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Unit 1

INTRODUCTORY CONCEPTS

Objectives

After the successful completion of this unit; the students are expected

• To recall the basic concepts of velocity, accelartion, linear momentum and force.

• To classify contact forces and body forces.

• To understand the fundamental concepts of constrains and constrained motion.

• To gain the knowledge about on Principle of virtual work and D’Alembert’s principle.

• To analyse and work with problems related to Principle of virtual work.

1. Introduction

Dear students,

in the under graduate course we have studied statics and dynamics in the vector form.

In this post graduate course, let us introduce the classical dynamics.

For what reason do we learn classical mechanics?. First of all, we are living in a time

of engineering, technological and scientific Era. So therefore, the knowledge about

engineering is the most essential aspects of learning the mechanical systems.

Secondly, astronomical aspects of understanding the cellestial bodies such as planets,

stars, galaxies and man made spacecraft like projectiles are all described by classical

mechanics. Thirdly, a significant amount of mathematics was created to solve mechan-

ical problems.

Mechanics: Mechanics is the science that deals with the action of forces on bodies.
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Dynamics: Dynamics is the study of the motions of interacting bodies. It describes

these motions interms of postulated laws. Motion means change of position of the

moving particle. The motion of a particle is therefore the motion of a point in space.

Statics: Statics is the study of a particle acted by force and kept at rest in equilibrium.

Matter: Matter is any thing which occupies space and can be perceived by senses.

Body: A boby is a portion of matter limited in all directions, having a finite shape of

size and occupying some definite space.

Particle: A particle is an idealized material body having its mass concentrated at a

point. We shall assume that mass of each particle remains constant.

Rigid body: A rigid body is a system of particles, the distance between which remain

unchanged. It may also be regarded as a continous distribution of matter.

Frame of reference: A frame of reference is a rigid body in which axises of coordi-

nates are taken.

Newton’s laws of motion: 1. Every particle continues to move in a state of uniform

motion in a straight line or remains at rest, unless acted upon by an external force.

2. The time rate of change of linear momentum of a particle is proportional to the

force acting on it and is in the direction of this force.

3. The forces of action and reaction between two interacting bodies are equal in mag-

nitude and opposite in direction and are collinear.

1.1 The Mechanical System

A mechanical system consisting of N particle, where a particles is an idealized mate-

rial body having its mass concentrated at a point. The motion of a particle is therefore

the motion of a point in space. A point has no geometrical elements i.e, we cannot

specify the orientation of the particle nor can be associate any particular rotational

motion with it.
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1.1.1 Equations of motion

The differential equation of a motion of a system of N particles can be obtained by

applying Newton’s laws of motion to the particle individually. For a single particle of

massm subjected to a force F we obtain from Newton’s second law the vector equation

F⃗ = m⃗a, (1.1)

where ’m’ is a mass and ’a’ is acceleration due to the gravity,

F⃗ = m

(
dv⃗

dt

)
=

d

dt
(ma) =

d

dt
(P⃗ )

F⃗ =
˙⃗
P, (1.2)

where the linear momentum P is given by,

P = mv⃗, (1.3)

and a⃗ = dv⃗
dt

= ˙⃗v is the acceleration.

F⃗ = ma⃗ = m

(
dv⃗

dt

)
= m

d

dt

(
dr

dt

)
= m

d2r

dt2

= m¨⃗r.

Thus the equation of motion is a differential equation of second order.

The equation of motion for the system of ’N ’ particles is given by,

F⃗i = mi
¨⃗ri

i.e., mi
¨⃗ri = F⃗i + R⃗i (i = 1, 2, ...N), (1.4)

where mi is the mass of the ith particle, F⃗i is the applied forces(sum of all other forces),

R⃗i is the constraint force(that ensures the geometrical conditions). Thus we have

broken the total force acting on the particle into two vector components F⃗i and R⃗i.
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Forces acting on the body

Forces that act on the body may be classified according to the mode of application as

follows,

1. Contact forces (applied force F⃗ ) are transmitted to the body by a direct push or

pull.

2. Body or field forces (constraint force R⃗) are associated with action at a distance

and are represented by gravitational, electrical (or) other fields.

Note-1 Body forces are applied through the body, but contact forces are applied only

at its boundary surface. The forces R⃗i associated with the geometrical constrains are

always contact forces. However the applied force F⃗i may be either the body (or)

contact type (or) the combination of forces.

Note-2 Instead of writing a single vector r⃗i = xi⃗i+yi⃗j+ zik⃗ for each particles, its more

convenient to write three scalar equations. Using the cartesian co-ordinates (xi, yi, zi)

are represented the position of the ith particle is in the form,

mi
¨⃗r = F⃗i + R⃗i,

miẍi = F⃗x + R⃗x,

miÿi = F⃗iy + R⃗iy,

miz̈i = F⃗iz + R⃗iz, (i = 1, 2..., N), (1.5)

where Fix and rix are the x components of Fi andRi, respectively, and where Fiy, Riy, Fiz, Riz

are defined similarly.

Dear students, in this subsection we are going to discuss about generalised co-

ordinates and configuration space. First let us define the degrees of freedom.

1.1.2 Degrees of freedom

The number of degrees of freedom is equal to the number of co-ordinates minus the

number of independent equation of constraints.

(ie.,) No. of degrees of freedom = No. of co-ordinates - No. of independent equation
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of constraints.

The degrees of freedom gives the minimum number of independent generalised coor-

dinates required to describe the mechanical system completely.

Example: If a configuration of a system of N particles is described by using 3N carte-

sian co-ordinates and if there are l independent equation of constraints, then there are

(3N − l) degrees of freedom.

Problem: Consider the triangular body formed by rigid rods with particles attached at

the corner. Find the degrees of freedom.

Solution: Degrees of freedom = 3N − l = 9− 3 = 6. Now the system has 9 cartesian

coordinates and 3 independent constraints.

1.1.3 Generalized co-ordinates

The wide variety of possible co-ordinate transformations, any set of parameters which

gives an unambiguous representation of the configuration of the system serve as a

system of co-ordinates in a more general sense. These parameters are known as gen-

eralized co-ordinates.

Co-ordinate transformation

The values of each set of co-ordinates are simply a group of numbers. The process of

obtaining one set of numbers from the other is known as coordinate transformation.

Example: Consider the transformation equations relating the cartesian co-ordinates

x1, x2, ..., x3N to the generalized co-ordinates q1, q2, ..., qn are given by

x1 = x1(q1, q2, ..., qn, t)

x2 = x2(q1, q2, ..., qn, t)

. . .

. . .

x3N = x3N(q1, q2, ..., qn, t). (1.6)
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If the x has l equation of the constraints and the q’s have m equation of constrains then

equating the number of degrees of freedom we get

3N − l = n−m. (1.7)

There should be always a one-to-one correspondence between points in the domain

of x and the points in the domain of q at any time t. The necessary and sufficient

condition that solve for q, a function x and t is called the Jacobian determinant trans-

formation to be not equal to zero which is,

∂(x1, x2, ...., x3N)

∂(q1, q2, ...., qn)
̸= 0.

Problem: Find the transformation equations by considering a particle which is con-

strained to move in a fixed circular path of radius ’a’.

Solution: The equation of constraints is,

a =
√

(x1 − 0)2 + (x2 − 0)2 =
√
x21 + x22.

Cartesian to generalized co-ordinate: Let the generalized cocordinates be q1 and q2,

where q1 denotes the polar angle, q2 denotes the radius (constant). (ie.,) q2 = a. The

transformation equations are,

x1 = q2 cos q1, x2 = q2 sin q1.

Generalized to cartesian co-ordinate: The Jacobian for this transformation is,

∂(x1, x2)

∂(q1, q2)
=

∣∣∣∣∣∂x1

∂q1

∂x1

∂q2
∂x2

∂q1

∂x2

∂q2

∣∣∣∣∣ =
∣∣∣∣−q2 sin q1 cos q1
q2 cos q1 sin q1

∣∣∣∣
= q2 sin

2 q1 − q2 cos
2 q1 = −q2 ̸= 0.

Hence q’s can be expressed in terms of x except when q2 = 0.

The transformation equations are,

tan q1 =
x2
x1

q1 = tan−1

(
(
x2
x1

)

)
, q2 =

√
x21 + x22 = a,

where 0 < q1 < 2π, 0 < q2 < ∞. These transformation equation apply at all points on

the finite x1, x2 plane except at the origin.
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1.1.4 Configuration Space

The configuration system ofN particles is specified by giving the values of 3N cartesian

co-ordinates. If the system has l-independent equation of constraint, it is possible to

find n independent generalized co-ordinates q1, q2, ..., qn, where n = 3N − l. Here

a set of n numbers namely the values of nq’s are completely known, then we can

specify the configuration of the system. It is convenient to think of the n numbers as

the co-ordinates of a single point in an n-dimensional space which is known as the

configuration space.

Let us sum up

1. We have derived equations of motion of a mechanical system consisting of N

particles.

2. Introducing the concept of inertial frame.

3. Also we have studied applied force, contact force, constraint force, body force.

4. We have introduced the concept of degrees of freedom.

5. We have defined generalized co-ordinates.

6. Also discussed the configuration space.

Check your progress

1. What is a Particle?

2. State Newton’s Second Law?

3. What is meant by constrain force?

4. Define Inertial frame?

5. What is applied force?

6. What is degrees of freedom?

7. Define Generalized Coordinates?

8. What is configuration space?
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In the next section, we will discuss about the various constrains and constrain

forces.

1.2 Constraint Force and Constrained Motion

Dear students, in this section we will introduce the constrained motion of the particle

subject to Holonomic and Non-holonomic constrains. Also we will discuss Bilateral

and Unilateral constrains, Sceleronomic and Rheonomic with illustrative examples.

When a system of N particles have less than 3N degrees of freedom then there must be

some constraints. Constraints are those equations which place geometrical restrictions

upon the possible motion of the particle and rest in corresponding forces of constraint.

1.2.1 Holonomic constraints

Constraints of the form

ϕj(q1, q2, ..., qn, t) = 0, (j = 1, 2, ..., k) (1.8)

called holonomic constraints. Where q1, q2, ..., qn are generalized co-ordinates that

there are k independent equation of constrains, t denotes the time.

Holonomic System: A system whose constraints equation are all of the Holonomic

constraints then the system is called Holonomic system.

Example: A particle constraints to move along any curve on a given surface is an ex-

ample of Holonomic constraints. Consider the motion of two particles x, y plane are

connected by a rigid rod of length l. The corresponding equation of constraint is,

(x2 − x1)
2 + (y2 − y1)

2 − l2 = 0.

Sceleronomic constraints: Constraint equations which has no time t explicitly then

the constraints are known as sceleronomic constraints.

Sceleronomic system: A mechanical system is sceleronomic, if 1. None of the con-

straint equation contains time explicity. 2. The transformation equation must give the
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x’s as function of q’s only,

x1 = x1(q1, q2, ..., qn)

x2 = x2(q1, q2, ..., qn)

. . .

. . .

x3N = x3N(q1, q2, ..., qn).

Rhenomic constraint: Constraint equations which has time t explicitly. Then the

constraints are known as Rhenomic constraints.

Example: Consider two particles connected by a rigid rod of length l. The length of

the rod has been given as a explicit function of time, then the constraints equation are

Rhenomic system.

1.2.2 Non-holonomic constraints

Dear students, in this subsection let us introduce motion of the dynamical system sub-

ject to non-holonomic constraints. Basically, non-holonomis constranits are expressed

in the differential forms or inequalities as in the case of unilateral constraints ( for eg.

Motion of air molecules in a cubic container).

A system of m constraints which are written as non-integrable, differentiable expres-

sion of the form,

n∑
i=1

ajidqi + ajtdt = 0, (j = 1, 2, ...,m), (1.9)

where a is a function of q’s and t’s constraints of this type is called non holonomic

constraints.

Example: Consider that the particles can slide on the horizontal xy plane without fric-

tion. The system is changed, however, by the addition of a nonholonomic constraint in

the form of knife-edge supports at two particles. These supports move with the prob-

lem and are oriented perpendicular to the rod at either particle. Hence, the velocity

of the center of the rod must be perpendicular to theory, resulting in the constraint
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equation

ẋ = −ẏ tan θ or cos θdx+ sin θdy = 0. (1.10)

1.2.3 Unilateral constraints

The constraints which can be written as a inequality of the form,

f(q1, q2, ..., qn, t) ≤ 0, (1.11)

are called unilateral constraint.

Example: Suppose that a free particle is contained within a fixed hollow sphere of

radius r which is centered at the origin. Then, using (x, y, z) as the generalized co-

ordinates of the particle, the unilaterial constraint is given by

x2 + y2 + z2 − r2 ≤ 0. (1.12)

Let us sum up

1. We have studied the constrained motion of the particle under subject to various

constraints

2. We have discussed following type of constraints namely Non-holonomic, Bilateral,

Unilateral, Sceleronomic and Rheonomic with illustrative examples.

Check your progress

9. Define Holonomic constraints with an example.

10. What is Non-holonomic constraints.

11. Define Unilateral constraints.

1.3 D’Alembert’s Principle of Virtual Work

Dear students, in this section we will discuss about virtual work and Principle of vir-

tual work and D’Alembert’s principle of virtual work. We also discuss the Langrage’s

modified D’Alembert’s principle which will be used to derive Langrages’s equation of
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motion.

The concept of virtual work is fundamental in the study of analytical mechanics.

1.3.1 Virtual displacement

Let us suppose that the configuration of a system of N particles can be given by 3N

cartesian co-ordinates x1, x2, ..., x3N , which are measured relative to an inertial frame

and subject to constraints. Further let δx1, δx2, ..., δx3N denote the infinitesimal dis-

placement which are virtual or imaginary. That is they are assumed to occur with out

passage of time. This small change δx in the configuration of the system is called the

virtual displacement.

Problem 1: Show that "a virtual displacement is not in general, a possible real dis-

placement".

Solution: Cartesian co-ordinates: 1. Consider a system subjected to k holonomic

constraints of the form,

ϕj(x1, x2, ..., x3N , t) = 0, (j = 1, 2, ..., k). (1.13)

The total differentiation of ϕj is given by

3N∑
i=1

∂ϕj

∂xi
dxi +

∂ϕj

∂t
dt = 0. (1.14)

A virtual displacement takes the form,

3N∑
i=1

∂ϕj

∂xi
δxi = 0, (j = 1, 2, ..., k), (1.15)

(* the time is held fixed, dt is omitted).

2. Consider a system subjected to ’m’ non-holonomic constraints of the form,

3N∑
i=1

ajidxi + ajtdt = 0 (j = 1, 2, ...,m). (1.16)

Now the virtual displacement takes the form,

3N∑
i=1

ajiδxi = 0, (1.17)

16



(1.14) and (1.15) imply that the holonomic constraint must also be sceleronomic.

(ie., )
∂ϕj

∂t
= 0, (j = 1, 2, ..., k). (1.18)

Similarly (1.16) and (1.17) imply that

ajt = 0. (1.19)

Since (1.18) and (1.19) cannot happen for a real displacement it follows that virtual

displacement is not in general, a possible real displacement.

1.3.2 Virtual Velocity

In general, a virtual displacement is not a possible real displacement. It is sometimes

convenient to assume that a set of δx′s conforming to the instantaneous constraints

occurs during an interval δt . The corresponding ratio of the form δx
δt

have the di-

mensions of velocity is called the virtual velocity. In general, virtual velocities are not

possible velocities for the actual system. Infact, a virtual velocity of a moving particle

is consistent with the constraints is also a possible velocity.

1.3.3 Virtual Work

Let us consider a system of N particles. Let x1, x2, ..., x3N be the cartesian co-ordinates.

Let F1, F2, ..., FN be the forces applied to the corresponding co-ordinates. Let δ1, δ2, ..., δ3N

denotes the virtual displacements.

δW =
3N∑
j=1

Fjδxj (or) δW =
3N∑
i=1

Fi · δri,

here r⃗i is the position vector of the particle and F⃗i is the applied on the ith particle.

Virtual work of constraint force: Let the total force acting on the ith particle be

separated into an applied force (F⃗i) and a constraint force (R⃗i). The virtual work due

to the constraint force is given by,

δWc =
N∑
i=1

R⃗i · δr⃗i.
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Workless constraint: A workless constraint is any bilateral constraint such that, the

virtual work of the corresponding constraint force is zero for any virtual displacement

which is consistent with the constraints. That is,

δWc = 0 (or)
N∑
i=1

R⃗i · δr⃗i = 0.

Examples of workless constraints: 1. Rigid inter connections between particles.

2. Sliding motion on a frictionless surface.

3. Rolling contact without slipping.

Rigid inter conections between particles: Let us consider two particles of mass

m1 and m2 connected by a rigid mass less rod, R⃗1 = −R⃗2. By Newtons 3rd law

R⃗1 = −R⃗2êr, (1.20)

where êr is the unit vector directed along the rod. Since the rod is rigid, the displace-

ment component of the particles in the direction of the rod must be equal

êrδr⃗1 = êrδr⃗2. (1.21)

Now the virtual work is given by,

δWc =
2∑

i=1

R⃗iδr⃗i = R⃗1δr⃗1 + R⃗2δr⃗2 = −R⃗2êrδr⃗1 + R⃗2êrδr⃗2 = −R⃗2êrδr⃗1 + R⃗2êrδr⃗1 = 0.

Hence the rigid inter connection between particle is a work less constraints.

Sliding motion on a frictionless surface: Consider a body B, which slides without

friction on the surface. The constraint force (R⃗) acts normal to the constant point

P . Any virtual displacement of P involves sliding in the tangent plane at that point.
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Hence no work is done by the constraint force.

Rolling contact with out slipping: Consider a vertical circular disc which roles with

out slipping along a horizontal path. The total force acting on the disc can be separated

in to a normal component Rn and the functional component R, which acts tangential

to the surface. These force components pass through the instantaneous center c (point

of contact). The center does not move as a result of a virtual displacement zero. The

virtual velocity of c is 0. Hence the virtual work of the constraint force is zero.

1.3.4 Principle of virtual work

Dear students, in this subsection first let us state and prove the Principle of virtual

work.

Theorem: The necessary and sufficient condition for the static equilibrium of an ini-

tially motionless sceleronomic system which is subject to workless constraints is, that

zero virtual work be done by the applied forces in moving through an arbitrary virtual

displacement satisfying the constraints.

Proof: Consider a sceleronomic system of N

particles. If the system is in static equilibrium, then F⃗i + R⃗i = 0. Where F⃗i is the ap-

plied force, R⃗i is the constraint force acting on the ith particle. The virtual work done

by the forces in moving through an arbitrary virtual displacement is zero. δW = 0

N∑
i=1

F⃗iδr⃗i +
N∑
i=1

R⃗iδr⃗i = 0. (1.22)
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Since the co-system is subjected to work less constraints, the virtual work done by

these constraints is zero. δW = 0

N∑
i=1

R⃗iδr⃗i = 0. (1.23)

Substitute (1.23) in (1.22), we get

N∑
i=1

F⃗iδr⃗i = 0.

The virtual work done by the applied force is zero. Conversely, suppose that the same

system of particles is initially motionless but not in equilibrium. Then one or more

of the particles must have a net force applied to it and in accordance with the New-

ton’s law of motion, the particles will move in the direction of force. Let us con-

sider a virtual displacement δr⃗i in the direction of the actual motion of the particle.

Hence the virtual work is positive and is given by, δW > 0

N∑
i=1

F⃗iδr⃗i +
N∑
i=1

R⃗iδr⃗i > 0. (1.24)

Since the constraints are workless,

N∑
i=1

R⃗iδr⃗i = 0. (1.25)

Substitute (1.25) in (1.24),we get

N∑
i=1

F⃗iδr⃗i > 0.
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The reversal of δr’s yields a negative virtual work of the system. Since the system is

not in equilibrium it is always possible to find a set of virtual displacement with the

constraints yielding non-zero virtual work.

Problem 1: Two frictionless blocks of equal mass ’m’ are connected by a mass less

rigid rod using x1 and x2 as co-ordinates, find F2, if the system is in equilibrium.

Consider a sceleronomic system.

The constraints acting on the system are as follows,

1) External constraints forces due to the wall and floor called R1 and R2 respectively.

2) Internal constraint forces are the equal and opposite forces on the rod.

3) The applied forces are the gravitational forces acting on the blocks and external

force F2.

By principle of virtual work, the required condition for static equilibrium is work done

by the applied force = 0.

mgδx1 + F2δx2 = 0 (1.26)

The displacement components along the rod must be equal at the two ends,

δx1 sin θ − δx2 cos θ = 0. (1.27)

(1.29)× sin θ ⇒ F2 sin θδx2 +mgδx1 = 0

(1.30)×mg ⇒ −mgδx2 cos θ +mgδx1 sin θ = 0.

(+) (−)

F2 sin θδx2 +mgδx2 cos θ = 0

F2 sin θδx2 = −mg cos θδx2

F2 = −mg cos θ
sin θ

F2 = −mg cot θ.

This is the force to keep the system initially motionless in static equilibrium.

Note: The forces R⃗i associated with the geometrical constraints are always contact

forces. How ever the applied force F⃗i may be of either the body or contact type or the
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combination of the forces.

Problem 2 : Using a suitable examples, show that the concept of virtual work can be

applied to system of virtual unilateral constraints.

Solution: Let us consider a system, consisting of a cube of mass ’m’ which is resting

in static equilibrium at a corner formed by two mutually perpendicular frictionless

planes.

The unilateral constraint equation are, x1 ≥ 0, x2 ≥ 0. At equilibrium position, x1 =

x2 = 0. The applied force on the system are due to gravity.

The components of these forces in the directions of x1 and x2 are given by,

F1 = −mg cos 45◦ = −mg√
2
.

F2 = −mg cos 45◦ = −mg√
2
.

The virtual work due to applied force is,

δW = F1δx1 + F2δx2

=
−mg√

2
δx1 +

−mg√
2
δx2

=
−mg√

2
(δx1 + δx2)

≤ 0.

Thus the virtual work δW ≤ 0, for any virtual displacement consistant with unilateral

constraints. Virtual work of the constraint force is

δWc = R1δx1 +R2δx2 ≥ 0,
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where R1 and R2 are assumed to be constant due to the virtual displacement.

Calculation of constraint forces R1 and R2 using the principle of virtual work

By the principle of virtual work, the total work done by all the forces is equal to zero

δW − 0.

R1δx1 + F1δx1 +R2δx2 + F2δx2 = 0

(R1 + F1)δx1 + (R2 + F2)δx2 = 0

(R1 −
mg√
2
)δx1 + (R2 −

mg√
2
)δx2 = 0.

Here δx1 and δx2 are not constraint and therefore they are completely independent.

R1 −
mg√
2
= 0, R2 −

mg√
2
= 0

R1 =
mg√
2
, R2 =

mg√
2
.

δWc = R1δx1 +R2δx2 =
mg√
2
δx1 +

mg√
2
δx2 =

mg√
2
(δx1 + δx1) ≥ 0.

Hence there can be non zero virtual work by the constraint forces in an allowable

virtual displacement.

1.3.5 D’ Alembert’s Principle

If the system is in motion, then
∑N

i=1(F⃗i) −mi
¨⃗ri = 0. (or) The sum of all forces, real

and inertial acting on each particle of a system is zero.

Proof: Let us consider a system of N particles. The equation of motion for each

particle is given by,

F⃗i + R⃗i = mi
¨⃗ri

F⃗i + R⃗i −mi
¨⃗ri = 0, (i = 1, 2..., N),

where F⃗i is the applied force, R⃗i is the constraint force, −mi
¨⃗ri is the inertial force, mi

is the mass and ¨⃗ri is an acceleration relative to an inertial force.

If the system is in motion, then
∑N

i=1(F⃗i + R⃗i −mi
¨⃗ri) = 0. (or) The sum of all forces,

real and inertial acting on each particle of a system is zero.

Lagrangian form of D’Alembert’s Principle
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Since the priciple of the virtual work applies to system in static equilibrium, let us use

principle on the force system including the inertial forces. The total work done by all

the forces in an arbtary virtual displacement is

δW =
N∑
i=1

(F⃗i + R⃗i −mi
¨⃗ri) · δri = 0, (i = 1, 2..., N).

=
N∑
i=1

F⃗i · δri −
N∑
i=1

mi
¨⃗ri · δri +

N∑
i=1

R⃗i · δri = 0.

If we now assume that the R⃗i are workless constraints then the virtual work done

δWc = 0, that is
∑N

i=1 R⃗i · δri = 0 and if we choose the δri to be reversible virtual

displacement consistent with the constraints we have

N∑
i=1

(F⃗i −mi
¨⃗ri) · δri = 0

This above equation is known as Langrange’s form of D’Alembert’s principle.

Example: Obtain the equation of motion of a spherical pendulum (or) a particle of

mass ’m’ is suspended by a mass less rod of length r = a+ b cosωt (a > b > 0) to form

a spherical pendulum. Find the equation of motion.

Solution: Let us consider the spherical co-ordinates θ and ϕ, where θ is measure from

the upward vertical.

The angle ϕ is measure between a vertical reference plane passing through the support

point o and the vertical plane containing the pendulum. The acceleration of a particle
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whose spherical co-ordinates (r, θ, ϕ) is as follows,

¨⃗ri = (¨⃗ri − rθ̇2 − rϕ̇2 sin2 θ)e⃗r+(rθ̈ + 2ṙθ̇ − rϕ̇2 sin θ cos θ)e⃗θ

+ (rϕ̈ sin θ + 2ṙθ̇ sin θ + 2r ˙thetaϕ̇ cos θ)e⃗ϕ, (1.28)

where e⃗r, e⃗θ and e⃗ϕ are unit vectors forming an orthogonal triad. The virtual displace-

ment is given by,

δr⃗ = rδθêθ + r sin θδϕe⃗ϕ. (1.29)

The applied gravitational force is given by,

F⃗ = −mg cos θêr +mg sin θêθ. (1.30)

Consider the Lagrange’s form of D’Alembert’s principle,

(F⃗ −mi
¨⃗ri)δr⃗i = 0

(−mg cos θêr +mg sin θêθ)−m[( ¨⃗ri − rθ̇2 sin2 θ)êr + (rθ̈ + 2ṙθ̇ − rθ̇2 sin θ cos θ)êθ

+ (rϕ̈ sin θ + 2ṙθ̇ + 2rθ̇ϕ̇ cos θ)êθ]}.(rδθêθ + r sin θδϕêϕ) = 0

(mg sin θ −mrθ̈ − 2mṙθ̇ +mrϕ̇2 sin θ cos θ).rδθ + (−mrϕ̈ sin θ − 2mṙϕ̇ cos θ)r sin θδϕ = 0

m(g sin θ − rθ̈ − 2ṙθ̇ + rϕ̇2 sin θ cos θ).rδθ −m(rϕ̈ sin θ + 2ṙθ̇ sin θ + 2rθ̇ϕ̇ cos θ)r sin θδϕ = 0

mr[(g sin θ − rθ̈ − 2ṙθ̇ + rϕ̇2 sin θ cos θ).δθ − (rϕ̈ sin θ + 2ṙϕ̇ sin θ + 2rθ̇ϕ̇ cos θ) sin θδϕ] = 0

[(g sin θ − rθ̈ − 2ṙθ̇ + rϕ̇2 sin θ cos θ).δθ − (rϕ̈ sin θ + 2ṙϕ̇ sin θ + 2rθ̇ + 2rθ̇ϕ̇ cos θ) sin θδϕ] = 0

g sin θ − rθ̈ − 2ṙθ̇ + rϕ̇2 sin θ cos θ = 0 (1.31)

rϕ̈ sin θ + 2ṙϕ̇ sin θ + 2rθ̇ + 2rθ̇ϕ̇ cos θ = 0. (1.32)

Given,

r = a+ b cosωt

r = −b sinωt(ω)

r = −b sinωωt. (1.33)
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Substitute equation (1.33) in (1.31),

g sin θ − (a+ b cosωt)θ̈ − 2(−bω sinωt)θ̇ + (a+ b cosωt)ϕ̇2 sin θ cos θ = 0.

−(a+ b cosωt)θ̈ + 2bωθ̇ sinωt+ (a+ b cosωt) sin θ cos θϕ̇2 + g sin θ = 0.

(a+ b cosωt)θ̈ − 2bωθ̇ sinωt− (a+ b cosωt) sin θ cos θϕ̇2 − g sin θ = 0.

Substitute equation (1.33) in (1.32),

(a+ b cosωt)ϕ̈ sin θ + 2(−bω sinωt)ϕ̇ sin θ + 2(a+ b cosωt)θ̇ϕ̇ cos θ = 0.

1.3.6 Generalized force

Consider a system of N particles whose positions are specified by the cartesian co-

ordinates (x1, x2, ....x3N). Let (F1, F2, ..., F3N) be the forces applied at the correspond-

ing co-ordinates. The virtual work done by the forces in an arbitrary virtual displace-

ment is given by

δW =
3N∑
j=1

Fjδxj. (1.34)

Suppose that the cartesian co-ordinates x1, x2, ..., x3N are related to the generalized

co-ordinates by equation of the form,

xj = xj(q1, q2, ..., qn, t).

By setting δt = 0 we get,

δxj =
n∑

i=1

∂xj
∂qi

δqi, (j = 1, 2, ..., 3N). (1.35)

Here ∂xj

∂qi
are functions of q’s and t’s. Substitute (1.35) in (1.34),

δW =
3N∑
j=1

Fj(
n∑

j=1

∂xj
∂qi

δqi)

=
n∑

j=1

3N∑
j=1

Fj
∂xj
∂qi

δqi

δW =
n∑

j=1

Qiδqi,
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where Qi =
∑3N

j=1 Fj
∂xj

∂qi
is the generalized force associated with the generalized co-

ordinate qi.

Example: The particle are connected by two rigid rods having joint between them

to form the given system. The vertical force of a moment M are applied as shown.

The configuration of the system is given by the ordinary co-ordinates (x1, x2, x3) or by

the generalized co-ordinates (q1, q2, q3). Where

x1 = q1 + q2 +
q3
2
.

x2 = q1 − q2.

x3 = q1 − q2 +
q3
2
.

Find the generalized force Q1, Q2, Q3 assuming small motions.

Solution:

x1 = q1 + q2 +
q3
2

(1.36)

x2 = q1 − q2 (1.37)

x3 = q1 − q2 +
q3
2

(1.38)

∂(x1, x2, x3)

∂(q1, q2, q3)
=

∣∣∣∣∣∣
1 1 1

2

1 0 −1
1 −1 1

2

∣∣∣∣∣∣ = −3 ̸= 0.
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(1.36) + (1.37) + (1.38) ⇒

x1 + x2 + x3 = q1 + q2 +
q3
2
+ q1 − q2 + q1 − q2 +

q3
2

= 3q1

q1 =
1

3
(x1 + x2 + x3). (1.39)

(1.36)− (1.38) ⇒

x1 − x3 = q1 + q2 +
q3
2
− q1 + q2 −

q3
2

= 2q2

q2 =
1

2
(x1 − x3). (1.40)

Substitute (1.40) in (1.38), we get

x2 = q1 − q3

=
1

3
(x1 + x2 + x3)− q3

q3 =
1

3
(x1 + x2 + x3)− x2

=
x1 + x2 + x3 − 3x2

3

q3 =
1

3
(x1 − x2 + x3). (1.41)

Thus for any set of values of x, we get the corresponding unique set of q’s. The force

F⃗ can be replaced by, 3F⃗
4

at x1, F⃗
4

at x2. The moment M⃗ can be replaced by equal and

opposite forces pf magnitude M
l

in the direction of x3 and reversed direction of x2.

The forces acting at x1, x2, x3 are F1 =
3F
4
, F2 =

F
4
− M

l
, F3 =

M
l

δx1 = δq1 + δq2 +
δq3
2
.

δx2 = δq1 − δq3.

δx3 = δq1 − δq2 +
δq3
2
.

δW = F1δx1 + F2δx2 + F3δx3

= (
3

4
F )(δq1 + δq2 +

δq3
2
) + (

1

4
F − M

l
)(δq1 − δq3) + (

M

l
)(δq1 − δq2 +

δq3
2
)
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δW =

(
3

4
F +

1

4
F − M

l
+
M

l

)
δq1 +

(
3

4
F − M

l

)
δq2 +

(
3

8
F − 1

4
F +

M

l
+
M

2l

)
δq3

= Fδq1 +

(
3

4
F − M

l

)
δq2 +

(
1

8
F +

3M

2l

)
δq3. (1.42)

In general,

δW = Q1δq1 +Q2δq2 +Q3δq3. (1.43)

From (1.42) and (1.43)

Q1 = F⃗ .

Q2 =
3

4
F⃗ − M⃗

l
.

Q3 =
1

8
F⃗ +

3M⃗

2l
.

