right, we have∫ b

a

(∫ d

c

f(x, y) dβ(y)

)
dα(x) =

n−1∑
k=0

n−1∑
j=0

∫ xk+1

xk

f(x, y′j)[β(yj+1)− β(yj)]dα(x),

where y′j ∈ [yj, yj+1].

=
n−1∑
k=0

n−1∑
j=0

f(x′
k, y

′
j)[β(yj+1)− β(yj)][α(xk+1)− α(xk)],

where (x′
k, y

′
j) ∈ Qk,j having (xk, yj) and (xk+1, yj+1) as opposite vertices.

Similarly, we have∫ d

c

(∫ b

a

f(x, y) dα(x)

)
dβ(y) =

n−1∑
k=0

n−1∑
j=0

∫ xk+1

xk

(∫ yj+1

yj

f(x, y) dα(y)

)
dβ(x).
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We apply Theorem 3.4.1 twice on the right, we have∫ d

c

(∫ b

a

f(x, y) dα(x)

)
dβ(y) =

n−1∑
k=0

n−1∑
j=0

f(x
′′

k, y
′′

j )[β(yj+1)− β(yj)][α(xk+1)− α(xk)],

where (x
′′

k, y
′′
j ) ∈ Qk,j.

By uniform continuity of f, we have

|f(x′
k, y

′
k)− f(x

′′

k, y
′′

k )| < ϵ.

Put F (y) =
∫ b

a
f(x, y) dα(x) and G(x) =

∫ d

c
f(x, y) dβ(y). Consider∣∣∣∣ ∫ b

a

G(x) dα(x)−
∫ d

c

F (y) dβ(y)

∣∣∣∣ = ∣∣∣∣ ∫ b

a

∫ d

c

f(x, y) dα(x)dβ(y)−
∫ d

c

∫ b

a

f(x, y)dα(x) dβ(y)

∣∣∣∣
=

∣∣∣∣ n−1∑
k=0

n−1∑
j=0

f(x′
k, y

′
j)[β(yj+1)− β(yj)][α(xk+1)− α(xk)]

−
n−1∑
k=0

n−1∑
j=0

f(x
′′

k, y
′′

j )[β(yj+1)− β(yj)][α(xk+1)− α(xk)]

∣∣∣∣
=

∣∣∣∣ n−1∑
k=0

n−1∑
j=0

[f(x′
k, y

′
k)− f(x

′′

k, y
′′

k )][β(yj+1)− β(yj)][α(xk+1)− α(xk)]

∣∣∣∣
≤

n−1∑
k=0

n−1∑
j=0

|f(x′
k, y

′
k)− f(x

′′

k, y
′′

k )|[β(yj+1)− β(yj)][α(xk+1)− α(xk)]

< ϵ
n−1∑
j=0

[β(yj+1)− β(yj)]
n−1∑
k=0

[α(xk+1)− α(xk)]

= ϵ[β(d)− β(c)][α(b)− α(a)].

Since ϵ was arbitrary, we have∫ b

a

G(x) dα(x) =

∫ d

c

F (y) dβ(y).

∴
∫ b

a

[ ∫ d

c

f(x, y) dβ(y)

]
dα(x) =

∫ d

c

[ ∫ b

a

f(x, y) dα(x)

]
dβ(y).

Theorem 3.11.2. Let f be continuous on the rectangle [a, b] × [c, d]. If g ∈ R on [a, b]

and if h ∈ R on [c, d], then we have∫ b

a

[ ∫ d

c

g(x)h(y)f(x, y) dy

]
dx =

∫ d

c

[ ∫ b

a

g(x)h(y)f(x, y) dx

]
dy.
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Proof. Let α(x) =
∫ x

a
g(u) du and β(y) =

∫ y

c
h(v) dv. Apply Theorem 3.1.3 and 3.11.1,

we have ∫ b

a

[ ∫ d

c

g(x)h(y)f(x, y) dy

]
dx =

∫ d

c

[ ∫ b

a

g(x)h(y)f(x, y) dx

]
dy.

Let us sum up

• We have derived the interchanging the order of integration.

Summary

• Discussed α is of bounded variation on [a, b] and assume that f ∈ R(α) on [a, b].

Then f ∈ R(α) on every subinterval [c, d] of [a, b].

• Necessary and sufficient conditions for existence of Riemann-Stieltjes Integrals.

• Derived first and second Mean-Value Theorem for Riemann-Stieltjes integrals.

• Discussed the first and second fundamental theorem of integral calculus.

• Discussed the change of variable in a Riemann integral.

• Discussed Second Mean-Value Theorem for Riemann Integrals.

• Derived Riemann-Stieltjes integrals Depending on a Parameter.

• Discussed differentiation Under the integral sign.

• Derived interchanging the order of integration.

Exercises

1. Give an example of a bounded function f and an increasing function α defined

on [a, b] such that |f | ∈ R(α) but for which
∫ b

a
fdα does not exist.

2. Let xn be a sequence of functions of bounded variation on [a, b]. Suppose there

exists a function α defined on [a, b] such that the total variation of α−αn on [a, b]
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tends to 0 as n → ∞. Assume also that α(a) = αn(a) = 0 for each n = 1, 2, · · · . If

f is continuous on [a, b], prove that

lim
n→∞

∫ b

a

f(x)dα(x) =

∫ b

a

f(x)dα(x).

3. Assume g ∈ R on [a, b] and define f(x) =
∫ x

a
g(t)dt if x ∈ [a, b]. Prove that the

integral
∫ x

a
|g(t)|dt gives the total variation of f on [a, x].

4. Let f be a positive continuous function in [a, b]. Let M denote the maximum

value of f on [a, b]. Show that

lim
n→∞

(∫ b

a

f(x)ndx

)1/n

= M.

5. Use Lebesgue’s theorem to prove that if f ∈ R and g ∈ R on [a, b] and if f(x) ≥

m > 0 for all x in[a, b], then the function h defined by h(x) = f(x)g(x) is Riemann-

integrable on [a, b].
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Unit 4

INFINITE SERIES AND INFINITE
PRODUCTS

Objectives

After the successful completion of this unit; the students are expected

• To recall the basic concepts of limit property, series and products.

• To analyse a given infinite series converge (or) diverge.

• To understand the fundamental concepts of infinite series and infinite products.

• To analyse and work problem related to double sequence and double series.

4.1 Double Sequences

Definition 4.1.1. A function f whose domain is Z+ × Z+ is called a double sequence.

Definition 4.1.2. If a ∈ C, we write lim
p,q→∞

f(p, q) = a and we say that the double

sequence f converges to a, provided that the following condition is satisfied. For every

ϵ > 0, there exists an N such that |f(p, q)− a| < ϵ, whenever both p > N and q > N.

Theorem 4.1.3. Assume that lim
p,q→∞

f(p, q) = a. For each fixed p, assume that the limit

lim
q→∞

f(p, q) exists. Then the limit lim
p→∞

(
lim
q→∞

f(p, q)

)
also exists and has the value a.

Proof. For each fixed p, assume that the limit lim
q→∞

f(p, q) exists.

Let F (p) = lim
q→∞

f(p, q).
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Given ϵ > 0, choose N1 such that

|f(p, q)− a| < ϵ

2
, if p > N1 and q > N1. (a)

Since, lim
q→∞

f(p, q) = F (p), ∀ p we can choose N2 such that

|F (p)− f(p, q)| < ϵ

2
, if q > N2, (b)

where N2 depends on p as well as on ϵ. For each p > N1, choose N2 and then choose a

fixed q such that q = max {N1, N2} .

For such p and q

|F (p)− a| = |F (p)− f(p, q) + f(p, q)− a|

≤ |F (p)− f(p, q)|+ |f(p, q)− a|

<
ϵ

2
+

ϵ

2
= ϵ.

Thus, we have

|F (p)− a| < ϵ, p > N1.

which implies that

lim
p→∞

F (p) = a.

Note : To distinguish lim
p,q→∞

f(p, q) from lim
p→∞

(
lim
q→∞

f(p, q)

)
, the first is called a double

limit, the second an iterated limit.

The following example shows that the converse of the above theorem is not true .

Example. Let

f(p, q) =
pq

p2 + q2
, (p = 1, 2, · · · , q = 1, 2, · · · )

=
pq

q2
(

p2

q2
+ 1

)
lim
q→∞

f(p, q) = lim
q→∞

p

q

(
p2

q2
+ 1

) = 0

∴ lim
p→∞

(
lim
q→∞

f(p, q)

)
= 0.

96



If p = q, then

f(p, q) =
p2

2p2
=

1

2
.

If p = 2q, then

f(p, q) =
2q2

5q2
=

2

5
.

Hence, lim
p,q→∞

f(p, q) does not exist.

Let us sum up

The existence of the double limit lim
p,q→∞

f(p, q) and of lim
q→∞

f(p, q) implies the existence

of the iterated limit lim
p→∞

(
lim
q→∞

f(p, q)

)
.

Check your progress

1. Let f(m,n) =
m

m+ n
, m, n = 1, 2, . . .. Show that lim

m,n→∞
f(m,n) does not exist.

4.2 Double Series

Definition 4.2.1. Let f be a double sequence and let s be the double sequence defined by

the equation

s(p, q) =

p∑
m=1

q∑
n=1

f(m,n).

The pair (f, s) is called a double series and is denoted by the symbol
∑
m,n

f(m,n) or, more

briefly, by
∑

f(m,n). The double series is said to converge to the sum a if

lim
p,q→∞

s(p, q) = a.

Note : Each pair f(m,n) is called a term of the double series and each s(p, q) is a

partial sum.

If
∑

f(m,n) has only positive terms, it is easy to show that it converges if and only if

the set of partial sums is bounded.

Definition 4.2.2. We say that
∑

f(m,n) converges absolutely if
∑

|f(m,n)| converges.
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Let us sum up

• We introduced the concept of double series and its convergence.

4.3 Rearrangement Theorem for Double Series

Definition 4.3.1. Let f be a double sequence and let g be a one-to-one function defined

on Z+ with range Z+ × Z+. Let G be the sequence defined by

G(n) = f [g(n)] if n ∈ Z+.

Then g is said to be an arrangement of the double sequence f into the sequence G.

Note : Let {f1, f2, ....} be a countable collection of functions, each defined on Z+,

having the following properties:

a) Each fn is one-to-one on Z+.

b) The range fn(Z+) is a subset Qn of Z+.

c) {Q1, Q2, ...} is a collection of disjoint sets whose union is Z+.

Let
∑

an be an absolutely convergent series and define

bk(n) = afk(n), if n ∈ Z+, k ∈ Z+.

Then:

i) For each k,
∑∞

n=1 bk(n) is an absolutely convergent subseries of
∑

an.

ii) If sk =
∑∞

n=1 bk(n), the series
∞∑
k=1

sk converges absolutely and has the same sum as
∞∑
k=1

ak.

Theorem 4.3.2. Let
∑

f(m,n) be a given double series and let g be an arrangement of

the double sequence f into a sequence G. Then

a)
∑

G(n) converges absolutely if and only if
∑

f(m,n) converges absolutely. Assum-

ing that
∑

f(m,n) does converge absolutely, with sum S, we have further:

b)
∞∑
n=1

G(n) = S.
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c)
∞∑
n=1

f(m,n) and
∞∑

m=1

f(m,n) both converge absolutely.

d) If Am =
∞∑
n=1

f(m,n) and Bn =
∞∑

m=1

f(m,n), both series Am and Bn converge abso-

lutely and both have sum S. That is,

∞∑
m=1

∞∑
n=1

f(m,n) =
∞∑
n=1

∞∑
m=1

f(m,n) = S.

Proof. To prove (a): Assume
∑

G(n) converges absolutely.

Claim :
∑

f(m,n) converges absolutely.

Let Tk = |G(1)|+ ....+ |G(k)| and let

S(p, q) =

p∑
m=1

q∑
n=1

|f(m,n)|.

We know that, a double series of positive terms converges if and only if the set of

partial sums is bounded.

Hence, for each k there exists a pair (p, q) such that Tk ≤ S(p, q).

Hence,
∑

|G(n)| has bounded partial sums.

Hence
∑

f(m,n) converges absolutely.

Conversely, assume
∑

f(m,n) converges absolutely.

Claim :
∑

G(n) converges absolutely.

For each pair (p, q), there exists an integer r such that S(p, q) ≤ Tr.

Hence,
∑

|f(m,n)| has bounded partial sums.

Hence
∑

G(n) converges absolutely.

To prove (b): Now assume that
∑

|f(m,n)| converges.

Before we prove (b), we will show that the sum of the series
∑

G(n) is independent

of the function g used to construct G from f, where g is an arrangement of the double

sequence f into the sequence G.

Let h be another arrangement of the double sequence f into a sequence H.

Then we have

G(n) = f [g(n)] and H(n) = f [h(n)].

=⇒ G(n) = H[k(n)], where k(n) = h−1[g(n)].

Since k is a one-to-one mapping of Z+ onto Z+, the series
∑

H(n) is a rearrangement
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of
∑

G(n).

Hence,
∑

H(n) and
∑

G(n) has the same sum.

