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Unit 1
INTRODUCTORY CONCEPTS

Objectives

After the successful completion of this unit; the students are expected

* To recall the basic concepts of velocity, accelartion, linear momentum and force.

* To classify contact forces and body forces.

* To understand the fundamental concepts of constrains and constrained motion.

* To gain the knowledge about on Principle of virtual work and D’Alembert’s principle.

* To analyse and work with problems related to Principle of virtual work.

1. Introduction

Dear students,

in the under graduate course we have studied statics and dynamics in the vector form.
In this post graduate course, let us introduce the classical dynamics.

For what reason do we learn classical mechanics?. First of all, we are living in a time
of engineering, technological and scientific Era. So therefore, the knowledge about
engineering is the most essential aspects of learning the mechanical systems.
Secondly, astronomical aspects of understanding the cellestial bodies such as planets,
stars, galaxies and man made spacecraft like projectiles are all described by classical
mechanics. Thirdly, a significant amount of mathematics was created to solve mechan-
ical problems.

Mechanics: Mechanics is the science that deals with the action of forces on bodies.



Dynamics: Dynamics is the study of the motions of interacting bodies. It describes
these motions interms of postulated laws. Motion means change of position of the
moving particle. The motion of a particle is therefore the motion of a point in space.
Statics: Statics is the study of a particle acted by force and kept at rest in equilibrium.
Matter: Matter is any thing which occupies space and can be perceived by senses.
Body: A boby is a portion of matter limited in all directions, having a finite shape of
size and occupying some definite space.

Particle: A particle is an idealized material body having its mass concentrated at a
point. We shall assume that mass of each particle remains constant.

Rigid body: A rigid body is a system of particles, the distance between which remain
unchanged. It may also be regarded as a continous distribution of matter.

Frame of reference: A frame of reference is a rigid body in which axises of coordi-
nates are taken.

Newton’s laws of motion: 1. Every particle continues to move in a state of uniform
motion in a straight line or remains at rest, unless acted upon by an external force.

2. The time rate of change of linear momentum of a particle is proportional to the
force acting on it and is in the direction of this force.

3. The forces of action and reaction between two interacting bodies are equal in mag-

nitude and opposite in direction and are collinear.

1.1 The Mechanical System

A mechanical system consisting of N particle, where a particles is an idealized mate-
rial body having its mass concentrated at a point. The motion of a particle is therefore
the motion of a point in space. A point has no geometrical elements i.e, we cannot
specify the orientation of the particle nor can be associate any particular rotational

motion with it.



1.1.1 Equations of motion

The differential equation of a motion of a system of NV particles can be obtained by
applying Newton’s laws of motion to the particle individually. For a single particle of

mass m subjected to a force F' we obtain from Newton’s second law the vector equation
F = nia, (1.1)

where 'm’ is a mass and ’a’ is acceleration due to the gravity,

_ dv d d, =
F - e = — = — P
m(dt) g = g P
F=P (1.2)
where the linear momentum P is given by,
P = m7, (1.3)
and d = j—f — ¥/ is the acceleration.
~ duv
F = a = _—
d (dr d*r
=m— || =m—
dt \ dt dt?
= mr’,
Thus the equation of motion is a differential equation of second order.
The equation of motion for the system of N’ particles is given by,
F;' = mzf;
ie., mg=F+R  (i=1,2,...N), (1.4)

where m; is the mass of the i'" particle, F\ is the applied forces(sum of all other forces),
ﬁi is the constraint force(that ensures the geometrical conditions). Thus we have

broken the total force acting on the particle into two vector components F; and R;.



Forces acting on the body

Forces that act on the body may be classified according to the mode of application as
follows,

1. Contact forces (applied force F) are transmitted to the body by a direct push or
pull.

2. Body or field forces (constraint force I3L) are associated with action at a distance
and are represented by gravitational, electrical (or) other fields.

Note-1 Body forces are applied through the body, but contact forces are applied only
at its boundary surface. The forces R; associated with the geometrical constrains are
always contact forces. However the applied force F; may be either the body (or)
contact type (or) the combination of forces.

Note-2 Instead of writing a single vector r; = T+ yJ’+ zl-lg for each particles, its more
convenient to write three scalar equations. Using the cartesian co-ordinates (z;, y;, z;)

are represented the position of the ;! particle is in the form,

Ri,, (i=1,2..,N), (1.5)

where F;, and r;, are the x components of F; and R;, respectively, and where F;,, R

1Y)

1Y FiZ7 RZ'Z
are defined similarly.
Dear students, in this subsection we are going to discuss about generalised co-

ordinates and configuration space. First let us define the degrees of freedom.

1.1.2 Degrees of freedom

The number of degrees of freedom is equal to the number of co-ordinates minus the
number of independent equation of constraints.

(ie.,) No. of degrees of freedom = No. of co-ordinates - No. of independent equation



of constraints.

The degrees of freedom gives the minimum number of independent generalised coor-
dinates required to describe the mechanical system completely.

Example: If a configuration of a system of N particles is described by using 3V carte-
sian co-ordinates and if there are /[ independent equation of constraints, then there are
(3N — 1) degrees of freedom.

Problem: Consider the triangular body formed by rigid rods with particles attached at
the corner. Find the degrees of freedom.

Solution: Degrees of freedom = 3N — [ = 9 — 3 = 6. Now the system has 9 cartesian

coordinates and 3 independent constraints.

1.1.3 Generalized co-ordinates

The wide variety of possible co-ordinate transformations, any set of parameters which
gives an unambiguous representation of the configuration of the system serve as a
system of co-ordinates in a more general sense. These parameters are known as gen-
eralized co-ordinates.