Let us sum up

1. We have introduced the concept of virtual displacement and virtual velocity.

2. We have derived equation for D’Alembert’s principle of virtual work.

3. Also we have discussed Lagrange’s modified D’Alembert’s principle.

4. We have introduced the generalized force Qi associated with the generalized co-

ordinate qi.

Check your progress

12. Define Virtual displacement.

13. What is meant by Virtual work?

14. Workless constraint.

15. State Principle of Virutal work.

16. State D’Alembert Principle.

1.4 Energy, Linear Momentum and Angular Momen-
tum

Dear students, in this section let us discuss basic concept of potential energy, work

done, kinetic energy, conservation of energy and angular momentum.
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1.4.1 Potential energy

Potential energy is the energy gained by the particle by virtue of its position and

therefore potential energy V can be viewed as a analytic function in position vari-

ables (x.y.z).

Let us consider a single particle whose position is given by cartesian co-ordinates

(x, y, z). Suppose that the total force acting on the particle has components.

Fx = −∂V
∂x

, Fy = −∂V
∂y

, Fz = −∂V
∂z

.

Where V is a potential energy function V (x, y, z) is a single valued function of position

only and not a function of velocity or time. A force F⃗ satisfying these conditions is

called a conservative force.

Problem : The work done on the particle depends up on initial and final positions,

but is independent of the specific path.

Proof: Let us consider the work dW done by the conservative force F⃗ as it moves

through an infinitesimal displacement dr⃗. Then

dW = F⃗ · dr⃗

= Fxdx+ Fydy + Fzdz = −
(
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz

)
dW = −dV (1.44)

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz.

Thus dW is an exact differentiable. Now let us consider the work W done by the force

F⃗ as the particle movesfrom a point A to B.

W =

∫ B

A

F · dr. (1.45)

Substituting (1.45) in (1.44) we get,

W =

∫ B

A

(−dV ) = −
∫ B

A

dV = −(VB − VA) = VA − VB.

But potential energy V is a function of position only and hence the workdone W is

independent of the specific path. Further if A and B coincide, then the work done in
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moving around and closed path is zero.

W =

∮
dW =

∮
F⃗ .dr⃗ = VA − VB = 0.

1.4.2 Principle of work and kinetic energy

Dear student, in this section let us discuss the concept of principle of work and kinetic

energy.

Theorem: The increase in the kinetic energy of a particle as it moves from one arbi-

trary point to another is equal to the work done by the forces acting on the particle

during the given interval.

Proof: The kinetic energy (T ) is given by,

T =
1

2
mv2,

where m is the mass, v is the velocity of the particle. The work done by the particle

due to the total force F⃗ as the particle moves from A to B is given by,

W =

∫ B

A

dW =

∫ B

A

F⃗ dr⃗ =

∫ B

A

madr⃗ = m

∫ B

A

¨⃗rdr⃗.

Multiply and divided by dt

W = m

∫ B

A

¨⃗r

(
dr⃗

dt

)
dt

W = m

∫ B

A

(¨⃗r ˙⃗r)dt. (1.46)

Now d
dt
( ˙⃗r. ˙⃗r) = (¨⃗r ˙⃗r) + ( ˙⃗r¨⃗r) = 2(¨⃗r ˙⃗r)

1

2

d

dt
( ˙⃗r. ˙⃗r) = ¨⃗r. ˙⃗r. (1.47)

Substitute (1.47) in (1.46) we get,

W = m

∫ B

A

1

2

d

dt
( ˙⃗r. ˙⃗r)dt =

1

2
m

∫ B

A

d

dt
( ˙⃗r. ˙⃗r)dt

W =
1

2
m

∫ B

A

d( ˙⃗r)2 =
1

2
m

∫ B

A

d(v)2 =
1

2
m(v2B − v2A) =

1

2
mv2B − 1

2
mv2A = TB − TA.

Hence increase in kinetic energy is equal to work done.
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1.4.3 Conservation of energy

If the only forces acting on the given particle are conservative,

W = VA − VB. (1.48)

W = TB − TA. (1.49)

From (1.51) and (1.52)

VA − VB = TB − TA.

VA + TA = TB + VB = E.

Since the points A and B are arbitrary values, the total mechanical energy E remains

constant. During the motion of the particle, this is the principle of conservation of

energy.

Problem : Consider a system of N particles whose configuration is specified by the

cartesian co-ordinates x1, x2, ..., x3N . If the only forces which do work on the system

during motion are given by Fj = − ∂v
∂xj
, where the potential energy v of x1, x2, ..., x3N

is a single valued function of position only then the total energy is conserved.

Solution: Let us consider the configuration of the system of N particles is specified by

3N Cartesian co-ordinates and generalized co-ordinates q1, q2, ..., qn and the x’s and q’s

are related by xj = xj(q1,q2,...,qn). The generalized force Qi is given by,

Qi =
3N∑
j=1

Fj
∂xj
∂qi

.

The work done by the particle is given by,

W =

∫ B

A

dW

=

∫ B

A

n∑
i=1

Qidqi, (1.50)

where

Qi =
3N∑
j=1

Fj
∂xj
∂qi

=
3N∑
j=1

∂v

∂xj

∂xj
∂qi

Qi = − ∂v

∂qi
. (1.51)
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Substitute (1.57) in (1.56),

W =

∫ B

A

n∑
i=1

− ∂v

∂qi
∂qi = −

n∑
i=1

∂v = vA − vB.

Where A and B are the end points of the particle. Hence W is independent of the path

and hence the total energy is conserved.

1.4.4 Equilibrium and stability

Consider a system ofN particles whose applied force are conservative and are obtained

from a potential energy function of the form v(x1, x2, ..., x3N). Now from

δW =
3N∑
j=1

Fjδxj.

Fj = − ∂v

∂xj
,

we get

δW =
3N∑
j=1

− ∂v

∂xj
δxj = −∂v = −δv.

By the principle of virtual work the necessary and sufficient condition for the system

to be in static equilibrium is that,

δW = 0

δv = 0.

If the potential energy is expressed in terms of the generalized co-ordinates, q1, q2, ..., qn,

then

δv =
n∑

i=1

− ∂v

∂qi
δqi.

Now ∂v = 0,⇒ ∂v
∂qi

= 0, (i = 1, 2, .., n).

Let v0 be a reference value then by Taylor’s series,

v = v0 +

(
∂v

∂q1

)
0

δq1 +

(
∂v

∂q2

)
0

δq2 + ...+
1

2

(
∂2v

∂q21

)
0

δq21

+
1

2

(
∂2v

∂q1∂q2

)
0

δq1δq2 +
1

2

(
∂2v

∂q22

)
0

δq22 + ...

(1.52)
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Let us assume that, (
∂v

∂qi

)
0

= 0. (1.53)

Hence,

∆v = v − v0 =

(
∂v

∂q1

)
0

δq1 +

(
∂v

∂q2

)
0

δq2 + ...+
1

2

(
∂2v

∂q21

)
0

δq21

+
1

2

(
∂2v

∂q1∂q2

)
0

δq1δq2 +
1

2

(
∂2v

∂q22

)
0

δq22 + ...

where ∆v denotes the change in the potential energy,

1. If ∆v > 0, ∀ possible virtual displacement having atleast one of the δq’s are non-zero.

Therefore, v0 is the minimum potential energy corresponding to the stable equilibrium.

2. If ∆v < 0, then the equilibrium position is unstable.

3. If ∆v ≥ 0, then the equilibrium is neutral stability.

Dear students, in the next subsection we state and prove Konig’s theorem for total

kinectic energy.

1.4.5 Konig’s theorem

Theorem: The total kinetic energy of a system is equal to the sum of,

1. The kinetic energy due to a particle having a mass equal to the total mass of the

system and moving with the velocity of the center of mass.

2. The kinetic energy due to the motion of the system relative to its center of mass

Proof: Consider a system of N particles. The total kinetic energy of the system is equal

to the sum of individual kinetic energy of the particle,

T =
1

2

N∑
i=1

mi( ˙⃗ri)
2

34



r⃗i = r⃗c + ρ⃗i

˙⃗ri = ˙⃗rc + ˙⃗ρi.

Where r⃗i is the position vector of the ith particle relative to the fixed point. ρ⃗c is the

position vector of the ith particle relative to the center of mass, r⃗c is the position vector

of the center of mass relative to the fixed point o.

T =
1

2

N∑
i=1

mi( ˙⃗rc + ˙⃗ρi)
2 =

1

2

N∑
i=1

mi( ˙⃗rc
2
+ 2 ˙⃗rc · ˙⃗ρi + ˙⃗ρi

2
)

=
1

2
˙⃗rc
2

N∑
i=1

mi + ˙⃗rc ·
N∑
i=1

mi
˙⃗ρi +

1

2

N∑
i=1

mi
˙⃗ρi
2
.

Since, ρ⃗i is measured from the centre of mass, the linear momentum
∑N

i=1mi
˙⃗ρi = 0

T =
1

2
˙⃗rc
2

N∑
i=1

mi +
1

2

N∑
i=1

mi
˙⃗ρi
2
.

Hence the proof.

2. Kinetic energy for a rotating rigid body in general motion. Let us consider a small

volume element dV with density ρ. Each element of the body in general be translating

and rotating.
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The total kinetic energy is

T =
1

2
m ˙⃗rc

2
+

1

2

∫
v

ρ ˙⃗ρ
2
dV,

where ρ⃗ is the position of the volume element related to the mass center. (ie) The

kinetic energy is the sum of the translating kinetic energy and rotational kinetic energy.

Rotational Kinetic Energy:

Trot =
1

2

∫
v

ρ ˙⃗ρ
2
dv.

Let o′ be the center of mass and ω be the angular velocity then ˙⃗ρ = ω⃗ × ρ⃗.

Consider

˙⃗ρ
2
= ˙⃗ρ. ˙⃗ρ = ˙⃗ρ.(ω⃗ × ρ⃗) = ω⃗.(ρ⃗× ˙⃗ρ) = ω⃗.(ρ⃗× (ω⃗ × ˙⃗ρ))

˙⃗ρ
2
= ω⃗.[(ρ⃗× ˙⃗ρ)ω⃗ − (ρ⃗.ω⃗)ρ⃗]

ρ⃗2ω⃗ − (ρ⃗ω⃗)ρ⃗ = (x2 + y2 + z2)(ωx⃗i+ ωy j⃗ + ωzk⃗)− (xωx + yωy + zωz)(x⃗i+ yj⃗ + zk⃗)

= [(y2 + z2)ωx − xyωy − zxωz ]⃗i+ [(x2 + z2)ωy − xyωx − zyωz ]⃗j

+ [(x2 + z2)ωz − xzωx − zyωy ]⃗k.

Trot =
1

2

∫
v

ρ⃗ω⃗[ρ⃗2ω⃗ − (ρ⃗.ω⃗)ρ⃗]dv

Trot =
1

2

∫
v

ρ⃗(ωx⃗i+ ωy j⃗ + ωzk⃗){[(y2 + z2)ωx − xyωy − zxωz ]⃗i+

[(x2 + z2)ωy − xyωx − zyωz ]⃗j + [(x2 + z2)ωz − xzωx − zyωy ]⃗k}dv

=
1

2
Ixxω

2
x +

1

2
Iyyω

2
y +

1

2
Izzω

2
z + Ixyωxωy + Ixzωxωz + Iyzωyωz.
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Where

Ixx =

∫
v

ρ⃗(y2 + z2)dv.

Iyy =

∫
v

ρ⃗(x2 + z2)dv.

Izz =

∫
v

ρ⃗(y2 + x2)dv.

Iyx = Ixy = −
∫
v

ρ⃗(xy)dv.

Izx = Ixz = −
∫
v

ρ⃗(zx)dv.

Izy = Iyz = −
∫
v

ρ⃗(yz)dv.

In the matrix form,

ω⃗ =

ωx

ωy

ωz

 and I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



Trot =
1

2
ωT Iω.

1.4.6 Angular momemtum

Let us consider a system of N particles. The angular momentum about o is given by,

H⃗ = r⃗ ×mv⃗

H⃗ = r⃗ ×m ˙⃗r.
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Where r⃗ is the position of the ith particle with respect to the reference point o.

H⃗ =
N∑
i=1

r⃗i ×mi
˙⃗ri

r⃗i = r⃗c + ρ⃗i

˙⃗ri = ˙⃗rc + ˙⃗ρi

H⃗ =
N∑
i=1

(r⃗c + ρ⃗i)mi( ˙⃗rc + ˙⃗ρi)

=
N∑
i=1

r⃗cmi
˙⃗rc +

N∑
i=1

r⃗cmi
˙⃗ρi +

N∑
i=1

ρ⃗imi
˙⃗ρi +

N∑
i=1

ρ⃗imi
˙⃗rc (1.54)

N∑
i=1

ρ⃗imi = 0

N∑
i=1

˙⃗ρimi = 0. (1.55)

Substitute (1.55) in (1.54),

H⃗ = r⃗c ˙⃗rc

N∑
i=1

mi +
N∑
i=1

ρ⃗imi
˙⃗ρ

H⃗ = mr⃗c ˙⃗rc + H⃗

Where
∑N

i=1 ρ⃗imi
˙⃗ρ is the angular momentum of the center of mass.

1.4.7 Angular momentum of the rigid body

Let us consider a rigid body in an arbitrary motion w.k.t that,

H⃗ = mr⃗c ˙⃗rc + H⃗c.

Where Hc =
∑N

i=1 ρ⃗imi
˙⃗ρ

H⃗c =

∫
v

ρ(ρ⃗. ˙⃗ρ)dv

= ρ⃗

∫
v

(ρ⃗× (ω⃗ × ρ⃗))dv

= ρ

∫
v

{[(y2 + z2)ωx − xyωy − zxωz ]⃗i+ [(x2 + z2)ωy − xyωx − zyωz ]⃗j

+ [(x2 + z2)ωz − xzωx − zyωy ]⃗k}dv

H⃗c = ρ

∫
v

(y2 + z2)ωx⃗idv + ρ

∫
v

(x2 + y2)ωy j⃗dv + ρ

∫
v

(x2 + y2)ωzk⃗dv − ρ

∫
v

xyωy⃗idv

− ρ

∫
v

zxωz⃗idv − ρ

∫
v

xyωxj⃗dv − ρ

∫
v

zyωz j⃗dv − ρ

∫
v

zxωxk⃗dv − ρ

∫
v

zyωyk⃗dv
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Where

Ixx =

∫
v

(y2 + z2)dv.

Iyy =

∫
v

(x2 + z2)dv.

Izz =

∫
v

(y2 + x2)dv.

Iyx = Ixy = −
∫
v

ρ⃗(xy)dv.

Izx = Ixz = −
∫
v

ρ⃗(zx)dv.

Izy = Iyz = −
∫
v

ρ⃗(yz)dv.

H⃗c = [Ixxωx + Ixyωy + Ixzωz ]⃗i+ [Iyyωy + Ixyωx + Izyωz ]⃗j + [Izzωz + Ixzωx + Iyzωy ]⃗k.

In the matrix form,

H⃗c = Iω⃗

=

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

ωx

ωy

ωz


1.4.8 Angular momentum with respect to an arbitrary reference

point

H⃗ =
N∑
i=1

r⃗i ×mi
˙⃗ri

r⃗i = r⃗p + ρ⃗i

ρ⃗i = r⃗i − r⃗p (1.56)

r⃗c = r⃗p + ρ⃗c

r⃗p = r⃗c − ρ⃗c. (1.57)
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Substitute (1.56) in (1.57),

ρ⃗i = r⃗i − r⃗c + ρ⃗c

˙⃗ρi = ˙⃗ri − ˙r⃗c + ρ⃗cri

H⃗p =
N∑
i=1

ρ⃗i ×mi
˙⃗ρi

=
N∑
i=1

(r⃗i − r⃗c + ρ⃗c)×mi( ˙⃗ri − ˙r⃗c + ρ⃗cri).

˙⃗ρi = H − ˙⃗rc ×mir⃗c + ρ⃗c ×mi
˙⃗ρc.

1.4.9 Generalized momentum

Let us consider a system specified by n-generalized co-ordinate. Let the Lagrangian

function L(q, q̇, t) is defined as, L = T − V .

The generalized momentum pi assosicated with the generalized co-ordinates qi is de-

fined by the equation

pi =
∂L

∂q̇i
(i− 1, 2.., n)

=
∂T

∂q̇i
− ∂V

∂q̇i
.

The potential energy is velocity independent,

∂V

∂q̇i
= 0.

Hence pi = ∂T
∂q̇i
, (i = 1, 2.., n).

Example:1 Consider a free particle of mass m whose position is given by the cartesian

coordinates (x, y, z). The kinetic energy is

T =
1

2
mv2 =

1

2
m(ẋ2 + ẏ2 + ż2),

we obtain,

px =
∂T

∂ẋ
= mẋ.

py =
∂T

∂ẏ
= mẏ.

pz =
∂T

∂ż
= mż.
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Example:2 Consider a free particle of mass m whose position of the partial is given by

the spherical co-ordinates (r, θ, ϕ). The kinetic energy is

T =
1

2
m(ṙ2 + r2θ̇2 + r2ϕ̇2sin2θ),

we have

pr = mṙ.

pθ = mr2θ̇.

pϕ = mr2ϕsin2θ.

Where pr is the linear momentum component in the radial direction, pθ is the horizon-

tal momentum component of the angular momentum and pϕ is the vertical momentum

component of the angular momentum.

Let us sum up

1. We have obtained relationship between potential energy and applied force.

2. We have discussed the principle of work and kinetic energy.

3. We have discussed the conservation of energy.

4. We have obtained the condition for equilibrium and stability.

5. We have proved the Konig’s theorem for the total kinetic energy for a rotational

body.

6. We have discussed the generalized momentum pi associated with generalized coor-

dinates qi is discussed with illustrated example.

Check your progress

17. State rinciple of virtual work and kinetic energy.

18. What is conservation of energy.

Summary

• Derived equations of motion of a mechanical system consisting of N particles.

• Introducing the concept of inertial frame.
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• Studied applied force, contact force, constraint force, body force.

• Introduced the concept of degrees of freedom.

• Define generalized co-ordinates.

• Discussed the configuration space.

• Studied the constrained motion of the particle under subject to various constraints

• Discussed following type of constraints namely non-holonomic, bilateral, unilateral,

sceleronomic and Rheonomic with illustrative examples.

• Introduced the concept of virtual displacement and virtual velocity.

• Derived equation for D’Alembert’s principle of virtual work.

• Discussed Lagrange’s modified D’Alembert’s principle.

• Introduced the generalized force Qi associated with the generalized co-ordinate qi.

• Obtained relationship between potential energy and applied force.

• Discussed the principle of work and kinetic energy.

• Discussed the conservation of energy.

• Obtained the condition for equilibrium and stability.

• Proved the Konig’s theorem for the total kinetic energy for a rotational body.

• Discussed the generalized momentum pi associated with generalized co-ordinates qi

is discussed with illustrated example.

Glossary

• Holonomic System: A system whose constraints equation are all of the holonomic

constraints then the system is called holonomic system.

• Sceleronomic system: A mechanical system is sceleronomic, if 1. None of the

constraint equation contains time explicity. 2. The transformation equation must give
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the x’s as function of q’s only,

x1 = x1(q1, q2, ..., qn)

x2 = x2(q1, q2, ..., qn)

. . .

. . .

x3N = x3N(q1, q2, ..., qn).

• Virtual work: The concept of virtual work is fundamental in the study of analytical

mechanics.

• Workless constraint: A workless constraint is any bilateral constraint such that, the

virtual work of the corresponding constraint force is zero for any virtual displacement

which is consistent with the constraints. That is,

δWc = 0 (or)
N∑
i=1

R⃗i · δr⃗i = 0.

Self-Assessment Questions

Short-Answer Questions:

1. State and prove D Alembert’s Principle.

2. A Particle of mass M is suspended by a massless wire of length r = a+ b cosωt; a >

b > 0 to form a spherical pendulum. Find the equation of motion.

3. State and explain the Konig’s theorem for a rigid body and arbitrary points.

4. Define angular momentum of a system of particle.State and prove the principle of

conservation of angular momentum.

5. Prove that with usual notation Trot = 1
2
ωT Iω.

6. Explain Holonomic constrains and give example.

Long-Answer Questions:

1. State and prove the principle of virtual work.
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2. State and prove Konig’s theorem.

3. Define D’Alembert’s Principle and a Particle of mass M is suspended by a massless

wire of length r = a + b cosωt; a > b > 0 to form a spherical pendulum. Find the

equation of motion.

4. Explain briefly Generalized Momentum.

5. Define the degree of freedom and briefly explain generalized coordinates.

6. Discuss Equilibrium and Stability.

7. Briefly explain Constrains.

8. Prove that the Total Kinetic energy T = 1
2
mṙ2p +

1
2

∑N
i=1miρ̇2i + ṙpmρ̇c.

9. Explain briefly Virtual Work.

10. State and prove Principle of conservation theorem.

11. Briefly explain Energy and Momentum.

12. With the usual notations find an expressions for the rotational kinetic energy of a

rigid body.

Objectives

1. A body continuous in its state of rest or uniform motion, unless no external force is

applied to it

(a) law of inertia (b) law of force (c) law of action and reaction

(d) none of the above

2. The number of degrees of freedom is equal to

(a) no. of coordinates - no. of equations (b) no. of equations - no. of coordinates

(c) no. of equations (d) no. of coordinates

3. A constraint which is expressed in the form of inequality is called

(a) Bilateral (b) Unilateral

(c) holonomic (d) Scleronomic

4. Generalized coordinates

(a) dependent on each other (b) are independent of each other

(c) are spherical coordinates (d) none of the above
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5. Constraints that can be expressed as equations of coordinates and time, i.e., by an

expression of the form f(r1, r2, r3. . . ..t) = 0 , are said to be:

(a) Holonomic. (b) Nonholonomic.

(c) Scleronomous. (d) Rheonomic

6. If any of the constraint equations or the transformation equation contain time ex-

plicity

(a) Holonomic (b) Rheonomic

(c) Nonholonomic. (d) Scleronomous

7. Scleronomous constraints have:

(a) explicit time dependence. (b) no explicit time dependence.

(c) both explicit time dependence and no explicit time dependence. (d) neither

explicit time dependence nor no explicit time dependence.

8. The small change δx in the configuration of the system is

(a) Virtual work (b) Principle of virtual work

(c) Virtual displacement (d) Virtual time

9. The principle of kinetic energy is

(a) W = VA − VB (b)W = VB − VA

(c) W = TA − TB (d) W = TB − TA

10. A constraint which is workless then

(a)
∑
Riδri (b)

∑
Rjδxj

(c)
∑
Fiδri (d)

∑
Fkδxk

11.The second term of the equation is called T =1
2
mṙc

2 + 1
2

∫
ν

ρρ̇dν

(a) Translational kinetic energy (b) Translational potential energy

(c) Rotational kinetic energy (d) Rotational potential energy

12. Stable equilibrium is

(a) ∆V > 0 (b) ∆V < 0

(c) ∆V = 0 (d) ∆V = 1

13. Sometimes ........ is consider as a form of instability.

(a) Stable equilibrium (b) Unstable
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(c) Neutral stability (d) Constant

14.The existence of an inertial reference frame is a fundamental postulate of ........

dynamics.

(a) Newtonian (b) Lagrangian

(c) Hamiltonian (d) Routhian

15. Equations of constraints that does not contain time as explicit variable are referred

as

(a) Holonomic constraints (b) Rheonomic constraints

(c) Non- holonomic constraints (d) Scleronomic constraints

16. Non - inertial frame is

(a) non - accelerated frame of reference (b)accelerated frame of reference

(c) both (a) and (b) (d) none of the above

17. If the particles are connected by rigid rods to form a triangular body with the

particles at its corners. The number of degree of freedom is ...

(a) 3 (b) 6

(c) 9 (d) 12

18. Unilateral constraints are not classed as workless constraints because allowed vir-

tual displacement can be found in which the virtual work of constraint force is .....

(a) zero (b) one

(c) not zero (d) not one

19. Find the name of the equation H =
N∑
i=1

ri(miṙi) .

(a) Angular momentum (b) Generalized momentum

(c) Linear momentum (d) Non linear momentum

20. Any set of coordinates which can be express the configuration of the system is

called

(a) Cartesian coordinates (b) Generalized coordinates

(c) Polar coordinates (d) Spherical coordinates

21. Non holonomic contraints which can be expressed in the form of

(a) (x1 − x2)
2 + (y1 − y2)

2 − 12 = 0 (b) πk(x1, x2, ..., xn, t) = 0
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(c) πk(q1, q2, ..., qn, t) = 0 (d) ajidqi + ajidqt = 0

22. The process of obtaining one set of number from the other is called

(a) Jacobian transformation (b) Coordinate transformation

(c) Holonomic system (d) Non - holonomic system

23. A virtual displacement conforms to the instantaneous constraints ......

(a) any moving constraints are assumed to be stopped during the virtual displacement.

(b) any moving constraints are assumed to be stopped during the virtual work.

(c) any constraints are assumed to be stopped during the virtual displacement.

(d) any constraints are assumed to be stopped during the virtual work

24. D’Alembert’s Principle is .....

(a) Fi −Ri +mir̈i = 0 (b) Fi −mir̈i = 0

(c)Fi −Ri +mir̈i ̸= 0 (d) Fi +Ri −mir̈i = 0

25. Lagrangian form of D’Alembert’s Principle is .....

(a) Fi −Ri +mir̈i = 0 (b)
N∑
i=1

(Fi −mir̈i)δri = 0

(c)
N∑
i=1

(Fi −mir̈i)δri ̸= 0 (d)
N∑
i=1

(Fi +mir̈i)δri = 0

26. A particle is constrained to move along the inner surface of a fixed hemispherical

bowl. The number of degrees of freedom of the particle is

(a) 1 (b) 2 (c) 3 (d) 4

27. The increase in the kinetic energy of a particle as it moves from one arbitary point

to another is equal to the work done by the forces acting on the particle during the

given interval. This statement is called ......

(a) Principle of virtual work and kinetic energy (b) Principle of work and poten-

tial energy

(c) Principle of work and kinetic energy (d) Virtual work and kinetic energy

28. The total work by all the force in an arbitrary virtual displacement is .....

(a) δw =
N∑
i=1

(Fi −mir̈i)δri = 0 (b)δw =
N∑
i=1

(Fi −mir̈i)δri ̸= 0

(c) δw =
N∑
i=1

(Fi −mir̈i) = 0 (d) δw =
N∑
i=1

(Fi +mir̈i) ̸= 0

29. In case of a rigid body having N particles, the number of degrees of freedom is
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(a) N (b) 3N (c) 3 (d) ∞

30. Find the equation of the principle of conservation of energy .....

(a) VATA = VBTB = E (b) VA + TA = VB + TB = E

(c) VA + TB = VB + TA = E (d) VATB = VBTA = E

Answers for Check Your Progress

1. A particle is an idealized material body having its mass concentrated at a point. We

shall assume that mass of each particle remains constant.

2. i. Every particle continues to move in a state of uniform motion in a straight line or

remains at rest, unless acted upon by an external force.

ii. The time rate of change of linear momentum of a particle is proportional to the

force acting on it and is in the direction of this force.

iii. The forces of action and reaction between two interacting bodies are equal in mag-

nitude and opposite in direction and are collinear.

3. Body or Field forces (Constraint force R⃗) are associated with action at a distance

and are represented by gravitational electrical (or) other fields.

4. A frame of reference is a rigid body in which axes of coordinates are taken.

5. Contact forces (Applied force F⃗ ) are transmitted to the body by an direct push or

pull.

6. The number of degrees of freedom is equal to the number of co-ordinates minus

the number of independent equation of constraints.

(ie.,) No. of degrees of freedom = No. of co-ordinates - No. of independent equation

of constraints.

The degrees of freedom gives the minimum number of independent generalised coor-

dinates required to describe the mechanical system completely.

7. The wide variety of possible coordinate transformations, any set of parameters

which gives an unambiguous representation of the configuration of the system be serve

as a system of co-ordinates in a more general sense. These parameters are known as
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generalized co-ordinates.

8. The configuration system of N particles is specified by giving the values of 3N

cartesian co-ordinates. If the system has l-independent equation of constraint, it is

possible to find n independent generalized co-ordinates q1, q2, ..., qn, where n = 3N− l.

Here a set of n numbers namely the values of nq’s are completely known, then we can

specify the configuration of the system. It is convenient to think of the n numbers as

the co-ordinates of a single point in an n-dimensional space is known as configuration

space.

9. Constraints of the form

ϕj(q1, q2, ..., qn, t) = 0, (j = 1, 2, ..., k) (1.58)

called holonomic constraints. Where q1, q2, ..., qn are generalized co-ordinates that

there are k independent equation of constrains, t denotes the time.

Example: A particle constraints to move along any curve on a given surface is an ex-

ample of Holonomic constraints. Consider the motion of two particles x, y plane are

connected by a rigid rod of length l. The corresponding equation of constraint is,

(x2 − x1)
2 + (y2 − y1)

2 − l2 = 0.

10. A system of m constraints which are written as non-integrable, differentiable

expression of the form,

n∑
i=1

ajidqi + ajtdt = 0, (j = 1, 2, ...,m). (1.59)

where a is a function of q’s and t’s constraints of this type is called non holonomic

constraints.

11. The constraints which can be written as a inequality of the form,

f(q1, q2, ..., qn, t) ≤ 0 (1.60)

are called unilateral constraint.

Example: Suppose that a free particle is contained within a fixed hollow sphere of
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radius r which is centered at the origin. Then, using (x, y, z) as the generalized coor-

dinates of the particle, the unilaterial constraint is given by

x2 + y2 + z2 − r2 ≤ 0. (1.61)

12. The configuration of a system of N particles can be given by 3N cartesian co-

ordinates x1, x2, ..., x3N which are measured relative to an inertial frame and sub-

ject to constraints. Further let δx1, δx2, ..., δx3N denote the infinitesimal displacement

which are virtual or imaginary That is they are assumed to occur with out passage

of time.This small change δx in the configuration of the system is called the virtual

displacement.

13. The total force acting on the ith particle be separated into an applied force (Fi)

and a constraint force (Ri). The virtual work due to the constraint force is given by,

δWc =
N∑
i=1

R⃗i · δr⃗i.

14. A workless constraint is any bilateral constraint such that, the virtual work of the

corresponding constraint force is zero for any virtual displacement which is consistent

with the constraints. That is,

δWc = 0 (or)
N∑
i=1

R⃗i · δr⃗i = 0.

15. The necessary and sufficient condition for the static equilibrium of an initially

motionless sceleronomic system which is subject to workless constraints is, that zero

virtual work be done by the applied forces in moving through an arbitrary virtual

displacement satisfying the constraints.

16. The sum of all forces, real and inertial acting on each particle of a system is zero.

17. The increase in the kinetic energy of a particle as it moves from one arbitrary point

to another is equal to the work done by the forces acting on the particle during the

given interval.

18. If the only forces acting on the given particle are conservative, W = VA − VB,

W = TB − TA

VA − VB = TB − TA, VA + TA = TB + VB = E.
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Since the points A and B are arbitrary values, the total mechanical energy E remains

constant. During the motion of the particle, this is the principle of conservation of

energy.

Suggested Readings

• Greenwood. T. Donald, 1979, New Delhi: Classical Dynamics, Prentice Hall of
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Unit 2

LAGRANGE’S EQUATIONS

Objectives

When this units are successfully finished, the students are expected

• To derive the Lagrange’s equations of motion subject to holonomic and non-holonomic

system.

• To obtain the differential equations of motion for spherical and double pendulum by

Lagrange’s method.

• To discuss the Kepler’s problem by using Routhian function methods.

• To obtain the Jacobi integral or energy integral for conservative, natural and Liou-

ville’s system with illustrative examples.

2. Introduction

Dear students, in this unit we define the Lagranian for a holonomic systems with

applied forces derivable from ordinary (or) generalized potenital and workless con-

straints. In the Lagragian formulation we are eliminating the forces of constrins form

the equation of motion and acheiving this goal we have obtain many other benifits.

The derivative of Lagragian equation has started from a consideration of instantaneous

state of system and small virtual displacement about the instantaneous state leading

to a differential principle such as D’Alembert’s principle. We will study the differential

type of kinetic energy T2, T1, T0. Derivative of the Lagrange’s equation subject to holo-

nomic and non-holonomic system by using Lagrange’s multiply method. We derived
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the Lagrange’s equations of motion for a spherical pendulum length ’l’ also we have

discussed the equation of motion for a double pendulum. By using Lagrange’s method

we have discussed the forces of interaction between the two locks under the influence

of gravity, assuming that all surfaces are frictionless. We introduced the ignorable

coordinates we derive the equations of motion by using Routhian function. We also

discuss the application of Routhian procedure in Kepler’s problem. Jocobi integral are

obtain for conservative, natural and Liouville’s system.