Let us denote this common sum by S ′.

To prove : S = S ′.

Let T = lim
p,q→∞

S(p, q).

Given ϵ > 0, choose N such that

|T − S(p, q)| < ϵ

2
if p > N and q > N.

Now write

tk =
k∑

n=1

G(n), s(p, q) =

p∑
m=1

q∑
n=1

f(m,n).

Choose M such that tM includes all terms f(m,n) with

1 ≤ m ≤ N + 1, 1 ≤ n ≤ N + 1.

Then tM − s(N + 1, N + 1) is a sum of terms f(m,n) with either m > N or n > N.

If n ≥ M, we have

|tM − s(N + 1, N + 1)| ≤ |tn − s(N + 1, N + 1)|

≤ T − S(N + 1, N + 1) <
ϵ

2
.

Similarly,

|S − s(N + 1, N + 1)| ≤ T − S(N + 1, N + 1) <
ϵ

2
.

|tn − S| = |tn − s(N + 1, N + 1) + s(N + 1, N + 1)− S|

≤ |tn − s(N + 1, N + 1)|+ |S − s(N + 1, N + 1)|

<
ϵ

2
+

ϵ

2
= ϵ.

Hence, |tn − S| < ϵ whenever n ≥ M.

Hence, tn → S as n → ∞.

Since lim
n→∞

tn = S ′,

S ′ = S.
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To prove (c):

Now the series
∞∑
n=1

f(m,n) and
∞∑

m=1

f(m,n) are subseries of
∑

G(n).

By (a), we have
∞∑
n=1

f(m,n) and
∞∑

m=1

f(m,n) both converge absolutely.

To prove (d):

Let Am =
∞∑
n=1

f(m,n) and Bn =
∞∑

m=1

f(m,n).

By note, we have

The series Am =
∞∑
n=1

f(m,n) and Bn =
∞∑

m=1

f(m,n) both converge absolutely,

and both have the same sum S.

i.e.,
∞∑

m=1

∞∑
n=1

f(m,n) =
∞∑
n=1

∞∑
m=1

f(m,n) = S.

Note : The series
∞∑

m=1

∞∑
n=1

f(m,n) and
∞∑
n=1

∞∑
m=1

f(m,n) are called iterated series. Con-

vergence of both iterated series does not imply their equality. For example, suppose

f(m,n) =


1, if m = n+ 1, n = 1, 2, ....,

−1, if m = n− 1, n = 1, 2, ....,

0, otherwise.

Then
∞∑

m=1

∞∑
n=1

f(m,n) = −1, but
∞∑
n=1

∞∑
m=1

f(m,n) = 1.

Let us sum up

• We have derived the necessary and sufficient conditions for the rearrangement

of a double series.

4.4 A Sufficient Condition for Equality of Iterated Se-
ries

Theorem 4.4.1. Let f be a complex-valued double sequence. Assume that
∞∑
n=1

f(m,n)

converges absolutely for each fixed m and that
∞∑

m=1

∞∑
n=1

|f(m,n)|,
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converges. Then:

a) The double series
∑
m,n

f(m,n) converges absolutely.

b) The series
∞∑

m=1

f(m,n) converges absolutely for each n.

c) Both iterated series
∞∑
n=1

∞∑
m=1

f(m,n) and
∞∑

m=1

∞∑
n=1

f(m,n) converge absolutely and we

have
∞∑
n=1

∞∑
m=1

f(m,n) =
∞∑

m=1

∞∑
n=1

f(m,n) =
∑
m,n

f(m,n).

Proof. To prove (a):

Let g be an arrangement of the double sequence f into a sequence G.

All the partial sums of
∑

|G(n)| are bounded by
∞∑

m=1

∞∑
n=1

|f(m,n)|.

Hence,
∑

G(n) is absolutely convergent.

By Theorem 4.3.1(a), the double series
∑
m,n

f(m,n) converges absolutely.

To prove (b):

The series
∞∑

m=1

f(m,n) is a subseries of
∑

G(n).

By (a), we have
∞∑

m=1

f(m,n) converges absolutely for each n.

To prove (c):

By Theorem 4.3.1(d), we have
∞∑
n=1

∞∑
m=1

f(m,n) and
∞∑

m=1

∞∑
n=1

f(m,n)both converge abso-

lutely, and
∞∑
n=1

∞∑
m=1

f(m,n) =
∞∑

m=1

∞∑
n=1

f(m,n) =
∑
m,n

f(m,n).

Theorem 4.4.2. Let
∑

am and
∑

bn be two absolutely convergent series with sums A

and B, respectively. Let f be the double sequence defined by the equation

f(m,n) = ambn, if (m,n) ∈ Z+ × Z+.

Then
∑
m,n

f(m,n) converges absolutely and has the sum AB.

Proof. Let f be the double sequence defined by the equation

f(m,n) = ambn, if (m,n) ∈ Z+ × Z+.
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Consider,

∞∑
m=1

|am|
∞∑
n=1

|bn| =
∞∑

m=1

(
|am|

∞∑
n=1

|bn|
)

=
∞∑

m=1

( ∞∑
n=1

|am||bn|
)

=
∞∑

m=1

∞∑
n=1

|am||bn|

=
∞∑

m=1

∞∑
n=1

|ambn|.

Therefore,

AB =
∞∑

m=1

∞∑
n=1

|ambn|.

By Theorem 4.4.1, the double series
∑
m,n

ambn converges absolutely and has the sum

AB.

Hence,
∑
m,n

f(m,n) converges absolutely and has the sum AB.

Let us sum up

• A sufficient condition for the equality of iterated series has been derived.

4.5 Multiplication of Series

Definition 4.5.1. Given two series
∞∑
n=0

an and
∞∑
n=0

bn, define

cn =
n∑

k=0

akbn−k, if n = 0, 1, 2, ....

The series
∞∑
n=0

cn is called the Cauchy product of
∑

an and
∑

bn.

Note : This definition may be motivated as follows. If we take two power series
∑

anz
n

and
∑

bnz
n, multiply them term by term, and collect terms containing the same power

of z, we get

∞∑
n=0

anz
n.

∞∑
n=0

bnz
n = (a0 + a1z + a2z

2 + · · · )(b0 + b1z + b2z
2 + · · · )

= a0b0 + (a0b1 + a1b0)z + · · ·
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= c0 + c1z + c2z
2 + · · ·

Setting z = 1, we arrive at the above definition.

Absolute convergence of both
∑

an and
∑

bn implies convergence of the Cauchy prod-

uct to the value

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

This equation may fail to hold if both
∑

an and
∑

bn are conditionally convergent. It

is valid if at least one of
∑

an,
∑

bn is absolutely convergent.

Theorem 4.5.2. (Mertens). Assume that
∞∑
n=0

an converges absolutely and has sum A,

and suppose
∞∑
n=0

bn converges with sum B. Then the Cauchy product of these two series

converges and has the sum AB.

Proof. Define

An =
n∑

k=0

ak, Bn =
n∑

k=0

bk, and Cn =
n∑

k=0

ck,

where ck = akbn−k, if n = 0, 1, 2, · · · .

Let

dn = B −Bn and en =
n∑

k=0

akdn−k.

Then

Cp =

p∑
k=0

ck =

p∑
n=0

n∑
k=0

akbn−k =

p∑
n=0

p∑
k=0

fn(k), (25)

where

fn(k) =

{
akbn−k, n ≥ k,

0, n < k.

Then (25) becomes

Cp =

p∑
k=0

p∑
n=0

fn(k)

=

p∑
k=0

p∑
n=k

akbn−k
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=

p∑
k=0

ak

p−k∑
m=0

bm

=

p∑
k=0

akBp−k (∵ Bn =
n∑

k=0

bk)

=

p∑
k=0

ak(B − dp−k) (∵ dn = B −Bn)

=

p∑
k=0

akB −
p∑

k=0

akdp−k

= B

p∑
k=0

ak −
p∑

k=0

akdp−k

= ApB − ep (∵ en =
n∑

k=0

akdn−k).

It suffices to show that ep → 0 as p → ∞.

We know that if
∑

an is convergent then an → 0 as n → ∞.

Hence, the sequence {dn} converges to 0, since B =
∑

bn.

Since every converges sequence is bounded, {dn} is bounded.

Hence, We can choose M > 0 such that |dn| ≤ M for all n.

Let K =
∞∑
n=0

|an|.

By our assumption,
∑

an converges absolutely.

Hence, given ϵ > 0, choose N such that n > N implies

|dn| < ϵ
2K

(∵ {dn} converges to 0)

and also
∞∑

n=N+1

|an| < ϵ
2M

.(by Cauchy criterion)

Then, for p > 2N, we can write

|ep| =
∣∣∣∣ p∑
k=0

akdp−k

∣∣∣∣
=

∣∣∣∣ N∑
k=0

akdp−k +

p∑
k=N+1

akdp−k

∣∣∣∣
≤

∣∣∣∣ N∑
k=0

akdp−k

∣∣∣∣+ ∣∣∣∣ p∑
k=N+1

akdp−k

∣∣∣∣
≤

N∑
k=0

|ak||dp−k|+
p∑

k=N+1

|ak||dp−k|
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≤ ϵ

2K

N∑
k=0

|ak|+M

p∑
k=N+1

|ak|

≤ ϵ

2K

∞∑
k=0

|ak|+M

∞∑
k=N+1

|ak|

≤ ϵ

2K
K +M

ϵ

2M

<
ϵ

2
+

ϵ

2
= ϵ.

=⇒ ep → 0 as p → ∞.

Now Cp = ApB − ep

=⇒ lim
p→∞

Cp = lim
p→∞

ApB − lim
p→∞

ep.

=⇒ C = AB.

Hence the proof.

Let us sum up

• In this section, we have defined the notion of Cauchy product of two series and

discussed the possibility of finding the sum of such series.

4.6 Cesaro Summability

Definition 4.6.1. Let sn denote the nth partial sum of the series
∑

an, and let {σn} be

the sequence of arithmetic means defined by

σn =
s1 + .....+ sn

n
, if n = 1, 2, ...

The series
∑

an is said to be Cesaro summable (or(C, 1)summable) if {σn} converges. If

lim
n→∞

σn = S, then S is called the Cesaro sum (or(C, 1)sum) of
∑

an, and we write∑
an = S (C, 1).

Example 1. Let an = zn, |z| = 1, z ̸= 1.

σn =
s1 + .....+ sn

n
.
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Let sn be the nth partial sum of
∑

an.

i.e., sn = a1 + a2 + ....+ an

= z + z2 + .....+ zn

= z(1 + z + .....+ zn−1)

= z

(
1− zn

1− z

)
= z

(
1

1− z
− zn

1− z

)

∴ sn =
z

1− z
− zn+1

1− z

Put n = 1, 2, ..., n. We have

s1 =
z

1− z
− z2

1− z
, s2 =

z

1− z
− z3

1− z
, · · · , sn =

z

1− z
− zn+1

1− z

σn =
1

n

[(
z

1− z
− z2

1− z

)
+

(
z

1− z
− z3

1− z

)
+ ........+

(
z

1− z
− zn+1

1− z

)]
=

1

n

[
nz

1− z
−

(
z2

1− z
+

z3

1− z
+ ......+

zn+1

1− z

)]
=

1

n

[
nz

1− z
− z2

1− z
(1 + z + ....+ zn−1)

]
=

1

n

[
nz

1− z
− z2

1− z

(
1− zn

1− z

)]

∴ σn =
z

1− z
− z2(1− zn)

n(1− z)2

lim
n→∞

σn =
z

1− z
− lim

n→∞

z2(1− zn)

n(1− z)2

We know that lim
n→∞

1
n
= 0.

∴ lim
n→∞

σn =
z

1− z
.

If an = zn−1, then
∞∑
n=1

zn−1 =
1

1− z
(C, 1).

Putting z = −1, we have
∞∑
n=1

(−1)n−1 =
1

2
(C, 1).
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Example 2. Let an = (−1)n+1n.

σn =
s1 + · · ·+ sn

n
.

Let sn = a1 + a2 + · · ·+ an be the nth partial sum of
∑

an.

For n = 1, 2, · · · , we have

a1 = (−1)1+1.1 = 1, a2 = (−1)2+1.2 = −2, a3 = 3, · · ·

Then

s1 = 1, s2 = a1 + a2 = 1− 2 = −1, s3 = a1 + a2 + a3 = 1− 2 + 3 = 2, · · ·

sn =

{
−n

2
if n is even

n+1
2

if n is odd

∴ s1 + s2 + ...+ sn =

{
0 if n is even
n+1
2

if n is odd

=⇒ σn =

{
0 if n is even
n+1
2.n

if n is odd

lim
n→∞

n+ 1

2n
= lim

n→∞

n

(
1 + 1

n

)
2n

=
1

2
.

∴ lim
n→∞

inf σn = 0 and lim
n→∞

sup σn =
1

2
.

Hence
∑

(−1)n+1n is not (C, 1) summable.

Theorem 4.6.2. If a series is convergent with sum S, then it is also (C, 1) summable

with Cesaro sum S.

Proof. Given
∑

an convergent with sum S.