2.1 Derivation of Lagrange’s Equations of Motion

Dear students, in this section first let us derive the standard forms of Lagrange’s equa-

tions for a holonomic system and Non-holonomic system.

2.1.1 Expression of kinetic energy interms of generalized co-ordinates

Let us consider a system of N particles whose positions relative to an inertial reference

frame are given by the cartisian co-ordinates x1, x2, ..., x3N . The total kinetic is given

by,

T =
1

2

3N∑
k=1

mkẋ
2
k. (2.1)

Let q1, q2, ...; qn, t be the generalized co-ordinates.

Consider the transformation equation,

xk = xk(q, t) = xk(q1, q2, ..., qn, t)

ẋk =
n∑

i=1

∂xk
∂qi

.q̇i +
∂xk
∂t

. (2.2)
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Substitute (2.2) in (2.1),

T =
1

2

3N∑
k=1

mk

(
n∑

i=1

∂xk
∂qi

.q̇i +
∂xk
∂t

)(
n∑

j=1

∂xk
∂qj

.q̇j +
∂xk
∂t

)

T =
1

2

3N∑
k=1

mk

(
n∑

i=1

m∑
j=1

∂xk
∂qi

∂xk
∂qj

.q̇iq̇j +
n∑

i=1

∂xk
∂qi

∂xk
∂t

.q̇i +
n∑

j=1

∂xk
∂qj

∂xk
∂t

.q̇j +
∂2xk
∂t2

)

T =
1

2

3N∑
k=1

mk

(
n∑

i=1

m∑
j=1

∂xk
∂qi

∂xk
∂qj

.q̇iq̇j + 2
n∑

i=1

∂xk
∂qi

∂xk
∂t

.q̇i +
∂2xk
∂t2

)

T =
1

2

n∑
i=1

n∑
j=1

q̇iq̇j +
n∑

i=1

aiq̇i +
1

2

3N∑
k=1

mk
∂2xk
∂t2

,

where

T2 =
1

2

n∑
i=1

n∑
j=1

q̇iq̇j, T1 =
n∑

i=1

aiq̇i, T0 =
1

2

3N∑
k=1

mk
∂2xk
∂t2

mij =
3N∑
k=1

mk
∂xk
∂qi

∂xk
∂qj

, ai =
3N∑
k=1

mk
∂xk
∂qi

∂xk
∂t

.

T2- quadratic function of q’s, T1- linear function of q̇’s

T0- remaining terms as a function of q’s and t,

mij and ai- function of q’s and t.

T = T2 + T1 + T0.

Special case:

1. In equation (2.1)

(a) If all mk > 0, then T is positive definite quadratic function of ẋ’s.

(b) If all ẋ’s are zero, then T is zero (c) If any ẋ’s are non -zero, then T is positive.

2. If T is expressed as a function of q’s, q̇’s and t

(a) T = 0, if the system is motionless.

(b) T > 0, for a moving system.

3. Now consider T

T2 is the total kinetic energy if all ∂xk

∂t
= 0. (ie.,) For a system in which any moving

constraints are held fixed.
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The positive definite nature of T2 restricts the positive values of the inertia coefficients

mij. The necessary and sufficient condition for T2 to be positive is that, m11 > 0,

[
m11 m12

m21 m22

]
> 0, ...,


m11 m12....m1n

m21 m22....m2n
.
.
.

mn1 mn2....mnn

 > 0.

This n× n matrix is called generalized inertia matrix. Where mij =
∑3N

k=1mk
∂xk

∂qi

∂xk

∂qj
.

For sceleronomic system, T is a quadratic functions of q’s. In this case, T1 = T0 = 0

and hence T = T2 + T1 + T0, therefore T = T2.

2.1.2 Lagrange’s equation for the Holonomic system

Let us consider a system of N particles. By D’Alembert’s principle, we have

3N∑
k=1

(F⃗k + R⃗k −mkẍk)δxk = 0. (2.3)

If we consider the workless constraints, then

3N∑
k=1

R⃗kδxk = 0. (2.4)

Substitute (2.4) in (2.3),

3N∑
k=1

(F⃗k −mkẍk)δxk = 0. (2.5)

Where F⃗k is the applied force. Now xk = xk(q1, q2, ..., qn, t).

Then δxk =
∑n

i=1
∂xk

∂qi
δqi +

∂xk

∂t
δt.

Assume that δt = 0

δxk =
n∑

i=1

∂xk
∂qi

δqi (2.6)

Substitute (2.6) in (2.5)

3N∑
k=1

n∑
i=1

(F⃗k −mkẍk)
∂xk
∂qi

δqi =
3N∑
k=1

n∑
i=1

(F⃗k
∂xk
∂qi

−mk
∂xk
∂qi

ẍk)δqi (2.7)
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xk = xk(q1, q2, ..., qn, t), ẋk =
∂xk
∂qi

q̇i +
∂xk
∂t

n∑
i=1

˙∂xk
∂qi

=
n∑

i=1

∂xk
∂qi

, i = 1, 2, ..., n. (2.8)

Now

d

dt

∂xk
∂qi

=
n∑

j=1

∂

∂qj

(
∂xk
∂qi

)
.q̇i +

∂

∂t

(
∂xk
∂qi

)

=
n∑

j=1

(
∂2xk
∂qj∂qi

)
.q̇i +

∂2xk
∂t∂qi

(2.9)

Also

ẋk(q, q̇, t) =
n∑

i=1

(
∂xk
∂qi

)
.q̇i +

∂xk
∂t

∂ẋk
∂qi

=
n∑

i=1

∂

∂qi

(
∂xk
∂qi

)
.q̇i +

∂

∂qi

(
∂xk
∂t

)
=

n∑
i=1

(
∂2xk
∂qi∂qi

)
.q̇i +

(
∂2xk
∂t∂qi

)
. (2.10)

From (2.9), (2.10),

d

dt

∂xk
∂qi

=
∂ẋk
∂qi

. (2.11)

The generalized momentum is,

pi =
∂T

∂q̇i
, T =

1

2

3N∑
k=1

mkẋ2k

∂T

∂q̇i
=

1

2

3N∑
k=1

mk2ẋk
∂ẋk
∂qi

=
3N∑
k=1

mkẋk
∂xk
∂qi

d

dt

∂T

∂q̇i
=

3N∑
k=1

mkẍk

(
∂xk
∂qi

)
+

3N∑
k=1

mkẋk
d

dt

(
∂xk
∂qi

)

=
3N∑
k=1

mkẍk

(
∂xk
∂qi

)
+

3N∑
k=1

mkẋk
d

dt

(
∂ẋk
∂qi

)
∂T

∂qi
=

1

2

3N∑
k=1

mk2ẋk
d

dt

(
∂ẋk
∂qi

)
.

Consider,

d

dt

∂T

∂q̇i
− ∂T

∂qi
=

3N∑
k=1

mkẍk

(
∂xk
∂qi

)
. (2.12)
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The generalized force,

Qi =
3N∑
k=1

Fk
∂xk
∂qi

. (2.13)

Substitute (2.12)and (2.13) in (2.7)
n∑

i=1

[
Qi −

d

dt

∂T

∂q̇i
− ∂T

∂qi

]
δqi = 0

Qi =
d

dt

∂T

∂q̇i
+
∂T

∂qi
, i = 1, 2, .., n. (2.14)

These n equations are known as Lagrange’s Equation.

2.1.3 Standard form of Lagrange’s equation

Assume that all the generalized force is obtained from the potential function V (q, t)

such that,

Qi = −∂V
∂qi

. (2.15)

Substitute (2.14) in (2.15),

d

dt

∂T

∂q̇i
+
∂T

∂qi
= −∂V

∂qi
d

dt

∂T

∂q̇i
−
(
∂T

∂qi
− ∂V

∂qi

)
= 0. (2.16)

Now consider the Lagrange’s function,

L = T − V,
∂L

∂qi
=
∂T

∂qi
− ∂V

∂qi
,

∂L

∂q̇i
=
∂T

∂q̇i
− ∂V

∂q̇i
∂L

∂q̇i
=
∂T

∂q̇i
. (2.17)

Substitute (2.16) and (2.17) in (2.14)

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0.

Another form of Lagrange’s equation

If Qi are not wholly obtained from the potential energy function then,

Qi = −∂V
∂qi

+Q′
i.
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Then the equation becomes,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= −∂V

∂qi
+Q′

i

d

dt

(
∂L

∂q̇i

)
−
(
∂T

∂qi
− ∂V

∂qi

)
= Q′

i

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Q′

i.

Form of equation of motion

We know that,

T = T2 + T1 + T0

T2 =
1

2

n∑
i=1

n∑
j=1

mij q̇iq̇j, T1 =
n∑

i=1

aiq̇i, T0 =
1

2

3N∑
k=1

mk
∂2xk
∂t2

mij =
3N∑
k=1

mk
∂xk
∂qi

∂xk
∂qj

, ai ==
3N∑
k=1

mk
∂xk
∂qi

∂xk
∂t

.

Consider the Lagrange’s equation,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

d

dt

(
∂L

∂q̇i

)
−
(
∂T

∂qi
− ∂V

∂qi

)
= 0. (2.18)

Consider,

∂T

∂q̇i
=
∂T2
∂q̇i

+
∂T1
∂q̇i

+
∂T0
∂q̇i

∂T2
∂q̇i

=
n∑

j=1

mij q̇j,
∂T1
∂q̇i

= ai,
∂T0
∂q̇i

= 0,

pi =
∂T

∂q̇i
=

n∑
j=1

mij q̇j + ai.
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Where pi is a generalized momentum

d

dt

(
∂T

∂q̇i

)
=

n∑
j=1

mij q̈j +
n∑

j=1

ṁij q̇j + ȧi. (2.19)

mij = mij(q1, q2, ..., qn, t)

ṁij =
n∑

l=1

∂mij

∂ql
q̇l +

∂mij

∂t
(2.20)

ai = ai(q1, q2, .., qn, t)

ȧi =
n∑

j=1

∂ai
∂qj

q̇j +
∂ai
∂t
. (2.21)

Substitute (2.20) and (2.21) in (2.19)

d

dt

(
∂T

∂q̇i

)
=

n∑
j=1

mij q̈j +
n∑

j=1

(
n∑

l=1

∂mij

∂ql
q̇l +

∂mij

∂t

)
q̇j +

n∑
j=1

∂ai
∂qj

q̇j +
∂ai
∂t

(2.22)

∂T

∂qi
=
∂T2
∂qi

+
∂T1
∂qi

+
∂T0
∂qi

∂T2
∂qi

=
n∑

j=1

n∑
l=1

∂mij

∂qi
q̇lq̇j,

∂T1
∂qi

=
n∑

j=1

∂ai
∂qj

q̇j

∂T

∂qi
=

1

2

n∑
j=1

n∑
l=1

∂mij

∂qi
q̇j q̇l +

n∑
j=1

∂ai
∂qj

q̇j +
∂T0
∂q̇i

. (2.23)

Substitute (2.22) and (2.23) in (2.18)

n∑
l=1

mij q̈j +
1

2

n∑
j=1

n∑
l=1

(
∂mij

∂ql
+
∂mil

∂qj
+
∂mlj

∂qi

)
q̇j q̇l

+
n∑

j=1

∂mil

∂t
q̇j +

n∑
j=1

(
∂ai
∂qj

− ∂aj
∂qi

)
q̇j +

∂ai
∂t

− ∂T0
∂qi

+
∂T

∂qi
= 0. (2.24)

By introducing Christoffel symbol of first kind [jl, i] =
∂milj

∂ql
+ ∂mil

∂qj
− ∂mil

∂qi
. Further

let, γij = −γij = ∂ai
∂qj

− ∂aj
∂qi

, where γij is an element of a skew symmetric matrix then

equation (2.24) becomes,

n∑
l=1

mij q̈j +
1

2

n∑
j=1

n∑
l=1

[jl, i]q̇j q̇l +
n∑

j=1

∂mil

∂t
q̇j +

n∑
j=1

γij q̇j +
∂ai
∂t

− ∂T0
∂qi

+
∂T

∂qi
= 0 (2.25)

These n equations are called the equations of motion. The resulting equations of

motion is given by,

q̈i + fi(q, q̇, t) = 0, i = 1, 2, ..., n.
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2.1.4 Lagrangian’s equation for non-holonomic system

Constraints equation for non-holonomic system is given by,

n∑
i=1

ajidqi + ajtdt = 0, j = 1, 2, ..., n. (2.26)

The δq’s must satisfying the equation

n∑
i=1

ajiδqi + ajtδt = 0.

Let δ → 0.

n∑
i=1

ajiδqi = 0. (2.27)

If the constraints are workless then

n∑
i=1

ciδqi = 0. (2.28)

Multiply eqn(2.27) by λj known as Lagrangian multiplier, we get

λj

n∑
i=1

ajiδqi = 0, j = 1, 2...,m.

Interchanging the order of summation,

m∑
i=1

n∑
j=1

λjajiδqi = 0. (2.29)

(2.28)-(2.29)

n∑
i=1

ciδqi −
m∑
i=1

n∑
j=1

λjajiδqi = 0

n∑
i=1

(
ci −

m∑
j=1

λjaji

)
δqi = 0, ci =

m∑
j=1

λjaji.

Then the coefficient of δq’s are zero. Equating the generalized force Qi’s with ci.

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Q′

i =
m∑
j=1

λjaji.

This is the standard form of Lagrange’s equations for non holonomic system.
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Problem 1 :

Find the differential equations of motion for a spherical pendulum of length ’l’.

Solution: The spherical co-ordinates are given by,

x = l sin θ cosϕ, y = l sin θ sinϕ, z = l cos θ.

Consider,

T =
1

2
m(ẋ2 + ẏ2 + ż2). (2.30)

ẋ = −l sin θ sinϕϕ̇+ l cosϕ cos θθ̇, ẏ = l sin θ cosϕϕ̇+ l sinϕ cos θθ̇, ż = −l sin θθ̇

ẋ2 + ẏ2 + ż2 = (−l sin θ sinϕϕ̇+ l cosϕ cos θθ̇)2 + (l sin θ cosϕϕ̇+ l sinϕ cos θθ̇)2 + (−l sin θθ̇)2

= l2(θ̇2 sin2 θϕ̇2). (2.31)

Potential energy:

V = mgh = −mgl cos(π − θ) = −mgl(− cos θ)

= mgl cos θ. (2.32)

L = T − V

=
1

2
ml2(θ̇2 sin2 θϕ̇2)−mgl cos θ. (2.33)
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Lagrange’s equation:

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0,

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
= 0

∂L

∂θ̇
=

1

2
m2θ̇l2 = ml2θ̇

d

dt

(
∂L

∂θ̇

)
= ml2θ̈

∂L

∂θ
= ml2ϕ̇2sinθcosθ +mglsinθ

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

ml2θ̈ −ml2ϕ̇2 sin θ cos θ +mgl sin θ = 0 (2.34)

∂L

∂ϕ̇
=

1

2
m2θ̇l2 sin2 θ(2ϕ̇)

d

dt

(
∂L

∂ϕ̇

)
= ml2sin2θϕ̈+ 2ml2ϕ̇sinθ cos θϕ̇

∂L

∂ϕ
= 0

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
= 0

ml2 sin2 θϕ̈+ 2ml2ϕ̇ sin θ cos θϕ̇ = 0. (2.35)

Equations (2.34) and (2.35) are required differential equation of motion.

Problem 2

A double pendulum consists of two particles suspended by massless rods. Assuming

that all motion takes place in a vertical plane, find the differential equation of motion.

Linearize these equations assuming small motions.

Solution:kinetic energy:

T =
1

2
mv2 =

1

2
m(v21 + v22).

The total velocity of the lower particle=The total velocity of the upper particle+The

total velocity of the lower particle with respect to an upper particle.
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v1 = lθ̇ v21 = l2θ̇2.

v2 = l(θ̇ + ϕ̇)

v22 = l2θ̇2 + l2ϕ̇2 + 2(lθ̇.lϕ̇) = l2θ̇2 + l2ϕ̇2 + 2l2θ̇lϕ̇cos(ϕ− θ).

T =
1

2
m(l2θ̇2 + l2ϕ̇2 + 2l2θ̇lϕ̇ cos(ϕ− θ)).

Potential energy:

V = mgh = V1 + V2

= −mgl cos θ −mgl cos θ −mgl cosϕ = −mgl(2 cos θ + cosϕ).

Consider the lagrangian function

L = T − V

L =
1

2
ml2(θ̇2 + ϕ̇2 + 2θ̇ϕ̇ cos(ϕ− θ)) +mgl(2 cos θ + cosϕ)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

∂L

∂θ̇
= 2ml2θ̇ +ml2ϕ̇cos(ϕ− θ).

d

dt

(
∂L

∂θ̇

)
= 2ml2θ̈ −ml2ϕ̇2 sin(ϕ− θ) +ml2θ̇ϕ̇ sin(ϕ− θ) +ml2 cos(ϕ− θ)ϕ̈

∂L

∂θ
=

1

2
ml2 × 2θ̇ϕ̇ sin(ϕ− θ)− 2mgl sin θ
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2ml2θ̈ −ml2ϕ̇2 sin(ϕ− θ) +ml2θ̇ϕ̇ sin(ϕ− θ) +ml2 cos(ϕ− θ)ϕ̈

−ml2θ̇ϕ̇ sin(ϕ− θ) + 2mgl sin θ = 0

2ml2θ̈ −ml2ϕ̇2 sin(ϕ− θ) +ml2 cos(ϕ− θ)ϕ̈+ 2mgl sin θ = 0. (2.36)

∂L

∂ϕ̇
= ml2ϕ̇+ml2θ̇ cos(ϕ− θ)

d

dt

(
∂L

∂ϕ̇

)
= ml2ϕ̈−ml2ϕ̇θ̇ sin(ϕ− θ) +ml2θ̇2 sin(ϕ− θ) +ml2θ̈ cos(ϕ− θ)

∂L

∂ϕ
= −ml2ϕ̇θ̇ sin(ϕ− θ)−mgl sinϕ

2ml2θ̈ −ml2ϕ̇2 sin(ϕ− θ) +ml2 cos(ϕ− θ)ϕ̈+ 2mgl sin θ = 0. (2.37)

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
= 0

ml2ϕ̈−ml2ϕ̇θ̇ sin(ϕ− θ) +ml2θ̇2 sin(ϕ− θ)

+ml2θ̈ cos(ϕ− θ) +ml2ϕ̇θ̇ sin(ϕ− θ) +mgl sinϕ = 0

ml2ϕ̈+ml2θ̇2 sin(ϕ− θ) +ml2θ̈ cos(ϕ− θ +mgl sinϕ = 0. (2.38)

Equations (2.37) and (2.38) are the required differential equation of motion Lineariz-

ing the differential equations,

cos(ϕ− θ) ∼= 1.

sin(ϕ− θ) ∼= θ.

sinθ ∼= θ.

cos θ ∼= 1.

Substitute these values in eqn’s(2.37) and (2.38) and neglecting the higher powers,

we get, from (2.37),

2ml2θ̈ −ml2ϕ̇2(ϕ− θ) +ml2ϕ̈+ 2mglθ = 0,

ml2[θ̈ − ϕ̇2(ϕ− θ) + ϕ̈] + 2mglθ = 0,

ml2[2θ̈ + ϕ̈] + 2mglθ = 0. (2.39)
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From (2.38),

ml2ϕ̈−ml2θ̇2(ϕ− θ) +ml2θ̈ +mglϕ = 0,

ml2[ϕ̈− θ̇2(ϕ− θ) + θ̈] +mglϕ = 0,

ml2[ϕ̈+ θ̈ +mglϕ = 0. (2.40)

Problem 3

A block of mass m2 can slide on another block of mass m1 which in turn slides on a

horizontal surface. Using x1 and x2 as co-ordinates, obtain the differential equation of

motion. Solve for the acceleration of the two blocks as they move under the influence

of gravity, assuming that all surfaces are frictionless. Find the force of interaction

between the block.

Solution: Let x1 is the displacement of the block m1 and x2 is the displacement of the

block m2 with respect to m1.

Let v1 be the velocity of m1 and v2 be the velocity of m2 with respect to m1.

Kinetic Energy:

T =
1

2
mv2 =

1

2
[m1v

2
1 +m2v

2
2]
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v1 = ẋ1 v21 = ẋ1
2

v22 = (ẋ1 + ẋ2)
2

= ẋ1
2 + ẋ2

2 + 2ẋ1ẋ2 cos(90
◦ + 45◦)

= ẋ1
2 + ẋ2

2 + 2ẋ1ẋ2(− sin 45◦)

= ẋ1
2 + ẋ2

2 − 2ẋ1ẋ2
1√
2

v22 = ẋ1
2 + ẋ2

2 −
√
2ẋ1ẋ2.

T =
1

2
m1ẋ1

2 +
1

2
m2(ẋ1

2 + ẋ2
2 −

√
2ẋ1ẋ2).

Potential energy:

V = mgh, v = m2g
x2√
2

L = T − V =
1

2
m1ẋ1

2 +
1

2
m2(ẋ1

2 + ẋ2
2 −

√
2ẋ1ẋ2) +m2g

x2√
2
.

Lagrange’s equation:

d

dt

(
∂L

∂ẋ1

)
− ∂L

∂x1
= 0

∂L

∂ẋ1
= m1ẋ1 +m2ẋ1 −

m2ẋ2√
2

d

dt

∂L

∂ẋ1
= m1ẍ1 +m2ẍ1 −

m2ẍ2√
2

∂L

∂x1
= 0

d

dt

(
∂L

∂ẋ1

)
− ∂L

∂x1
= 0

m1ẍ1 +m2ẍ1 −
m2ẍ2√

2
= 0 (2.41)

∂L

∂x2
= m2ẋ2 −

m2ẋ1√
2

d

dt

∂L

∂x2
= m2ẍ2 −

m2ẍ1√
2
. (2.42)

∂L

∂x1
=
m2g√

2
d

dt

(
∂L

∂ẋ2

)
− ∂L

∂x2
= 0

m2ẋ2 −
m2ẋ1√

2
− m2g√

2
= 0. (2.43)
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To find acceleration: From (2.41)

ẍ1(m1 +m2)−
m2ẍ2√

2
= 0

ẍ1 =
m2ẍ2√

2(m1 +m2)
. (2.44)

Substitute ẍ1 in (2.43)

m2ẍ1 −
m2√
2

(
m2ẍ2√

2(m1 +m2)

)
− m2g√

2
= 0

m2ẍ1 −
m2

2ẍ2
2(m1 +m2)

=
m2g√

2

m2ẍ1

(
2m1 +m2

2(m1 +m2)

)
=
m2g√

2

ẍ1 =

√
2g(m1 +m2)

(2m1 +m2)
.

Substitute ẍ2 in (2.44)

ẍ2 =
m2√

2(m1 +m2)

√
2g(m1 +m2)

(2m1 +m2)

ẍ2 =
gm2

(2m1 +m2)
.

Exercise problem

A particle mass m can slide without friction on the inside of a small tube which is bent

in the form of a circle of radius r. The tube rotates about a verticle diameter with a

constant angular velocity. Find the differential equations of motion.

Let us sum up

1. We have introduced the concepts of kinetic energy.

2. We have derived the derivation of standard form of Lagrange’s equations for a

holonomic and non-holonomic system.

3. We have introduced the integrals of the motion, and also solve the Kepler’s problem.

4. We have discussed the Routhian functions.

5. We have studied the conservative, natural, Liouville’s system with examples.
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Check your progress

1. What are the Lagrange’s equations?

2. Write the formula for the Standard form of Lagrange’s equation for a holonomic

and nonholonomic system.

Dear students, in the next section we will discuss about the integrals of the motion,

Kepler’s problem, the Routhian function. Also derive the conservative, natural and

Liouville’s system with examples.

2.2 Solution of Differential Equation of Motion

Any general analytic solution of the differential equation of motion contains 2n con-

stants of integration which are usually evaluated from with the aid of 2n initial con-

ditions. The general solution of any differential equation of motion can be obtained

from the functions of the form,

fj[q, q̇, t] = αj, j = 1, 2, ..., 2n.

These 2n functions are called constants, a integrals of motion these 2n equations can

be used to solve q’s and 2q’s as function of α’s and t.

2.2.1 Ignorable co-ordinates (or) Cyclic co-ordinates:

Consider a holonomic system described by the standard form of Lagrange’s equation

of the form,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 i = 1, 2, ..n

Suppose that, L[q, q̇, t] contains all nq̇ ’s but some of q’s say q1, q2, ..., qn are missing

from the lagrange’s equation these k co-ordinates are called ignorable co-ordinates.

Since, ∂L
∂qi

= 0 for each ignorable co-ordinates, then d
dt

(
∂L
∂q̇i

)
= 0, i = 1, 2, ..., k.

Integrating,
∫

d
dt

(
∂L
∂q̇i

)
= βi, i = 1, 2, ..., k. pi =

(
∂L
∂q̇i

)
= 0, i = 1, 2, ..., k, where

68



β’s are constant. Hence the generalised momentum corresponding to each ignorable

co-ordinate constant.

2.2.2 Kepler’s problem

It is the problem of motion of a particle of unit mass which is attracted by an inverse

square gravitational force to a fixed point o.

Kinetic Energy: The transformation equation is,

x = r cos θ, y = r sin θ, ẋ = −r sin θθ̇ + cos θṙ

ẋ2 = r2θ̇2sin2θ + cos2θṙ2 − 2rṙθ̇sinθ.cosθ, ẏ = rcosθθ̇ + sinθṙ

ẏ2 = r2cos2θθ̇2 + sin2θṙ2 + 2rṙθ̇sinθcosθ

ẋ2ẏ2 = r2θ̇2 + ṙ2

T =
1

2
mv2 =

1

2
(r2θ̇2 + ṙ2).

Potential energy: F is inversely proportional to r2

F =
−µ
r2
, W =

∫
dW

v =

∫ r

∞
−dv = −

∫ r

∞
Fdr = −µ

∫ r

∞
r−2dr

V =
−µ
r

L = T − V =
1

2
(r2θ̇2 + ṙ2) +

µ

r
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d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0,

d

dt

(
∂L

∂ṙ

)
= r̈

∂L

∂r
= rθ̇2 − µ2

r

r̈ − rθ̇2 − µ2

r
= 0.

Since θ does not occur explicitly in Lagrangian function, it is treated as an ignorable

co-ordinate. Then it’s equation of motion is given by,

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

∂L

∂θ̇
= θ̇r2,

d

dt

(
∂L

∂θ̇

)
= r2θ̈,

∂L

∂θ
= 0

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

r2θ̈ = 0

Integrating on both sides, r2θ̇ = β. Where β is a constant and is equal to the angular

momentum of the particle attracted towards the center o.

2.2.3 Routhian function

Suppose we consider a standard holonomic system whose configuration is given by, N

generalised co-ordinates of which first k co-ordinates are ignorable.

The Lagrangian function L is defined by, L(qk+1, qk+2, ..., qn, q̇1, q̇2, ....q̇n, t). The Routhian

function R is given by, R(qk+1, qk+2, ..., qn, ˙qk+1, ˙qk+2, ..., q̇n, β1, β2, ..., βk, t)

δR =
n∑

i=k+1

∂R

∂qi
δqi +

n∑
i=k+1

∂R

∂q̇i
δq̇i +

k∑
i=1

∂R

∂β
δβi +

∂R

∂t
δt. (2.45)
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Define Routhian function as, R = L−
∑k

i=1 βiqi.

Where

βi =
∂L

∂q̇i
.

δR = δ(L−
k∑

i=1

βiq̇i) = δL− δ

k∑
i=1

βiq̇i.

δL =
n∑

i=k+1

∂L

∂qi
δqi +

n∑
i=1

∂L

∂q̇i
δq̇i +

∂L

∂t
δt

δL =
n∑

i=k+1

∂L

∂qi
δqi +

n∑
i=1

∂L

∂q̇i
δq̇i +

n∑
i=k+1

∂L

∂q̇i
δq̇i +

∂L

∂t
δt.

δ

(
k∑

i=1

βiq̇i

)
=

k∑
i=1

βiδq̇i +
k∑

i=1

δβiq̇i =
k∑

i=1

∂L

∂q̇i
δq̇i +

k∑
i=1

δβiq̇i

δR = δL− δ
k∑

i=1

βiq̇i

=
n∑

i=k+1

∂L

∂qi
δqi +

n∑
i=k+1

∂L

∂q̇i
δq̇i +

∂L

∂t
δt+

k∑
i=1

δβi.q̇i. (2.46)

From (2.45) and(2.46)

∂L
∂qi

= ∂R
∂qi

i = k + 1, ..., n.

∂L
∂q̇i

= ∂R
∂q̇i

i = k + 1, ..., n.

∂L
∂t

= ∂R
∂t
.

q̇i =
−∂R
∂βi

i = 1, 2, ..., n. (2.47)

Consider the Lagrange’s Equation,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (2.48)

Substitute (2.47) in(2.48)

d

dt

(
∂R

∂q̇i

)
− ∂R

∂qi
= 0 i = k + 1, ..., n.

Thus, the Routhian procedure has been successful in eliminating the ignorable co-

ordinates from the equation of motion.
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Application of Routhian procedure in Kepler’s problem

The Routhian function is given by,

R = L−
k∑

i=1

βiqi.

Since θ is an ignorable co-ordinate

R = L− βθ̇. (2.49)

W.K.T, r2θ̇ = β

θ̇ =
β

r2
. (2.50)

Substitute (2.50) in (2.49)

R =
1

2
(ṙ2 + r2θ̇2) +

µ

r
− β

(
β

r2

)
=

1

2

(
ṙ2 + r2

(
β2

r4

))
+
µ

r
− β

(
β

r2

)
=

1

2
ṙ2 +

µ

r
− β2

2r2

d

dt

(
∂R

∂ṙ

)
− ∂R

∂r
= 0,

d

dt

(
∂R

∂ṙ

)
= r̈

∂R

∂ṙ
=
β2

r3
− µ

r2

r̈ − β2

r3
+
µ

r2
= 0.

Let us sum up

1. We introduce the ignorable co-ordinates.

2. We derive the Kepler’s problem.

3. We have define Routhian function.

4. We have derive applications for Routhian function.

Check your progress

3. Define the cyclic co-ordinates.

4. State Kepler’s problem.
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2.3 Jacobi Integrals for Conservative system

A system is said to be conservative if it satisfies the following conditions,

1. The standard form of Lagrange’s equation (holonomic or non-holonomic) applies.

2. The Lagrangian function L is not explicitly function of time t.

3. Any constraint equation can be expressed in the differential form as,
n∑

i=1

aijdqi + ajtdt = 0

n∑
i=1

aijdqi = 0, j = 1, 2, ..,m.

2.3.1 Evaluate energy integral (or) Jacobi integral

To show that the three given conditions are sufficient to ensure the existence of an

energy integral. Let us consider a system described by the standard form of non-

holonomic form of Lagrange’s equation,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

m∑
j=1

λjaij, I = 1, 2, .., n (2.51)

∂L

∂qi
=

d

dt

(
∂L

∂q̇i

)
−

m∑
j=1

λjaij. (2.52)

Where L(q, q̇) is not an explicit function of time ’t’. Now, L = L(q, q̇)

∂L

∂t
=

n∑
i=1

∂L

∂qi
q̇i +

n∑
i=1

∂L

∂q̇i
q̈i. (2.53)

Substitute (2.52) in (2.53)

∂L

∂t
=

n∑
i=1

(
d

dt

(
∂L

∂q̇i

)
−

m∑
j=1

λjaij

)
q̇i +

n∑
i=1

∂L

∂q̇i
q̈i

=
n∑

i=1

d

dt

(
∂L

∂q̇i

)
q̇i −

n∑
i=1

m∑
j=1

λjaij q̇i +
n∑

i=1

∂L

∂q̇i
q̈i (2.54)

Consider the equations of constraints in the form,
n∑

i=1

aijdqi = 0

n∑
i=1

aij q̇i = 0. (2.55)
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Substitute (2.55) in (2.54)

∂L

∂t
=

n∑
i=1

d

dt

(
∂L

∂q̇i

)
q̇i +

n∑
i=1

∂L

∂q̇i
q̈i

=
n∑

i=1

d

dt

(
∂L

∂q̇i
q̇i

)
.

Which when integrated gives,

L+ h =
n∑

i=1

(
∂L

∂q̇i
q̇i

)
h =

n∑
i=1

∂L

∂q̇i
q̇i − L, (2.56)

where h is a constant. Thus we have obtained the constant of motion which is known

as Jacobi integral (or) Energy integral. We known that,

L = T − V

∂L

∂q̇i
=
∂T

∂q̇i
− ∂V

∂q̇i

T = T2 + T1 + T0

∂T

∂q̇i
=
∂T2
∂q̇i

+
∂T1
∂q̇i

+
∂T0
∂q̇i

∂T

∂q̇i
=

m∑
j=1

mij q̇j + aj i = 1, 2.., n

∂V

∂q̇i
= 0

∂L

∂q̇i
=

m∑
j=1

mij q̇j + aj. (2.57)

Substitute (2.57) in (2.56)

h =
n∑

i=1

(
m∑
j=1

mij q̇j + aj)q̇i − L

=
n∑

i=1

m∑
j=1

mij q̇j q̇i + aj q̇i − (T − V )

= 2T2 + T1 − (T2 + T1 + T0) + V

= T2 − T0 + V

h = T ′ + V ′.

Where T ′ = T2 and V ′ = V − T0
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2.3.2 Natural system

Dear students, in this subsection we will study a natural system.

A natural system is a conservative system with some additional properties.

1. It is described by the standard holonomic form of Lagrange’s equation.

2. The kinetic energy is expressed as a homogeneous quadratic function of q’s.

T = T2 =
1

2

n∑
i=1

m∑
j=1

mij q̇j q̇i (T1 = T0 = 0),

where mij ’s are function of q’s but not of time.

Jacobi integral for the natural system:

The jacobi integral for the natural system is equal to the total energy. The kinetic

equation is expressed as a homogeneous quadratic function of q’s, T1 = T00

W.K.T, T2 − T0 + V = h

T + V = h

(ie.,) The total energy is conserved.

Equation of motion for natural system:

We know that,

T2 =
1

2

n∑
i=1

m∑
j=1

mij q̇j q̇i.

T1 =
n∑

i=1

aj q̇i

T0. =
1

2

3N∑
k=1

mk

(
∂xk
∂t

)2

.

Since T1 = T0 = 0 and T2 is not a function of time and ai = 0,
∂mij

∂t
= 0.

Then the equation,

m∑
j=1

mij q̈j +
1

2

∑
j

∑
l

[
∂mij

∂ql
+
∂mil

∂qj
− ∂mjl

∂qi

]
q̇j q̇l +

m∑
j=1

∂mij

∂t
q̇j

+
m∑
j=1

(
∂mil

∂qj
− ∂aj
∂qi

)
q̇j +

∂ai

∂t− ∂T0

∂qi

+
∂V

∂qi
= 0.

75



Hence, we get

m∑
j=1

mij q̈j +
1

2

∑
j

∑
l

[
∂mij

∂ql
+
∂mil

∂qj
− ∂mjl

∂qi

]
q̇j q̇l +

∂V

∂qi
= 0.

This is the required equation of motion for the natural system.

Remark:

A holonomic conservative system with T1 ̸= 0 is called gyroscopic system.

Orthogonal system:(or) Show that the orthogonal system can be reduced to
quadratures

Let us consider a orthogonal system. (ie.,) Natural system in which T contains only q̇i2

and no cross product of q̇’s. Suppose that

T =
1

2
f

n∑
i=1

q̇i
2

V =
1

f

n∑
i=1

viqi.

Where f =
∑n

i=1 fi(qi) > 0.

Let us consider the Lagrange’s equation of motion,

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂V

∂qi
= 0.

We know that,

1

2
f

n∑
i=1

q̇i
2 =

1

2
f [q̇1

2 + q̇2
2 + ...+ q̇n

2]

d

dt

(
∂T

∂q̇i

)
=

d

dt
(f q̇i)

∂T

∂qi
=

1

2

∂fi
∂qi

n∑
i=1

n∑
i=1

q̇i
2

frac∂V ∂qi =
−1

f 2

∂fi
∂qi

n∑
i=1

vi +
1

f

∂vi
∂qi

=
−1

f 2

∂fi
∂qi

V f +
1

f

∂vi
∂qi

=
−v
f

∂fi
∂qi

+
1

f

∂vi
∂qi
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Hence we get,

d

dt
(f q̇i)−

1

2

∂fi
∂qi

n∑
i=1

q̇i
2 − v

f

∂fi
∂qi

+
1

f

∂vi
∂qi

= 0. (2.58)

This is a natural system

T + V = h

1

2
f

n∑
i=1

q̇i
2 + V = h

1

2

n∑
i=1

q̇i
2 =

h− V

f
. (2.59)

Substitute (2.59) in (2.58),

d

dt
(f q̇i)−

h− V

f

∂fi
∂qi

− 1

f 2

∂fi
∂qi

n∑
i=1

vi +
1

f

∂vi
∂qi

= 0

d

dt
(f q̇i)−

h

f

∂fi
∂qi

− V

f

∂fi
∂qi

− 1

f 2

∂fi
∂qi

vf +
1

f

∂vi
∂qi

= 0

d

dt
(f q̇i)−

h

f

∂fi
∂qi

+
1

f

∂vi
∂qi

= 0. (2.60)

Multiply 2f q̇i

2f q̇i
d

dt
(f q̇i)− 2f q̇i

h

f

∂fi
∂qi

+ 2f q̇i
1

f

∂vi
∂qi

= 0

d

dt
(f q̇i)

2 − 2hq̇i
∂fi
∂qi

+ 2q̇i
∂vi
∂qi

= 0

d

dt
(f q̇i)

2 − 2h
d

dt
(fiqi) + 2

d

dt
(viqi) = 0.

Integrating we get,

(f q̇i)
2 − 2h(fiqi) + 2(viqi) = 2ci

(f q̇i)
2 = 2ci + 2h(fiqi)− 2(viqi)

(q̇i)
2 =

2(ci + h(fiqi)− (viqi))

f 2

dqi
dt

=

√
2(ci + h(fi)− vi)

f
dqi√

2(ci + h(fi)− vi)
=
dt

f

dq1√
2(ci + h(fi)− vi)

=
dq2√

2(ci + h(fi)− vi)
= ... =

dt

f
= dr.

Each differential expression is a function of a single qi. So the problem is reduced to

quadratures.
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2.3.3 Liouville’s system

A natural system having T and V of the form

T =
1

2
f

n∑
i=1

Miq̇i
2, V =

1

f

n∑
i=1

vi.

Where
∑n

i=1 vi = V f

f =
n∑

i=1

fi(qi), vi = vi(qi),Mi =Mi(qi)

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂V

∂qi
= 0

∂V

∂qi
=

1

2
fMi2q̇i

= fMiq̇i

d

dt

(
∂T

∂q̇i

)
=

d

dt
fMiq̇i

∂T

∂q̇i
=

1

2

n∑
i=1

q̇i
2

[
∂fi
∂qi

Mi + f
∂Mi

∂qi

]
=

1

2

n∑
i=1

q̇i
2∂fi
∂qi

Mi +
1

2

n∑
i=1

q̇i
2f
∂Mi

∂qi

∂V

∂qi
=

1

f

∂vi
∂qi

+
n∑

i=1

vi −
1

f 2

∂fi
∂qi

=
1

f

∂vi
∂qi

− V

f

∂fi
∂qi

d

dt
(fMiq̇i)−

1

2

n∑
i=1

q̇i
2∂fi
∂qi

Mi −
1

2

n∑
i=1

q̇i
2f
∂Mi

∂qi
+

1

f

∂vi
∂qi

− V

f

∂fi
∂qi

= 0. (2.61)

Since it is a natural system,

h = T + V

h− V

f
=
f

2

n∑
i=1

Miq̇i
2 (2.62)
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substitute (2.62) in (2.61)

d

dt
(fMiq̇i)−

h− V

f

∂fi
∂qi

Mi −
1

2

n∑
i=1

q̇i
2f
∂Mi

∂qi
+

1

f

∂vi
∂qi

− V

f

∂fi
∂qi

= 0

d

dt
(fMiq̇i)−

h

f

∂fi
∂qi

Mi −
1

2

n∑
i=1

q̇i
2f
∂Mi

∂qi
+

1

f

∂vi
∂qi

= 0

df

dt
(Miq̇i) +

dMi

dt
(f q̇i) +

dq̇i
dt

(Mif)−
h

f

∂fi
∂qi

Mi −
1

2

n∑
i=1

q̇i
2f
∂Mi

∂qi
+

1

f

∂vi
∂qi

= 0. (2.63)

Multiply (2.63) by 2f q̇i

df

dt
(2fMiq̇i

2) +
dMi

dt
(2f 2q̇i

2) +
dq̇i
dt

(2Mif
2q̇i)−

2f q̇ih

f

∂fi
∂qi

Mi−

2f q̇i
2

n∑
i=1

q̇i
2f
∂Mi

∂qi
+

2f q̇i
f

∂vi
∂qi

= 0

df

dt
(2fMiq̇i

2) +
dMi

dt
(2f 2q̇i

2) +
dq̇i
dt

(2Mif
2q̇i)− 2q̇ih

∂fi
∂qi

Mi − f 2q̇i

n∑
i=1

q̇i
2∂Mi

∂qi
+ 2q̇i

∂vi
∂qi

= 0

df

dt
(2fMiq̇i

2) +
dMi

dt
(f 2q̇i

2) +
dq̇i
dt

(2Mif
2q̇i)− 2h

∂fi
∂t

+ 2
∂vi
∂t

= 0

d

dt
(f 2Miq̇i

2)− 2h
∂fi
∂t

+ 2
∂vi
∂t

= 0

Integrating on both sides,∫
d

dt
(f 2Miq̇i

2)−
∫

2h
∂fi
∂t

+

∫
2
∂vi
∂t

= 0∫
(f 2Miq̇i

2)−
∫

2hfi +

∫
2vi = 2ci

q̇i
2 =

2(ci + hfi − vi)

f 2Mi

q̇i
2 =

ϕi(qi)

f 2
.
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Where ϕi(qi) =
2(ci+hfi−vi)

Mi

q̇i =

√
ϕi(qi)

f 2

dqi
dt

=

√
ϕi(qi)

f
dqi√
ϕi(qi)

=
dt

f

dq1√
ϕ1(q1)

=
dq2√
ϕ2(q2)

= .. =
dt

f
= dr

n∑
i=1

dqi√
ϕi(qi)

=
dt∑n
i=1 fi

n∑
i=1

fidqi√
ϕi(qi)

= dt

Integrating on both sides ∫ n∑
i=1

fidqi√
ϕi(qi)

=

∫
dt

= t+ βi.

Thus the n-constants (β′s) along with other n-independent constant ci and h gives an

2n independent constants of motion.

Problem 1: Suppose a mass spring system is attached to a frame which is translating

with a uniform velocity v0. Let l0 be the unstressed spring length and use the elonga-

tion x as the generalized co-ordinates. Find the Jacobi integral.

Solution:Kinetic eneergy:

T =
1

2
m(v0 + ẋ)2

=
1

2
m(v20 + 2v0ẋ+ ẋ2)

=
1

2
mẋ2 + v20 +mv0ẋ+

1

2
mv20

= T2 + T1 + T0.
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Potential energy:

V =

∫
dV = −

∫
F.dx

=

∫
kxdx

= k
x2

2
.

The Jocobi integral:

h = T2 − T0 + V

=
1

2
mẋ2 − 1

2
mv20 + k

x2

2

= Constant.

(ie.,) The total energy is conserved.

Problem 2: For spherical pendulum, obtain the integrals of motion and reduce the

problem to quadratures.

Solution:

T =
1

2
ml2(θ̇2 + sin2 θϕ̇2)

V = mgl cos θ

T =
1

2
ml2 sin2 θ

(
θ̇2

sin2 θ
+ ϕ̇2

)
=

1

2
f(Mθθ̇2 +Mϕϕ̇2),
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where f = ml2 sin2 θ

Mθ =
1

sin2 θ

Mϕ = 1

f = fθ + fϕ

V =
1

f
(Vθ + Vϕ)

V = mgl cos θ

V f = Vθ

Vθ = mgl cos θ ×ml2 sin2 θ

Vθ = m2gl3sin2θ cos θ

Vϕ = 0

fθ = ml2 sin2 θ

fϕ = 0

ϕi(qi) =
2(hfi − vi + ci)

Mi

ϕθ =
2

Mθ
(hfθ − vθ + cθ)

= 2 sin2 θ[hml2 sin2 θ −m2gl3sin2θ cos θ + cθ]

ϕθ =
2

1
(cθ)

dθ√
ϕθ

=
dϕ√
ϕϕ

=
dt

f

dθ√
ϕθ

=
dt

f∫ θ

θ0

fdθ√
ϕθ

=

∫ θ

θ0

dt

∫ θ

θ0

fdθ√
ϕθ

= t− t0. (2.64)
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dϕ√
ϕϕ

=
dϕ√
ϕϕ

=
dt

f

dϕ√
ϕϕ

=
dt

f∫ ϕ

ϕ0

fdϕ√
ϕϕ

=

∫ ϕ

ϕ0

dt

∫ ϕ

ϕ0

fdϕ√
ϕϕ

= t− t0. (2.65)

From (2.64) and (2.65), ∫ θ

θ0

fdθ√
ϕθ

=

∫ ϕ

ϕ0

fdϕ√
2cϕ∫ θ

θ0

dθ√
ϕθ

=

∫ ϕ

ϕ0

dϕ√
2cϕ

.

Thus the problem is reduced to quadratures.

Let us sum up

1. We introduce Jacobi integral.

2. We have derive Jacobi integral for natural system.

3. We have discussed Liouville’s system.

Check your progress

5. Explain Jacobi integral.

6. What is mean by natural system?

7. What is orthogonal system?

Summary

• Introduced the concepts of kinetic energy.

• Derived the derivation of standard form of Lagrange’s equations for a holonomic and

non-holonomic system.

• Introduced the integrals of the motion, and also solve the Kepler problem.
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• Discussed the Routhian functions.

• Studied the conservative, natural, Liouville’s system with examples.

• Introduce the ignorable co-ordinates.

• Derive the Kepler’s problem.

• Define Routhian function.

• Derive applications for Routhian function.

• Introduce Jacobi integral.

• Derive Jacobi integral for natural system.

• Discussed Liouville’s system.

Glossary

• Lagrange multiplier: Lagrange multiplier are the scalars to obtain constrains forces.

•Ignorable co-ordinates: L(q′q̇, t) contains all nq̇’s but some of the q’s say q1, q2, ..., qk

are missing form the Lagrangian. These k co-ordinates are called ignorable coordi-

nates.

•Quadratures : In terms of known elementry functions or indefinite integrals of such

functions is called quadratures.

•Routhian function: The Routhian function R is given by,

R(qk+1, qk+2, ..., qn, ˙qk+1, ˙qk+2, ..., q̇n, β1, β2, ..., βk, t) is defined by R = L−
∑k

i=1 βiqi.

•Conservative system: If no other forces do work on the system, the total mechanical

energy is conserved, hence the system is called consevative sytem.

•Jacobi integral: The equation ∂L
∂t

=
∑n

i=1
d
dt

(
∂L
∂q̇i
q̇i

)
, which can be integrated to

gives, h =
∑n

i=1
∂L
∂q̇i
q̇i − L, where h is a constant. Thus we have obtained the constant

of motion which is known as Jacobi integral.

•Gyroscopic system: In general a holonomic conservative system with T1 ̸= 0 is called

gyroscopic system.
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Self-Assessment Questions

Short-Answer Questions:

1) Show that Jacobi integral has the unit of energy.

2) Discuss the integrals of motion.

3) Derive the Lagrangian form of D’Almbert’s principle in term of generalized co-

ordinates.

4) Discuss the Kepler’s problem using ignorable coordinates.

5) Find the differential equation of motion for a spherical pendulum of length ’l’.

6) Illustrate a Routhian method for Kepler’s problem.

Long-Answer Questions:

1) Derive the standard form of Lagrange’s equation for a non-holonomic system.

2) Explain the Liouville system.

3) Derive the standard form of Lagrange’s equation for a holonomic system.

4) Routhian function and prove that d
dt

(
∂R
∂q̇i

)
− ∂R

∂qi
= 0.

5) Define the Lagrangian equation and derive the Lagrangian form of D’Almbert’s prin-

ciple in term of generalized co-ordinates.

6) Briefly explain conservative systems.

7) Derive the Lagrangian form of D’Almbert’s principle in term of generalized co-

ordinates

8) Define a Routhian function and explain the procedure for eliminating the ignorable

co-ordinates from the equations of motion using Routhian function.

9) Discuss briefly derivatives of Lagrange’s equations.

10) Solve the differential equation of motion for a spherical pendulum of length ’l’ for

the motion.

11) Differentiate holonomic and non-holonomic Systems.

12) Find the differential equation of motion for a double pendulum.
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Objective Questions:

1. . . . .... dynamics is based on a direct application of Newton’s law of motiom.

a) Analytical b) Vectorial c) Classical d) Newtonian

2. Find the name of equation d
dt

(
∂R
∂q̇i

)
− ∂R

∂qi
= Qi

a) Lagrange’s equation b) Hamiltonian equation

c) Routhian equation d) Jacobi equation

3. Find the name of the equation d
dt

(
∂R
∂q̇i

)
− ∂R

∂qi
= 0,

a) The standard form of Lagrange’s equation for a non-holonomic system.

b) The standard form of Lagrange’s equation for a holonomic system.

c) Lagrange’s equation d) Hamiltonian equation

4. A . . . . . . consists of two particles suspended by massless rods.

a) Spherical pendulum b) Double pendulum

c) Single pendulum d) Compound pendulum

5. Suppose that L(q, q̇, t) contains all nq’s but some of the q’s say, q1, q2, ..., qk are

missing from the Lagrangian. These k coordinates are called . . . . . . .

a) Cartesian coordinates b) Generalized coordinates

c) Ignorable coordinates d) Spherical coordinates

6. Find the name of the equation R = L−
∑k

i=1 βiq̇i

a) Routhian function b) Lagrangian function

c) Hamiltonian function d) Jacobi function

7. Jacobi integral is

a) constant of time b) constant of energy

c) constant of displacement d) constant of motion

8) The . . . . . . . is particularly simple for a natural system; it is equal to the total energy.

a) Energy b) Total energy c) Mass d) Total mass

9) In general, a holonomic conservative system with T1 ̸= 0 is called . . . ..

a) Natural system b) Conservative system

c) Rheonomic system d) Gyroscopic system

10) A natural system having T and V of the form is called . . . ..
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a) Natural system b) Liouville system

c) Rheonomic system d) Conservative system

11) The existence of the Jacobi integral implies that the total kinetic energy is. . . ..

a) Constant b) Zero c) One d) Two

12) The Lagrangian L is not an explicit function of time, even though the system is

rheonomic. Hence , the system is. . .

a) Natural system b) Liouville system

c) Rheonomic system d) Conservative system

Answers for Check Your Progress

1. The following set of s number of second order differential equations satisfied by the

Lagrangian system are called the Lagrange’s equations of motion.

d
dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= 0 k = 1, 2, .., s.

2. The Standard form of Lagrange’s Equation for a holonomic system is d
dt

(
∂L
∂q̇i

)
−

∂L
∂qi

= 0 and the Standard form of Lagrange’s Equation for a nonholonomic system is

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
=
∑m

j=1 λjaji.

3. L(q′q̇, t) contains all nq̇’s but some of the q’s say q1, q2, ..., qk are missing form the

Lagrangian. These k coordinates are called icyclic coordinates.

4. It is the problem of motion of a particle of unit mass which is attracted by an inverse

square gravitational force to a fixed point o.

5. The equation ∂L
∂t

=
∑n

i=1
d
dt

(
∂L
∂q̇i
q̇i

)
Which can be integrated to gives, h =

∑n
i=1

∂L
∂q̇i
q̇i−

L, where h is a constant. Thus we have obtained the constant of motion which is

known as Jacobi integral.

6. A natural systemis a conservative system with some additional properties.

i. It is described by the standard holonomic form of Lagrange’s equation.

ii. The kinetic energy is expressed as a homogeneous quadratic function of q’s.

7. Natural system in which T contains only q̇i2 and no cross product of q̇’s. Suppose

that T = 1
2
f
∑n

i=1 q̇i
2, V = 1

f

∑n
i=1 viqi, where f =

∑n
i=1 fi(qi) > 0.
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Unit 3

HAMILTON’S EQUATIONS

Objectives

After the successful completion of this unit; the students are expected

• To recall the basic concepts of the stationary values of the functions several variables.

• To gain the knowledge about the Lagranges multiplir method and Euler Lagrange

equation method with illustrated examples.

• To understand the concepts of Hamilton’s principle.

• To derive the Hamilton’s equation with holonomic and non-holonomic system.

• To discuss about the mass-spring system and Kepler’s problems by using Hamilton

procedure.

• To develope the concepts of the modified Hamilton’s principle.

• To analyse the method of principle of least action.

• To solve the problem related to Jacobi’s form of principle of least action.

3. Introduction

Dear students, in the last two units we have developed Lagrange’s formulation of me-

chanics. In this present chapter, we will resume the formal development of mechanics,

turning our attention to an alternative statement of the structure of the theory known

as the Hamiltonian formulation. In this formulation the variation principle is used

as the basics for the discribution of dynamic system. In this approach the motion is

consider as the hole and involues finiding the path in configurence space which yields
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stationary value for certain definite integral The variational principle of most impor-

tance in dynamics is Hamilton’s principle which was first announced in 1834.

3.1 Stationary value of a function of several variables

Dear students, in this section we will introduce the stationary value of a function of

several variables. Also we will discuss Lagrange multiplier method, stationary value of

a definite integral, Brachistochrone problem, Geodesic problem and Hamilton’s prin-

ciple.

3.1.1 The necessary and sufficient condition for stationary values

Consider a function f(q1, q2, ..., qn). The first variation of f at the reference point q0 is

given by,

δf =
n∑

i=1

(
∂f

∂qi

)
0

δqi,

where δq’s are virtual displacement.

The necessary and sufficient condition that f have a stationary value at q0 is that

δf = 0 , for all δq’s . Now,

δq = q − q0

⇒ q = q0 + δq.

For the case in which δq’s are independent and reversible.

We have (
∂f

∂qi

)
0

= 0, (i = 1, 2, ..., n).

.

Consider the second variation of f ,

δ2f =
1

2

n∑
i=1

n∑
j=1

(
∂2f

∂qi∂qj

)
0

δqiδqj.

Using the notation kij =
(

∂2f

∂qi∂qj

)
0

, where k’s are the elements of a symmetric matrix

of order n× n .
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Conditions for maximum and minimum

1. The sufficient condition that q0 is a local minimum is that k must be positive definite.

2. If k is negative definite, the point q0 is a local maximum.

3. If k is indefinite, the point q0 is a saddle point.

3.1.2 Lagrange multiplier method

Consider the free variations of an augmented function F (q1, q2, ..., qn; λ1, λ2, ..., λm)

and F defined as F = f +
m∑
j=1

λjϕj The necessary and sufficient conditions for δF to be

stationary is

δF = 0
n∑

i=1

(
∂F

∂qi

)
0

δqi +
m∑
j=1

(
∂F

∂λj

)
0

δλj = 0. Then(
∂F

∂qi

)
0

= 0, (i = 1, 2, ..., n) and

(
∂F

∂λj

)
0

= 0, (j = 1, 2, ...,m)

Examples:

Find the stationary values of the function f = z, subject to the constraints

ϕ1 = x2 + y2 + z2 − 4 =0 and ϕ2= xy − 1 =0.

Solution :

Let us consider the augmented function F

F = f +
m∑
j=1

λjϕj

F = z + λ1ϕ1 + λ2ϕ2

= z + λ1(x
2 + y2 + z2 − 4) + λ2(xy − 1). (3.1)

The necessary and sufficient condition for F to be stationary is

(
∂F

∂qi

)
0

=0, (i= 1,2,...,n),
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we have

∂F

∂x
= 2λ1x+ λ2y = 0.

∂F

∂y
= 2λ1y + λ2x = 0.

∂F

∂z
= 1 + 2λ1z = 0.

∂F

∂x
= 0,⇒ 2xλ1 = −λ2y,⇒

λ1
λ2

=
−y
2x
. (3.2)

∂F

∂y
= 0,⇒ 2yλ1 = −λ2x,⇒

λ1
λ2

=
−x
2y
. (3.3)

∂F

∂z
= 0,⇒ 1 = −2zλ1,⇒ λ1 =

−1

2z
. (3.4)

∂F

∂λ1
= 0,⇒ x2 + y2 + z2 = 4. (3.5)

∂F

∂λ2
= 0,⇒ xy = 1. (3.6)

From equations (3.2)and(3.3) of L.H.S are equal. Then R.H.S, implies

−y
2x

=
−x
2y
,⇒ x2 = y2,⇒ x = ±y.

x = ±y in (3.6),⇒ x2 = 1,⇒ x = ±1,⇒ y = ±1.

If x = 1, y = 1 in (3.5),⇒ 1 + 1 + z2 = 4,⇒ z2 = 2,⇒ z = ±
√
2.

If x = −1, y = −1 in (3.5),⇒ 1 + 1 + z2 = 4,⇒ z2 = 2,⇒ z = ±
√
2.

∴ The stationary points are (1, 1,
√
2),(−1,−1,−

√
2),(−1,−1,

√
2) and (1, 1,−

√
2).

From (3.4)

1 + 2λ1z = 0.

At the point (1, 1,
√
2)

1 + 2λ1
√
2 = 0

λ1 = ± 1

2
√
2
.
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Substitute λ1 in (3.2)

2λ1x+ λ2y = 0

− 1

2
√
2
+ λ2 = 0

λ2 = ±−1√
2
.

∴ The Lagrangian multiplier are

λ1 = ± 1

2
√
2
, λ2 = ±−1√

2
.

3.1.3 Stationary value of a definite integral

The necessary conditions for a stationary value of the definite integral

I =

x∫
x0

f
(
y(x), y

′
(x), x

)
dx, (3.7)

where I is a functional and y′
(x) =

dy

dx
. The limits x0 and x1 are fixed. Let us consider

the curve y to be a function of α and x

(ie)., y(α, x) = y∗(x) + αη(x). (3.8)

Here α η(x) denotes the variation in y (α η(x) = δy) with η(x) is an arbitrary value

and α is a small parameter, which does not depend on x. Clearly, I is a function of α

only.
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The necessary condition for the stationary value of I is that its variation must be

zero.(ie).,

δI =0

dI

dα
δα =0.

Consider

dI

dα
=

x1∫
x0

[
∂f

∂y
.
∂y

∂α
+
∂F

∂y′ .
∂y

′

∂α
+
∂f

∂x
.
∂x

∂α

]
dx

=

x1∫
x0

[
∂f

∂y
.
∂y

∂α
+
∂F

∂y′ .
∂y

′

∂α

]
dx. (3.9)

From (3.8),

∂y

∂α
=η(x)

y
′
(α, x) =y

′∗(x) + αη
′
(x)

∂y
′

∂α
=η

′
(x).

Substitute these values in (3.9)

dI

dα
=

x1∫
x0

[
∂f

∂y
.η(x) +

∂F

∂y′ .η
′
(x)

]
dx

=

x1∫
x0

∂f

∂y
.η(x)dx+

x1∫
x0

∂F

∂y′ .η
′
(x)dx

=

x1∫
x0

∂f

∂y
.η(x)dx+

x1∫
x0

∂F

∂y′ .d (η(x)) dx.
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Let

u =
∂f

∂y′ ,

∫
dv =

∫
d(η(x))

du =
d

dx

(
∂f

∂y′

)
dx, v = η(x)

dI

dα
=
∂f

∂y
.η(x)dx+


[
∂F

∂y′ .η(x)

]x1

x0

−
x1∫

x0

d

dx

(
∂f

∂y′

)
η(x)dx


=

x1∫
x0

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η(x)dx

∴

x1∫
x0

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η(x)dx = 0

∴
∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0.

3.1.4 Brachistochrone problem

To find a curve y(x) between the origin O and the point (x1, y1), such that a particle

is starting from reset at O and sliding down the curve with out friction under the

influence of a uniform gravitational field, will reach the end of the curve in a minimum

time.

Let t be the time required by the particle to reach the point (x1, y1)

v =
ds

dt

dt =
ds

v∫
dt =

s1∫
0

ds

v

t =

s1∫
0

ds

v
. (3.10)

The infinitesimal path element is given by

ds =

√
1 +

(
dy

dx

)2

dx

=
√
1 + y′2dx. (3.11)
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By the principle of conservation of energy

Total kinetic energy = Total potential energy

1

2
mv2 = mgx

v =
√
2gx. (3.12)

Substitute (3.11) and (3.12) in (3.10)

t =

x1∫
0

√
1 + y

′2

2gx
dx.

Comparing the above equation with

I =

x1∫
0

f
(
y, y

′
, x
)
dx

f
(
y, y

′
, x
)
=

√
1 + y

′2

2gx

f
(
y, y

′
, x
)
=

(
1 + y

′2

2gx

) 1
2

.

96



Euler-Lagrange equation,

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0

∂f

∂y
= 0

∂f

∂y′ =

(
y

′

2gx

)
1(

1 + y
′2

2gx

) 1
2

=
y

′√
2gx(1 + y′2)

∴ − d

dx

(
y

′√
2gx(1 + y′2)

)
= 0.

Integrating on both sides,

y
′√

2gx(1 + y′2)
= c (constant)

y
′
= c
√

2gx(1 + y′2)

y
′2 = 2gxc2 + 2gxc2y

′2

y
′2 − 2gxc2y

′2 = 2gxc2

y
′2 =

2gxc2

(1− 2gxc2)

y
′
=

√
2gxc2

(1− 2gxc2)

dy =

√
2gxc2

(1− 2gxc2)
dx.
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The transformation equation of a curve

x = a(1− cos θ)

dx =
1

4gc2
(sin θ)dθ, where a =

1

4gc2

dy =

√√√√√√√ 2g(1− cos θ)c2 × 1

4gc2

(1− 2g(1− cosθ)c2)× 1

4gc2

1

4gc2
(sinθ)dθ

=
1

4gc2

√
(1− cos θ)

(1 + cos θ)
sin θdθ

=
1

4gc2

√
(1− cos θ)

(1 + cos θ)
× (1− cos θ)

(1− cos θ)
sin θdθ

=
1

4gc2

√
(1− cos θ)2

12 − cos2 θ
sin θdθ

dy =
1

4gc2
(1− cos θ)dθ

Integrating, ∫
dy =

1

4gc2

∫
(1− cos θ)dθ

y =
1

4gc2
(θ − sin θ) + k. (3.13)

Using the initial conditions ,

x = 0, y = 0 and θ = 0 in (3.13)

⇒ k = 0. (3.14)

Substitute (3.14) in (3.13) we get,

y = a(θ − sin θ), where a =
1

4gc2

∴ The equations x = a(1 − cos θ) and y = a(θ − sin θ) are parametric equations of

a cycloid. The cycloid path leads to a stationary value of t. It is actually the path of a

minimum time.
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3.1.5 Geodesic problem

The problem of finding the shortest path between two points in the space.

Solution:

Let us consider the problem of finding the path of minimum length between two given

points on the 2-dimensional surface of a sphere of radius r. Let us use the spherical

co-ordinate (θ, ϕ) as variable and r is a constant.

We know that

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.

The differential element of length ds is given by,

ds2 = r2dθ2 + r2 sin2 θdϕ2

ds = ±
√
r2dθ2 + r2 sin2 θdϕ2

Consider

ds =

√
r2dθ2 + r2 sin2 θdϕ2

ds = r

√
1 + sin2 θ

(
dϕ

dθ

)2

dθ

s = r

θ1∫
θ0

√
1 + ϕ′2 sin2 θdθ.

Comparing the above equation with

I =

x1∫
0

f
(
y, y

′
, x
)
dx

f
(
y, y

′
, x
)
=

√
1 + ϕ′2 sin2 θ = (1 + ϕ

′2 sin2 θ)

1

2 .
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Euler-Lagrange’s equation,

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0

∂f

∂ϕ
− d

dθ

(
∂f

∂ϕ′

)
= 0

∂f

∂ϕ
= 0

∂f

∂ϕ′ =
1

2
(1 + ϕ

′2sin2θ)
−1
2 .2ϕ

′
sin2 θ

∂f

∂ϕ′ =
ϕ

′
sin2 θ√

1 + ϕ′2 sin2 θ)

∴
d

dθ

(
ϕ

′
sin2 θ√

1 + ϕ′2 sin2 θ)

)
= 0.

Integrating on both sides,

ϕ
′
sin2 θ√

1 + ϕ′2 sin2 θ)
= c (constant)

ϕ
′
= c

√
1 + ϕ′2 sin2 θ)

sin2 θ

ϕ
′2 =

c2
(
1 + ϕ

′2 sin2 θ)
)

sin4 θ

ϕ
′2 sin4 θ − c2ϕ

′2 sin2 θ = c2 ⇒ ϕ
′2 =

c2

sin2 θ(sin2 θ − c2)

ϕ
′
=

c

sin θ
√

sin2 θ − c2

dϕ =
cdθ

sin θ
√

sin2 θ − c2

Integrating,

ϕ =

∫
cdθ

sin θ
√
sin2 θ − c2

=

∫
cdθ

sin2 θ

√
1− c2

sin2 θ

=

∫
cdθ

sin2 θ
√
1− c2 csc2 θ

=

∫
cdθ

sin2 θ
√
1− c2(1 + cot2 θ)

ϕ =

∫
cdθ

sin2 θ
√√

(1− c2)2 − c2 cot2 θ
. (3.15)
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Let y = c cot θ = c
cos θ

sin θ

dy = c

(
− sin2 θ − cos2 θ

sin2 θ

)
dθ

=
−cdθ
sin2 θ

.