Let sn denote the nth partial sum of the series
∑

an.

i.e., lim
n→∞

sn = S.

Define

σn =
s1 + s2 + · · ·+ sn

n
, if n = 1, 2, · · ·
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and introduce

tn = sn − S and τn = σn − S.

To prove : lim
n→∞

σn = S.

It is sufficient to prove that sequence τn → 0 as n → ∞.

Now,

τn = σn − S

=
s1 + s2 + · · ·+ sn

n
− S

(
∵ σn =

s1 + s2 + · · ·+ sn
n

)
=

t1 + S + t2 + S + · · ·+ tn + S

n
− S (∵ tn = sn − S)

=
nS + t1 + t2 + · · ·+ tn

n
− S

=
nS

n
+

t1 + t2 + · · ·+ tn
n

− S

= S +
t1 + t2 + · · ·+ tn

n
− S

=
t1 + t2 + · · ·+ tn

n
.

∴ τn =
t1 + t2 + ....+ tn

n
. (26)

Since {sn} converges to S and tn = sn − S.

lim
n→∞

tn = lim
n→∞

(sn − S) = lim
n→∞

sn − S = S − S = 0.

∴ lim
n→∞

tn = 0

i.e., {tn} is converges to zero.

Hence, tn is bounded and there exist a constant A > 0 such that |tn| ≤ A.

Since tn → 0 as n → ∞, given ϵ > 0, choose N such that n > N implies |tn| < ϵ.

Taking n > N in (26), we obtain

|τn| =
∣∣∣∣t1 + t2 + ....+ tn

n

∣∣∣∣
=

∣∣∣∣t1 + t2 + ...+ tN + tN+1 + ...+ tn
n

∣∣∣∣
≤

∣∣∣∣t1 + t2 + ....+ tN
n

∣∣∣∣+ ∣∣∣∣tN+1 + ....+ tn
n

∣∣∣∣
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≤ |t1|+ |t2|+ ....+ |tN |
n

+
|tN+1|+ ....+ |tn|

n

<
A+ A+ .....+ A

n
+

ϵ+ ϵ+ .....+ ϵ

n

=
N.A

n
+

n.ϵ

n
=

N.A

n
+ ϵ

Therefore,

|τn| <
N.A

n
+ ϵ.

Since ϵ was arbitrary, we have

|τn| ≤
N.A

n
.

We know that 1
n
→ 0 as n → ∞.

∴ lim
n→∞

τn = 0.

τn = σn − S =⇒ lim
n→∞

τn = lim
n→∞

σn − S

=⇒ 0 = lim
n→∞

σn − S =⇒ lim
n→∞

σn = S.

Hence
∑

an = S (C, 1).

Note : We have really proved that if a sequence {sn} converges, then the sequence

{σn} of arithmetic means also converges and, in fact, to the same limit.

Let us sum up

• In this section, we have defined the notion of Cesaro summability of a given

series and we have proved that every convergent series is Cesaro summabale.

Check your progress

1. Show the series cosx+ cos 3x+ cos 5x+ · · · (x real, x ̸= mπ) has (c, 1) sum 0.

4.7 Infinite Products

This section gives a brief introduction to the theory of infinite products.
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Definition 4.7.1. Given a sequence {un} of real or complex numbers, let

P1 = u1, P2 = u1u2, Pn = u1u2 · · ·un =
n∏

k=1

uk. (27)

The ordered pair of sequences ({un}, {Pn}) is called an infinite product (or simply, a

product). The Pn is called the nth partial product and un is called the nth factor of the

product. The following symbols are used to denote the product defined by (27):

u1u2 · · ·un · · · ,
∞∏
n=1

un (28)

Note : The symbol
∞∏

n=N+1

un means
∞∏
n=1

uN+n. We also write
∏

when there is no danger

of misunderstanding.

By analogy with infinite series, it would seem natural to call the product (28) conver-

gent if {Pn} converges. However, this definition would be inconvenient since every

product having one factor equal to zero would converge, regardless of the behavior of

the remaining factors. The following definition turns out to be more useful:

Definition 4.7.2. Given an infinite product
∞∏
n=1

un, let Pn =
n∏

k=1

uk.

a) If infinitely many factors un are zero, we say the product diverges to zero.

b) If no factor un is zero, we say the product converges if there exists a number P ̸= 0

such that {Pn} converges to P. In this case, P is called the value of the product and

we write
∞∏
n=1

un. If {Pn} converges to zero, we say the product diverges to zero.

c) If there exists an N such that n > N implies un ̸= 0, we say
∞∏
n=1

un converges,

provided that
∞∏

n=N+1

un converges as described in (b). In this case, the value of the

product
∞∏
n=1

un is

u1u2 · · ·uN

∞∏
n=N+1

un.

d)
∞∏
n=1

un is called divergent if it does not converge as described in (b) or (c).

Example :
∞∏
n=1

(
1 +

1

n

)
and

∞∏
n=2

(
1− 1

n

)
are both divergent.

In the first case, Pn = n+ 1, and in the second case, Pn = 1
n
.
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Theorem 4.7.3. (Cauchy condition for product). The infinite product
∏

un converges

if and only if for every ϵ > 0 there exists an N such that n > N implies

|un+1un+2.....un+k − 1| < ϵ, for k = 1, 2, 3, · · · (29)

Proof. Assume that the product
∏

un converges.

To prove : For every ϵ > 0 there exist an N such that n > N implies

|un+1un+2.....un+k − 1| < ϵ, for k = 1, 2, 3, ..

We can assume that un ̸= 0 for all n.

Let Pn = u1u2.....un and lim
n→∞

Pn = P.

Since un ̸= 0 for all n, Pn ̸= 0.

Then P ̸= 0 and there exists a M > 0 such that |Pn| > M.

Now {Pn} satisfies the Cauchy condition for sequences.

Hence, given ϵ > 0, there is an N such that n > N implies

|Pn+k − Pn| < ϵM, for k = 1, 2, · · ·

Now dividing by |Pn| on both sides, we get

|Pn+k − Pn|
|Pn|

<
Mϵ

|Pn|

=⇒
∣∣∣∣Pn+k − Pn

Pn

∣∣∣∣ < Mϵ

M

=⇒
∣∣∣∣Pn+k

Pn

− 1

∣∣∣∣ < ϵ

=⇒
∣∣∣∣u1u2 · · ·un+k

u1u2 · · ·un

− 1

∣∣∣∣ < ϵ

∴ |un+1un+2 · · ·un+k − 1| < ϵ for k = 1, 2, · · ·

Conversely, assume that for every ϵ > 0 there exists an N such that n > N implies

|un+1un+2 · · ·un+k − 1| < ϵ, for k = 1, 2, 3, · · ·

To prove :
∏

un converges.

Now n > N implies un ̸= 0.

Suppose un = 0 when n > N.

By our assumption

|un+1un+2 · · ·un+k − 1| < ϵ =⇒ |0− 1| < ϵ,
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i.e., ϵ > 1 which is impossible.

∴ un ̸= 0.

For ϵ = 1
2
, by (29), there exists N0 such that

|un+1un+2 · · ·un+k − 1| < 1

2
for k = 1, 2, 3.....

Let qn = uN0+1uN0+2 · · ·un if n > N0.

From (29), we have

|uN0+1uN0+2 · · ·un − 1| < 1

2

=⇒ |qn − 1| < 1

2

=⇒ −1

2
< qn − 1 <

1

2

=⇒ 1

2
< qn <

3

2

Hence, if {qn} converges it cannot converge to zero.

To show that {qn} converges.

Let ϵ > 0 be arbitrary.

From (29), we have ∣∣∣∣uN0+1, uN0+2, ....un, un+1, ...., un+k

uN0+1, uN0+2, ....un

− 1

∣∣∣∣ < ϵ

=⇒
∣∣∣∣qn+k

qn
− 1

∣∣∣∣ < ϵ

=⇒
∣∣∣∣qn+k − qn

qn

∣∣∣∣ < ϵ

=⇒ |qn+k − qn|
|qn|

< ϵ

=⇒ |qn+k − qn| < ϵ|qn| <
3ϵ

2
.

Hence, {qn} satisfies the Cauchy condition for sequences.

Hence, {qn} is convergent.

Hence the product
∏

un converges.
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Note : Taking k = 1 in (29), we find that convergence of
∏

un implies lim
n→∞

un = 1. For

this reason, the factors of a product are written as un = 1 + an. Thus convergence of∏
(1 + an) implies lim

n→∞
an = 0.

Theorem 4.7.4. Assume that each an > 0. Then the product
∏
(1 + an) converges if and

only if the series
∑

an converges.

Proof. Assume that each an > 0 and the series
∑

an converges.

Consider ex = 1 + x+ x2

2!
+ ....

=⇒ ex ≥ 1 + x. for all x ∈ R

It is enough to consider

1 + x ≤ ex, for all x ≥ 0. (30)

Putting x = a1 in (30), we get

1 + a1 ≤ ea1

Putting x = a2 in (30), we get

1 + a2 ≤ ea2

.

.

.

Putting x = an in (30), we get

1 + an ≤ ean

Multiplying above inequalities, we get

(1 + a1)(1 + a2)......(1 + an) < ea1 .ea2 .......ean

=⇒ (1 + a1)(1 + a2)......(1 + an) < ea1+a2+.....+an

But

a1 + a2 + .....+ an < (1 + a1)(1 + a2)......(1 + an)
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∴ a1 + a2 + .....+ an < (1 + a1)(1 + a2)......(1 + an) < ea1+a2+.....+an

Putting sn = a1 + a2 + .....+ an and Pn = (1 + a1)(1 + a2)......(1 + an), we get

∴ sn < Pn ≤ esn ∀n (31)

Since an > 0, the sequences {sn} and {Pn} are monotonically increasing.

We need only show that {sn} is bounded if and only if {Pn} is bounded.

If
∞∑
n=1

an is convergent to S, then lim
n→∞

sn = S.

From (31), we have Pn < eS for all n.

Hence, {Pn} is bounded above by eS.

=⇒ {Pn} is convergent.

Hence the infinite product
∏
(1 + an) converges.

Conversely, assume that
∏
(1 + an) converges.

To prove : the series
∑

an converges.∏
(1 + an) converges =⇒ the sequence {Pn} is convergent.

i.e., lim
n→∞

Pn = P (say).

∵ sn < Pn, sn < P for all n.

Therefore, sn is bounded above and hence convergent.

Hence the series
∑

an converges.

Definition 4.7.5. The product
∏
(1 + an) is said to converge absolutely if

∏
(1 + |an|)

converges.

Theorem 4.7.6. Absolute convergence of
∏
(1 + an) implies convergence.

Proof. Assume that
∏
(1 + an) is absolutely convergent.

i.e.,
∏
(1 + |an|) is convergent.

To prove :
∏
(1 + an) is convergent.

Let Pn = (1 + a1)(1 + a2)......(1 + an).

Let ϵ > 0 be given. Choose n > N such that
∣∣∣∣Pn+k

Pn
− 1

∣∣∣∣ < ϵ ∀ k ≥ 1,

=⇒
∣∣∣∣(1 + a1)(1 + a2).....(1 + an)(1 + an+1)...(1 + an+k)

(1 + a1).....(1 + an)
− 1

∣∣∣∣ < ϵ

=⇒ |(1 + an+1)(1 + an+2)......(1 + an+k)− 1| < ϵ.
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But

|(1 + an+1)(1 + an+2)......(1 + an+k)− 1| ≤ (1 + |an+1|)(1 + |an+2|)......(1 + |an+k|)− 1.

Hence, by Cauchy’s general principle of convergence, the infinite product
∞∏
n=1

(1 + an)

is convergent.

Theorem 4.7.7. Assume that each an ≥ 0. Then the product
∏
(1− an) converges if and

only if the series
∑

an converges.

Proof. Assume
∑

an converges and an ≥ 0.

Let sn = a1 + a2 + ....+ an be the nth partial sum of the series
∑

an.

Since
∑

an converges, lim
n→∞

sn = S(say).

Let Pn = (1− a1).....(1− an).

To prove : Pn converges.

Now

(1− a1)(1− a2).....(1− an) ≤ a1 + a2 + ....+ an.

=⇒ Pn < S.

Hence, Pn is bounded by S, Pn converges.

Hence the product
∏
(1− an) converges.

Conversely, assume that the product
∏
(1− an) converges.

To prove :
∑

an converges.

Suppose
∑

an diverges.

If {an} does not converge to zero, then
∏
(1− an) also diverges.

Therefore, we can assume that an → 0 as n → ∞.

Discarding a few terms if necessary, we can assume that each an ≤ 1
2
.

Hence, 1− an ≥ 1
2

=⇒ 1− an ̸= 0 for all n.

Let

Pn = (1− a1)(1− a2)......(1− an) and qn = (1 + a1)(1 + a2)......(1 + an).
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Now

(1− ak)(1 + ak) = 1− a2k ≤ 1

=⇒ (1− ak)(1 + ak) ≤ 1

=⇒ pnqn ≤ 1 =⇒ pn ≤ 1

qn

If qn → +∞ as n → ∞, then Pn → 0 as n → ∞.