From (3.15),

∴ ϕ =

∫
dy√√

1− c2 − y2

= − sin−1

(
y√

1− c2

)
+ k

= cos−1

(
y√

1− c2

)
− π

2
+ k

= cos−1

(
y√

1− c2

)
+ ϕ0

ϕ = cos−1

(
c cot θ√
1− c2

)
+ ϕ0

ϕ− ϕ0 = cos−1

(
c cot θ√
1− c2

)
⇛ cos (ϕ− ϕ0) =

c√
1− c2

cot θ

cosϕ cosϕ0 + sinϕ sinϕ0 =
c√

1− c2
cot θ

cosϕ cosϕ0 + sinϕ sinϕ0 −
c√

1− c2
× cos θ

sin θ
= 0

sin θ cosϕ cosϕ0 + sin θ sinϕ sinϕ0 −
c cos θ√
1− c2

= 0.

The transformation equations are

x = r sin θ cosϕ.

y = r sin θ cosϕ.

z = r cos θ.

x

r
cosϕ0 +

y

r
sinϕ0 −

c√
1− c2

× z

r
= 0.

x cosϕ0 + y sinϕ0 −
c√

1− c2
z = 0.

This is the equation of the plane passing through the origin. This plane intersects the

sphere in a great circle which is geodesic.
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3.1.6 Hamilton’s principle

The actual path in configuration space followed by a holonomic dynamical system

during the fixed interval t0 and t1 such that the integral,

I =
t1∫
t0

Ldt

is stationary with respect to the path variations which vanishes at the end points.

Let us consider a system ofN particles whose position vectors are given by r1, r2, ..., rN .

The Lagrangian form of D’Alembert’s principle is

N∑
i=1

(−→
Fi −mi

−̈→ri
)
δ−→ri =0

N∑
i=1

−→
Fiδ

−→ri =
N∑
i=1

mi
−̈→ri δ−→ri , (3.16)

where
−→
Fi is the applied force and δ−→ri is the virtual displacement.

Now the kinetic energy is given by,

T =
1

2

N∑
i=1

mi
−̇→ri 2

δT =
1

2

N∑
i=1

mi2
−̇→ri δ−̇→ri

=
N∑
i=1

mi
−̇→ri δ−̇→ri (3.17)

Now
d

dt

(
N∑
i=1

mi
−̇→ri δ−→ri

)
=

N∑
i=1

mi
−̈→ri δ−→ri +

N∑
i=1

mi
−→ri ˙δ−→ri . (3.18)
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Substitude (3.16) and (3.17) in (3.18),

d

dt

(
N∑
i=1

mi
−̇→ri δ−→ri

)
=

N∑
i=1

−→
Fiδ

−→ri + δT

= δ (W + T ) .

Integrating the above equation with respect to the fixed points t0 and t1

t1∫
t0

δ (W + T ) dt = 0. (3.19)

Case (i):

Let us consider the transformation to generalized co-ordinates q1, q2, ..., qn then the

virtual work is given by

δW =
n∑

i=1

Qiδqi. (3.20)

Where Qi is the generalized force. Substitute (3.20) in (3.19),

t1∫
t0

(δW + δT ) dt =0

t1∫
t0

(
n∑

i=1

Qiδqi + δT

)
dt =0.

Case (ii):

If the applied force are derived from a potential function then δW = −δV

t1∫
t0

(δW + δT ) dt = 0

t1∫
t0

δ (T − V ) dt = 0

t1∫
t0

δLdt = 0

δ

t1∫
t0

Ldt = 0

δI = 0.
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Hence I is stationary.

Remark:

Hamilton’s principle and Lagrangian principle are equivalent. Since L(q, q̇, t)

corresponds to f(y, y′
, x).

Let us sum up

1. We have introduced basic concepts to obtained the stationary values of a function

by using Lagrangian multiplier method and Euler - Lagrange equation.

2. In Brachistochrome problem, we have find the path of the curve which particle

sliding down from rest under gravitational force from one point to another point in

minimum time.

3. In Geodesic problem, we have obtained the shortest path between two points in a

given space.

4. We have derived the Hamilton’s principle to find the possible paths of the dynamical

system.

Check your progress

1.Write the necessary and sufficient condition for stationary values by using Lagrangian

multiplier method.

2. State the principle of conservation energy.

3. Write Euler - Lagrange equation.

4. write the parametric equations of cycloid.

5. Define Hamilton’s principle.

3.2 HAMILTON’S CANONICAL EQUATIONS

Dear students, in this section we will derive the Hamilton’s equations. We will dis-

cuss the mass-spring system and also Kepler’s problem using the Hamilton canonical

equation of motion. Finialy, we introduce the Legendre transformation.
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3.2.1 Derivation of Hamilton’s equations

Let us consider a holonomic system described by the standard form of Lagrangian

equation as,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, 2, ..., n. (3.21)

We know that

pi =
∂L

∂q̇i
. (3.22)

Then (3.21) can be written as,

ṗi =
∂L

∂qi
.

Define the Hamiltonian function H(q, p, t) as follows,

H(q, p, t) =
n∑

i=1

piq̇i − L(q, q̇, t). (3.23)

Now H(q, p, t)

δH =
n∑

i=1

∂H

∂qi
δqi +

n∑
i=1

∂H

∂pi
δpi +

∂H

∂t
δt. (3.24)

Similarly giving the arbitrary variation for(3.23)

H(q, p, t) =
n∑

i=1

ϕq̇i − L(q, q̇, t)

δH =
n∑

i=1

piδq̇i +
n∑

i=1

q̇iδpi −

(
n∑

i=1

∂L

∂qi
δqi +

n∑
i=1

∂L

∂δq̇i
δq̇i +

∂L

∂t
δt

)

=
n∑

i=1

piδq̇i +
n∑

i=1

q̇iδpi −
n∑

i=1

∂L

∂qi
δqi −

n∑
i=1

∂L

∂δq̇i
δq̇i −

∂L

∂t
δt

δH =
n∑

i=1

q̇iδpi −
n∑

i=1

ṗiδqi −
∂L

∂t
δt. (3.25)

Equating the coefficient of δqi, δpi and δt from eqn (3.24) and (3.25) we get,

∂H

∂qi
= −ṗi, i = 1, 2, ..., n

∂H

∂pi
= q̇i

∂H

∂t
δt = −∂L

∂t
δt. (3.26)
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The 2n first order equations given in equation (3.26) are known as Hamilton’s canon-

ical equations of motion.

Specialcase :

Let us consider a Lagrange’s equation of the form

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Q

′

i.

(Where the generalized force are not all derived from potential equation). For holo-

nomic sysem, the Lagrange’s equation is,

ṗi =
∂L

∂qi
+Q

′

i, (i = 1, 2, ..., n)

The Hamilton’s equation are,

q̇i =
∂H

∂pi

ṗi =
∂H

∂qi
+Q

′

i, (i = 1, 2, ..., n)

For non-holonomic system, The Lagrange’s equation are given by,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

m∑
j=1

λjaji +Q
′

i, (i = 1, 2, ..., n)

Then the Hamilton’s equation are,

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

+
m∑
j=1

λjaji +Q
′

i, (i = 1, 2, ..., n). (3.27)

Where the constraint equations are,

n∑
i=1

ajiq̇i + ajt = 0, (j = 1, 2, ...,m). (3.28)

From (3.27) and (3.28) we can solve for nq’s, np’s and mλ’s as function of time.

106



3.2.2 Discussion of mass-spring system using the Hamilton proce-
dure

Given a mass-spring system consisting of a mass m and a linear spring of stiffness k.

Find the equations of motion using the Hamiltonian procedure.

Solution: Assume that the displacement x is measured from the unstressed position

of the spring. First let us find the kinetic and potential energies in the usual form.

We obtain T =
1

2
mẋ2 and V =

1

2
kx2 which results in

L = T − V =
1

2
mẋ2 − 1

2
kx2.

The linear momentum is

p =
∂L

∂ẋ
= mẋ⇒ ẋ =

p

m

Hence we can write the kinetic energy in the form T =
p2

2m
, and the Hamiltonian

function is found to be

H(x, p) = pẋ− L = p(
p

m
)−

(
1

2
m(

p

m
)2 − 1

2
kx2
)

=
p2

2m
+

1

2
kx2. (3.29)

Since this is a natural system, the Hamiltonian H is equal to the total energy T + V

and is constant.
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To obtain the equations of motion, by using

q̇i =
∂H

∂pi
, (i = 1, 2, ..., n).

ṗi = −∂H
∂qi

.

Here use qi = x and pi =p in above equations in (3.29), we get

ẋ =
∂H

∂p
=

p

m
.

p = mẋ⇒ ṗ = mẍ. (3.30)

ṗ = −∂H
∂x

= −kx. (3.31)

Two first order equations (3.30) and (3.31) are equivalent to the single second order

equation

mẍ+ kx = 0. (3.32)

This equation can be obtained by using Newton’s laws of motion or Lagrange’s equa-

tion.

3.2.3 Discussion of Kepler’s problem using Hamilton procedure

A particle of mass m is attracted to a fixed point O by an inverse square force. Find

the equation of motion.

Solution : Given a particle of mass m is attracted to a fixed point O by an inverse

square force
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(ie.,)Fr =
−µm
r2

.

Where µ is a gravitational constant

T =
1

2
m
(
ṙ2 + r2θ̇2

)
.

V =
−µm
r

.

L = T − V

=
1

2
m
(
ṙ2 + r2θ̇2

)
+
µm

r
.

The Hamiltonian equation is given by,

H = T + V =
1

2
m
(
ṙ2 + r2θ̇2

)
− µm

r

=
p2r
2m

+
p2θ

2mr2
− µm

r
. (3.33)

From (3.33)

ṙ =
∂H

∂pr
=
pr
m

θ̇ =
∂H

∂pθ
=

pθ
r2m

ṗr = −∂H
∂r

=
p2θ
mr3

− µm

r2

ṗθ = −∂H
∂θ

= 0

pθ = β (constant)

ṙ =
pr
m

r̈ =
ṗr
m

r̈ =
1

m

[
p2θ
mr3

− µm

r2

]
r̈ =

β2

m2r3
− µ

r2

⇒ mr̈ − β2

m2r3
+
µ

r2
= 0.

Next, another method of obtaining Hamilton’s equations from Lagrange’s equations is

by means of Legendre transformation.
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3.2.4 The Legendre transformation

Consider a function F (u1, u2, ..., un, w1, w2, ..., wm, t), where u’ s are active variables

and w ’s and t are passive variables. Let us define a new set of active variables as,

vi =
∂F

∂ui
, (i = 1, 2, ..., n) (3.34)

Now, ∣∣∣∣ ∂2F

∂ui∂uj

∣∣∣∣ = ∣∣∣∣ ∂vi∂uj

∣∣∣∣ ̸= 0.

Define a new function F (v1, v2, ..., vn, w1, w2, ..., wm, t) as

G =
n∑

i=1

uivi − F

δG =
n∑

i=1

∂G

∂vi
δvi. (3.35)

Differentiate with respect to active variables,

δG = δ

[
n∑

i=1

uivi − F

]

=
n∑

i=1

δ(uivi)− δF

=
n∑

i=1

uiδvi +
n∑

i=1

viδui − δF

=
n∑

i=1

uiδvi +
n∑

i=1

viδui −
n∑

i=1

∂F

∂ui
δui

=
n∑

i=1

uiδvi +
n∑

i=1

(
vi −

∂F

∂ui

)
δui. (3.36)

From (3.35) and (3.36)
n∑

i=1

∂G

∂vi
δvi =

n∑
i=1

uiδvi +
n∑

i=1

(
vi −

∂F

∂ui

)
δui.

Comparing the coefficients of δvi

ui =
∂G

∂vi
(3.37)

vi −
∂F

∂ui
= 0

vi =
∂F

∂ui
.

110



To obtain Hamilton canonical form by using Legendre transformation : Consider

the Hamilton function

H(p, q, t) =
n∑

i=1

piq̇i - L(q, q̇, t)

Varying H w.r.t active variables

δH =
n∑

i=1

∂H

∂pi
δpi. (3.38)

δH = δ

(
n∑

i=1

piq̇i

)
−

n∑
i=1

∂L

∂q̇i
δq̇i

=
n∑

i=1

piδq̇i +
n∑

i=1

δpiq̇i −
n∑

i=1

∂L

∂q̇i
δq̇i

=
n∑

i=1

δpiq̇i +
n∑

i=1

(
pi −

∂L

∂q̇i

)
δq̇i. (3.39)

From (3.38) and (3.39)

n∑
i=1

∂H

∂pi
δpi =

n∑
i=1

δpiq̇i +
n∑

i=1

(
pi −

∂L

∂q̇i

)
δq̇i

∂H

∂pi
= q̇i and

∂L

∂q̇i
= pi.

Varying H w.r.t passive variables

δH =
n∑

i=1

∂H

∂qi
+
∂H

∂t
δt. (3.40)

δH = −
n∑

i=1

∂L

∂qi
− ∂L

∂t
δt. (3.41)

From(3.40) and (3.41)

n∑
i=1

∂H

∂qi
+
∂H

∂t
δt = −

n∑
i=1

∂L

∂qi
− ∂L

∂t
δt

ṗi = −∂H
∂qi

.

Hence the equation of motion are,

q̇i =
∂H

∂pi
.

ṗi = −∂H
∂qi

.

111



Let us sum up

1. We have derived the Hamilton’s equations.

2. We have discussed the mass- spring system and Kepler’s problem by using Hamilton

equations.

3. We have obtained the Hamilton canonical form by using Legendre transformation.

Check your progress

6. Define Hamilonian function.

7. Write the Hamilton’s canonical equation for holonomic system.

8. Write the Hamilton’s canonical equation for non-holonomic system.

9. Write the equations for generalized momenta.

3.3 Some other Variational Principles

Dear students, in this section we will derive the modified Hamilton’s principles, Prin-

ciple of least action and also discuss of Kepler’S problem by using Jacobi form.

3.3.1 Modified Hamilton’s principle

Let us consider a holonomic system. The usual form of Hamilton’s principle is given

by,

δ

t1∫
t0

Ldt = 0.

Using

H =
n∑

i=1

piq̇i − L, L =
n∑

i=1

piq̇i −H.

The modified Hamilton’s principle is

δ

t1∫
t0

(
n∑

i=1

piq̇i −H

)
dt = 0. (3.42)

t1∫
t0

n∑
i=1

(
δpiq̇i + piδq̇i −

∂H

∂qi
δqi −

∂H

∂pi
δpi

)
dt = 0. (3.43)
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Consider

t1∫
t0

n∑
i=1

piδq̇idt =

t1∫
t0

n∑
i=1

pi
d

dt
(δq̇i) dt

= −
n∑

i=1

t1∫
t0

ṗiδqidt

Now (3.43) becomes

t1∫
t0

n∑
i=1

(
δpiq̇i − δqiṗi −

∂H

∂qi
δqi −

∂H

∂pi
δpi

)
dt = 0

t1∫
t0

n∑
i=1

[(
q̇i −

∂H

∂pi

)
δpi −

(
ṗi +

∂H

∂qi

)
δqi

]
dt = 0, (3.44)

where

q̇i =
∂H

∂pi
.

ṗi = −∂H
∂qi

.

Because δq′s are independent in equation (3.44) which implies that the co-efficient

must be zero. The modified Hamilton’s principle states that the actual part is such that

the integral of equation (3.42) is stationary.

3.3.2 Principle of least action

The actual path of a conservative holonomic system such that the action is station-

ary with respect to varied paths having the same energy integral h and the same end

points in q-space.
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Consider the quadrilateral ABCD,

AB +BC = CD +DA

q̇dt+ δq + dδq = δq + (q̇ + δq̇) (dt+ dδt)

dδq = q̇dδt+ δq̇dt+ δq̇dδt

dδq = q̇dδt+ δq̇dt

δq̇dt = −q̇dδt+ dδq

δq̇ =
−q̇dδt+ dδq

dt
. (3.45)

In terms of components,

δq̇i = −q̇i
d

dt
δt+

d

dt
δqi, (i = 1, 2, ..., n). (3.46)

Now consider

I =

t1∫
t0

Ldt

δI =
d

dt
(δI)− I

d

dt
(δt)

δ

[
d

dt
(I)

]
=

d

dt
(δI)− d

dt
(I)

d

dt
(δt)

δ

 d
dt

 t1∫
t0

Ldt

 =
d

dt
(δI)− d

dt

 t1∫
t0

Ldt

 d

dt
(δt)

δL =
d

dt

δI − t1∫
t0

L
d

dt
(δt) dt


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Integrating

t1∫
t0

δL = δI −
t1∫

t0

L
d

dt
(δt) dt

δI =

t1∫
t0

[
δL+ L

d

dt
(δt)

]
dt. (3.47)

Now

δL =
n∑

i=1

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
+
∂L

∂t
δt

=
n∑

i=1

(
∂L

∂qi
δqi +

∂L

∂q̇i

d(δqi)

dt
− ∂L

∂q̇i
q̇i
d(δt

dt

)
+
∂L

∂t
δt. (3.48)

Consider

d

dt

(
n∑

i=1

∂L

∂q̇i
δqi

)
=

n∑
i=1

d

dt

∂L

∂q̇i
(δqi) +

n∑
i=1

∂L

∂q̇i

d

dt
(δqi)

n∑
i=1

∂L

∂q̇i

d

dt
(δqi) =

d

dt

(
n∑

i=1

∂L

∂q̇i
δqi

)
−

n∑
i=1

d

dt

∂L

∂q̇i
(δqi) . (3.49)

δL =
n∑

i=1

[
∂L

∂qi
δqi +

d

dt

(
n∑

i=1

∂L

∂q̇i
δqi

)
−

n∑
i=1

d

dt

(
∂L

∂q̇i

)
δqi −

n∑
i=1

∂L

∂q̇i
q̇i
dδt

dt
+
∂L

∂t
δt

]
.

(3.50)

Substitute (3.49) in (3.48)

δI =

t1∫
t0

[(
n∑

i=1

∂L

∂qi
δqi +

d

dt

(
n∑

i=1

∂L

∂q̇i
δqi

)
−

n∑
i=1

d

dt

(
∂L

∂q̇i

)
δqi −

n∑
i=1

∂L

∂q̇i
q̇i
dδt

dt
+
∂L

∂t
δt

)
+ L

d

dt
(δt)

]
dt

=

t1∫
t0

n∑
i=1

d

dt

(
∂L

∂q̇i
δqi

)
dt+

t1∫
t0

[
∂L

∂t
δt−

(
n∑

i=1

∂L

∂q̇i
q̇i − L

)
d

dt
(δt)

]
dt

−
t1∫

t0

n∑
i=1

[
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

]
δqidt. (3.51)

Let us consider a holonomic system, By setting δt = 0 in second integral of (3.51)

vanishes. By assuming the standard form of Lagrange’s equation in (3.51) the second
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integral vanishes

δI =

t1∫
t0

d

dt

(
n∑

i=1

∂L

∂q̇i
δqi

)
dt

=

[
n∑

i=1

∂L

∂q̇i
δqi

]t1
t0

⇒ δI = 0.

Thus we obtain the Hamilton’s principle.

Now let us consider a conservative holonomic system. The path at the end points so

the first and third integral vanishes.

δI =

t1∫
t0

[
L
d

dt
(δt)−

n∑
i=1

∂L

∂q̇i
q̇i
d

dt
(δt)

]
dt.

Since
∂L

∂t
= 0 for a conservative system

δI = −
t1∫

t0

[
n∑

i=1

∂L

∂q̇i
q̇i
d

dt
(δt)− L

d

dt
(δt)

]
dt

= −
t1∫

t0

[
n∑

i=1

∂L

∂q̇i
q̇i − L

]
d

dt
(δt)dt.

Now
n∑

i=1

∂L

∂q̇i
q̇i − L = h is an energy integral.

∴ δI = −
t1∫

t0

h
d

dt
(δt)dt

δI = −h [δt]t1t0 = −h (δt1 − δt0) .

Define the action as an integral,

A =

t1∫
t0

n∑
i=1

∂L

∂q̇i
q̇idt =

t1∫
t0

n∑
i=1

piq̇idt (∵
∂L

∂q̇i
= pi).
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Now

δA = δ

t1∫
t0

(L+ h)dt

= δI +

t1∫
t0

δ(hdt)

= δI +

t1∫
t0

δhdt+ h

t1∫
t0

δdt

= −h(δt1 − δt0) + δh(t1 − t0) + h(δt1 − δt0) (∵ δI = −h (δt1 − δt0)

⇒ δA = δh(t1 − t0).

Restricting the varied paths to those for which h has the same value as the actual path

then δh = 0. Therefore δA = 0.

3.3.3 Jacobi’s form of the principle of least action

Let us consider a natural system,
n∑

i=1

piq̇i = 2T2 + T1. For, T1 = 0 and the principle of

least action becomes,

δA = δ

t1∫
t0

2Tdt

= δ

t1∫
t0

piq̇idt = 0

δA = δ

t1∫
t0

2
√
T (h− V )dt = 0.

If ds is defined as,

ds2 =
n∑

i=1

n∑
j=1

mij q̇iq̇jdt
2 = 2T 2

ds =
√
2Tdt

δA = δ

t1∫
t0

2
√
T (h− V )dt
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δA = δ

t1∫
t0

√
2.2T (h− V )dt

δA = δ

t1∫
t0

√
2(h− V )ds = 0.

This is the Jacobi’s form of least action.

3.3.4 Discuss of Kepler problem by using Jacobi form of principle
of least action

Use the Jacobi form of the principle of least action. Obtaining orbit for the Kepler’s

problem.

Solution: Let a particalof mass m attracted to a fixed point ’O’ by an inverse square

force Fr =
−µm
r2

. The K.E and P.E is T = 1
2
mv2 = 1

2
m(ṙ2 + r2θ̇2) and V = −µm

r
.

Consider the natural system having the total energy is

h = T + V =
1

2
m(ṙ2 + r2θ̇2)− µm

r
(3.52)

Using the Jacobi form of the principle of least action

δA = δ

∫ √
2 (h− V )ds = 0 (3.53)

From (3.52) δ

∫ √
2(h+

µm

r
)ds = 0, where

ds2 = m(dr2 + r2dθ2) (3.54)

⇒ ds = δ

θ1∫
θ0

√
2(h+

µm

r
)(r2 + r′2)dθ = 0 (Here r

′
=
dr

dθ
).

Now let us choose θ as the independent variable and r
′ =

dr

dθ
. Then equation (3.53)

becomes

δ

θ1∫
θ0

f(r, r
′
)dθ = 0 (3.55)

δ

θ1∫
θ0

√
2m
(
h+

µm

r

)
(r2 + r′2)dθ = 0
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where f(r, r′) =
√

2m
(
h+

µm

r

)
(r2 + r′2).

By Euler-Lagrange equation

d

dθ

(
∂f

∂r′

)
− ∂f

∂r
= 0. (3.56)

From, we know that,

∂f

∂r′
r
′ − f = C (constant).

f(r, r
′
) =

√
2m(r′2 + r2)

(
h+

µm

r

)
∂f

∂r′
=

2m
(
h+ µm

r

)
2r

′

2
√

2m(r′2 + r2)
(
h+ µm

r

) =
2m
(
h+ µm

r

)
r
′√

2m(r′2 + r2)
(
h+ µm

r

)
=

√
2m
(
h+ µm

r

)
(r′2 + r2)

r′

∂f

∂r′
r
′ − f = C√

2m
(
h+ µm

r

)
(r′2 + r2)

r
′
r
′ −
√

2m(r′2 + r2)
(
h+

µm

r

)
= C√

2m
(
h+

µm

r

)[ r′2√
(r′2 + r2)

−
√

(r′2 + r2)

]
= C√

2m
(
h+

µm

r

)[r′2 − r′2 − r2√
(r′2 + r2)

]
= C

−

√
2m
(
h+ µm

r

)√
(r′2 + r2)

r2 = C (3.57)

Now

h = T + V

=
1

2
m
(
ṙ2 + r2θ̇2

)
− µm

r

m
(
ṙ2 + r2θ̇2

)
= 2

(
h+

µm

r

)
⇒ m2

(
ṙ2 + r2θ̇2

)
= 2m

(
h+

µm

r

)

ṙ =
dr

dt
=
dr

dθ

dθ

dt
= r′θ̇ ⇒ θ̇ =

ṙ

r′
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Values of ṙ = r′θ̇ and θ̇ = ṙ
r′

in above equation.

m2
(
r′2θ̇2 + r2θ̇2

)
= 2m

(
h+

µm

r

)
m2θ̇2

(
r′2 + r2

)
= 2m

(
h+

µm

r

)
. (3.58)

Equation (3.58) in(3.57),

−

√
m2θ̇2 (r′2 + r2)

(r′2 + r2)
r2 = C

−
√
m2θ̇2r2 = C,⇒ mθ̇r2 = C

θ̇ =
−C
mr2

.

Angular momentum is constant

θ̇2 =
−C2

m2r4

To find the equation of orbit,in (3.57) squaring and rearranging

2m
(
h+

µm

r

)
r4 = C2

(
r′2 + r2

)
= C2r′2 + C2r2

C2r′2 = 2m
(
h+

µm

r

)
r4 − C2r2 = 2mr2

(
hr2 + µmr

)
− 2mC2r2

2m

=
2mr2

C2

[
hr2 + µmr − C2

2m

]
(
dr

dθ

)2

=
2mr2

C2

[
hr2 + µmr − C2

2m

]
dr

dθ
=

√
2mr2

C2

[
hr2 + µmr − C2

2m

]
dr√

2mr2

C2

[
hr2 + µmr − C2

2m

] = dθ

∫
dθ =

C√
2m

∫
dr√

hr4 + µmr2 − C2
r2

2m

θ =
C√
2m

r∫
r0

dr

r2

√
h+ µm

r
− C2

2m

=

r∫
r0

d

(
µm2

C2
− 1

r

)
√
µ2m4

C4
+

2mh

C2
−
(
µm2

C2
− 1

r

)
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θ = sin−1


(
µm2

C2
− 1

r

)
√
µ2m4

C4
+

2mh

C2


r

r0

= sin−1


(
µm2

C2
− 1

r

)
√
µ2m4

C4
+

2mh

C2

− π

2



⇒ sin(θ +
π

2
) =

(
µm2

C2
− 1

r

)
√
µ2m4

C4
+

2mh

C2

⇒ cos θ

√
µ2m4

C4
+

2mh

C2
=
µm2

C2
− 1

r

⇒ 1

r
=
µm2

C2
−
√
µ2m4

C4
+

2mh

C2
cos θ.

Multiplying by
C2

µm2
we get

C

µm2/r
= 1−

√
1 +

2hC2

µ2m3
cos θ.

This is a conic with eccentricity

i.e.,

√
1 +

2hC2

µ2m3

(
l

r
= 1 + e cos θ

)
To find h:

h =
1

2
m
(
ṙ2 + r2θ̇2

)
− µm

r

Atr = r0 = rmin, θ = θ0 = 0

m

2

[
0 + r2θ̇0

2
]
= h+

µm

r0
.

Also

mr20θ0 = −C ⇒ θ0 =
−C
mr20

⇒ m

2

[
r20

C2

m2r40

]
= h+

µm

r0
⇒ C2

2mr20
= h+

µm

r0

⇒ h =
C2

2mr20
− µm

r0
.
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Let us sum up

1. We have derived modified Hamilon’s from Hamilton’s function.

2. We have obtained optimum path of a conservative holonomic system by using the

principle of least action.

3.Also we have find the actual path of a natural system by using Jacobi’s form of the

principle of least action.

4. We have obtain the optimum path for the Kepler’s problem by using Jacobi’s form

of the principle of least action.

Check your progress

10. State modified Hamilton’s principle.

11. Define principle of least action.

12. Write the equation of natural system.

13. Write the equation of Jacobi’s form of least action method.

Summary

• Introduced basic concepts to obtained the stationary values of a function by using

Lagrangian multiplier method and Euler- Lagrange equation.

• In Brachistochrome problem, we have find the path of the curve which particle

sliding down from rest under gravitational force from one point to another point in

minimum time.

• In Geodesic problem, we have obtained the shortest path between two points in a

given space.

• Derived the Hamilton’s principle to find the possible paths of the dynamical system.

• Derived the Hamilton’s equations.

• Discussed the mass- spring system and Kepler’s problem by using Hamilton equa-

tions.

• Obtained the Hamilton canonical form by using Legendre transformation.
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• Derived modified Hamilon’s from Hamilton’s function.

• Obtained optimum path of a conservative holonomic system by using the principle

of least action.

• Find the actual path of a natural system by using Jacobi’s form of the principle of

least action.

• Obtain the optimum path for the Kepler problem by using Jacobi’s form of the prin-

ciple of least action.

Glossary

•Hamiltonian: The Hamiltonian of a system is defined to be the sum of the kinetic

and potential energies expressed oF a function of positions and their conjugate mo-

menta.

•Legendre transformation: It refers to the mathematical method for changing the

basis of the dscription of a system from one set of independent variables to another

set of independent variables.

•Multiplier rule: A standard method for the analysis of these problems is the multi-

plier rule.

Self-Assessment Questions

Short-Answer Questions:

1) Derive the Euler-Lagrange equation.

2) Find the stationary values of the function f = z, subject to the constraints

ϕ1 = x2 + y2 + z2 − 4 =0 and ϕ2= xy − 1 =0.

3) With usual derive qi = ∂H
∂pi
, pi =

∂H
∂qi
, ∂L

∂t
= ∂H

∂t
.

4) Discuss Geodesic problem.

5) Explain the Brachistochrone problem.

6) Explain Hamilton’s equation of motion.
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Long-Answer Questions:

1) Derive the Lagrange’s Equation of motion in the standard form for a holonomic

system.

2) Solve the differential equations of motion for a spherical pendulum of length ’l’ for

the integrals of the motion.

3) Derive the Euler-Lagrange Equation and Explain the Brachistochrone problem.

4) State and prove the principle of least action.

5) Derive the Hamilton’s equation of motion.

6) A particle of mass m attached to a fixed point O by an inverse square force i.e,

Fr = −µm
r2

, where µ is the gravitational coefficient. Using the polar co-ordinates (r, θ)

to describes the position of the particle and find the equation of motion.

7) Derive Hamilton’s canonical equation of motion.

8) Deduce the Jacobi’s form of the principle of least action.

9) Derive the Euler-Lagrange Equation and prove the Geodesic problem.

10) State and prove the Hamilton’s principle.

11) Deduce the Jacobi’s form of the principle of least action to obtain for the Kepler

problem. Show that Jacobi integral has the unit of energy.

Objective Questions:

1. In which principle it is viewed, the motion as a whole and involves a search for the

path in configuration space which yields a stationary value for a certain integra

a) Hamiltonian’s principle b) Lagrange’s principle

c) Jacobi principle d) Principle of least square

2. The necessary and sufficient condition that a function f(q1, q2, ..., qn) have a station-

ary value q0 is

a) ∂f = 1 b)∂f = 0 c) ∂f ̸= 1 d) ∂f ̸= 0

3. The notation kij ≡
(

∂2f
∂qiqj

)
0

at the stationary point q0, are the elements of the n× n

matrix k. Then k is . . . . matrix.

a) Skew b) Non symmetry c) Diagonal d) Symmetry
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4. The notation kij ≡
(

∂2f
∂qiqj

)
0

then the sufficient condition that q0, be a local minim is

that the matrix k be. . . . . .

a) Positive definite b) Negative definite c) Positive semi definite d) Indefinite

5. If k = (kij)n×n, where kij ≡
(

∂2f
∂qiqj

)
0

at the stationary point q0, and k is negative

definite then the point q0 is called . . . . . . .

a) Saddle point b) Local maximum c) Local minimum d) Absolute maximum

6. Which method is applied to the problems involving constrained minima or maxima

a) Lagrange multipler method b) Zero derivative principle

c) D’Alembertz principle d) Principle of virtual work.

7. If k = (kij)n×n, where kij ≡
(

∂2f
∂qiqj

)
0

at the stationary point q0, and k is indefinite

then the point q0 is termed as . . . ..

a) Local maximum b) Local minimum c) Focus d) Saddle point

8. If q0 ia an interior point, f(q1, q2, .., qn) takes on a minimum or a maximum value

only it is a . . . . . .

a) Saddle point b) Stationary c) Point of inflexion d) Not a stationary

9. The solution of the Brachistochrone problem is. . . . . . .

a) Circular path b) Elliptic path c) Gaodisc path d) Cycloidal path

10. The problem of finding the shortest path between 2 given points in given space is

known as . . . . . .

a) Geodisc problem b) Hamilton’s problem c) Brachistochrone problem d) Min-

imal surface problem

11) Which principle is popularly known as an integrated form of the D’Alembert’s prin-

ciple

a) Hamiltonian’s principle b) Lagrange’s principle c) Jacobi principle d) Princi-

ple of least square

12) δ
∫ t1
t0
Ldt = 0 is known as. . . . . .

a) Lagrange’s principle b) Hamiltonian’s principle

c) Jacobi principle d) Principle of least square

13) The Hamiltonian function of a scleronomic system is equal to . . . . . . ..
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a) H = T + V b) H = T − V c) H = T2˘T0 + V d) H = T0 − T2 + V

Answers for Check Your Progress

1. The necessary and sufficient conditions for δF to be stationary is δF = 0,
n∑

i=1

(
∂F

∂qi

)
0

δqi+

m∑
j=1

(
∂F

∂λj

)
0

δλj = 0. Then
(
∂F

∂qi

)
0

= 0, (i = 1, 2, ..., n) and(
∂F

∂λj

)
0

= 0, (j = 1, 2, ...,m).

2. Total kinetic energy = Total potential energy

3.
∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0

4. The differential element of length ds is given by, ds = ±
√
r2dθ2 + r2 sin2 θdϕ2.

5. The actual path in configuration space followed by a holonomic dynamical system

during the fixed interval t0 and t1 is such that the integral, I =
t1∫
t0

Ldt is stationary with

respect to the path variations which vanishes at the end points.

6. Define the Hamiltonian function H(q, p, t) as follows, H(q, p, t) =
n∑

i=1

piq̇i- L(q, q̇, t).

7. For holonomic sysem, the Lagrange’s equation is, ṗi =
∂L

∂qi
+Q

′
i, (i = 1, 2, ..., n).

8. For non-holonomic system ,The lagrange’s equation are given by,
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

m∑
j=1

λjaji +Q
′
i, (i = 1, 2, ..., n)

9. The generalized momenta are given by, pr =
∂L

∂ṙ
= mṙ, pθ =

∂L

∂θ̇
= mr2θ̇.

10. The modified Hamilton’s principle states that the actual part is such that the inte-

gral of equation δ
t1∫
t0

(
n∑

i=1

piq̇i −H

)
dt = 0 is stationary.

11. The actual path of a conservative holonomic system such that the action is station-

ary with respect to varied paths having the same energy integral h and the same end

points in q-space.

12.
n∑

i=1

piq̇i = 2T2 + T1.

13. δA = δ
t1∫
t0

√
2(h− V )ds = 0, which is the Jacobi’s form of least action.
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Unit 4

HAMILTON’s- JACOBI THEORY

Objectives

After the successful completion of this unit; the students are expected

• To understand the concepts of Hamilton’s principle function and Pfaffian differential

form.

• To gain the knowledge Hamilton-Jacobi equation.

• To develope the method of modified Hamilton-Jacobi equation with illustrated ex-

ample.

• To gain the knowledge of Lioville’s system.

• To understand the Stackel’s theorem.

4. Introduction

Dear students, Hamiltonian is conserved then a solution could be obtained by the

transforming to new canonical coordinates that are all cyclic, since the integration

of the new equations of motion becomes trivial. An alternative techique is to seek a

canonical transformation from the coordinates and momenta, (q, p), at the time t, to

a new set of constant quantities, 2n initial values (q0, p0) at t = 0. Now the important

question? how to find the transformation from the old coordintes to new coordinates.

This is the fundamental problem. In this present chapter we shall approach proposal

problem by studying the generality function which is associated with the required

canonical transformation. This generality technique is the solution of the partial dif-
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ferential equation known as Hamilton Jacobi equation. The Jacobi Hamilton equation

is named after William Rowthan Hamilton and Carl cursav Jacob Jacobi. The Hamil-

ton canonical equation is first order partial nonlinear differential equation applicable

in understudy the conserved quantities for mechanical systems. In this unit, we will

study the charateristic function and Hamiltonian Jacobi equation.

4.1 Hamilton’s Principle Function

Dear students, in this section we will discuss the canonical integral and also Pfaffian

differential form.

4.1.1 Canonical integral

Now consider the canonical integral of the form s(q0, q1, tn, t1) =
∫ t1
t0
Ldt. The function

s is a twice differential in all its arguments and is known as Hamilton’s principle func-

tion.

For a holonomic system

δI =

∫ t1

t0

d

dt

(
n∑

i=1

∂L

∂q̇i

)
δqidt+

∫ t1

t0

∂L

∂t
δt+ L

d

dt
δt−

n∑
i=1

∂L

∂qi
qi
d

dt
δtdt

=

∫ t1

t0

d

dt

(
n∑

i=1

∂L

∂qi

)
δqidt+

∫ t1

t0

(
∂L

∂t
δt− (

n∑
i=1

piqi − L)
d

dt
δt

)
dt
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we know that H(p, q, t)

Ḣ =
n∑

i=1

(
∂H

∂pi
ṗi +

∂H

∂qi
q̇i) +

∂H

∂t

=
n∑

i=1

(q̇iṗi − ṗiq̇i) +
∂H

∂t

∂H

∂t
=− ∂L

∂t
∂L

∂t
=− Ḣ

δI =

∫ t1

t0

n∑
i=1

d

dt
(
∂L

∂q̇i
)δqidt+

∫ t1

t0

(−Ḣδt− (
n∑

i=1

ṗiq̇i − L)
∂L

∂t
δt)dt

δI =

∫ t1

t0

n∑
i=1

d

dt
(
∂L

∂q̇i
)δqidt−

∫ t1

t0

(Ḣδt+ (
n∑

i=1

ṗiq̇i − L)
∂L

∂t
δt)dt

δI =

∫ t1

t0

n∑
i=1

d

dt
(
∂L

∂q̇i
)δqidt−

∫ t1

t0

d

dt
(Hδt)dt

δI =

∫ t1

t0

d

dt

(
n∑

i=1

∂L

∂q̇i
δqi −Hδt

)
dt.

The principle function s is obtained from the canonical integral I,

δs =

[
n∑

i=1

∂L

∂q̇i
δqi −Hδt

]t1
t0

δs =
n∑

i=1

∂L

∂ ˙qi1
δqi1 −H1δt1 −

n∑
i=1

∂L

∂ ˙qi0
δqi0 +H0δt0

Writing in differential form,

ds =
n∑

i=1

pi1dqi1 −H1dt1 −
∂L

∂ ˙qi0
dqi0 +H0dt0. (4.1)

Differentiating s(q0, q1, t0, t1) we get,

ds =
n∑

i=1

∂s

∂qi0
dqi0 +

n∑
i=1

∂s

∂qi1
dqi1 +

∂s

∂t0
dt0 +

∂s

∂t1
dt1. (4.2)

Equating the corresponding coefficients,

pi0 = − ∂s

∂qi0
, pi1 = − ∂s

∂qi1

H1 = − ∂s

∂t1
, H0 = − ∂s

∂t0
.
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The equation pi0 = − ∂s
∂qi0

(i = 1, 2, ..., n) gives pi0 as function of (qi0, qi1, t0, t1). Assuming

that
∣∣∣ ∂2s
∂qi0qi1

∣∣∣ ̸= 0, we can solve for qi1 and is given by qi1 = qi1(q0, q1, t0, t1). It is the so-

lution of lagrange’s problem substituting qi1 in pi1 = ∂s
∂qi1

, we get pi1 = pi1(q0, q1, t0, t1).

Hence we get the complete solution of the Hamilton problem.

4.1.2 Pfaffian differential form

A pfaffian form is defined by Ω =
∑m

i=1Xi(x)dxi, for arbitrary displacement and ω =∑m
j=1Xj(x)δxj

δω − δΩ =
m∑
i=1

(∂Xidxi +Xiδdxi)−
m∑
j=1

(dXj +Xjdδxj)

=
m∑
i=1

(
m∑
j=1

∂Xj

∂xj
δxjdxi)−

m∑
j=1

(
m∑
i=1

∂Xj

∂xi
dxiδxj))

=
m∑
i=1

m∑
j=1

(
∂Xi

∂xj
− ∂Xj

∂xi
)δxjdxi

=
m∑
i=1

m∑
j=1

cijδxjdxi

where
∂Xi

∂xj
− ∂Xj

∂xi
= cij.

δω − δΩ =
m∑
i=1

m∑
j=1

cijδxjdxi (4.3)

is called the bilinear covariant associated with Ω.

Further if m is odd, we get m another aspect of pfaffian differential form.

(ie) we get m differential equations known as first pfaffian systems.

The equation taken the form

m∑
i=1

cijdxi = 0, (j = 1, 2, ...,m).

These are obtained by setting the coefficients of δx′s to zero in equation (4.3). Express-

ing ds as the different of two pfaffian form

ds = (
n∑

i=1

pi1dqi1 −H1dt1)− (
m∑
i=1

pi0dqi0 −H0dt0).
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(ie.,) It is the form of
∑n

i=1 pidqi −Hdt

Let Ω =
n∑

j=1

Pjdqj −Hdt

ω =
n∑

j=1

Pjδqj −Hδt

∂Ω =
n∑

j=1

(δPjdqj + Pjδqj)− δHdt−Hδdt

dω =
n∑

j=1

(dPjδqj + Pjdδqj)− dHδt−Hdδt.

δΩ− dω =
n∑

j=1

δpjdqj − δHdt−
n∑

j=1

dPjδqj + dHδt

=
n∑

j=1

δPjdqj −

(
n∑

j=1

(
∂H

∂qj
δqj +

∂H

∂Pj

δPj) +
∂H

∂t
δt

)
dt

−
n∑

j=1

dPjδqj −

(
n∑

j=1

(
∂H

∂qj
dqj +

∂H

∂Pj

dPj) +
∂H

∂t
dt

)
δt

=
n∑

j=1

(dqj −
∂H

∂Pj

dt)δPj +
n∑

j=1

(−dPj −
∂H

∂qj
dt)δqj +

n∑
j=1

(
∂H

∂qj
dqj +

∂H

∂Pj

dPj)δt.

Applying the idea of first pfaffian system we get,

dqi =
∂H

∂pj
dt = 0. (4.4)

−dpi =
∂H

∂qj
dt = 0. (4.5)

∂H

∂qj
dqj +

∂H

∂pj
dpj = 0

(4.4) becomes

dqj =
∂H

∂pj
dt

(ie., ) q̇j =
∂H

∂pj
(4.6)

(4.5) becomes

dpj =
∂H

∂qj
dt

(ie., ) ṗj =
∂H

∂qj
, (j = 1, 2, ..., n). (4.7)
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(4.6), (4.7) are Hamilton’s canonical equations,

Now

Ḣ =
n∑

j=1

(
∂H

∂qj
Ṗj +

∂H

∂pj
q̇j) +

∂H

∂t

=
n∑

j=1

(
∂H

∂Pj

−∂H
∂qj

+
∂H

∂qj

∂H

∂Pj

) +
∂H

∂t

Ḣ =
∂H

∂t
.

We find that ds is equal to the difference between two pfaffian differential forms at

initial and final positions.

Hence s is considered as a generating function for the canonical transformation

Case (i): Consider the transformation

qi0 = qi0(γ1, γ2, ...γ2n), pi0 = pi0(γ1, γ2, ...γ2n),

where the Jacobian of the transformation is given by, ∂(q10,...pn0)
∂(γ1,...γ2n)

̸= 0.

Then

n∑
i=1

pi0dqi0 =
n∑

i=1

pi0

2n∑
j=1

∂qi0
∂γi

dγi

=
2n∑
j=1

Γj(γ)dγj, (4.8)

where Γj(γ) =
n∑

i=1

pi0
∂qi0
∂γi

.

Case (ii): γ1, γ2, ..., γ2n can be replaced nα′s and nβ′s.

Let αi = αi(γ1, γ2...γ2n), βi = βi(γ1, γ2...γ2n)

such that
∑n

i=1 βidαi =
∑2n

i=1 Γj(γ)dγj, where Γj(γ) =
∑n

i=1 βi
∂αj

∂γj
.

Therefore
∑n

i=1 pi0dqi =
∑n

i=1 βidαi from case (i).

Let us sum up

1. We introduce the canonical integral.

2. We have derive Pfaffian differential form.
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Check your progress

1. What is Hamilton’s principle function?

2. Write the Pfaffian differential form.

Dear students, in this section we will discuss about the Hamilton Jacobi’s equation,

modified Hamilton Jacobi’s equation.

4.2 Hamilton Jacobi’s equation

Consider a holonomic system giving 2n independent initial conditions at time t0 as

q0 ̸= p0.

Now we have differential equation

Assume that

ds =
n∑

i=1

pi1dqi1 −
n∑

i=1

pi0dqi0 −H1dt1 +H0dt0, (4.9)

where s is the Hamilton’s principle function. It is associated cononical transformation

relating the initial and final point of a path in a phase space.

Let the initial conditions are specified by

αi = αi(q10, q20...qn0, p10, p10, ...pn0).

βi = βi(q10, q20...qn0, p10, p10, ...pn0), (i = 1, 2, ..., n),

which satisfied

n∑
i=1

pi0dqi0 =
n∑

i=1

βidαi

ds =
n∑

i=1

pi1dqi1 −
n∑

i=1

βidαi −H1dt1 +H0dt0. (4.10)

Now we consider s number can be associated as a function of

s = s(qi1, qi0, t1, t0)

ds =
n∑

i=1

∂s

∂qi1
dqi1 +

n∑
i=1

∂s

∂αi

dαi +
∂s

∂t1
dt1 +

∂s

∂t0
dt0. (4.11)
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Hence q′s and α′s are independent equality variable.

Assume that | ∂2s
∂qi1∂αj

| ≠ 0

=⇒ α′s can be solved in terms of ∂s
∂qi1

comparing (4.10) and (4.11) we get

pi1 =
∂s

∂qi1
,

∂s

∂t1
= H1

∂s

∂αi

= −βi,
∂s

∂t0
= H0.

Equation (4.10) can be further simplified by setting the initial time t0 = 0

(ie.,) dt0 = 0

Equation (4.10) becomes,

ds =
n∑

i=1

pi1dqi1 −
n∑

i=1

βidαi −H1dt1

ds =
n∑

i=1

pidqi −
n∑

i=1

βidαi −Hdt. (4.12)

From (4.12), it is clear that the principle function is of the form s(q, α, t)

∴ ds =
n∑

i=1

∂s

∂qi
dqi +

n∑
i=1

∂s

∂αi

dαi +
∂s

∂t
dt. (4.13)

Equating the coefficients in (4.12) and (4.13) we get,

pi =
∂s

∂qi
, i = 1, 2, ..., n. (4.14)

−βi =
∂s

∂αi

i = 1, 2, ..., n. (4.15)

−H =
∂s

∂t
. (4.16)

From (4.15) we can get q′s as function (α, β, t) using the equation (4.14). We csn find

p as function of (α, β, t). Hence we have the solution for Hamilton’s Principle. H is

usuallt as a function of (q, p, t).

Using (4.14) and (4.16) we have

∂s

∂t
+H(q, p, t) = 0

∂s

∂t
+H(q,

∂s

∂t
, t) =0.

The first order partial differential equation is known as Hamilton’s Jacobi equation.
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4.2.1 Jacobi’s theorem

If s(q, α, t) is any complete solution of the Hamilton Jacobi equation

∂s

∂t
+H(q,

∂s

∂t
, t) =0

−βi =
∂s

∂αi

(4.17)

pi =
∂s

∂qi
,

where β′s are arbitrary constant are used to solve for qi(α, β, t) and pi(α, β, t).

Then these expressions provide the general solution of the canonical equation associ-

ated with Hamiltonian H(q, p, t).

Proof:

∂s

∂t
+H(q,

∂s

∂t
, t) =0 (4.18)

pi =
∂s

∂qi
. (4.19)

Which is a function of (q, α, t). Differentiating W.r.to αi

∂2s

∂αi∂t
+

∂2

∂αi

(H(q,
∂s

∂t
, t)) =0

∂2s

∂αi∂t
+ (

n∑
i=1

∂H

∂qj

∂qj
∂αi

) +
n∑

j=1

∂H

∂pj

∂pj
∂αj

+
∂H

∂t

∂t

∂αi

=0

∂2s

∂αi∂t
+

n∑
i=1

∂H

∂pj

∂pj
∂αi

=0. (4.20)

∂2s

∂αi∂t
+

n∑
i=1

∂H

∂pj
(
∂2s

∂qj∂αj

) = 0, (4.21)

where pj is considered as a function of (q, α, t) in (4.20), ∂s
∂αi

is a function of (q, α, t)

and α′s and β′s are constants. In (4.18), taking the total time derivative of this w.r.t. t

− d

dt
(βi) =

d

dt
(
∂s

∂αi

) (4.22)

0 =
n∑

i=1

∂

∂qj
(
∂s

∂αi

)q̇j +
n∑

j=1

∂

∂αj

(
∂s

∂αi

)α̇j +
∂

∂t
(
∂s

∂αi

)

0 =
n∑

j=1

∂2s

∂αi∂qj
qj +

∂2s

∂αi∂t
(4.23)
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(4.22) and (4.21) =⇒ Using (4.18), (4.19) and (4.20), we have
n∑

i=1

(q̇j −
∂H

∂qjαi

)
∂2s

∂αi∂qj
=0 i = 1, 2, ...n (4.24)

Since | ∂2

∂αi∂qj
| ≠ 0, We get

q̇j =
∂H

∂pj
, (j = 1, 2, ..., n). (4.25)

Differentiating (4.19) partially with respect to qj

∂2s

∂t∂qj
+
∂H

∂qj
+

n∑
i=1

∂H

∂pj

∂pi
∂qj

= 0. (4.26)

Differentiating (4.20) partially with respect to t

d

dt
(pj) =

d

dt
(
∂s

∂qj
)

ṗj =
n∑

i=1

∂

∂qi
(
∂s

∂qj
)q̇i +

∂

∂t

∂s

∂qj

ṗj −
n∑

i=1

∂

∂qi
(
∂s

∂qj
)q̇i −

∂

∂t

∂s

∂qj
= 0. (4.27)

Adding equations (4.24) and (4.25)

∂H

∂qj
+ ṗj +

n∑
i=1

(
∂H

∂pi
− q̇i)

∂2s

∂qi∂qj
= 0,

using equation (4.19) we get

ṗj = −∂H
∂qj

. (4.28)

Equation (4.20) and (4.23) are Hamilton’s canonical equation.

4.2.2 Conservative system and ignrable co-ordinates (or) modified
Hamilton Jacobi equation

(i) Let us consider a conservative system (holonomic) described by n independent

q′s. The Hamiltonian function for this system is not a function of time. The principle

function of this system is given by

∂s

∂t
=−H = −αn (4.29)

s =− αnt+ ω(q, α) (4.30)

s(q, α, t) =− αnt+ ω(q, α). (4.31)
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The function ω(q1, ..., qn, α1, ..., αn) is called the characteristic function,

∂s

∂αi

=
∂ω

∂αi

(i = 1, 2, ..., n− 1) (4.32)

∂s

∂αn

=− t+
∂s

∂αn

(4.33)

∂s

∂qi
=
∂ω

∂qi
, (i = 1, 2, ..., n− 1). (4.34)

From (4.27) and (4.32) we get

H =αn

H(q,
∂s

∂qi
) =αn.

(ie.,) H(q, ∂s
∂qi

) = αn is the modified - Hamilton Jacobi equation, we know that

−βi =
∂s

∂αi

(i = 1, 2, ..., n)

pi =
∂s

∂qi
.

Comparing (4.30), (4.31) and (4.32) with these two equations, We get

−βi =
∂ω

∂αi

(i = 1, 2, ..., n)

−βn =− t+
∂ω

∂αn

−βn + t =
∂ω

∂αn

pi =
∂ω

∂qi
.

(ii) Now let us consider a system having ignorable co-ordinates q1, q2, ..., qk. Further

assume that the system is not conservative

Let us assume the principle function as

s(q, α, t) =
k∑

i=1

αiqi + s′(qk+1, ..., qn, α1, ..., αn)

pi =αi, i = 1, 2, ..., k.

The Hamilton Jacobi’s equation is given by

∂s′

∂t
+H(qk+1, ..., qn, α1, ..., αk,

∂s′

∂qk+1

, ...,
∂s′

∂qn
, t) = 0.
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The solution is obtained from

−βi =
∂s

∂αi

=qi +
∂s′

∂αi

, (i = 1, 2, ..., k)

−βi =
∂s′

∂αi

, (i = k + 1, ..., n).

pi =
∂s

∂qi

=αi, (i = 1, 2, ..., k)

pi =
∂s′

∂qi
, (i = k + 1, ..., n).

(iii) Now let us consider a conservative system with ignorable co-ordinates q1, q2, ..., qk.

The principle function is given by,

s(q, α, t) =
n∑

i=1

αiqi − αnt+ ω′(qk+1, ..., qn, α1, ..., αn).

The modified Hamilton Jacobi’s equation is given by

H(qk+1, ..., qn, α1, ..., αk,
∂ω′

∂qk+1

, ...,
∂ω′

∂qn
, t) = αn

The solution is obtained from,

−βi =
∂s

∂αi

=qi +
∂ω′

∂αi

, (i = 1, 2, ...k)

−βi =
∂ω′

∂αi

, (i = k + 1, ..., n− 1).

−βn =− t+
∂ω′

∂αn

−βn + t =
∂ω′

∂αn

pi =
∂s

∂qi
, (i = 1, 2, ..., k)

=αi

pi =
∂ω′

∂qi
, (i = k + 1, ..., n).

Kepler’s problem: Use Hamilton-Jacobi method to analyze the Kepler’s problem or

modified Jacobi method.
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Solution: Suppose a particle of unit mass attached by an inverse square gravitational

force at a fixed point ′O′. The position of a given problem is given in terms of the polar

coordinates (r, θ) in the plane of the orbits.

The K.E and P.E are T = 1
2
m(ṙ2 + r2θ̇2), V = −µ

r
, where µ is a gravitation coefficient.

L = T − V

L =
1

2
(r2 + r2(θ̇i)

2) +
µ

r

pr =
∂L

∂ṙ
= ṙ

pθ =
∂L

∂θ̇

θ̇ =
pθ
r2

H = T + V = constant

H =
1

2
((p2r) +

(pθ)
2

r4
r2)− µ

r
= αt. (4.35)

Since θ does not in H it is considered as an ignorable co-ordinate.

Therefore pθ = αθ (constant)

The modified Hamilton-Jacobi equation is,

H(q,
∂ω

∂q
) =αt

pi =
∂ωt

∂qi

pr =
∂ω

∂r
.
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Therefore (4.44) becomes

1

2
(
∂ω′

∂r
)2 +

1

2
(
αθ2

r2
)− µ

r
=αt

1

2
(
∂ω′

∂r
)2 =2αt +

2µ

r
− α(θ)2

r2

ω′ =

∫ r

r0

√
2αt +

2µ

r
− α(θ)2

r2
dr.

W.K.T t− βn =
∂ω′

∂αn

t− βt =
∂ω′

∂αt

∂ω′

∂αt

=

∫ r

r0

2dr

2
√
2αt +

2µ
r
− α(θ)2

r2

t− βn =
∂ω′

∂αt

=

∫ r

r0

dr√
2αt +

2µ
r
− α(θ)2

r2

set βt =t0

t− t0 =
∂ω′

∂αt

=

∫ r

r0

dr√
2αt +

2µ
r
− α(θ)2

r2

.

W.K.T − βi =qi +
∂ω′

∂αt

igonarble co-ordinate

−βθ =θ +
∂ω′

∂αθ

∂ω′

∂αθ

=

∫ r

r0

−αθ

r2
√
2αt +

2µ
r
− α(θ)2

r2

dr

∂ω′

∂αθ

=

∫ r

r0

−αθ
r
√
2αtr2 + 2µr − (αθ)2

dr,

choose

−βθ = θ0

θ0 =θ +
∂ω′

∂αθ

θ − θ0 =
∂ω′

∂αθ
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If r0 = rmin then θ0 = 0. Therefore

θ =

∫ r

r0

−αθ
r
√

2αtr2 + 2µr − (αθ)2
dr

=

∫ r

r0

−αθ
r r2

α2
θ

α2
θ

r2

√
2αtr2 + 2µr − (αθ)2

dr

=

∫ r

r0

α2
θdr

r2
√
2αtα2

θ +
2µα2

θ

r
− α4

θ

r2
+ µ2 − µ2

=

∫ r

r0

α2
θdr

r2
√
(2αtα2

θ + µ2)− (
α2
θ

r
− µ)2

=

∫ r

r0

d(
α2
θ

r
− µ)

r2
√
(2αtα2

θ + µ2)− (
α2
θ

r
− µ)2

θ =− sin−1(
(
α2
θ

r
− µ)√

µ2 + 2αtα2
θ

) +
π

2

= cos−1(
(
α2
θ

r
− µ)√

µ2 + 2αtα2
θ

)

cos θ =(
(
α2
θ

r
− µ)√

µ2 + 2αtα2
θ

)

1 + cos θ

√
1 +

2αtα2
θ

µ2
=
α2
θ

r
.

This is of the form l
r
= 1 + e cos θ,

where e =
√

1 +
2αtα2

θ

µ2

To find r

1

1 + cos θ
√

1 +
2αtα2

θ

µ2

=
µr

α2
θ

r =

α2
θ

µ

1 +
√

1 +
2αtα2

θ

µ2

cos θ.

Let us sum up

1. We have discuss the Hamilton Jacobi’s equation.

2. We have derive the Jacobi’s theorem.

3. We have derive the modified Hamilton Jacobi’s equation.
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Check your progress

3. Define the Hamilton Jacobi’s equation.

4. Write the modified Hamilton Jacobi’s equation.

4.3 Separability

Dear students, in this section we will discuss about the Lioville’s system and Stackel’s

theorem. The term separability implies that a characteristic function for the system

has the form ω =
∑n

i=1 ωi(qi)

(ie.,) It consists of the sum of n functions. Where each function ωi contains only one

of the equations

4.3.1 Lioville’s system

It is an orthogonal system which has kinetic and potential energy of the form

T =
1

2

n∑
i=1

fi(qi)(
n∑

i=1

q̇i
2

Ri(qi)
).

and

V =
n∑

i=1

νi(qi)

fi(qi)
,

where fi, qi and νi are each function of qi. We assume that
∑n

i=1 fi(qi) > 0 andRi(qi) >

0. T is modified as follows, W.K.T

Pi =
∂L

∂q̇i
=
∂T

∂q̇i

∂T

∂q̇i

n∑
i=1

fi(qi)
2q̇i

Ri(qi)

pi =
f q̇i
Ri(qi)

, q̇i =
piRi(qi)

f
.
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Therefore

T =
1

2

n∑
i=1

fi

n∑
i=1

p2iR
2
i (qi)

f 2Ri(qi)

T =
1

2

∑n
i=1 p

2
iRi(qi)∑n

i=1 f
2
i

(ie.,) T =
p21R1 + ...p21Rn

2(f1 + ...+ fn)

V =
ν1 + ...+ νn
f1 + ...fn

.

To find that the system is separable: The modified Hamilton-Jacobi’s equation

for this system can be written as

H(q,
∂ω

∂q
) =h

1

2

(∑n
i=1(

∂ω
∂qi

)2Riqi∑n
i=1 fi

)
+

∑n
i=1 νi∑n
i=1 fi

=h.

n∑
i=1

(
1

2
Ri(

∂ω

∂qi
)2 + νi

)
=h

n∑
i=1

fi (4.36)

n∑
i=1

(
1

2
Ri(

∂ω

∂qi
)2 + νi − hfi

)
=0.

Let α1, α2, ..., αn be the separation constants such that
∑
αi = 0. Setting each term to

the corresponding αi we get

1

2
Ri(

∂ωi

∂qi
)2 + νi =h

n∑
i=1

fi

n∑
i=1

1

2
Ri(

∂ωi

∂qi
)2 + νi − hfi =αi. (4.37)

Let

ϕi(qi) =2Ri(hfi − νi + αi)

∂ωi

∂qi
=

√
ϕi(qi)

R2
i

dωi =
1

Ri

√
ϕi(qi)dqi

ω =
n∑

i=1

∫
1

Ri

√
ϕi(qi)dqi (4.38)

Where ϕi(qi) =2Ri(hfi − νi + αi). (4.39)
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This solution constants (n + 1) constants α1, α2, ..., αn, h but
∑
αi = 0 , suggests that

one αi can be eliminated leaving m independent constants.

Hence equation (4.35) can be solved for the complete solution of the modified Hamil-

ton Jacobi equation.

To find the solution for the motion of the system

n∑
i=1

αi =0

αn =− α1,−α2, ...,−αn

ω =ωi(αi) = ω1(α1) + ...+ ωn(−α1,−α2, ...,−αn).

Now
∂ω

∂αi

=
∂ω

∂αi

+
∂ωn

∂αn

∂αn

∂αi

=
∂ωi

∂αi

− ∂ωn

∂αn

i = 1, 2, ..., n− 1. (4.40)

From −βi = ∂
∂αi

∂ω

∂αi

=
n∑

i=1

∫
∂

∂αi

(
1

Ri

√
ϕi(qi)

)
dqi

=
n∑

i=1

∫
2Ri

Ri

√
ϕi(qi)

dqi

=
n∑

i=1

dqi√
ϕi(qi)

.

From t− βn = ∂
∂αn

∴
∂ω

∂αi

=
n∑

i=1

∫
dqi√
ϕi(qi)

−
∫

dqn√
ϕn(qn)

= −βi. (4.41)

W.K.T

∂ω

∂αn

=t− βn

∂ω

∂h
=

n∑
i=1

∫
fidqi√
ϕi(qi)

.

Hence

n∑
i=1

∫
fdqi√
ϕi(qi)

= t− βn. (4.42)
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Equation (4.38) and (4.39) represent the solution to the problem and it represent the

path . The path can also be found from the equation

pi =
∂ω

∂qi

=

√
ϕi(qi)

Ri

.

4.3.2 Stackel’s Theorem

The orthogonal system specified by

T =
1

2

n∑
i=1

miq̇i
2 =

1

2

n∑
i=1

cip
2
i .

Where ci(q1, q2, ..., qn) > 0 is a stacked are met, namely that a non-singular n×n matrix

[pij(qi)] and a column matrix ψ(qi) exist such that

cTΦ =(1, 0, ...0) (4.43)

and cTψ =V, (4.44)

where v(q1, q2, ..., qn) is the potential energy and c is a column matrix.

Proof: Let us that the orthogonal system is separable. Then we have ω =
∑n

i=1 ωi(qi).

W.K.T

H =α1

T + V =α1

1

2

n∑
i=1

cip
2
i + V =α1 (4.45)

1

2

n∑
i=1

ci(
∂ω

∂qi
)2 + V =α1. (4.46)

Now ∂ω
∂qi

is a function (qi, α1, ..., αn). Let us consider the general form,

(
∂ω

∂qi
)2 = −2ψi(qi) + 2

n∑
i=1

Φj(qi)αj. (4.47)
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Substitute (4.44) in (4.43), we get

1

2

n∑
i=1

ci(−2ψi(qi) + 2
n∑

i=1

Φij(qi)αj) + V = α1

−
n∑

i=1

ciψi(qi) +
n∑

i=1

n∑
j=1

ciΦij(qi)αj + V = α1.

In matrix form,

−cTψ + cTΦα + V =α1

−cTψ + cTΦα + V =(1, 0, ..., 0)α1

−cTψ + V =0 and cTΦ = (1, 0, ..., 0)

cTψ =V and cTΦ = (1, 0, ..., 0).

conversely,

Assume that stackrel conditions are satisfied, define aa column matrix ′a′ by

ai = (
∂ω

∂qi
)2, (i = 1, 2, ...n). (4.48)

From modified Hamilton’s Jacobi’s equation we know that

H =α1

T + V =α1

1

2

n∑
i=1

cip
2
i + V =α1

1

2

n∑
i=1

ci(
∂ω

∂qi
)2 + V =α1

1

2

n∑
i=1

ci(ai)
2 + V =α1

1

2
cT + V = (1, 0, ..., 0)α

cT (
1

2
a+ ψ) =(1, 0, ..., 0), α

since cTΦ =(1, 0, ..., 0)

cT =(1, 0, ..., 0)(Φ)−1

(ie., ) (1, 0, ..., 0)(Φ)−1(
1

2
a+ ψ) =(1, 0, ..., 0)α,
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which has a solution a = −2ψ+qΦα. This results is idendified with (4.44) and indicates

that the system is separable.

Let us sum up

1. We have discuss the Lioville’s system.

2. We have derive the Stackel’s theorem.

Check your progress

5. Explain the Liouville’s system.

6. State the Stackel’s theorem.

Summary

• Introduce the canonical integral.