By the part (b) of Definition 4.7.2, it follows that
∏
(1− an) diverges to 0.

This is a contradiction to our assumption that
∏
(1− an) converges.

Hence
∑

an converges.

4.8 Power Series

An infinite series of the form

a0 +
∞∑
n=1

an (z − z0)
n

written more briefly as

∞∑
n=0

an (z − z0)
n (32)

is called a power series in z − z0. Here z, z0, and an(n = 0, 1, 2, . . .) are complex

numbers. With every power series (32) there is associated a disk, called the disk of

convergence, such that the series converges absolutely for every z interior to this disk

and diverges for every z outside this disk. The center of the disk is at z0 and its radius

is called the radius of convergence of the power series. (The radius may be 0 or +∞ in

extreme cases.) The next theorem establishes the existence of the disk of convergence

and provides us with a way of calculating its radius.

Theorem 4.8.1. Given a power series
∞∑
n=0

an (z − z0)
n, let

λ = lim sup
n→∞

n
√

|an|, r =
1

λ
,

(where r = 0 if λ = +∞ and r = +∞ if λ = 0). Then the series converges absolutely if

|z − z0| < r and diverges if |z − z0| > r. Furthermore, the series converges uniformly on

every compact subset interior to the disk of convergence.
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Proof. Now

lim sup
n→∞

n

√
|an (z − z0)

n| = lim sup
n→∞

n
√
|an| n

√
|z − z0|n

= lim sup
n→∞

n
√
|an||z − z0|

=
1

r
|z − z0|.

Hence, by root test the series
∑

an (z − z0)
n converges absolutely if |z − z0| < r and

diverges

if |z − z0| > r.

Next we prove the series converges uniformly on every compact subset interior to the

disk of convergence.

Let T be a compact subset of the disk of convergence. Then there is a point p in T such

that z ∈ T implies

|z − z0| ≤ |p− z0| < r

=⇒ |z − z0|n ≤ |p− z0|n ≤ rn

Hence, |an (z − z0)
n| ≤ |an (p− z0)

n| for each z in T.

By Weierstrass M -test, the series
∞∑
n=0

an (z − z0)
n converges uniformly.

Note : If the limit lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ exists, its value is also equal to the radius of convergence

of (32).

Example 1. Find the radius of convergence of
∞∑
n=0

zn.

∞∑
n=0

an(z − z0)
n =

∞∑
n=0

zn

here an = 1 and z0 = 0. Now

r = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ = lim
n→∞

∣∣∣∣11
∣∣∣∣r = 1

∴ r = 1.
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If |z| = 1, the series diverges, since {zn} does not tend to 0 as n → ∞.

Example 2. Find the radius of convergence of
∞∑
n=0

zn

n2 .

here an = 1
n2 .

r = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1/n2

1/(n+ 1)2

∣∣∣∣
= lim

n→∞

∣∣∣∣(n+ 1)2

n2

∣∣∣∣
= lim

n→∞

(
1 +

1

n2
+

2

n

)
= 1

∴ r = 1.

It converges for all z with |z| = 1, by the comparison test, since |zn/n2| = 1/n2.

Example 3. Find the radius of convergence of
∞∑
n=0

zn

n
.

here an = 1
n
.

r = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1/n

1/(n+ 1)

∣∣∣∣
= lim

n→∞

∣∣∣∣(n+ 1)

n

∣∣∣∣
= lim

n→∞

(
1 +

1

n

)
= 1

∴ r = 1.

The series diverges if z = 1. It converges for all other z with |z| = 1.

Theorem 4.8.2. Assume that the power series
∞∑
n=0

an(z − z0)
n converges for each z in

B(z0; r). Then the function f defined by the equation

f(z) =
∞∑
n=0

an(z − z0)
n, if z ∈ B(z0; r), (32)

is continuous on B(z0; r).

Proof. Assume that the power series
∞∑
n=0

an(z − z0)
n converges for each z in B(z0; r).

It is clear that each point in B(z0; r) belongs to some compact subset of B(z0; r).

Let z0 ∈ B(z0; r).

lim
z→z0

f(z)− f(z0) = lim
z→z0

∞∑
n=0

an(z − z0)
n
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=⇒ lim
z→z0

f(z)− f(z0) = 0 =⇒ lim
z→z0

f(z) = f(z0).

Hence, f is continuous at z0.

Since z0 is arbitrary, we have f is continuous on B(z0; r).

Note : The series in (32) is said to represent f in B(z0; r). It is also called a power

series expansion of f about z0.

Theorem 4.8.3. Assume that
∑

an(z − z0)
n converges if z ∈ B(z0; r). Suppose that the

equation

f(z) =
∞∑
n=0

an(z − z0)
n,

is known to be valid for each z in some open subset S of B(z0; r). Then, for each point z1

in S, there exists a neighborhood B(z1;R) ⊆ S in which f has a power series expansion

of the form

f(z) =
∞∑
k=0

bk(z − z1)
k, (33)

where

bk =
∞∑
n=k

(
n

k

)
an(z1 − z0)

n−k (k = 0, 1, 2, ....). (34)

Proof. Let z ∈ S.

Now

f(z) =
∞∑
n=0

an(z − z0)
n =

∞∑
n=0

an(z − z1 + z1 − z0)
n

=
∞∑
n=0

an

n∑
k=0

(
n

k

)
(z − z1)

k(z1 − z0)
n−k

=
∞∑
n=0

n∑
k=0

cn(k),

where

cn(k) =

{(
n
k

)
an(z − z1)

k(z1 − z0)
n−k, if k ≤ n,

0, if k > n.
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Now choose R such that B(z1;R) ⊆ S and assume that z ∈ B(z1;R).

z ∈ B(z1;R) =⇒ |z − z1| < R.

Then the iterated series
∞∑
n=0

∞∑
k=0

cn(k) converges absolutely, since

∞∑
n=0

∞∑
k=0

|cn(k)| =
∞∑
n=0

|an|(|z − z1|+ |z1 − z0|)n

=
∞∑
n=0

|an|(z0 + |z − z1|+ |z1 − z0| − z0)
n

=
∞∑
n=0

|an|(z2 − z0)
n (35)

where

z2 = z0 + |z − z1|+ |z1 − z0| =⇒ z2 − z0 = |z − z1|+ |z1 − z0|

=⇒ |z2 − z0| < R + |z1 − z0| ≤ r,

and hence the series in (35) converges.

Hence, by theorem 4.4.1, we can interchange the order of summation to obtain

f(z) =
∞∑
k=0

∞∑
n=0

cn(k) =
∞∑
k=0

∞∑
n=k

(
n

k

)
an(z − z1)

k(z1 − z0)
n−k

=
∞∑
k=0

bk(z − z1)
k,

where

bk =
∞∑
n=k

(
n

k

)
an(z1 − z0)

n−k.

Note : For any R > 0 that satisfies the condition

B(z1;R) ⊆ S.

Theorem 4.8.4. Assume that
∑

an(z − z0)
n converges for each z in B(z0; r). Then the

function f defined by the equation

f(z) =
∞∑
n=0

an(z − z0)
n, if z ∈ B(z0; r), (36)
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has a derivative f ′(z) for each z in B(z0; r), given by

f ′(z) =
∞∑
n=1

nan(z − z0)
n−1. (37)

Proof. Assume that z1 ∈ B(z0; r).

Hence, by theorem 4.8.3, f has a power series expansion of the form

f(z) =
∞∑
k=0

bk(z − z1)
k,

where

bk =
∞∑
n=k

(
n

k

)
an(z1 − z0)

n−k. (k = 0, 1, 2, ...) (38)

Let z ∈ B(z1;R) and z ̸= z1, we have

f(z)− f(z1) = b1(z − z1) +
∞∑
k=1

bk+1(z − z1)
k+1

f(z)− f(z1)

z − z1
= b1 +

∞∑
k=1

bk+1(z − z1)
k.

By theorem 4.8.2, f is continuous on B(z0; r).

∴ lim
z→z1

f(z)− f(z1)

z − z1
= b1 + lim

z→z1

∞∑
k=1

bk+1(z − z1)
k

=⇒ f ′(z1) = b1

To find b1:

Putting k = 1 in (38), we get

b1 =
∞∑
n=1

(
n

1

)
an(z1 − z0)

n−1

=
∞∑
n=1

nan(z1 − z0)
n−1.

Since z1 is an arbitrary point of B(z0; r),

∴ f ′(z) =
∞∑
n=1

nan(z − z0)
n−1.
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Note : The series in (36) and (37) have the same radius of convergence.

By repeated application of (37), we find that for each k = 1, 2, ..., the derivative f (k)(z)

exists in B(z0; r) and is given by the series

f (k)(z) =
∞∑
n=k

n!

(n− k)!
an(z − z0)

n−k. (39)

If we put z = z0 in (39), we obtain the important formula

f (k)(z0) = k!ak (k = 1, 2, ....).

This equation tells us that if two series
∑

an(z− z0)
n and

∑
bn(z− z0)

n both represent

the same function in a neighborhood B(z0; r), then an = bn for every n.

i.e., the power series expansion of a function f about a given point z0 is uniquely

determined, and it is given by the formula

f(z) =
∞∑
n=0

fn(z0)

n!
(z − z0)

n,

valid for each z in the disk of convergence.

Let us sum up

• We have discussed the concept of power series.

• We have discussed radius of convergence.

• We have solved example of radius of convergence.

4.8.1 Multiplication of Power Series

Theorem 4.8.5. Given two power series expansion about the origin, say

f(z) =
∞∑
n=0

anz
n, if z ∈ B(0; r),

and

g(z) =
∞∑
n=0

bnz
n, if z ∈ B(0;R).

Then the product f(z)g(z) is given by the power series

f(z)g(z) =
∞∑
n=0

cnz
n, if z ∈ B(0; r) ∩B(0;R),
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where

cn =
n∑

k=0

akbn−k (n = 0, 1, 2, . . . ).

Proof. The Cauchy product of the two given series is

f(z)g(z) =
∞∑
n=0

anz
n

∞∑
n=0

bnz
n

= (a0 + a1z + a2z
2 + · · · )(b0 + b1z + b2z

2 + · · · )

= a0b0 + (a0b1 + a1b0)z + (a0b2 + a1b1 + a2b0)z
2 + ......

= c0 + c1z + c2z
2 + · · ·

=
∞∑
n=0

cnz
n, where cn =

n∑
k=0

akbn−k.

Note : If the two series are identical, we get

f(z)2 =
∞∑
n=0

cnz
n,

where cn =
n∑

k=0

akan−k =
∑

m1+m2=n

am1am2 .

The symbol
∑

m1+m2=n

indicates that the summation is to be extended over all nonnega-

tive integers m1 and m2 whose sum is n.

Similarly, for any integer p > 0, we have

f(z)p =
∞∑
n=0

cn(p)z
n,

where

cn(p) =
∑

m1+m2+.....+mp=n

am1am2 ......amp .

4.8.2 The Taylor’s Series Generated By a Function

Definition 4.8.6. Let f be a real-valued function defined on an interval I in R. If f has

derivatives of every order at each point of I, we write f ∈ C∞ on I.

If f ∈ C∞ on some neighborhood of a point c, the power series
∞∑
n=0

f (n)(c)

n!
(x− c)n,

is called the Taylor’s series about c generated by f.
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Note : Taylor’s formula states that if f ∈ C∞ on the closed interval [a, b] and if c ∈ [a, b],

then for every x in [a, b] and for every n, we have

f(x) =
n−1∑
k=0

f (k)(c)

k!
(x− c)k +

f (n)(x1)

n!
(x− c)n,

where x1 is some point between x and c. The point x1 depends on x, c and on n.

A necessary and sufficient condition for the Taylor’s series to converge to f(x) is that

lim
n→∞

f (n)(x1)

n!
(x− c)n = 0.

Theorem 4.8.7. Assume that f ∈ C∞ on [a, b] and let c ∈ [a, b]. Assume that there is a

neighborhood B(c) and a constant M (which might depend on c) such that |f (n)(x)| ≤

Mn for every x in B(c) ∩ [a, b] and every n = 1, 2, .... Then, for each x in B(c) ∩ [a, b], we

have

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n.

4.8.3 Bernstein’s Theorem

Theorem 4.8.8. Assume f has a continuous derivative of order n + 1 in some open

interval I containing c, and define Es(x) for x in I by the equation

f(x) =
n∑

k=0

f (k)(c)

k!
(x− c)k + En(x). (40)

Then En(x) is also given by the integral

En(x) =
1

n!

∫ x

c

(x− t)nf (n+1)(t)dt. (41)

Proof. The proof is by induction on n.

Putting n = 1 in (40), we have

f(x) =
1∑

k=0

f (k)(c)

k!
(x− c)k + E1(x)

=
f (0)(c)

0!
(x− c)0 +

f (1)(c)

1!
(x− c)1 + E1(x)

= f(c) + f (′)(c)(x− c) + E1(x)

=⇒ E1(x) = f(x)− f(c)− f ′(c)(x− c)
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=

∫ x

c

[f ′(t)− f ′(c)] dt

=

∫ x

c

u(t) dv(t),

where u(t) = f ′(t)− f ′(c) and v(t) = t− x.

Integration by parts gives∫ x

c

u(t) dv(t) = u(x)v(x)− u(c)v(c)−
∫ x

c

v(t) du(t)

=

∫ x

c

(x− t)f ′′(t)dt

∴ E1(x) =

∫ x

c

(x− t)f ′′(t)dt.

The result is true for n = 1.

Now we assume that the result is true for n.

i.e., En(x) =
1

n!

∫ x

c

(x− t)nf (n+1)(t)dt.

To prove the result is true for n+ 1:

From (40) we have

En(x) = f(x)−
n∑

k=0

fk(c)

k!
(x− c)k

En+1(x) = f(x)−
n+1∑
k=0

fk(c)

k!
(x− c)k

= f(x)−
n∑

k=0

fk(c)

k!
(x− c)k − f (n+1)(c)

(n+ 1)!
(x− c)n+1

= En(x)−
f (n+1)(c)

(n+ 1)!
(x− c)n+1

∴ En+1(x) = En(x)−
f (n+1)(c)

(n+ 1)!
(x− c)n+1. (42)

Now

(n+ 1)

∫ x

c

(x− t)ndt = (n+ 1)

[
(x− t)n+1

n+ 1
(−1)

]x
c

=

[
− (x− t)n+1

]x
c

= −(x− x)n+1 + (x− c)n+1
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= (x− c)n+1.

Hence, putting En(x) =
1
n!

∫ x

c
(x− t)nf (n+1)(t)dt and using (x− c)n+1 = (n+ 1)

∫ x

c
(x−

t)ndt in (42), we get

En+1(x) =
1

n!

∫ x

c

(x− t)nf (n+1)(t)dt− f (n+1)(c)

n!

∫ x

c

(x− t)ndt

=
1

n!

∫ x

c

(x− t)n
[
f (n+1)(t)− f (n+1)(c)

]
dt

=
1

n!

∫ x

c

u(t)dv(t),

where u(t) = f (n+1)(t)− f (n+1)(c) and v(t) = −(x− t)n+1/(n+ 1).

Integration by parts gives us

En+1(x) = − 1

n!

∫ x

c

v(t)du(t)

=
1

n!

∫ x

c

(x− t)n+1

(n+ 1)
f (n+2)(t) dt

=
1

(n+ 1)!

∫ x

c

(x− t)n+1f (n+2)(t) dt.

This proves (41).

Note : The change of variable t = x + (c − x)u transforms the integral in (41) to the

form

En(x) =
(x− c)n+1

n!

∫ 1

0

unf (n+1)[x+ (c− x)u]du.

Theorem 4.8.9. (Bernstein). Assume f and all its derivatives are nonnegative on a

compact interval [b, b+ r]. Then, if b ≤ x < b+ r, the Taylor’s series

∞∑
k=0

f (k)(b)

k!
(x− b)k,

converges to f(x).

Proof. By a translation we can assume b = 0.

The result is trivial if x = 0.

Hence, we assume 0 < x < r.

We use Taylor’s formula with remainder and write

f(x) =
n∑

k=0

f (k)(0)

k!
xk + En(x). (43)
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We will prove that the error term satisfies the inequalities

0 ≤ En(x) ≤
(x
r

)n+1

f(r) (44)

This implies that En(x) → 0 as n → ∞, since (x/r)n+1 → 0 if 0 < x < r.

To prove (44):

Consider

En(x) =
(x− c)n+1

n!

∫ 1

0

unf (n+1)[x+ (c− x)u]du. (45)

Putting c = 0 in (45), we get

En(x) =
xn+1

n!

∫ 1

0

unf (n+1)(x− xu)du,

for each x in [0, r].

If x ̸= 0, let

Fn(x) =
En(x)

xn+1
=

1

n!

∫ 1

0

unf (n+1)(x− xu)du.

The function f (n+1) is monotonic increasing on [0, r] since its derivative is nonnegative.

Therefore we have

f (n+1)(x− xu) = f (n+1)[x(1− u)] ≤ f (n+1)[r(1− u)], if 0 ≤ u ≤ 1.

=⇒ Fn(x) ≤ Fn(r) if 0 < x ≤ r

=⇒ En(x)

xn+1
≤ En(r)

rn+1

=⇒ En(x) ≤
(x
r

)n+1

En(r).

Putting x = r in (43), we get En(r) ≤ f(r) since each term in the sum is nonnegative.

∴ En(x) ≤
(x
r

)n+1

f(r).

Hence the proof.
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4.8.4 Abel’s Limit Theorem

If −1 < x < 1, integration of the geometric series

1

1− x
=

∞∑
n=0

xn

gives us the series expansion

log(1− x) = −
∞∑
n=1

xn

n
,

also valid for −1 < x < 1.

Theorem 4.8.10. (Abel’s limit theorem). Assume that we have

f(x) =
∞∑
n=0

anx
n, if − r < x < r. (46)

If the series also converges at x = r, then the limit lim
x→r−

f(x) exists and we have

lim
x→r−

f(x) =
∞∑
n=0

anr
n.

Proof. Assume that r = 1 and
∑

an converges.

Let f(x) =
∞∑
n=0

anx
n for −1 < x < 1.

If x = 1, let f(1) =
∞∑
n=0

an.

To prove : lim
x→r−

f(x) = f(1).

i.e., we prove f is continuous from the left at x = 1.

Consider

f(x) =
∞∑
n=0

anx
n.

Multiply the series for f(x) by the geometric series, and by theorem 4.8.5, we have

1

1− x
f(x) =

∞∑
n=0

xn

∞∑
n=0

anx
n =

∞∑
n=0

cnx
n,

where

cn =
n∑

k=0

ak.
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Hence we have

f(x)− f(1) = (1− x)
∞∑
n=0

[cn − f(1)]xn, if − 1 < x < 1. (47)

By hypothesis, lim
n→∞

cn = f(1).

Hence, given ϵ > 0, we can find that N such that n ≥ N implies |cn − f(1)| < ϵ
2
.

If we split the sum (46) into two parts, we get

f(x)− f(1) = (1− x)
N−1∑
n=0

[cn − f(1)]xn + (1− x)
∞∑

n=N

[cn − f(1)]xn. (48)

Let M denote the largest of the N numbers |cn − f(1)|, n = 0, 1, 2, ...., N − 1.

If 0 < x < 1, (41) gives

|f(x)− f(1)| ≤ (1− x)NM + (1− x)
ϵ

2

∞∑
n=N

xn

= (1− x)NM + (1− x)
ϵ

2
(xN + xN+1 + · · · )

= (1− x)NM + (1− x)
ϵ

2
xN(1 + x+ x2 + · · · )

= (1− x)NM + (1− x)
ϵ

2

xN

1− x

< (1− x)NM +
ϵ

2
.

Now let us choose δ = ϵ
2NM

. Then 0 < 1− x < δ implies |f(x)− f(1)| < ϵ. Therefore,

lim
x→1−

f(x) = f(1).

Theorem 4.8.11. Let
∞∑
n=0

an and
∞∑
n=0

bn be two convergent series and let
∞∑
n=0

cn denote

their Cauchy product. If
∞∑
n=0

cn converges, we have

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

Proof. The two power series
∞∑
n=0

anx
n and

∞∑
n=0

bnx
n both converge for x = 1.

Hence, they converge in the neighborhood B(0; 1).

Assume |x| < 1, Then by using theorem 4.8.5 we have

∞∑
n=0

cnx
n =

( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
.
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Now let x → 1− and apply Abel’s theorem, we get

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

Let us sum up

• We have proved the Abel limit theorem.

4.8.5 Tauber’s Theorem

The converse of Abel’s limit theorem is false in general. That is, if
∫

is given by (46),

the limit f(r−) may exist but yet the series
∑

anr
n may fail to converge.

Example. Let an = (−1)n. Then

f(x) =
∞∑
n=0

(−1)nxn if − 1 < x < 1

=⇒ f(x) =
1

1 + x
if − 1 < x < 1

=⇒ f(x) → 1

2
as x → 1− .

However, the series
∑

(−1)n diverges.

Theorem 4.8.12. (Tauber). Let f(x) =
∞∑
n=0

anx
n for −1 < x < 1, and assume that

lim
n→∞

nan = 0. If f(x) → S as x → 1−, then
∞∑
n=0

an converges and has sum S.

Proof. Let

nσn =
n∑

k=0

k |ak| =⇒ σn =
1

n

n∑
k=0

k |ak| .

Then

σn → 0 as n → ∞.

Also,

lim
n→∞

f (xn) = S if xn = 1− 1

n
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Hence, given ϵ > 0, we can choose N so that n ≥ N implies

|f (xn)− S| < ε

3
, σn <

ε

3
, n |an| <

ε

3
.

Now let sn =
n∑

k=0

ak.

Then, for −1 < x < 1, we can write

sn − S = f(x)− S +
n∑

k=0

ak
(
1− xk

)
−

∞∑
k=n+1

akx
k

Now let x ∈ (0, 1). Then for each k,

(
1− xk

)
= (1− x)

(
1 + x+ · · ·+ xk−1

)
≤ k(1− x)

Therefore, if n ≥ N and 0 < x < 1, we have

|sn − S| ≤ |f(x)− S|+ (1− x)
π∑

i=0

k |ak|+
ε

3n(1− x)

Taking x = xn = 1− 1/n, we get

|sn − S| < ε/3 + ε/3 + ε/3 = ε.

Hence the proof.

Let us sum up

• We have studied about multiplication of power series.

• We have discussed the Taylor’s series generated by a function.

• We have derived Bernstein’s Theorem.

• We have proved the Abel limit theorem and the Tauber theorem.

• We have discussed Cauchy product of the series.

Summary

• Introduced the concept of double sequence and series discussed their conver-

gence with some examples.

• Discuss the rearrangement theorem for Double series.
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• Discussed the Cesaro Summability and some examples

• Discussed about infinite products.

• Derived Cauchy condition for product.

• Discussed Absolute convergence of infinite product implies convergence.

• Introduced the concept of power series and radius of convergence with its prop-

erties

• Discussed the Taylor’s series generated by a function.

• Derived Bernstein’s Theorem.

• Derived Abel’s limit theorem.

• Discussed Cauchy product of the series.

Exercises

1. Investigate the existence of the two iterated limits and the double lint of the

double sequence f defined by

a) f(p, q) =
1

p+ q
b) f(p, q) =

cos p

q

2. Prove that a double series of positive terms converges if and only if the set of

partial sums is bounded.

3. Show that a double series converges if it converges absolutely.

4. Show that the sum of the series 1 − 1 − 1 + 1 + 1 − 1 − 1 + 1 + 1 · · · has (C, 1)

sum 0.

5. Prove the following statements:

a) A double series of positive terms converges if and only if the set of partial

sums is bounded.

b) A double series converges if it converges absolutely.

c)
∑

m,n e
−(m2+n2) converges.
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6. A series of the form
∑∞

n=1 an/n
s is called a Dirichlet series. Given two ab-

solutely convergent Dirichlet series, say
∑∞

n=1 an/n
s and

∑∞
n=1 bn/n

s, having

sums A(s) and B(s), respectively. Show that
∑∞

n=1 cn/n
s = A(s)B(s) where

cn =
∑

d|n adbn/d.

7. Given a series
∑

an, let

sn =
n∑

k=1

ak tn =
n∑

k=1

kak σn =
n∑

k=1

sk.

Prove that

a) tn = (n+ 1)sn − nσn.

b) If
∑

an is (C, 1) summable, then
∑

an converges if and only if tn = o(n) as

n → ∞.

c)
∑

an is (C, 1) summable if and only if
∑∞

n=1 tn/n(n+ 1) converges.

8. a) Let an = (−1)n/
√
n for n = 1, 2, · · · . Show that

∏
(1 + an) diverges but that∑

an converges.

b) Let a2n−1 = −1/
√
n, a2n = 1/

√
n+ 1/n for n = 1, 2, · · · . Sow that

∏
(1 + an)

converges but that
∑

an diverges.
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Unit 5

Sequences of Functions

Objectives

After the successful completion of this unit, the learners are expected to

• recall the basic concepts of sequence of functions and series of functions.

• analyse whether a given sequence or series of functions converge pointwise (or)

uniformly.

• derive necessary conditions under which the continuity, differentiability or inte-

grability may be transferred to the limit function.

5.1 Introduction

In mathematical analysis, sequences and series of functions are important concepts,

particularly when exploring the behavior of functions as they approach certain limits.

They finds applications in Fourier series and power series. Understanding sequences

and series of functions is crucial in areas such as functional analysis, partial differential

equations, and approximation theory.

In this chapter, we will introduce two different notion of convergence of sequence

of functions namely, pointwise convergence and uniform convergence. We will see

that uniform convergence is a stronger form of convergence for sequences of functions

compared to pointwise convergence.
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5.2 Pointwise Convergence of Sequence of Functions

Let {fn} be a sequence whose terms are real or complex-valued functions defined on

the same domain on the real line R or in the complex plane C.