• Derive Pfaffian differential form.

• Discuss the Hamilton Jacobi’s equation.

• Derive the Jacobi’s equation.

• Derive the modified Hamilton Jacobi’s equation.

• Discuss the Lioville’s system.

• Derive the Stackel’s theorem.

Glossary

• Canonical integral: The canonical integral of the form s(q0, q1, tn, t1) =
∫ t1
t0
Ldt.

• Ignorable coordinates: It is a generalized co-ordinates of a mechanical system that

does not appear in the systems of characteristic functions.

• Seperability: The index of seperability associated with the solution of P.D.E by a

solution to that is by expressing the solution interms of integrals each involving only

one variable.
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• Orthogonal system: Orthogonal system is conservative holonomic system whose

K.E function contains only squard forms.

Self-Assessment Questions

Short-Answer Questions:

1) Discuss the Pfaffian differential form.

2) Derive Modified Hamilton –Jacobi’s equation.

3) State and Prove Jacobi’s theorem.

4) Explain the separability of a system.

5) For Keppler’s problem using spherical polar co-ordinates, verify stackles condition

for separability.

6) Using Hamiltonian–Jacobi’s method, solve the mass spring problem.

Long-Answer Questions:

1) Prove that any complete solution of the Hamilton-Jacobi’s equation leads to a solu-

tion of the Hamiltonian problem.

2) Define Liouville’s system and prove that the Liouville’s condition are sufficient for

separability of the given system.

3) Discuss Hamiltonian principle function.

4) Prove that necessary and sufficient condition of Stackel’s theorem.

5) Explain Pfaffian differential form and first Pfaffian’s system,

6) Analyse Keppler’s problem using Hamilton Jacobis method.

7) Prove that any complete solution of the Hamilton-Jacobi’s equation leads to a solu-

tion of the Hamiltonian problem.

8) Establish Stackel’s theorem.

9) Illustrate the Hamilton-Jacobi’s method by an example.

10) Write a brief note on separability.

149



Objective Questions

1) Which transformation preserve the Hamiltonian form of the form of the equations

of motion in the new variables?

a) Canonical transformation b) Noncanonical transformation

c) Legendre transformation d) Laplace transformation

2) In case of canonical transformation . . . . . . .

a) The form of the Hamilton’s equation is need not preserved

b) Hamilton’s principle is satisfied in old as well as in new coordinates

c) The form of the Hamilton’s equation cannot be preserved

d) The form of the Hamilton’s equation may or may not be preserved

3) The complete solution of Hamilton’s canonical equations, commonly known as the

solution of the . . . . . . .

a) Newton’s problem b) Euler’s problem

c) Hamilton’s problem d) Lagrange’s problem

4) The complete solution for a holonomic system having n degrees of freedom is ob-

tained by finding 2n independent function known as . . . . . . ..

a) Principle function b) Generating function

c) Charecteristic function d) Integrals of the motion

5) The function S(q0, q1, t0, t1) =
∫ t1
t0
Ldt is assumed to be twice differentiable in all its

arguments and is known as . . . . . . .

a) Generating function b) Hamilton’s principle function

c) Charecteristic function d) D’Alembert’s Principle

6) In which space, the solution of the Lagrange problem qi1 = qi1(q0, p0, t0, t1) (i =

1, 2, 3, . . . .n)gives the motion as a function of time?

a) Configuration space b) Phase space

c) Eigen space d) Euclidean space

7) Name of the space the solution of the Hamilton problem pi1 = pi1(q0, p0, t0, t1)

(i=1,2,3,. . . .n) gives the motion as a function of time?

a) Configuration space b) Phase space
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c) Eigen space d) Euclidean space

8) The pfaffian differential form Ω in m variables x1, x2, . . . , xm is given by

Ω = X1(x)dx1 + ...Xm(x)dxm is an exact differential if Cij =
∂Xi

∂xj
− ∂Xj

∂xi
then all the c′s

are . . . ..

a) Zero b) Non zero c) Greater than zero d) Less than zero

9) ∂s
∂t

+H(q, ∂s
∂t
, t) = 0 is known as . . . . . .

a) Hamilton – Jacobi equation b) Euler – Lagrange equation

c) Modified Jacobi equation d) D’Alembert’s equation

10) Hamilton Jacobi equation is

a) 1st order ODE b) 2nd order ODE

c) 1st order PDE d) 2nd order PDE

11) Which of the following is known as the modified Hamilton – Jacobi equation

a) ∂s
∂t

+H = 0 b) H(q, ∂w
∂q
) ̸= an

c) H(q, ∂w
∂q
) = an d) ∂s

∂t
−H = 0

12) The Hamiltonian function of the mass spring system is . . . . . .

a)H = p2

2m
− 1

2
kX2 b)H = p2

2m
+ 1

2
kX2

c) H = p
2m

− 1
2
kX2 d)H = p2

m
− 1

2
kX2

13) Find the generalized momentam in the kepler problem?

a) pr = r, pθ = rθ b) pr = 0, pθ = r2θ

c) pr = r, pθ = r2θ d) pr = r, pθ = 0

14) In which system, whose kinetic energy function contains only squared terms in the

q’s

a) Rheonomic system b) Non holonomic system

c) Holonomic system d) Orthogonal system

15) In what type of system, the kinetic energy function contains no inertial coupling

terms?

a) Rheonomic system b) Orthogonal system

c) Non holonomic system d) Holonomic system

16) The Liouville conditions are necessary for a separability of an orthogonality system
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for the special case in which . . . ..

a) n = 2 b) n = 0 c) n = 1 d) n = 3

17) Which conditions are sufficient for a reparability of an orthogonal system?

a) Jacobi b) Hamilton c) Euler d) Liouville

18) In the Liouville system, represents this expressionR1(p1)2+...+Rn(p1)2

2(f1+...+fn)
form of Liou-

ville system

a) Kinetic energy b) Potential energy

c) Generalizing energy d) Total energy

19) In the Liouville system represents the expression v1(q1)+...+vn(qn)
f1(q1)+...+fn(qn)

a) Kinetic energy b) Potential energy

c) Generalizing energy d) Total energy

20) The conservative holonomic system whose kinetic energy functin contains only

squard terms in the q’s and p’s and no product terms is called

a) Lioville’s system b) Separable system

c) Orthogonal system d) Modified system

Answers for Check Your Progress

1. The canonical integral of the form s(q0, q1, tn, t1) =
∫ t1
t0
Ldt. The function s is a twice

differential in all its arguments and is known as Hamilton’s principle function.

2. A pfaffian form is defined by Ω =
∑m

i=1Xi(x)dxi.

3. If s(q, α, t) is any complete solution of the Hamilton Jacobi equation

∂s
∂t
+H(q, ∂s

∂t
, t) = 0, −βi = ∂s

∂αi
, pi =

∂s
∂qi
, where β′s are arbitrary constant are used to

solve for qi(α, β, t) and pi(α, β, t). Then these expressions provide the general solution

of the canonical equation associated with Hamiltonian H(q, p, t).

4. H(q, ∂s
∂qi

) = αn is the modified - Hamilton Jacobi equation.

5. It is an orthogonal system which has kinetic and potential energy of the form

T = 1
2

∑n
i=1 fi(qi)(

∑n
i=1

q̇i
2

Ri(qi)
) and V =

∑n
i=1

νi(qi)
fi(qi)

where fi, qi and νi are each function

of qi. We assume that
∑n

i=1 fi(qi) > 0 andRi(qi) > 0.
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6. The orthogonal system specified by T = 1
2

∑n
i=1miq̇i

2 = 1
2

∑n
i=1 cip

2
i ,where ci(q1, q2, ..., qn) >

0 is a stacked are met, namely that a non-singular n× n matrix [pij(qi)] and a column

matrix ψ(qi) exist such that cTπ = (1, 0, ...0) and cTψ = V , where v(q1, q2, ..., qn) is the

potential energy and c is a column matrix.
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Unit 5

CANONICAL TRANSFORMATIONS

Objectives

After the successful completion of this unit; the students are expected

• To gain the knowledge of differential form and generating functions.

• To discuss the canonimal transformations with illustrate examples.

• To understand the concepts of the Hamilton-Jacobi’s method.

• To analyse the special transformations like identity, orthogonal, translation transfor-

mation.

• To understand the homogeneous canonical, point and momentum transformation.

• To develope the concepts of Lagrange and Poisson brackets.

• To derive the Bilinear covarient.

5. Introduction

Dear students, in this last chapter we have discussed primarily with the use of Hamil-

ton Jacobi’s method in obtaing the principal function S(q, α, t) and for the conservative

system, the characteristic function W (q, α). In both two cases we found the solution of

Hamilton problem (ie) the solution of Hamilton canonical equation of motion. The so-

lution represents a canonical transformation between 2 points in phase space namely

a moving point (q, p) and a fixed point (α.β). The principle function is the generating

function for this transformation.
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5.1 Differential Forms and Generating Functions

Dear students, in this section we will discuss about the canonical transformations,

principle forms of generating functions and also futher comments on the Hamilton-

Jacobi’s method.

5.1.1 Canonical transformations

Consider a holonomic system described by the generalized coordinates q1, q2, ..., qn.

W.K.T

δ

t1∫
t0

L(q, q̇, t)dt = 0. (5.1)

Let us consider a new set of coordinates Q1, Q2, ......, Qn related by a point transforma-

tion

qi = qi(Q, t), (i = 1, 2, ....., n). (5.2)

The lagrangian is given by

L∗(Q, Q̇, t) = L(q, q̇, t) = T − V. (5.3)

L and L∗are same in the value. Applying Hamilton’s principle to L∗, we get

δ

t1∫
t0

L∗(Q, Q̇, t)dt = 0. (5.4)

Now let us consider a new lagrangian function

L∗(Q, Q̇, t) = L(q, q̇, t)− d

dt
(ϕ(q,Q, t)), (5.5)

where ϕ(q,Q, t) is twice differentiable. Now

δ

t1∫
t0

L∗(Q, Q̇, t) = δ

t1∫
t0

L(q, q̇, t)− δ[ϕ(q,Q, t)]t1t0 . (5.6)

Since δq′s and δQ′s are zero the term vanishes. Using eqn (5.1) and (5.5) becomes

δ

t1∫
t0

L∗(Q, Q̇, t)dt = 0. (5.7)
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Hence L∗(Q, Q̇, t) describes the given system as effectively as L(q, q̇, t)

Now let us consider two Hamiltonian description of the given holonomic system. The

Hamiltonian functions are given by

H(q, p, t) =
n∑

i=1

pi, qi − L(q, q̇, t) (5.8)

K(Q, p, t) =
n∑

i=1

pi, Qi − L∗(Q, Q̇, t). (5.9)

Where the generalised momenta are given by,

pi =
∂L

∂q̇i
.

Pi =
∂L∗

∂Q̇i

. (5.10)

Since, the Hamilton’s principle apply to L(q, q̇, t) and L∗(Q, Q̇, t), we have the canonical

equations as follows

ṗi = −∂H
∂q̇i

.

q̇i =
∂H

∂ṗi
, (i = 1, 2, 3, ..., n). (5.11)

Ṗi = − ∂K

∂Qi

.

Q̇i =
∂K

∂Pi

, (i = 1, 2, 3, ..., n). (5.12)

A transformation form (q, p) to (Q,P ) which preserves the canonical form of the equa-

tion of motion is known as canonical transformation

Next let us consider a system which has a Hamiltonian function H(q, p, t). The trans-

formation equations are of the form

Qi = Qi(q, p, t), Pi = Pi(q, p, t), i = 1, 2, ......n, (5.13)
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where each function is twice differentiable. Substituting the values of L and L* from

eqns (5.8) and (5.9) in eqn (5.5), we get
n∑

i=1

PiQi =
n∑

i=1

piqi −H(q, p, t)− d

dt
ϕ(q,Q, t)

d

dt
ϕ(q,Q, t) =

n∑
i=1

piqi −H(q, p, t)−
n∑

i=1

piQi +K(Q,P, t)

d

dt
ϕ(q,Q, t) =

n∑
i=1

pidqi −H(q, p, t)dt−
n∑

i=1

pidQi +K(Q,P, t)dt

dϕ =
n∑
i=i

pidqi −Hdt−
n∑

i=1

pidQi +Kdt. (5.14)

The exact differential dϕ is equal to the difference two pfaffian differential forms

canonical transformation form the variables (q, p) and the associated Hamiltonian

function H(q, p, t) to the new variables (Q,P ) and the Hamiltonian K(Q,P, t) is called

the generating functions for the transformation.

Now let us consider a function ψ(q, p, t) which is equal in the value to the generating

function ϕ

ψ(q, p, t) = ϕ(q,Q, t). (5.15)

Then eqn (5.14) becomes

pidqi−Hdt−
n∑

i=1

pidQi+Kdt = dψ. (5.16)

Here the function ψ(q, p, t) is not a generating function because it contains none of the

new variables.

Next let us consider a generating function ϕ(q, p, t) which is arbitrary. Now

dϕ =
n∑

i=1

∂ϕ

∂qi
dqi +

n∑
i=1

∂ϕ

∂Qi

dQi +
∂ϕ

∂t
dt. (5.17)

Comparing eqn (5.14) and eqn (5.17)

pi =
∂ϕ

∂qi
, (i = 1, 2, 3, ....., n). (5.18)

Pi = − ∂ϕ

∂Qi

, (i = 1, 2, 3, ....., n). (5.19)

K = H +
∂ϕ

∂t
. (5.20)

157



Eqn (5.20) and (5.19) can be used to solve qi(Q,P, t) and pi(Q,P, t) or conversely for

Qi(q, p, t) and Pi(q, p, t). The new Hamiltonian functionK(Q,P, t) is found by using the

transformation equations and eqn (5.20). Hence, if an arbitrary generating ϕ(q,Q, t)

is given, eqn (5.18) and (5.19) gives the transformation equations. Further the time t

is unchanged in eqn (5.14) (in the transformation) and hence it may be regraded as

a independent parameter. Now dt can be set to zero.The eqn (5.14) and eqn (5.16)

reduces to

n∑
i=1

piδqi −
n∑

i=1

PiδQi = δϕ. (5.21)

n∑
i=1

piδqi −
n∑

i=1

PiδQi = δψ. (5.22)

Now, consider ψ(q, p, t) and Q(q, p, t)

δψ =
n∑

i=1

∂ψ

∂qi
δqi +

n∑
i=1

∂ψ

∂pi
δpi. (5.23)

δQj =
n∑

j=1

∂Qj

∂qi
δqi +

n∑
j=1

∂Qj

∂pi
δpi. (5.24)

n∑
j=1

PjδQj =
n∑

j=1

Pj(
n∑

j=1

∂Qj

∂qi
δqi +

n∑
j=1

∂Qj

∂pi
δpi). (5.25)

Now from (5.21) and (5.25)

δψ = δϕ =
n∑

i=1

piδqi −
n∑

j=1

n∑
i=1

Pj
∂Qj

∂qi
δqi −

n∑
j=1

n∑
i=1

Pj
∂Qj

∂pi
δpi

=
n∑

i=1

[pi −
n∑

i=1

Pj
∂Qj

∂qi
]δqi −

n∑
j=1

n∑
i=1

Pj
∂Qj

∂pi
δpi. (5.26)

Compare eqn (5.23) and eqn (5.26). Hence

∂ψ

∂qi
= pi −

n∑
j=1

Pj
∂Qj

∂qi
(5.27)

and
∂ψ

∂pi
= −

n∑
j=1

Pj
∂Qj

∂pi
. (5.28)
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Consider the total differentials of ψ(p, q, t) and Q(q, p, t)

dψ =
n∑

i=1

∂ψ

∂qi
dqi +

n∑
i=1

∂ψ

∂pi
dpi +

∂ψ

∂t
dt. (5.29)

dQj =
n∑

i=1

∂Qj

∂qi
dqi +

n∑
i=1

∂Qj

∂pi
dpi +

∂Qj

∂t
dt. (5.30)

n∑
j=1

PjdQj =
n∑

j=1

Pj(
n∑

i=1

∂Qj

∂qi
dqi +

n∑
i=1

∂Qj

∂pi
dpi +

∂Qj

∂t
dt).

From eqn (5.16)

dψ = dϕ =
n∑

i=1

pidqi −Hdt−
n∑

j=1

PjdQj +Kdt

=
n∑

i=1

pidqi −Hdt−
n∑

i=1

n∑
j=1

PjdQjdqi −
n∑

j=1

n∑
i=1

PjdQjdPi −
n∑

j=1

Pj
∂Qj

∂t
dt+Kdt

dψ =
n∑

i=1

[pi −
n∑

j=1

Pj
∂Qj

∂qi
]dqi −

n∑
i=

n∑
j=1

Pj
∂Qj

∂pi
dpi −Hdt+Kdt−

n∑
j=1

Pj
∂Qj

∂t
.

(5.31)

From eqn (5.29) and eqn (5.30), equating the coefficients of dt, we get

H +K −
n∑

j=1

Pj
∂Qj

∂∂t
=
∂ψ

∂t

K = H +
n∑

j=1

Pj
∂Qj

∂∂t
+
∂ψ

∂t
.

Now eqn (5.14) indicates the canonical transformation from the old variables (q, p)

to (Q,P ). Now the symmetry of the eqn (5.14) and eqn (5.18), eqn (5.19) and eqn

(5.20) shows that the inverse of a given canonical transformation is itself canonical

and is generated by the negative of ϕ(q, p, t). Also sum of two exact differentials is

exact. Hence the two canonical transformations performed in sequence are equivalent

to a single canonical transformation. Further the identity transformation is canonical.

Hence the canonical transformations forms the group.

Example 1: Consider the transformation Q = 1
2
(q2 + p2) and P= − tan−1

(
q
p

)
. To

show that the transformation is canonical. The old transformation function is H =

1
2
(q2 + p2).

Solution :

δQ =
1

2
δ
(
q2 + p2

)
= qδq + pδp.
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Now pδq − PδQ = pδq+ tan−1
(

q
p

)
(qδq + pδp)

=

[
pδq + tan−1

(
q

p

)]
δq + tan−1

(
q

p

)
δp. (5.32)

Consider

∂

∂p

(
p+ q tan−1

(
q

p

))
= 1 + q

1

1 +
q2

p2

(
−q
p2

)
=

p2

p2 + q2
. (5.33)

∂

∂q

[
p tan−1

(
q

p

)]
= p

1

1 +
q2

p2

(
1

p

)
=

p2

p2 + q2
. (5.34)

Since eqn (5.32) = eqn (5.33). Therefore eqn (5.31) is exact. Hence the transforma-

tion is canonical. Now

dψ = p + q tan−1
(

q
p

)
+ + p tan−1

(
q
p

)
dp.

Consider,∫
q tan−1

(
q

p

)
dq =

∫
pdq +

∫
q tan−1

(
q

p

)
dq = pq +

∫
qtan−1

(
q

p

)
dq. (5.35)

Consider,
∫
q tan−1

(
q
p

)
dq

u = tan−1

(
q

p

) ∫
dv =

∫
qdq

du =
p

p2 + q2
dq v =

q2

2

∴
∫
qtan−1

(
q

p

)
dq =

q2

2
tan−1

(
q

p

)
−
∫
q2

2

p

p2 + q2
dq =

q2

2
tan−1

(
q

p

)
− p

2

∫
p2 + q2 − p2

p2 + q2
dq

=
q2

2
tan−1

(
q

p

)
− pq

2
+
p3

2

∫
dq

p2 + q2∫
q tan−1

(
q

p

)
dq =

q2

2
tan−1

(
q

p

)
− pq

2
+
p2

2
tan−1

(
q

p

)
. (5.36)

∴ Substitute (5.36) in (5.35)∫
p+ qtan−1

(
q

p

)
dq =pq +

q2

2
tan−1

(
q

p

)
− pq

2
+
p2

2
tan−1

(
q

p

)
=
pq

2
+

(
p2 + q2

2

)
tan−1

(
q

p

)
ψ(q, p) =

pq

2
+

(
p2 + q2

2

)
tan−1

(
q

p

)
ϕ(q,Q, t) =Qsin−1

(
q

2Q

)
+
√
2Q− q2

(q
2

)
,
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where ϕ is a generating function and ϕ = ψ.

W.K.T K = H +
∂ϕ

∂t

But
∂ϕ

∂t
=0,

K = H =
1

2

(
q2 + p2

)
= Q

Hence K = Q.

Canonical equation

ṗ =
∂K

∂Q
= −1

K =Q constant

Q̇ =
∂K

∂P
= 0.

Example 2: Canonical for Rhenomic transformation

Show that the transformation is canonical for rhenomic transformation given by,

Q =
√
2qet cos p and P =

√
2qe−t sin p.

Solution:

pδq − PδQ =pδq − (
√
2qe−t sin p)δ(

√
2qet cos p)

δ(
√
2qet cos p) =

2et cos p

2
√
2q

δq −
√

2qe−t sin pδp

∴ pδq − PδQ =pδq − (
√
2qe−tsinp)

[
2et cos p

2
√
2q

δq −
√

2qe−tsinpδp

]
=(p− sin p cos p)δq + 2q sin2 pδp.−−−−−−−−−−−−− (A)

∂

∂p
(p− sin p cos p) =2 sin

2

p. (5.37)

∂

∂q
(2q sin

2

p) =2 sin
2

p. (5.38)

eqn (5.37) = eqn (5.38) ⇒ A is exact.∫
(p− sin p cos p)δq =pq − q sin p cos p

∴ ψ =ϕ.
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The generating function ϕ is given by

ϕ(q,Q, t) =q cos−1

(
Qe−t

√
2q

)
− q

(
Q

et
√
2q

)(√
1− Q2

2qe2t

)

=q cos−1

(
Qe−t

√
2q

)
− Qe−t

√
2q −Q2e−2t

2
.

5.1.2 Principle forms of generating functions

To determine the various types of generating functions.

Let us designate Φ(q,Q, t) as the first type F1(q,Q, t) = ϕ(q,Q, t). The other types of

generating functions are F2(q, P, t), F3(p,Q, t) and F4(p, P, t).

To find the relationship between F1(q,Q, t) and F2(q, P, t).

Now

dF1 =
n∑

i=1

pidqi −Hdt−
n∑

i=1

PidQi +Kdt. (5.39)

Replace Q′ s by P ′s after considering

d(
n∑

i=1

) =
n∑

i=1

QidPi +
n∑

i=1

PidQi. (5.40)

n∑
i=1

PidQi = d(
n∑

i=1

QiPi)−
n∑

i=1

QidPi. (5.41)

Substitute eqn (5.40) in eqn (5.41)

dF1 =
n∑

i=1

pidqi −Hdt− d(
n∑

i=1

QiPi) +
n∑

i=1

QidPi +Kdt

dF1 + d(
n∑

i=1

QiPi) =
n∑

i=1

pidqi −Hdt+
n∑

i=1

QidPi +Kdt

d(F1 +
n∑

i=1

QiPi) =
n∑

i=1

pidqi −Hdt+
n∑

i=1

QidPi +Kdt

dF2 =
n∑

i=1

pidqi −Hdt+
n∑

i=1

QidPi +Kdt. (5.42)

Where F2 = F1 +
n∑

i=1

QiPi (5.43)

F2(q, P, t) = F1(q,Q, t) +
n∑

i=1

QiPi.
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Taking the total differential of F2(q, P, t) we get

dF2 =
n∑

i=1

∂F2

∂qi
dqi +

n∑
i=1

∂F2

∂Pi

dPi +
∂F2

∂t
dt. (5.44)

Form (5.42) and (5.44)

pi =
∂F2

∂qi
. (5.45)

Qi =
∂F2

∂Pi

. (5.46)

−H +K =
∂F2

∂t

K = H +
∂F2

∂t
. (5.47)

Thus we have obtained a generating function F2(q, P, t) with differential form given

by eqn (5.42) and the canonical transformation equations form eqn(5.46) and the

Hamiltonian function is given by eqn (5.47). Consider F1 −
n∑

i=1

piqi

d(F1 −
n∑

i=1

piqi) = dF1 −
n∑

i=1

dpiqi −
n∑

i=1

pidqi

=
n∑

i=1

pidqi −Hdt−
n∑

i=1

PidQi +Kdt−
n∑

i=1

dpiqi −
n∑

i=1

pidqi

= −
n∑

i=1

PidQi −
n∑

i=1

dpiqi −Hdt+Kdt

dF3(p,Q, t) = −
n∑

i=1

dpiqi −Hdt−
n∑

i=1

PidQi +Kdt (5.48)

Consider the total differential of F3(p,Q, t)

dF3 =
n∑

i=1

∂F3

∂pi
dpi +

n∑
i=1

∂F3

∂Qi

dQi +
∂F3

∂t
dt. (5.49)

Comparing (5.48) and (5.49)

∂F3

∂pi
= −qi

∂F3

∂Qi

= −pi, (i = 1, 2, 3, ......, n). (5.50)

∂F3

∂t
= −H +K

K = H +
∂F3

∂t
. (5.51)
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Thus we have obtained a generating function F3(P,Q, t) = F1−
n∑

i=1

piqi with differential

form given by (5.48) and the canonical transformation equations given by (5.50) and

the Hamiltonian function given by (5.51). Consider F2 −
n∑

i=1

qipi

d(F2 −
n∑

i=1

qipi) = dF2 −
n∑

i=1

dqipi −
n∑

i=1

qidpi

=
n∑

i=1

pidqi −Hdt−
n∑

i=1

QidPi +Kdt−
n∑

i=1

dqipi −
n∑

i=1

qidpi

=
n∑

i=1

QidPi −
n∑

i=1

dpiqi −Hdt+Kdt

dF4(p, P, t) = −
n∑

i=1

dpiqi −Hdt−
n∑

i=1

QidPi +Kdt. (5.52)

Consider the total differential of F4(p, P, t)

dF4 =
n∑

i=1

∂F4

∂pi
dpi +

n∑
i=1

∂F4

∂Pi

dPi +
∂F4

∂t
dt. (5.53)

Comparing (5.52) and (5.53)

∂F4

∂pi
= −qi

∂F4

∂Pi

= Qi, (i = 1, 2, 3, ......, n). (5.54)

∂F4

∂t
= −H +K

K = H +
∂F4

∂t
. (5.55)

Thus we have obtained a generating function F4 = F2 −
n∑

i=1

qipi with differential form

given by (5.52) and the canonical transformation equations given by (5.54) and the

Hamiltonian function given by (5.55).

Example 3: Consider the transformation

Q = log(
sin p

q
). −−−−(I)

P =q cot p. −−−−− (II)
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Obtain the four types of generating functions.

Solution :

To show that the transformation is canonical

pδq − PδQ =pδq − (q cot p)δ(log(
sin p

q
))

δ(log(
sin p

q
)) =

1
sin p

q

[
q cos p δp− sin pδq

q2

]
= cot pδp− 1

q
δq

pδq − PδQ =pδq − (q cot p)

(
cot pδp− 1

q
δq

)
= (p+ cot p)δq − q cot2 δp. (5.56)

To show the exactness

∂

∂p
(p+ cot p) =1− cosec2p. (5.57)

∂

∂q
(−q cot2 p) =− cot

2

p = 1− cosec2p. (5.58)

Since eqn (5.57) and eqn (5.58) are equal. The given equation is exact. To find ψ

ψ =

∫
(p+ cot p)δq = pq + (cot p)q

From(I) eQ =
sin p

q
⇒ p = sin−1(qeQ).

Now

sin p =qeQ ⇒ cos p =

√
1− sin2 p.Then

p =cos−1
√

1− qe2Q.
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Now

cot p =

√
1− q2e2Q

qeQ
=

√
e−2Q − q2

q

ϕ(q,Q) =q cos−1(
√

1− q2e2Q) +

√
e−2Q − q2.q

q

(ie., )F1(q,Q) =q cos
−1(
√
1− q2e2Q) +

√
e−2Q − q2.

Now

F2(q,Q) =F1 +QP = pq + cotp.q +QP

pq = q[tan−1

(
q

p

)
]

QP = P [− log
√
p2 + q2].

∴ F2(q,Q) =q tan
−1
( q
P

)
+ P − P log

√
P 2 + q2

=q tan−1
( q
P

)
+ P (1− log

√
P 2 + q2)

∂F2

∂q
=tan−1

( q
P

)
+

q

1 +
q2

p2

1

P
− 2Pq

2
√
P 2 + q2

√
P 2 + q2

=tan−1
( q
P

)
+

qP

(P 2 + q2)
− Pq

P 2 + q2
= tan−1

(
q

p

)
=tan−1

( q
P

)
= P.

∂F2

∂P
=

q

1 +
P 2

q2

(
−q
P 2

)
+ 1− log

√
P 2 + q2 + p

(
−1√
P 2 + q2

.
2P√
P 2 + q2

)

=
q2

P 2 + q2
+ 1− log

√
P 2 + q2 − P 2√

P 2 + q2

= log
√
P 2 + q2 = Q.

Now

F3(p,Q) =F1 − pq

=pq + cotp.q − pq = cotp.q

=e−Qcosp

∂F3

∂p
=e−Qsinp = −q

∂F3

∂Q
=− e−Qcosp = −P.
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Now

F4(p, P ) =F2 − qp

=pq + cotp.q +QP − pq = cotp.q +QP = P +QP

=P + log
(cosp
P

)
P

∂F4

∂p
=

P

cosp

(
− sin p

P

)
P = −P tan p = −q

∂F4

∂P
=1 + log

(cos p
P

)
+
P 2 cos p

cos p

−1

P 2
= log

(cos p
P

)
= Q.

5.1.3 Further comments on Hamilton-Jacobi’s method

We know that the Hamilton Jacobi partial differential equation is given by

∂s
∂t

+H(q, ∂s
∂q
, t) = 0.

Where

pi =
∂F1

∂qi
, (i = 1, 2, 3, ......, n).

and − βi =
∂F1

∂αi

.

Considering F2(q, α, t) as the generating function. The Hamiltonian-Jacobi equation is

given by

∂F2

∂t
+H(q, ∂F2

∂q
, t) = 0,

where

pi =
∂F2

∂qi
(i = 1, 2, 3, ......, n)

and βi =
∂F2

∂αi

.

Similarly the Hamiltonian-Jacobi equation in terns of F3 and F4 are given by

∂F3

∂t
+H(−∂F3

∂q
, p, t) = 0.

∂F4

∂t
+H(−∂F4

∂q
, p, t) = 0.
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Here the generating function are of the form F3(p, α, t) and F3(p, α, t).

Next let us consider the characteristic function W (q, α) as generating function then the

Hamiltonian Jacobi equation is H(q, ∂w
∂q
) = αn.

Let Pi = Pi(α), where P ’s are the function of α′s or conversely αi = αi(p).

Then the generating function W (q, α) takes the form W (q, P ) resembling F2.

The transformation equation are,

Pi =
∂w

∂qi
.

Qi =
∂w

∂pi
.

The Hamiltonian takes the form K(p) = αn(p)

Q̇i =
∂K

∂Pi

= νi, (i = 1, 2, 3, ..., n).

Ṗi = −∂K
∂pi

= 0, (i = 1, 2, 3, ..., n).

Now

Qi = νi

Qi = νi(t) + βi,

where νi are functions of P ’s. The characteristic function has resulted in a new set of

coordinates which in general vary with time.

Let us sum up

1. We have introduce the cononical transformations with few examples.

2. We have discuss the principle forms of generating functions.

3. Also we discuss the comments on Hamilton-Jacobi’s method.

Check your progress

1. Write the Hamilton-Jacobi’s equation in terms of F3 and F4.

2. What is mean by canonical transformation.

3. State principle forms of generating functions.
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5.2 Some Special Transformations

Dear students, in this section we will discuss some simple canonical transformations.

Also we will discuss the identity, orthogonal, translation, point and momentum trans-

formations.

5.2.1 Simple canonical transformations

1. Let us consider the identity transformation.

Consider F2 =
n∑

i=1

qiPi.

Now

Pi =
∂F2

∂qi
= pi.

Qi =
∂F2

∂Pi

= qi.

Thus

Pi = pi

Qi = qi, (i = 1, 2, 3, ......, n).

Confirming the identity transformation. Consider

F3 = −
n∑

i=1

piQi,

where Pi = −∂F3

∂Qi

= −(−pi) = pi

and qi = −∂F3

∂pi
= −(−Qi) = Qi, (i = 1, 2, 3, ..., n).

The functions of the form F1(q,Q, t) or F4(p, P, t) cannot be used to generate identity

transformation for the variables in the generating function are directly related
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2. Let us consider a transformation that results in translation. Let

F2 =
n∑

i=1

(qiPi + ci − diqi).

Now pi =
∂F2

∂qi
= Pi − di

Pi = pi + di

and Qi =
∂F2

∂Pi

= qi + ci,

Qi = qi + ci.