For each x in the domain, we see that the sequence {fn(x)} is a sequence of real

numbers whose terms are the corresponding function values. Let S denote the set of

x for which this second sequence converges.

The function f defined by the equation

f(x) = lim
n→∞

fn(x), if x ∈ S,

is called the limit function of the sequence {fn}, and we say that {fn} converges

pointwise to f on the set S.

If {fn} converges pointwise on E, then there exists a function f such that, for every

ϵ > 0 and for every x ∈ E, there is an integer N (depending on ϵ and x) such that

n > N =⇒ |fn(x)− f(x)| < ϵ.

5.3 Examples of Sequences of Real-Valued Functions

We will provide an example of a sequence of continuous functions with a discontinuous

limit function.

Example 1. Let

fn(x) =
x2n

(1 + x2n)
, if x ∈ R, n = 1, 2, . . .

In this case, lim
n→∞

fn(x) exists for every real x, and the limit function f is given by

f(x) =


0 if |x| < 1,
1
2

if |x| = 1,

1 if |x| > 1.

We see that each fn is continuous on R, but the limit function f is discontinuous at

x = 1 and x = −1.

Next, we provide an example of a sequence of functions for which

lim
n→∞

∫ 1

0

fn(x)dx ̸=
∫ 1

0

lim
n→∞

fn(x)dx.
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Example 2. Let

fn(x) = n2x(1− x)n, if x ∈ R, n = 1, 2, . . .

If 0 ≤ x ≤ 1 the limit f(x) = lim
n→∞

fn(x) exists and equals 0.∫ 1

0

f(x) dx = 0.

∫ 1

0

fn(x) dx = n2

∫ 1

0

x(1− x)n dx = n2

∫ 1

0

(1− t)tn dt

=
n2

n+ 1
− n2

n+ 2
=

n2

(n+ 1)(n+ 2)

∴ lim
n→∞

∫ 1

0

fn(x) dx = 1.

We will provide an example of a sequence of differentiable functions {fn} with limit

as 0 for which {f ′
n} diverges.

Example 3. Let

fn(x) =
sinnx√

n
, if x ∈ R, n = 1, 2, . . .

Then

lim
n→∞

fn(x) = 0 ∀x.

But

f ′
n(x) =

√
n cos nx,

so lim
n→∞

f ′
n(x) does not exist for any x.

Example 4. Let fn(x) = xn for x ∈ (0, 1) and n ∈ N. Then we see that fn(x) → 0 for

every x ∈ (0, 1). Thus, (fn) converges pointwise to the zero function on (0, 1). Note

that if there exists N ∈ N such that |xn| < ϵ for all n ≥ N and for all x ∈ (0, 1), then,

letting x → 1, we would get 1 ≤ ϵ, which is not possible, had we chosen ϵ < 1. Thus,

the convergence is not uniform.

In fact, for a given ϵ > 0,

|fn(x)− f(x)| < ϵ ⇔ xn < ϵ ⇔ 1

ϵ
<

(
1

x

)n

⇔ n >
ln(1/ϵ)

ln(1/x)
.

Hence, we are not in a position find an integer N independent of x such that

|fn(x)| < ϵ for all x ∈ (0, 1) and for all n ≥ N .
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Let us sum up

• We have defined the concept of pointwise convergence of a sequence of functions

• We have seen several examples of sequence of functions that converge pointwise.

5.4 Definition of Uniform Convergence

Definition 5.4.1. A sequence of functions {fn} is said to converge uniformly to f on a

set S if, for every ϵ > 0, there exists an N(depending only on ϵ) such that n > N implies

|fn(x)− f(x)| < ϵ, for every x in S.

We symbolically write this as

fn → f uniformly on S.

Definition 5.4.2. A sequence {fn} is said to be uniformly bounded on S if there exists

a constant M > 0 such that |fn(x)| ≤ M for all x in S and for all n. The number M is

called a uniform bound for {fn} .

Let us sum up

• We have defined the notion of uniform convergence of a sequence of functions.

Check your progress

1. If {fn} and {gn} converge uniformly on a set S, prove that {fn + gn} converges

uniformly on S. If, in addition, {fn}, and {gn}, are sequences of bounded func-

tions, prove that {fngn} converges uniformly on S.

5.5 Uniform Convergence and Continuity

Theorem 5.5.1. Assume that {fn} → f uniformly on S. If each {fn} is continuous at a

point c of S, then the limit function f is also continuous at c.

Proof. Assume that fn → f uniformly on S.

If c is an isolated point of S, then f is automatically continuous at c.
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Assume that c is an accumulation point of S.

By our assumption, for every ϵ > 0 there is an N such that n ≥ N implies

|fn(x)− f(x)| < ϵ

3
, for every x in S.

Since fN is continuous at c, there is a neighborhood B(c) such that x ∈ B(c) ∩ S

=⇒ |fN(x)− fN(c)| <
ϵ

3
.

Consider

|f(x)− f(c)| = |f(x)− fN(x) + fN(x)− fN(c) + fN(c)|

≤ |f(x)− fN(x)|+ |fN(x)− fN(c)|+ |fN(c)− f(c)|

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

∴ |f(x)− f(c)| < ϵ.

Hence f is continuous at c.

Let us sum up

We have seen that the limit function of a uniformly convergent sequence of continuous

functions is continuous.

Check your progress

1. Let {fn} be a sequence of continuous functions which converges uniformly to a

function f on a set E. Prove that lim
n→∞

fn(xn) = f(x) for every sequence of points

xn ∈ E such that xn → x, and x ∈ E.

5.6 The Cauchy Condition for Uniform Convergence

Theorem 5.6.1. Let {fn} be a sequence of functions defined on a set S. There exists a

function f such that {fn} → f uniformly on S if and only if the following condition

(called the Cauchy condition) is satisfied: For every ϵ > 0 there exists an N such that

m > N and n > N implies

|fm(x)− fn(x)| < ϵ, ∀ x ∈ S.
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Proof. Assume that fn → f uniformly on S.

Then, for given ϵ > 0, there exists N such that n > N implies

|fn(x)− f(x)| < ϵ

2
, for all x ∈ S.

Let m > N.

∴ |fm(x)− f(x)| < ϵ

2
, for all x ∈ S.

Consider

|fn(x)− fm(x)| = |fn(x)− f(x) + f(x)− fm(x)|

≤ |fn(x)− f(x)|+ |f(x)− fm(x)| <
ϵ

2
+

ϵ

2
= ϵ.

Conversely, suppose the Cauchy condition is satisfied.

Hence, for each x in S, the sequence {fn(x)} converges.

Let f(x) = lim
m→∞

fn(x) if x ∈ S.

To prove : fn → f uniformly on S.

Let ϵ > 0 be given. Then by Cauchy condition

|fn(x)− fm(x)| < ϵ if n, m > N.

Keeping n fixed and letting m → ∞, we have

lim
m→∞

|fn(x)− fm(x)| = |fn(x)− f(x)| < ϵ

∴ |fn(x)− f(x)| < ϵ if n > N.

This proves that fn → f uniformly on S.

Note : If {fn} and f are functions from a nonempty set S to a metric space (T, dT ), we

say that fn → f uniformly on S, if, for every ϵ > 0, there is an N(depending only on ϵ)

such that n ≥ N implies

dT (fn(x), f(x)) < ϵ, ∀ x ∈ S.

Let us sum up

• We have proved the Cauchy criterion for uniform convergence of a sequence of

functions. It is a test for uniform convergence of a given sequence of functions.
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5.7 Uniform Convergence of Infinite Series of Functions

Definition 5.7.1. Given a sequence {fn} of functions defined on a set S. For each x in S,

let

sn(x) =
n∑

k=1

fk(x) (n = 1, 2, . . . ). (49)

If there exists a function f such that sn → f uniformly on S, we say the series
∑

fn(x)

converges uniformly on S and we write
∞∑
n=1

fn(x) = f(x) (uniformly on S).

Theorem 5.7.2. (Cauchy condition for uniform convergence of series). The infinite

series
∑

fn(x) converges uniformly on S if and only if for every ϵ > 0 there is an N such

that n > N implies ∣∣∣∣ n+p∑
k=n+1

fk(x)

∣∣∣∣ < ϵ,

for each p = 1, 2, . . . and every x in S.

Proof. Assume that
∑

fn(x) converges uniformly on S.

Let sn(x) =
n∑

k=1

fk(x) (n = 1, 2, . . . ) be the partial sum of the series
∑

fn(x).

Hence, sn(x) converges uniformly on S.

By theorem 5.5.1, for given ϵ > 0, there is an N such that n > N, m > N implies

|sn(x)− sm(x)| < ϵ ∀ x ∈ S.

For m > n, let m = n+ p, p = 1, 2, . . .

∴

∣∣∣∣ n∑
k=1

fk(x)−
n+p∑
k=1

fk(x)

∣∣∣∣ < ϵ

∴

∣∣∣∣ n+p∑
k=n+1

fk(x)

∣∣∣∣ < ϵ,

for each p = 1, 2, · · · and every x in S.

Conversely, assume the Cauchy condition for uniform convergence of series is satisfied.

i.e., for every ϵ > 0 there is an N such that n > N implies∣∣∣∣ n+p∑
k=n+1

fk(x)

∣∣∣∣ < ϵ,
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for each p = 1, 2, . . . and every x in S.

=⇒ |sn(x)− sn+p(x)| < ϵ for all p = 1, 2, . . . and for all x ∈ S.

This implies the partial sum sn(x) of the series
∑

fn(x) converges uniformly on S.

Hence,
∑

fn(x) converges uniformly on S.

Theorem 5.7.3. (Weierstrass M-test). Let {Mn} be a sequence of nonnegative numbers

such that

0 ≤ |fn(x)| ≤ Mn, for n = 1, 2, · · · and ∀ x ∈ S.

Then
∑

fn(x) converges uniformly on S if
∑

Mn converges.

Proof. Assume
∑

Mn converges.

To prove :
∑

fn(x) converges uniformly on S.

Let ϵ > 0 be given.

Let sn(x) = f1(x) + f2(x) + · · ·+ fn(x) and Pn = M1 +M2 + · · ·+Mn.

Since {Pn} converges in R, we have {Pn} is a Cauchy sequence in R.

Hence, there exists N ∈ N such that

|Pn − Pm| < ϵ for all n,m ≥ N.

i.e., |Mm+1 +Mm+2 + · · ·+Mn| < ϵ for all n,m ≥ N with n > m

i.e., Mm+1 +Mm+2 + · · ·+Mn < ϵ for all n,m ≥ N with n > m (Mn ≥ 0 ∀ n).

Now for n > m we have

|sn(x)− sm(x)| = |fm+1(x) + fm+2(x) + · · ·+ fn(x)|

≤ |fm+1(x)|+ |fm+2(x)|+ · · ·+ |fn(x)|

≤ Mm+1 +Mm+2 + · · ·+Mn < ϵ.

∴ |sn(x)− sm(x)| < ϵ ∀ n,m ≥ N and ∀ x ∈ S.

By theorem 5.5.1, {sn} converges uniformly on S.

Hence,
∑

fn(x) converges uniformly on S.

Hence the proof.
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Theorem 5.7.4. Assume that
∑

fn(x) = f(x) (uniformly on S). If each fn is continuous

at a point x0 of S, then f is also continuous at x0.

Proof. Assume that
∑

fn(x) = f(x) uniformly on S, and each fn is continuous at a

point x0 of S.

Define

sn(x) =
n∑

k=1

fk(x) (n = 1, 2, · · · ).

For each n, since each fn is continuous at x0, sn is also continuous at x0.

By our assumption sn → f uniformly on S.

Hence, by using theorem 5.4.1, we have f is continuous at x0.

Let us sum up

• Introduced the notion of uniform convergence of series of functions

• Developed a test for uniform convergence, namely Weierstrass M-test.

5.8 Uniform Convergence and Riemann-Stieltjes Inte-
gration

Theorem 5.8.1. Let α be of bounded variation on [a, b]. Assume that each term of the

sequence {fn} is a real-valued function such that fn ∈ R(α) on [a, b] for each n = 1, 2, ....

Assume that fn → f uniformly on [a, b] and define gn(x) =
∫ x

a
fn(t)dα(t) if x ∈ [a, b],

n = 1, 2, ... Then we have

a) f ∈ R(α) on [a, b].

b) gn → g uniformly on [a, b], where g(x) =
∫ x

a
f(t)dα(t).

Proof. Assume that α is increasing on [a, b] and α(a) < α(b).

Assume that each term of the sequence {fn} is a real-valued function such that

fn ∈ R(α) on [a, b] for all n = 1, 2, . . .

Assume that fn → f uniformly on [a, b].

Define

gn(x) =

∫ x

a

fn(t)dα(t) if x ∈ [a, b].
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To prove : f ∈ R(α) on [a, b].

We show that f satisfies Riemann’s condition with respect to α on [a, b].

Since fn → f uniformly on [a, b], for given ϵ > 0, we can choose N such that

|f(x)− fN(x)| <
ϵ

3[α(b)− α(a)]
. ∀ x ∈ [a, b].

Let P be a partition of [a, b].

Now

|U(P, f − fN , α)| =
N∑
k=1

|f(k)− fN(k)|∆αk

<
ϵ

3[α(b)− α(a)]

N∑
k=1

∆αk

=
ϵ

3[α(b)− α(a)]
.[α(b)− α(a)] <

ϵ

3
.

∴ |U(P, f − fN , α)| <
ϵ

3
.

Similarly, we have

L(P, f − fN , α)| <
ϵ

3
.

For this N, choose Pϵ be a partition of [a, b] such that P finer than Pϵ implies

U(P, fN , α)− L(P, fN , α) <
ϵ

3
.

For such P, we have

U(P, f, α)− L(P, f, α) ≤ U(P, f − fN , α)− L(P, f − fN , α) + U(P, fN , α)− L(P, fN , α)

< |U(P, f − fN , α)|+ |L(P, f − fN , α)|+
ϵ

3

=
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

∴ U(P, f, α)− L(P, f, α) < ϵ.

To prove : (b)

Let ϵ > 0 be given.

Since fn → f uniformly on [a, b], for given ϵ > 0 we can choose N such that n ≥ N

implies

|fn(t)− f(t)| < ϵ

2[α(b)− α(a)]
,
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for all n > N and every t in [a, b].

Let x ∈ [a, b], we have

|gn(x)− g(x)| =
∣∣∣∣ ∫ x

a

fn(t)dα(t)−
∫ x

a

f(t)dα(t)

∣∣∣∣
=

∣∣∣∣ ∫ x

a

[fn(t)− f(t)]dα(t)

∣∣∣∣
≤

∫ x

a

|fn(t)− f(t)|dα(t)

<
ϵ

2[α(b)− α(a)]

∫ x

a

dα(t)

=
ϵ

2[α(b)− α(a)]

∫ x

a

α′(t)dt

=
ϵ

2[α(b)− α(a)]
[α(x)− α(a)] ≤ ϵ

2
< ϵ. (∵ α(x) < α(b))

∴ |gn(x)− g(x)| < ϵ.

This proves that gn → g uniformly on [a, b].

Note : The conclusion implies that, for each x in [a, b], we can write

lim
n→∞

∫ x

a

fn(t)dα(t) =

∫ x

a

lim
n→∞

fn(t)dα(t).

This property is often described by saying that a uniformly convergent sequence can

be integrated term by term.

Theorem 5.8.2. Let α be of bounded variation on [a, b] and assume that
∑

fn(x) = f(x)

(uniformly on [a, b]), where each fn is a real-valued function such that fn ∈ R(α) on

[a, b]. Then we have

a) f ∈ R(α) on [a, b].

b)
∫ x

a

∞∑
n=1

fn(t)dα(t) =
∞∑
n=1

∫ x

a
fn(t)dα(t) (uniformly on [a, b]).

Proof. Assume that α is increasing on [a, b] and α(a) < α(b).

Assume that
∑

fn(x) = f(x) uniformly on [a, b], where each fn is a real-valued function

such that fn ∈ R(α) on [a, b].

To prove : f ∈ R(α).

Define

sn(x) =
n∑

k=1

fk(x)
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Since
∑

fn(x) = f(x) uniformly on [a, b], sn → f uniformly on [a, b].

By theorem 5.7.1. part (a), we have f ∈ R(α).

To prove : (b)

By theorem 5.7.1. part (b), we have

lim
n→∞

∫ x

a

sn(x) dα(x) =

∫ x

a

f(x) dα(x)

=⇒ lim
n→∞

∫ x

a

n∑
k=1

fk(x) dα(x) =

∫ x

a

f(x) dα(x)

=⇒ lim
n→∞

n∑
k=1

∫ x

a

fk(x) dα(x) =

∫ x

a

f(x) dα(x)

=⇒
∞∑
n=1

∫ x

a

fk(x) dα(x) =

∫ x

a

∑
fn(x) dα(x) (∵

∑
fn(x) = f(x)).

5.9 Nonuniformly Convergent Sequences that can be
Integrated Term by Term

Uniform convergence is a sufficient but not a necessary condition for term by term

integration.

Example. Let

fn(x) = xn, if 0 ≤ x ≤ 1.

The limit function of the sequence {fn} is given by

f(x) =

{
0 0 ≤ x < 1,

1 x = 1.

∫ 1

0

fn(x)dx =

∫ 1

0

xndx =

[
xn+1

n+ 1

]1
0

=
1

n+ 1
.

∴ lim
n→∞

∫ 1

0

fn(x)dx = lim
n→∞

1

n+ 1
= 0.

and ∫ 1

0

f(x)dx = 0.
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Definition 5.9.1. A sequence of functions {fn} is said to be boundedly convergent on T

if {fn} is pointwise convergent and uniformly bounded on T.

Theorem 5.9.2. Let {fn} be a boundedly convergent sequence on [a, b]. Assume that each

fn ∈ R on [a, b], and that the limit function f ∈ R on [a, b]. Assume also that there is a

partition P of [a, b], say

P = {x0, x1, . . . , xn} ,

such that, on every subinterval [c, d] not containing any of the points xk, the sequence

{fn} converges uniformly to f. Then we have

lim
n→∞

∫ b

a

fn(t)dt =

∫ b

a

lim
n→∞

fn(t)dt =

∫ b

a

f(t)dt.

Proof. Assume that {fn} be a boundedly convergent sequence on [a, b].

Assume that each fn ∈ R on [a, b], and that the limit function f ∈ R on [a, b].

Assume also that there is a partition P of [a, b], say

P = {x0, x1, . . . , xn} ,

such that, on every subinterval [c, d] not containing any of the points xk, the sequence

{fn} converges uniformly to f.

By our assumption f is bounded and {fn} is uniformly bounded, there is a positive

number M such that

|f(x)| ≤ M and |fn(x)| ≤ M ∀ x ∈ [a, b], ∀ n ≥ 1.

Let ϵ > 0 be given such that 2ϵ < ∥P∥, let h = ϵ
2m

, where m is the number of subinter-

vals of P.

Consider a new partition P ′ of [a, b] given by

P ′ = {x0, x0 + h, x1 − h, x1 + h, ...., xm−1 − h, xm−1 + h, xm − h, xm} .

Now ∀ x ∈ [a, b],

|f(x)− fn(x)| ≤ |f(x)|+ |fn(x)| ≤ M +M = 2M.

∴ |f(x)− fn(x)| ≤ 2M.
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Since fn ∈ R on [a, b] and f ∈ R on [a, b], f − fn ∈ R on [a, b].

Hence, |f − fn| is integrable on [a, b].∫ b

a

|f − fn|dx =

∫ x0+h

x0

|f − fn|dx+

∫ x1+h

x1−h

|f − fn|dx+ · · ·+
∫ xm

xm−h

|f − fn|dx

≤ 2M

∫ x0+h

x0

dx+ 2M

∫ x1+h

x1−h

dx+ · · ·+ 2M

∫ xm

xm−h

dx

= 2M [2h+ 2h+ · · ·+ 2h(m times)]

= 2M(2mh).

Hence, the sum of the integrals of |f − fn| taken over the intervals

[x0, x0 + h], [x1 − h, x1 + h], . . . , [xm−1 − h, xm−1 + h], [xm − h, xm, ]

is at most 2M(2mh) = 2Mϵ.

The remaining portion of [a, b](say S) is the union of a finite number of closed intervals,

in each of which {fn} is uniformly convergent to f.

Hence, there is an integer N (depending only on ϵ) such that for all x in S we have

|f(x)− fN(x)| < ϵ if n ≥ N.

Hence the sum of the integrals of |f − fn| over the intervals of S is at most ϵ(b− a).

∴
∫ b

a

|f(x)− fn(x)| dx ≤ (2M + b− a)ϵ if n ≥ N.

This proves that ∫ b

a

fn(x) dx →
∫ b

a

f(x) dx as n → ∞.

Theorem 5.9.3. (Arzela). Assume that {fn} is boundedly convergent on [a, b] and sup-

pose each {fn} is Riemann-integrable on [a, b]. Assume also that the limit function f is

Riemann-integrable on [a, b]. Then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

lim
n→∞

fn(x) dx =

∫ b

a

f(x) dx.

Proof. Assume that {fn} is boundedly convergent on [a, b] and {fn} is Riemann-integrable

on [a, b].
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i.e., {fn} is uniformly convergent to f, where f is is Riemann-integrable on [a, b].

Hence,
∫ b

a
fn dx and

∫ b

a
f dx exist.

Since fn → f uniformly, there exists N such that

|fn − f | < ϵ ∀ n ≥ N.

fn − ϵ < f < fn + ϵ for n ≥ N.

=⇒
∫ b

a

fn dx− ϵ(b− a) ≤
∫ b

a

f dx ≤
∫ b

a

fn dx+ ϵ(b− a) for n ≥ N.

=⇒ −ϵ(b− a) ≤
∫ b

a

fn dx−
∫ b

a

f dx ≤ ϵ(b− a) for n ≥ N.

=⇒
∣∣∣∣ ∫ b

a

fn dx−
∫ b

a

f dx

∣∣∣∣ < ϵ(b− a)

∴
∫ b

a

fn dx →
∫ b

a

f dx.

5.10 Uniform Convergence and Differentiation

Let us recall the following example from the previous section.

Example. If fn(x) =
sinnx√

n
, for x ∈ R, n = 1, 2, . . . , then

lim
n→∞

fn(x) = 0 ∀x.

But

f ′
n(x) =

√
n cosnx.

So lim
n→∞

f ′
n(x) does not exist for any x.

From the above example, we see that the uniform convergence of a sequence fn de-

fined on R does not even imply guarantee the pointwise convergence of the sequence

{f ′
n}. Thus we state the result in the following way:
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Theorem 5.10.1. Assume that each term of {fn} is a real-valued function having a finite

derivative at each point of an open interval (a, b). Assume that for at least one point x0 in

(a, b) the sequence {fn(x0)} converges. Assume further that there exists a function g such

that f ′
n → g uniformly on (a, b). Then :

a) There exists a function f such that fn → f uniformly on (a, b).

b) For each x in (a, b) the derivative f ′(x) exists and equals g(x).

Proof. To prove :(a)

Assume that c ∈ (a, b) and define a new sequence {gn} as follows:

gn(x) =

{
fn(x)−fn(c)

x−c
if x ̸= c,

f ′
n(c) if x = c.

Note that the sequence {gn(c)} converges, since gn(c) = f ′
n(c) and the sequence f ′

n(c)

converges.

Let x ̸= c. Then,

gn(x)− gm(x) =
fn(x)− fn(c)

x− c
− fm(x)− fm(c)

x− c

=
[fn(x)− fm(x)]− [fn(c)− fm(c)]

x− c

Putting h(x) = fn(x)− fm(x), we get

gn(x)− gm(x) =
h(x)− h(c)

x− c
.

Since each fn is differentiable in (a, b), h′(x) exists for each x in (a, b) and

h′(x) = f ′
n(x)− f ′

m(x).

By Mean-Value Theorem, there is a point x1 ∈ (x, c) such that

h(x)− h(c) = h′(x1)(x− c)

=⇒ gn(x)− gm(x) = f ′
n(x1)− f ′

m(x1),

since the sequence {f ′
n} converges uniformly on (a, b) and by using Cauchy criterion,

for given ϵ > 0, there is an N such that n, m ≥ N implies

|f ′
n(x1)− f ′

m(x1)| < ϵ if n ≥ N, m ≥ N, x1 ∈ (x, c)
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=⇒ |gn(x)− gm(x)| < ϵ ∀ x ∈ (a, b).

Hence, the sequence {gn} converges uniformly on (a, b).

Now, we show that {fn} converges uniformly on (a, b).

Let c = x0. Then

gn(x) =
fn(x)− fn(x0)

x− x0

=⇒ fn(x) = fn(x0) + (x− x0)gn(x)

For n > N, m > N, we have

fn(x)− fm(x) = fn(x0)− fm(x0) + (x− x0)[gn(x)− gm(x0)].

By Cauchy criterion, we have

|fn(x)− fm(x)| ≤ |fn(x0)− fm(x0)|+ |x− x0||gn(x)− gm(x0)|

< ϵ+ (b− a)ϵ.

which implies that {fn} satisfies the Cauchy criterion.

Hence, {fn} converges uniformly on (a, b).

To prove (b): Let c ∈ (a, b) be arbitrary.

Claim:f ′(c) = g(c).

Since {gn} converges uniformly on (a, b), let lim
n→∞

gn(x) = G(x).

By hypothesis, f ′
n exists. Therefore,

lim
x→c

gn(x) = gn(c)

i.e.,gn is continuous at c.

Since gn → G uniformly on (a, b), the limit function G is also continuous at c. There-

fore,

G(c) = lim
x→c

G(x).

For x ̸= c,

G(x) = lim
n→∞

gn(x) = lim
n→∞

fn(x)− fn(c)

x− c
=

f(x)− f(c)

x− c
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and

G(c) = lim
x→c

G(x) = lim
x→c

f(x)− f(c)

x− c
= f ′(c).

But

G(c) = lim
n→∞

gn(c) = lim
n→∞

f ′
n(c) = g(c).