Here Pi = pi + di and Qi = qi + ci gives the required translation

3.The transformation that interchanges the roles of co-ordinates and momenta. Con-

sider

F1 =
n∑

i=1

qiQi.

Now pi =
∂F1

∂qi
= Qi,

and Pi = −∂F1

∂Qi

= −qi, (i = 1, 2, 3, ..., n).

The presence of minus sign shows that the canonical equations are not symmetrical

w.r.t the interchange of co-ordinates and momenta, where α′s are constants meeting

the orthogonality condition,

aaT = aTa = I
n∑

i=1

aijaik = δjk.

W.K.T pj =
∂F2

∂qj
=

n∑
i=1

aijPi

Qj =
∂F2

∂Pi

=
n∑

i=1

aijqj.

Hence the transformation are given by

Pi =
pj

n∑
i=1

aij

=
n∑

j=1

aijpj +Qi =
n∑

j=1

aijqj.

Cases

1. If |a| = 1, then the equations, represent the rotations.
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2. If aij = δij then it represents an identity transformation with zero rotation.

5.2.2 Homogeneous canonical transformation (or) Mathieu trans-
formation (or) contact transformation

Consider the differential form

δψ =
n∑

i=1

piδqi −
n∑

i=1

PiδQi, (5.59)

here δψ is an exact differential and the transformation from (q, p) to (Q,P ) is called

the canonical transformation. Consider the case, where ϕ and ψ are identically zero.

Then

n∑
i=1

piδqi −
n∑

i=1

PiδQi = 0, (5.60)

and the corresponding transformation is called a homogeneous canonical transforma-

tion.

Important features of homogeneous canonical transformation:

L∗(Q, Q̇, t) = L(q, q̇, t). (5.61)

W.K.T K = H +
∂ψ

∂t
+

n∑
i=1

Pi
∂Qi

∂t

∵ ψ = 0 K = H +
n∑

i=1

Pi
∂Qi

∂t
, (5.62)

and Pi −
n∑

j=1

Pj
∂Qj

∂qi
= 0

n∑
j=1

Pj
∂Qj

∂qi
= 0. (5.63)

Where P ′s are not all identically equal to zero

From eqn (5.63) |∂Qj

∂pi
| = 0

p′s cannot be solved as functions of (q,Q, t). Consider,

Ωj(q,Q, t) = 0 (5.64)
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Differentiate
n∑

i=1

∂Ωj

∂qi
δqi +

n∑
i=1

∂Ωj

∂Qi

δQi = 0

By Lagrange’s multipliers,

F ∗
1 (λ, q,Q, t) =

n∑
j=1

λjΩj(q,Q, t), (5.65)

arbitrary variations w.r.t Q’s and q’s
n∑

i=1

∂F ∗
1

∂qi
δqi +

n∑
i=1

∂F ∗
1

∂Qi

δQi =
m∑
j=1

λj[
n∑

i=1

∂Ωj

∂qi
δqi +

n∑
i=1

∂Ωj

∂Qi

δQi]

But pi =
∂F ∗

1

∂qi
and Pi =

∂F ∗
1

∂Qi

.

Therefore we have
n∑

i=1

piδqi +
n∑

i=1

(−Pi)δQi =
m∑
j=1

[
n∑

i=1

λj
∂Ω

∂qi
δqi +

n∑
i=1

∂Ω

∂Qi

δQi].

(ie)., pi =
m∑
j=1

λj
∂Ω

∂qi
. (5.66)

Pi =
m∑
j=1

λj
∂Ω

∂Qi

. (5.67)

Eqns (5.64),(5.66) and (5.67) can be used to solve λ′s,P ′s and Q′s as functions of

(q, p, t).

Arbitrary giving variations of equation(5.65) w.r.t ’t’

∂F ∗
1

∂t
δt =

m∑
j=1

λj
∂Ωj

∂t
δt.

W.K.T K −H =
∂F ∗

1

∂t

K = H +
m∑
j=1

λj
∂Ωj

∂t
.

5.2.3 Point transformation

Consider

Ωj(q,Q, t) = 0. (5.68)
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n∑
i=1

∂Ωj

∂qi
δqi +

n∑
i=1

∂Ωj

∂Qi

δQi = 0.

If

|∂Ωj

∂qi
| ≠ 0 and |∂Ωj

∂Qi

| ≠ 0.

Then Q’s can be represent a point transformation. They represent a mapping of points

in configuration space. Now from

pi =
n∑

j=1

Pj
∂Qi

∂qi
.

We get

pi =
n∑

j=1

Pj
∂fi
∂qi
, (i = 1, 2, 3, ..., n),

where p’s are linear function of P ’s and vise versa. Now define Ω′s of the form

Ω′s = Qj − fj(q, t), (j = 1, 2, 3, ..., n).

W.K.T

Pi = −
n∑

j=1

λj
∂Ωj

∂qi

= λi.

W.K.T

K = H +
n∑

j=1

λj[−
∂fj
∂t

]

= H +
n∑

j=1

Pj(
∂fj
∂t

),

K and H are equal only for scleronomic system.

Point transformation neednot imply homogeneous canonical transformation

Consider

F ∗
1 (λ, q,Q, t) = F1(q,Q, t) +

n∑
j=1

λjΩj(q,Q, t).

pi =
∂F ∗

1

∂qi
=
∂F1

∂qi
+

n∑
j=1

λj
∂Ωj

∂qi
.

pi = −∂F
∗
1

∂Qi

= −∂F1

∂Qi

−
n∑

j=1

λj
∂Ωj

∂Qi

.
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The Hamiltonian functions are given by

K = H +
∂F ∗

1

∂t
= H +

∂F1

∂t
+

n∑
j=1

λj
∂Ωj

∂t
.

Consider a non-homogeneous point transformation ψ(q, p, t)

δψ =
n∑

i=1

piδqi −
n∑

i=1

PiδQi. (5.69)

δψ =
n∑

i=1

∂ψ

∂qi
δqi +

n∑
i=1

∂ψ

∂pi
δpi (5.70)

Qj = fj(q, t)

δQj =
n∑

i=1

∂fj
∂qi

δqi. (5.71)

n∑
j=1

PjδQj =
n∑

i=1

n∑
j=1

Pj
∂fj
∂qi

δqi. (5.72)

Substitute(5.72) in (5.69)

δψ =
n∑

i=1

piδqi −
n∑

i=1

n∑
j=1

Pj
∂fj
∂qi

δqi (5.73)

From (5.70) and (5.73) we get

∂ψ

∂qi
= pi −

n∑
j=1

Pj
∂fj
∂qi

pi =
∂ψ

∂qi
+

n∑
j=1

Pj
∂fj
∂qi

and
∂ψ

∂pi
= 0

⇒ ψ is not a function of p’s.

5.2.4 Momentum transformation

Consider the momentum transformation equation is given by pi = hi(p, t) This repre-

sents a point transformation in momentum space and it is called a momentum trans-

formation. Define the function

ωj(P, p, t) = 0, (i = 1, 2, 3, ..., n). (5.74)
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W.K.T pi =
∂F1

∂qi
+

n∑
j=1

λj
∂Ωj

∂qi
.

Then qi = −∂F4

∂pi
−

n∑
j=1

λj
∂ωj

∂pi
. (5.75)

W.K.T Pi = −∂F1

∂Qi

−
n∑

j=1

λj
∂Ωj

∂Qi

.

Then Qi = −∂F4

∂Pi

−
n∑

j=1

λj
∂ωj

∂Pi
. (5.76)

W.K.T K = H +
∂F1

∂t
+

n∑
j=1

λj
∂Ωj

∂t
.

Then K = H +
∂F1

∂t
+

n∑
j=1

λj
∂ωj

∂t
(m ≤ n). (5.77)

Consider ωj = pj − hj(p, t), (j = 1, 2, 3, ..., n). From (5.75)

qi = −∂F4

∂pi
+

n∑
j=1

λj
∂hj
∂pi

.

Qi =
∂F4

∂Pi

+
n∑

j=1

λj
∂ωj

∂pi

∂ωj

∂pi
Qi =

∂F4

∂Pi

+ λi. (5.78)

Hence we have Qi = λi. Then

qi = −∂F4

∂pi
+

n∑
j=1

Qj
∂h
∂pi
.

W.K.T from (5.72)

K = H +
∂F4

∂t
−

n∑
j=1

λj
∂hj
∂t

K = H +
∂F4

∂t
−

n∑
j=1

Qj
∂hj
∂t

[∵ λj = Qj]

(5.73) becomes,

λi =
∂F4

∂Pi

+ λi

∂F4

∂Pi

= 0.
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Let us sum up

1. We have introduce the some special transformations.

2. We have classified the canonical transformation namely identity, orthogonal, trans-

lation, homogenous, point and momentum transformation.

Check your progress

4. What is the another name of homogenous canonical transformation.

5. Write the equation of identity transformation.

6. Define momentum transformation.

5.3 Lagrange and Poisson Brackets

Dear students, in this section we will discuss the Lagrange and Poisson brackets. Also

we will discuss the properties of Poisson brackets and poisson theorem. Finially, we

will discuss the bilinear covarient.

5.3.1 Lagrange Bracket

Suppose we are given the transformation equation of the form Qi = Qi(q, p, t) and

Pi = Pi(q, p, t). If u and v are functions of Q1, Q2, ..., Qn and P1, P2, ..., Pn then the

lagrangian brackets [u, v] is defined by

[u, v] =
n∑

i=1

(
∂Qi

∂u

∂Pi

∂v
− ∂Qi

∂v

∂Pi

∂u
) (5.79)

=
n∑

i=1

(
∂qi
∂u

∂pi
∂v

− ∂qi
∂v

∂pi
∂u

).

176



Consider

δψ =
n∑

j=1

pjδqj −
n∑

j=1

PjδQj

=
n∑

j=1

pjδqj −
n∑

i=1

Pi(
n∑

i=1

(
∂Qi

∂qj
δqj +

∂Qi

∂pj
δpj))

=
n∑

j=1

(pj −
n∑

i=1

Pi
∂Qi

∂qi
δqj −

n∑
i=1

n∑
j=1

Pi
∂Qi

∂pj
δpj)

=
n∑

j=1

(pj −
n∑

i=1

Pi
∂Qi

∂qi
δqj −

n∑
i=1

n∑
j=1

Pi
∂Qi

∂pj
δpj). (5.80)

To check the exactness

A.
∂

∂pk
(

n∑
i=1

Pi
∂Qi

∂pj
) =

∂

∂pj
(

n∑
i=1

Pi
∂Qi

∂pk
)

n∑
i=1

Pi(
∂2Qi

∂pj∂pk
) +

n∑
i=1

∂Pi

∂pk

∂Qi

∂pj
=

n∑
i=1

Pi(
∂2Qi

∂pj∂pk
) +

n∑
i=1

∂Pi

∂pj

∂Qi

∂pk
n∑

i=1

(
∂Pi

∂pk
.
∂Qi

∂pj
− ∂Pi

∂pj
.
∂Qi

∂pk
) =0. (5.81)

B.
∂

∂pk
(pj −

n∑
i=1

Pi
∂Qi

∂pj
) =

∂

∂qj
(pk −

n∑
i=1

Pi
∂Qi

∂qk
)

−
n∑

i=1

∂Pi

∂qk

∂Qi

∂qj
−

n∑
i=1

Pi
∂2Qi

∂qj∂qk
=

n∑
i=1

∂Pj

∂qj

∂Qi

∂qk
−

n∑
i=1

Pi
∂2Qi

∂qj∂qk
n∑

i=1

(
∂Pi

∂qk
.
∂Qi

∂qj
− ∂Pi

∂qj
.
∂Qi

∂qk
) =0. (5.82)

C.
∂

∂pk
(pi −

n∑
i=1

Pi
∂Qi

∂pj
) =

∂

∂qj
(−

n∑
i=1

Pi
∂Qi

∂pk
)

∂Pi

∂pk
−

n∑
i=1

∂Pi

∂pk
.
∂Qi

∂qj
−

n∑
i=1

Pi
∂2Qi

∂qj∂qk
=

n∑
i=1

(
∂Pi

∂pk
.
∂Qi

∂qj
+ Pi

∂2Qi

∂qj∂Pk

)

n∑
i=1

(
∂Pi

∂pk
.
∂Qi

∂qj
− ∂Pi

∂qj
.
∂Qi

∂pk
) = δjk. (5.83)
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Using the differential of Lagrange Bracket equation (5.82), (5.83) and (5.84) can be

modified as

(5.82) =⇒
n∑

i=1

(
∂Pi

∂qk
.
∂Qi

∂qj
− ∂Pi

∂qj
.
∂Qi

∂qk
) =0

=⇒ [pj, pk] =0

(5.83) =⇒
n∑

i=1

(
∂Qi

∂qj
.
∂Pi

∂qk
− ∂Pi

∂qj
.
∂Qi

∂qk
) =0

=⇒ [qj, qk] =0

(5.84) =⇒
n∑

i=1

(
∂Qi

∂qj
.
∂Pi

∂pk
− ∂Pi

∂qj
.
∂Qi

∂pk
) =0

=⇒ [qj, pk] =0.

Alternating the Lagrangian brackets can be defined using Jacobi determinants (ie.,)

[u, v] =
∑n

i=1
∂(Qi,Pi)
∂(u,v)

=
∣∣∣∣∂Qi

∂u
∂Qi

∂u
∂Qi

∂u
∂Qi

∂u

∣∣∣∣
Properties of Lagrange’s bracket

1. [u, v] = 0.

2. [v, u] = 0.

3. [u, v] = −[v, u].

5.3.2 Poisson Brackets

suppose we have two functions namely, u(q, p, t) and v(q, p, t). The Poisson of (u, v) is

defined as

(u, v) =
∑n

i=1(
∂u
∂qi
. ∂v
∂pi

− ∂u
∂pi
. ∂v
∂qi

).

Properties of Poisson bracket

1. (u, v) = 0, 2. (v, u) = 0, 3. (u, v) = −(v, u).
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Necessary and sufficient for the transformation to be canonical

To prove (Pj, pk) = 0, (Qj, Qk) = 0, (Qj, Pk) = δjk. Consider the transformation

Qi = Qi(q, p, t), Pi = Qi(q, p, t), pj = pj(Q,P, t), qj = qj(Q,P, t).

δqj =
n∑

i=1

(
∂qj
∂Qi

δQi +
∂qi
∂Pi

δPi). (5.84)

δpj =
n∑

i=1

(
∂pj
∂Qi

δQi +
∂pi
∂Pi

δPi). (5.85)

Where δQi =
n∑

k=1

(
∂Qi

∂qk
δqk +

∂Qi

∂pk
δpk). (5.86)

δPi =
n∑

k=1

(
∂Pi

∂qk
δqk +

∂Pi

∂pk
δpk). (5.87)

Substitute (5.87), (5.88) in (5.85) and (5.86)

δqj =
n∑

i=1

∂qj
∂Qi

(
n∑

k=1

(
∂Qi

∂qk
δqk +

∂Qi

∂pk
δpk)

)
+

n∑
i=1

∂qi
∂Pi

(
n∑

k=1

(
∂Pi

∂qk
δqk +

∂Pi

∂pk
δpk)

)
.

n∑
i=1

(
∂qi
∂Qi

.
∂Qi

∂qk
+
∂qj
∂Pi

.
∂Pi

∂qk

)
= δjk. (5.88)

n∑
i=1

(
∂qj
∂Qi

.
∂Qi

∂pk
+
∂qi
∂Pi

.
∂Pi

∂pk

)
= 0. (5.89)

similarly
n∑

i=1

(
∂pj
∂Qi

.
∂Qi

∂pk
+
∂pj
∂Pi

.
∂Pi

∂pk

)
= δjk. (5.90)

n∑
i=1

(
∂pj
∂Qi

.
∂Qi

∂qk
+
∂pj
∂Pi

.
∂Pi

∂qk

)
= 0. (5.91)

Assume that the Lagrangian brackets satisfies

(i) [qj, pk] = δjk

[qj, pk] =
n∑

i=1

(
∂Qi

∂qj
.
∂Pi

∂pk
− ∂Qi

∂pk
.
∂Pi

∂qj

)
= δjk. (5.92)

Compare (5.91) and (5.93)

∂Qi

∂qj
=
∂pj
∂Pi

,
∂Pi

∂qj
= − ∂pj

∂Qi

(ii) [qk, pj] = δjk

[qj, pk] =
n∑

i=1

(
∂Qi

∂qk
.
∂Pi

∂pi
− ∂Qi

∂pj
.
∂Pi

∂qk

)
. (5.93)

179



Compare (5.94) and (5.88)

∂Pi

∂pj
=
∂qj
∂Qi

, −∂Qi

∂Pj

=
∂qj
∂Pi

.

Consider,

[qj, qk] =
n∑

i=1

(
∂Qi

∂qj
.
∂Pi

∂qk
− ∂Qi

∂qk
.
∂Pi

∂qj

)
=

n∑
i=1

(
−∂Pj

∂pi
.
∂Pk

∂Qi

+
∂Pk

∂pi
.
∂Pj

∂Qi

)
.

Since [qj, qk] = 0 =⇒ (pj, pk) = 0

Consider,

[pj, pk] =
n∑

i=1

(
−∂Qi

∂pk
.
∂Pk

∂Qi

+
∂Pk

∂pi
.
∂Pj

∂Qi

)
=

n∑
i=1

(
−∂qk
∂Pi

.
∂qj
∂Qi

− ∂qj
∂Pi

.
∂qk
∂Qi

)
=(qj, qk).

Since [pj, pk] = 0 =⇒ (qj, qk) = 0

Consider,

[qj, pk] =
n∑

i=1

(
−∂Qi

∂pj
.
∂Pi

∂pk
− ∂Qi

∂pk
.
∂Pi

∂pj

)
=

n∑
i=1

(
−∂Pj

∂pi
.
∂qk
∂pk

− ∂qk
∂Pi

.
∂Pj

∂Qi

)
=(qk, pj)

Since [qj, pk] = δjk =⇒ (qk, pj) = δjk.

Hence the poisson brackets confirms that the transformation is canonical.
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Special properties of Poisson brackets

1. Writing hamilton’s canonical equation using Poisson brackets. Consider (qi, H)

(qi, H) =
n∑

i=1

(
− ∂qi
∂qk

.
∂H

∂pk
− ∂H

∂qk
.
∂qi
∂pk

)
=
∂H

∂pi

=q̇i.

(pi, H) =
n∑

i=1

(
−∂pi
∂qk

.
∂H

∂pk
− ∂H

∂qk
.
∂pi
∂pk

)
=− ∂H

∂qi

=ṗi

q̇i =(qi, H)

ṗi =(pi, H).

2. Consider a dynamical system specified by the function f(q, p, t)

Now

∂f

∂t
=

n∑
i=1

(
∂f

∂qi
.q̇i −

∂f

∂pi
ṗi

)
+
∂f

∂t

=(f,H) +
∂f

∂t
.

If f is not an explicit function of time t

∂f
∂t

= 0 then ∂f
∂t

= (f, t)

If f is a constant of motion, then (f,H) = 0

Poisson Theorem:

If u(q, p) and v(q, p) are integrals of a Hamiltonian system, then the Poisson bracket

(u, v) is an integral. (ie..,) (u, v) is a constant of the motion

Proof: Now u(p, q)

du
dt

= 0 (∴ u is constant)
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(ie.,) (u,H) + ∂u
∂t

= 0. Also,

∂

∂t
(u, v) = ((u, v), H) +

∂

∂t
(u, v).

5.3.3 Bilinear covariant

Consider the pfaffian differential form

Ω =
n∑

i=1

Xi(x)dxi. (5.94)

Bilinear covariant system is given by

δΩ− dω =
n∑

i=1

n∑
j=1

cijδxjdxj. (5.95)

Consider the canonical transformation from (q, p) to (Q,P )

dψ =
n∑

i=1

pidqi −
n∑

i=1

PidQi. (5.96)

δ(dψ) =
n∑

i=1

(piδqi + δpidqi − δpidqi − PidδQi). (5.97)

Now δψ =
n∑

i=1

piδqi −
n∑

i=1

PiδQi. (5.98)

d(δψ) =
n∑

i=1

(dpiδqi + pidδqi − dPiδQi − PidδQi). (5.99)

(5.98)-(5.100)

n∑
i=1

(δpidqi − dpiδqi) =
n∑

i=1

(δPidQi − PidδQi).

n∑
i=1

(δpidqi − dpiδqi) is a bilinear covariant.

Hence the bilinear covariant is invariant w.r.t the canonical transformation.

Relationship between Lagrange and poisson brackets

Prove that Lagrange and poisson brackets are reciprocal quantities(or)

Prove that LP = I (or) prove that L = P−1I

2n∑
k=1

[ui;uk](uj, uk) =
2n∑
k=1

[(
n∑

r=1

∂qr
∂ui

∂pr
∂uk

− ∂pr
∂ui

∂qr
∂uk

)
n∑

j=1

(
∂uj
∂qs

∂uk
∂ps

− ∂uj
∂ps

∂uk
∂ps

)]

=
2n∑
k=1

n∑
r=1

n∑
j=1

[
∂qr
∂ui

.
∂pr
∂uk

.
∂uj
∂qs

.
∂uk
∂ps

− ∂qr
∂ui

.
∂pr
∂uk

.
∂uj
∂ps

.
∂uk
∂ps

− ∂pr
∂ui

.
∂qr
∂uk

.
∂uj
∂qs

.
∂uk
∂pj

+
∂pr
∂ui

.
∂qr
∂uk

.
∂uj
∂ps

.
∂uk
∂ps

].

(5.100)
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We have

2n∑
k=1

(
∂qr
∂uk

,
∂uk
∂qs

) = δrs = 1

2n∑
k=1

(
∂pr
∂uk

,
∂uk
∂ps

) = δrs = 1

2n∑
k=1

(
∂qr
∂uk

,
∂uk
∂ps

) = 0

2n∑
k=1

(
∂pr
∂uk

,
∂uk
∂qs

) = 0. (5.101)

substitute (5.102) in (5.101)

2n∑
k=1

[ui;uk](uj, uk) =
n∑

r=1

n∑
j=1

[
∂qr
∂ui

.
∂uj
∂qs

+
∂pr
∂ui

∂uj
∂ps

]

=
n∑

r=1

(
n∑

r=1

n∑
j=1

[
∂qr
∂ui

.
∂uj
∂qr

+
∂pr
∂ui

∂uj
∂pr

])

=
∂uj
∂ui

= δij = 1

∵
2n∑
k=1

[ui;uk](uj, uk) = 1

Consider Lik = [ui, uk]

Pkj = (uj, uk)

∴ LP = 1

L = p−1.

Jacobi identity

(u, (v, w)) + (v, (w, u)) + (w, (u, v)) = 0.

Consider

(u, (v, w))− (v, (u,w)) = (u,
∑
k

(
∂v

∂qk
.
∂w

∂pk
− ∂w

∂qk

∂v

∂pk
))− (v,

∑
k

(
∂u

∂qk
.
∂w

∂pk
− ∂w

∂qk

∂w

∂pk
))

= (u,
∑
k

(
∂v

∂qk
.
∂w

∂pk
))− (u,

∑
k

(
∂w

∂qk
.
∂v

∂pk
))(v,

∑
k

(
∂u

∂qk
.
∂w

∂pk
)) + (v,

∑
k

(
∂w

∂qk
.
∂w

∂pk
)).

(5.102)
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By the property, (u, (v, w)) = (u, v)w + (u,w)v (5.101) becomes

=
∑
k

∂w

∂pk
[(u,

∑
k

∂v

∂qk
)− (v,

∑
k

∂u

∂qk
)] +

∑
k

∂w

∂qk
[(v,

∑
k

∂u

∂pk
)− (u,

∑
k

∂v

∂pk
)]+

∑
k

∂w

∂qk
[(u,

∑
k

∂w

∂pk
)− ∂v

∂pk
(u,
∑
k

∂w

∂qk
)] +

∑
k

[
∂u

∂pk
(v,
∑
k

∂w

∂qk
)− ∂u

∂qk
(v,
∑
k

∂w

∂pk
)]

=
∑
k

[
∂w

∂pk
[(u,

∂v

∂pk
) + (

∂u

∂qk
, v]− ∂w

∂qk
[(
∂u

∂pk
, v) + (u,

∂v

∂pk
)]]+

∑
k

[
∂v

∂qk
(u,

∂w

∂pk
)− ∂v

∂pk
(u,

∂w

∂qk
) +

∂u

∂pk
(v,

∂w

∂qk
)− ∂u

∂qk
(v,

∂w

∂pk
)].

W.K.T

∂

∂x
(u, v) = (

∂u

∂x
, v) + (u,

∂v

∂x
)

=
∑
k

[− ∂w

∂qk
.
∂

∂pk
(u, v) +

∂w

∂pk
.
∂

∂qk
(u, v) + 0]

= −
∑
k

[
∂w

∂qk
.
∂

∂pk
(u, v)− ∂

∂qk
(u, v)

∂w

∂pk
]

= −(w, (u, v))

∴ (u, (v, w))− (v, (u,w)) = −(w, (u, v))

(u, (v, w))) + (v, (w, u)) + (w, (u, v)) = 0.

Let us sum up

1. We have discuss the Lagrange and Poisson bracket.

2. We have derive the Poisson theorem.

3. We have discuss the Bilinear covariant.

Check your progress

7. Define Lagrangian brackets.

8. Explain skew symmetry.

Summary

• Introduce the cononical transformations with few examples.

• Discuss the principle forms of generating functions.
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• Discuss the comments on Hamilton-Jacobi’s method.

• Introduce the some special transformations.

• Classified the canonical transformation namely identity, orthogonal, translation,

homogenous, point and momentum transformation.

• Discuss the Lagrange and Poisson bracket.

• Derive the Poisson theorem.

• Discuss the bilinear covariant.

Glossary

• Homogenous canonical transformation: Consider the function ϕ and ψ are

identically zero. Then
∑n

i=1(Piδqi − PiδQi) = 0 and the corresponding transfor-

mation is called a homogenous canonical transformation. This transformation is

also known as Mathieu transformation or constant transformation.

• Lagrangian brackets: Expression of two variable (u, v) by using the notation

[u, v] =
∑n

i=1

(
∂Qi

∂u
∂Pi

∂v
− ∂Pi

∂u
∂Qi

∂v

)
, where u and v are any two variables q1, q2, .., qn, p1, p2, .., pn.

• Poisson brackets: The function of the dynamical variable and time namely u =

u(q, p, t) and v = v(q, p, t). The Poission bracket expression for function is (u, v) =∑n
i=1

(
∂u
∂qi

∂v
∂pi

− ∂u
∂pi

∂v
∂qi

)
.

• Poisson theorm: If u(q, p) and v(q, p) are integrals of a Hamiltonian system,

then the Poisson bracket (u, v) is also an integral, that is (u, v) is constant of the

motion.

Self-Assessment Questions

Short-Answer Questions

1. Consider the transformation Q =
√
e−2q − p2, P = cos−1(peq). Use poisson bracket
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to show that it is canonical.

2. Show that Q =
√
2qet cos p, P =

√
2qe−t sin p is canonical.

3. Let the transformation Q = 1
2
(q2 + p2), P = − tan−1

(
q
p

)
. Show that this transfor-

mation is canonical.

4. Prove that canonical transformation is invariant under canonical transformation.

5. Derive the equation δΩ− dθ =
∑n

i=1

∑n
j=1 cijdxiδxj under bilinear co-variant.

6. Explain the differential forms of Pfaffian differential equation.

Long-Answer Questions:

1. Explain Poisson brackets.

2. Derive the principle of generating functions.

3. State and prove Poisson’s theorem.

4. Consider the transformation Q = log sin p
q

, P = q · p. Obtain the four major types of

generating function associated with the transformation.

5. Explain the types of transformation.

6. Write bilinear co-variant with the differential form of pfaffian function Ω.

7. Show that the value of a Lagrangian bracket is invariant under canonical transfor-

mation.

8. Prove that poisson brackets is Jacobi’s identity.

Objective Questions

1) Hamiltonian’s canonical equations in terms of Poisson brackets are

a) qi = (q̇i, H), Pi = (ṗi, H) b) q̇i = (qi, H), Pi = (Pi, H)

c) q̇i = (qi, H), ṗi = (Pi, H) d) (qj, qk) = 0, (Pj, Pk) = 0, (qj, pk) = δjk

2) In a canonical transformation the first generating function is a function of

a) (p, q, t) b) (q,Q, t) c) (p,Q, t) d) (q, P, t)

3) If the poisson bracket of a function with the Hamiltonian vanishes

a) The function depends upon time b) The function is a constant of motion

c) The function is not the constant of motion d) The function is canonical function
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4) The Poisson bracket expression for the function u(q, p, t) and v(q, p, t) is (u, v) =

a)
∑n

i=1(
∂u
∂qi

∂u
∂pi

− ∂u
∂pi

∂u
∂qi

) b)
∑n

i=1(
∂u
∂qi

∂qi
∂t

− ∂u
∂t

∂u
∂pi

)

c)
∑n

i=1(
∂2u

∂qi∂pi
− ∂2u

∂pi∂qi
) d)

∑n
i=1(

∂2u
∂qi∂pi

− ∂2u
∂pi∂qi

)

5) Poisson bracket is

a) Invariant under canonical transformation b) Variant under canonical transforma-

tion.

c) Both (a) and (b) d) Canonical transformation

6) In a Canonical transformation the third type generating function is a function of

a) (q, p, t) b) (p, P, t) c) (q,Q, t) d) (p,Q, t)

7) A transformation from (q,p) to (Q,P) which preserves the canonical form of the

equation of motion is known as

a) Canonical transformation b) Point transformation

c) Momentum transformation d) Identity transformation

8) Given transformation equations Q = qm cosnp and P = qm sinnp.

a) for m = 1
2

and p = 2 the transformation equation become canonical

b) for m = 1
2

and p = 2. It is not canonical.

c) for m = 2, p = 1
2
. It is canonical.

d) for m = 2, P = 2.It is canonical.

9) In a Canonical transformation the fourth type generating function is a function of

a) (p, P, t) b) (q,Q, t) d) (P,Q, t) d) (q, P, t)

10) Contact transformation is also known as

a) Momentum transformation b) Identity transformation

c) Orthogonal transformation d) Homogeneous Canonical transformation.

11) Homogeneous Canonical transformation is also known as

a) Mathieu transformation b) Point transformation

c) Momentum transformation d) Orthogonal transformation.

12) The Momentum transformation is a ——————- in a momentum space.

a) Legendre transformation b) Point transformation

c) Canonical transformation d) Co-ordinate transformation.
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13) The term (u, (v, w)) + (v, (w, u)) + (w, (u, v)) = 0is called

a) Jacobi’s identify b) Poisson bracket c)Lagrange bracket d) Jacobi’s identify

14) Lagrange’s bracket is a) Canonical invariant b) Canonical variant c) Non-

Invariant d) Invariant under Canonical transformation

15) The relation between matrix form of Lagrange and Poisson brackets are

a) LP=1 b) L=P-1 c) Both a) and b) d) L=P

16) How many different forms of generating functions are there

a) 2 b) 3 c) 4 d) 5

17) In a canonical transformation the second generating function is a function of

a) (q,Q, t) b) (q, P, t) c) (p, P, t) d) (p,Q, t)

18) The principal forms of generating functions of F2 is

a)F1(q,Q, t) +
∑n

i=1QiPi b)F1(q,Q, t)−
∑n

i=1 qiPi

c)F1(q,Q, t)−
∑n

i=1 qiPi d)F1(q,Q, t)−
∑n

i=1QiPi.

Answers for Check Your Progress

1. ∂F3

∂t
+H

(
−∂F3

∂p
, p, t

)
= 0 and ∂F4

∂t
+H

(
−∂F4

∂p
, p, t

)
= 0 .

2. The Hamilton canonical function Q̇i =
∂K
∂Pi

, Ṗi =
∂H
∂Qi

, i = 1, 2, .., n A transformation

from (q, p) to (Q,P ) which preserves the canonical form of the equation of motion is

known as canonical transformation.

3. The various types of generating functions namely F1(q,Q, t), F2(q, P, t), F3(p,Q, t)

and F4(p, P, t). the relationship of the generating function F1, F2, F3 and F4 are called

the principle of generating function.

4. Homogenous canonical transformation is also known as Mathieu transformation or

Contact transformation.

5. F3 =
∑n

i=1 PiQi.

6. The momentum transformation of the form ωj = Qj − fj(q, t), j = 1, 2, ..n.

7. Lagrangian brackets expression of two variables (u, v) by using the notation [u, v] =∑n
i=1

(
∂Qi

∂u
∂Pi

∂v
− ∂Pi

∂u
∂Qi

∂v

)
, where u and v are any two variables q1, q2, ., qn, p1, p2, .., pn.
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8. A consequence of a two skew symmetry of the Lagrangian bracket is [u, v] = −[v, u]

and [u, u] = [v, v] = 0.
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