Therefore,

f ′(c) = g(c).

Theorem 5.10.2. Assume that each fn is a real-valued function defined on (a, b) such

that the derivative f ′
n(x) exists for each x in (a, b). Assume that, for at least one point x0

in (a, b), the series
∑

fn(x0) converges. Assume further that there exists a function g such

that
∑

f ′
n(x) = g(x) (uniformly on (a, b)). Then

(a) There exists a function f such that
∑

fn(x) = f(x) (uniformly on (a, b)).

(b) If x ∈ (a, b), the derivative f ′(x) exists and equals
∑

f ′
n(x).

Let us sum up

• We have derived sufficient condition for the uniform convergence of the differ-

entiable functions.

Check your progress

1. The sequence fn(x) =
cosnx√

n
(x real, n = 1, 2, 3, . . .)

(A) converges uniformly on R

(B) f ′
n → f ′ on R

(C) {f ′
n} does not converge on R

(D) converges uniformly on [0, 1] only

5.11 Sufficient Conditions for Uniform Convergence of
a Series

Theorem 5.11.1. (Dirichlet’s test for uniform convergence). Let Fn(x) denote the nth

partial sum of the series
∑

fn(x), where each fn is a complex-valued function defined on
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a set S. Assume that {Fn} is uniformly bounded on S. Let {gn} be a sequence of real-

valued functions such that gn+1(x) ≤ gn(x) for each x in S and for every n = 1, 2, . . ., and

assume that gn → 0 uniformly on S. Then the series
∑

fn(x)gn(x) converges uniformly

on S.

Proof. Let

sn(x) =
n∑

k=1

fk(x)gk(x)

denote the nth partial sum of the series
∑

fngn.

By partial summation formula, we have

sn(x) =
n∑

k=1

Fk(x) [gk(x)− gk+1(x)] + gn+1(x)Fn(x).

Hence, if n > m, we have

sn(x)− sm(x) =
n∑

k=1

Fk(x) [gk(x)− gk+1(x)] + gn+1(x)Fn(x)

−
m∑
k=1

Fk(x) [gk(x)− gk+1(x)] + gn+1(x)Fn(x)

For n > m, we have

sn(x)− sm(x) =
n∑

k=m+1

Fk(x) (gk(x)− gk+1(x)) + gn+1(x)Fn(x)− gm+1(x)Fm(x).

Since the sequence {Fn} is uniformly bounded, there is M > 0 such that

|Fn(x)| ≤ M.

Therefore,

|sn(x)− sm(x)| = |
n∑

k=m+1

Fk(x) (gk(x)− gk+1(x)) + gn+1(x)Fn(x)− gm+1(x)Fm(x)|

≤
n∑

k=m+1

|Fk(x)| (gk(x)− gk+1(x)) + gn+1(x)|Fn(x)|+ gm+1(x)|Fm(x)|

≤ M(gm+1(x)− gn+1(x)) +Mgn+1(x) +Mgm+1(x)

= Mgm+1(x) +Mgm+1(x)

= 2Mgm+1(x).
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Since gn → 0 uniformly on S, for given ϵ > 0, there is N > 0 such that

|gn(x)− 0| < ϵ

2M
, ∀ n ≥ N.

Therefore,

|sn(x)− sm(x)| < 2M.
ϵ

2M
= ϵ. (5.1)

Thus, {sn(x)} satisfies the Cauchy criterion and so {sn} converges uniformly.

This implies that
∑

fngn converges uniformly on S.

Hence the proof.

Let us sum up

• Derived sufficient conditions for the uniform convergence of a given series.

5.12 Mean Convergence

Definition 5.12.1. Let (fn} be a sequence of Riemann-integrable functions defined on

[a, b]. Assume that f ∈ R on [a, b]. The sequence {fn} is said to converge in the mean to f

on [a, b], and we write

l.i.mn→∞fn = f on [a, b],

if

lim
n→∞

∫ b

a

|fn(x)− f(x)|2 dx = 0.

If the inequality |f(x)− f0(x)| < ϵ holds for every x in [a, b], then we have∫ b

a

|f(x)− fn(x)|2 dx ≤ ϵ2(b− a).

Therefore, uniform convergence of {fn} to f on [a, b] implies mean convergence, pro-

vided that each fn is Riemann-integrable on [a, b].

Remark: Mean convergence need not imply pointwise convergence at any point of the

interval.

For example, for each integer n ≥ 0, subdivide the interval [0, 1] into 2n equal

subintervals and let I2n+k denote that subinterval whose right endpoint is (k+1)
2n

, where

k = 0, 1, 2, . . . , 2n − 1.
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This yields a collection {I1, I2, . . .} of subintervals of [0. 1], of which the first few

are:

I1 = [0, 1], I2 =
[
0,

1

2

]
, I3 =

[1
2
, 1
]
, I4 =

[
0,

1

4

]
, I5 =

[1
4
,
1

2

]
, I6 =

[1
2
,
3

4

]
,

and so on.

Define fn on [0, 1] as follows :

fn(x) =

{
1 if x ∈ In,

0 if x ∈ [0, 1]− In.

Then {fn} converges in the mean to 0, since
∫ 1

0
|fn(x)|2 dx is the length of In, and∫ 1

0

|fn(x)|2 dx → 0 as n → ∞.

On the other hand, for each x in [0, 1], we have

lim sup
n→∞

fn(x) = 1 and lim inf
n→∞

fn(x) = 0.

Hence {fn} does not converge for any x in [0, 1].

Theorem 5.12.2. Assume that lim
n→∞

fn = f on [a, b]. If g ∈ R on [a, b], define

h(x) =

∫ x

a

f(t)g(t)dt, hn(x) =

∫ x

a

fn(t)g(t)dt,

if x ∈ [a, b]. Then hn → h uniformly on [a, b].

Proof. By Cauchy-schwarz inequality, we have

0 ≤
(∫ x

a

|f(t)− fn(t)||g(t)|
)2

≤
(∫ x

a

|f(t)− fn(t)|2dt
)(∫ x

a

|g(t)|2dt
)
. (a)

Since lim
n→∞

fn = f, for given ϵ > 0, we can choose N such that

n > N =⇒
∫ x

a

|f(t)− fn(t)|2dt <
ϵ2

A
. (b)

Since g ∈ R, we have g2 ∈ R.

∴
∫ x

a

|g(t)|2dt < ∞. (c)

Substituting (b) and (c) in (a), we have(∫ x

a

|f(t)− fn(t)||g(t)|
)2

≤ ϵ2

A

∫ x

a

|g(t)|2dt < ϵ2

A

∫ b

a

|g(t)|2dt,
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where A = 1 +
∫ b

a
|g(t)|2dt.

For n > N, we have

|h(x)− hn(x)| < ϵ ∀ x ∈ [a, b],

which implises that hn → h uniformly on [a, b].

Theorem 5.12.3. Assume that lim
n→∞

fn = f and lim
n→∞

gn = g on [a, b]. Define

h(x) =

∫ x

a

f(t)g(t)dt, hn(x) =

∫ x

a

fn(t)gn(t)dt,

if x ∈ [a, b]. Then hn → h uniformly on [a, b].

Proof. We have

hn(x)− h(x) =

∫ x

a

[fn(t)gn(t)− f(t)g(t)]dt

=

∫ x

a

[fngn − fng + fng − fgn + fgn − fg + fg − fg]dt

=

∫ x

a

(f − fn)(g − gn)dt+

(∫ x

a

fng dt−
∫ x

a

fg dt

)
+

(∫ x

a

fgn dt−
∫ x

a

fg dt

)
.

Applying the Cauchy-Schwarz inequality, we have

0 ≤
(∫ x

a

|f − fn||g − gn|dt
)2

≤
(∫ x

a

|f − fn|2dt
)(∫ x

a

|g − gn|2dt
)
.

Hence,

|hn(x)− h(x)| ≤
(∫ x

a

|f − fn|2dt
)1/2(∫ x

a

|g − gn|2dt
)1/2

+

∣∣∣∣ ∫ x

a

fng dt−
∫ x

a

fg dt

∣∣∣∣+ ∣∣∣∣ ∫ x

a

fgn dt−
∫ x

a

fg dt

∣∣∣∣.
Since lim

n→∞
fn = f and lim

n→∞
gn = g on [a, b], we have

lim
n→∞

|hn(x)− h(x)| = 0,

which implies that hn → h uniformly on [a, b]. Hence the proof.

Let us sum up

1. Introduced the notion of mean convergence.

2. We have seen that uniform convergence implies mean convergence.

3. We also discussed some important properties of mean convergence.
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Check your progress

1. If fn(x) = xn on [0, 1] and f = lim fn, then

(A) f is constant (C) f is monotonic.

(B) fn → f uniformly. (D) Both (A) and (B) are true.

2. The sum of the series
∞∑
n=0

x2

(1 + x2)n
for x ∈ R is

(A) continuous on R (C) discontinuous at x = 0

(B) f(x) = 1 + x2 for all x ∈ R (D) f(x) = 0 for all x ∈ R

3. For n ≥ 1, let fn(x) = xe−nx2
, x ∈ R. Then the sequence {fn} is

(A) uniformly convergent on R

(B) uniformly convergent only on compact subsets of R

(C) bounded and not uniformly convergent on R

(D) a sequence of unbounded functions

4. For the sequence fn(x) =
1

1 + xn
, 0 ≤ x ≤ 1, which one is true?

(A) converges uniformly (B) Converges to 1 pointwise

(C) The limit function is continuous (D) The limit function is not continuous

5. If f is non-negative and fn(x) =

{
f(x) if f(x) ≤ n
n if f(x) > n

, then lim fn =

(A) f(x) (B) 1 (C) 0 (D)

6. For sequences fn(x) =
1

nx+ 1
and gn(x) =

x

nx+ 1
defined on (0, 1), which of the

following is true?.

(A) {fn} converges pointwise and {gn} converges uniformly on (0, 1)

(B) Both {fn} and {gn} converge uniformly on (0, 1)

(C) {fn} converges uniformly and {gn} converges pointwise on (0, 1)

(D) Both {fn} and {gn} converge pointwise on (0, 1)

7. Which of the following is true for the series (1)
∞∑
n=1

sin(n2x)

n2
and (2)

∞∑
n=1

sin(nx)

n
?

(A) The series (1) converges uniformly on R

(B) The series (2) converges uniformly on R
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(C) Both (1) and (2) converges uniformly on R

(D) Both (1) and (2) converge pointwise on R

8. If fn → f uniformly and gn → g uniformly on E, then which of the following is

not true ?

(A) fn + gn → f + g uniformly on E.

(B) fngn → fg uniformly on E.

(C) fngn → fg uniformly on E if {fn} and {gn} are bounded functions

(D) fngn → fg uniformly on E if {fn} and {gn} are uniformly bounded

Summary

• Discussed the notion of pointwise and uniform convergence of sequence of func-

tions and their limit functions.

• Solved several examples of sequences of functions that converge either pointwise

or uniformly.

• Studied certain test for uniform convergence.

• Analysed the conditions for which continuity, differentiability and integrability

can be transferred to limit functions.

• Discussed certain test for convergence of series of functions like Weierstrass M-

test.

• Introduced the notion of mean convergence.

Self-Assessment Questions

1. State and prove the Dirichlet’s test for uniform convergence.

2. Let α ∈ BV [a, b]. Assume that each term of the sequence {fn} is such that

fn ∈ R(α) on [a, b] for each n = 1, 2, . . . . Assume that fn → f uniformly on [a, b]

and define gn(x) =

∫ x

a

fn(t)dα(t) if x ∈ [a, b], n = 1, 2, . . . . Prove that f ∈ R(α)

on [a, b] and gn → g uniformly on [a, b], where g(x) =

∫ x

a

f(t)dα(t).
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3. Assume that {fn} is sequence of differential functions defined on (a, b). Assume

that {fn(x0)} converges at x0 in (a, b). Assume that there exists a function g such

that f ′
n → g uniformly on (a, b). Prove that there exists a function f such that

fn → f uniformly on (a, b) and f ′(x) = g(x) for each x in (a, b).

Exercises

1. Assume that fn → f uniformly on S and each fn is bounded on S. Prove that fn

is uniformly bounded on S.

2. fn(x) =
1

nx+ 1
if 0 < x < 1, n = 1, 2, . . . Prove that {fn} converges pointwise

but not uniformly on (0, 1).

3. gn(x) =
x

nx+ 1
if 0 < x < 1, n = 1, 2, . . . Prove that {fn} → 0 uniformly on

(0, 1).

4. Assume that fn → f uniformly on S, and that each fn is continuous on S. If

x ∈ S, let {xn} be a sequence of points in S such that xn → s. Prove that

fn(xn) → f(x).

5. Let fn(x) =
1

1 + n2x2
if 0 ≤ x ≤ 1, n = 1, 2, . . .. Prove that {fn} converges

pointwise but not uniformly on [0, 1]. Is term-by-term integration possible?

6. Prove that
∞∑
n=1

an sinnx and
∞∑
n=1

an cosnx are uniformly convergent on R if
∑

|an|

converges.
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