Co-ordinate transformation

The values of each set of co-ordinates are simply a group of numbers. The process of
obtaining one set of numbers from the other is known as coordinate transformation.
Example: Consider the transformation equations relating the cartesian co-ordinates

X1, 9, ..., 23y to the generalized co-ordinates ¢y, ¢o, ..., g, are given by

xry = 371(@1,@2, 7Qn>t)

To = 332(@1,@2, 7Qn>t)

3N = 238 (q1, G2, -, Gns T)- (1.6)
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If the = has [ equation of the constraints and the ¢’s have m equation of constrains then

equating the number of degrees of freedom we get
3N —l=n—m. (1.7)

There should be always a one-to-one correspondence between points in the domain
of x and the points in the domain of ¢ at any time ¢. The necessary and sufficient
condition that solve for ¢, a function = and ¢ is called the Jacobian determinant trans-
formation to be not equal to zero which is,

8(x1,x2, ....,IgN)
a(QhQQv 7Qn)

£ 0.

Problem: Find the transformation equations by considering a particle which is con-
strained to move in a fixed circular path of radius ’a’.

Solution: The equation of constraints is,

a=+/(x1—0)2+ (v3 — 0)2 = y/2? + 22

Cartesian to generalized co-ordinate: Let the generalized cocordinates be ¢; and ¢,

where ¢; denotes the polar angle, ¢, denotes the radius (constant). (ie.,) ¢o = a. The

transformation equations are,

T1 = @2CO08¢q1, To = @28Inq;.

Generalized to cartesian co-ordinate: The Jacobian for this transformation is,

8$1 81‘1 .
3(951,362) _ |81 92| _ |T9251Mq1 COSqq
. N\ |0my dxy| T -
Na, ) |og Be q2co8q1  sing

= (o sin? g1 — Q2 cos? g1 = —q2 # 0.

Hence ¢’s can be expressed in terms of = except when ¢, = 0.

The transformation equations are,

T2
tang; = —
T

_ i
q = tan™! ((x—j)) G2 =\/2} + 23 =a,

where 0 < ¢; < 27,0 < ¢o < co. These transformation equation apply at all points on

the finite x, zo plane except at the origin.
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1.1.4 Configuration Space

The configuration system of N particles is specified by giving the values of 3NV cartesian
co-ordinates. If the system has /-independent equation of constraint, it is possible to
find n independent generalized co-ordinates ¢, ¢o, ..., ¢,, where n = 3N — [. Here
a set of n numbers namely the values of n¢’s are completely known, then we can
specify the configuration of the system. It is convenient to think of the n numbers as
the co-ordinates of a single point in an n-dimensional space which is known as the

configuration space.

Let us sum up

1. We have derived equations of motion of a mechanical system consisting of N
particles.

2. Introducing the concept of inertial frame.

3. Also we have studied applied force, contact force, constraint force, body force.
4. We have introduced the concept of degrees of freedom.

5. We have defined generalized co-ordinates.

6. Also discussed the configuration space.

Check your progress

1. What is a Particle?

. State Newton’s Second Law?

. What is meant by constrain force?
. Define Inertial frame?

. What is applied force?

. What is degrees of freedom?

. Define Generalized Coordinates?

o N O U b~ WD

. What is configuration space?

12



In the next section, we will discuss about the various constrains and constrain

forces.

1.2 Constraint Force and Constrained Motion

Dear students, in this section we will introduce the constrained motion of the particle
subject to Holonomic and Non-holonomic constrains. Also we will discuss Bilateral
and Unilateral constrains, Sceleronomic and Rheonomic with illustrative examples.

When a system of N particles have less than 3N degrees of freedom then there must be
some constraints. Constraints are those equations which place geometrical restrictions

upon the possible motion of the particle and rest in corresponding forces of constraint.

1.2.1 Holonomic constraints

Constraints of the form

¢j(Q17QQ7 JQRJt) = 07 (] = 1727 7k) (]—-8)

called holonomic constraints. Where ¢, ¢o, ..., ¢, are generalized co-ordinates that
there are k independent equation of constrains, ¢ denotes the time.

Holonomic System: A system whose constraints equation are all of the Holonomic
constraints then the system is called Holonomic system.

Example: A particle constraints to move along any curve on a given surface is an ex-
ample of Holonomic constraints. Consider the motion of two particles x,y plane are

connected by a rigid rod of length /. The corresponding equation of constraint is,
(932 - [E1)2 + (y2 - y1)2 —-1?=0.

Sceleronomic constraints: Constraint equations which has no time t explicitly then
the constraints are known as sceleronomic constraints.
Sceleronomic system: A mechanical system is sceleronomic, if 1. None of the con-

straint equation contains time explicity. 2. The transformation equation must give the

13



2’s as function of ¢’s only,

T = xl(qbQQa >qn>

To = x2(q17QZa 7Qn>

T3N = I3N(Q1> q2, .-, Qn)-

Rhenomic constraint: Constraint equations which has time ¢ explicitly. Then the
constraints are known as Rhenomic constraints.

Example: Consider two particles connected by a rigid rod of length /. The length of
the rod has been given as a explicit function of time, then the constraints equation are

Rhenomic system.

1.2.2 Non-holonomic constraints

Dear students, in this subsection let us introduce motion of the dynamical system sub-
ject to non-holonomic constraints. Basically, non-holonomis constranits are expressed
in the differential forms or inequalities as in the case of unilateral constraints ( for eg.
Motion of air molecules in a cubic container).

A system of m constraints which are written as non-integrable, differentiable expres-

sion of the form,

n

Zaﬂdqi—l—aﬁdt:O, (j = 1,2,...,m), (19)

=1
where « is a function of ¢’s and #’s constraints of this type is called non holonomic
constraints.
Example: Consider that the particles can slide on the horizontal zy plane without fric-
tion. The system is changed, however, by the addition of a nonholonomic constraint in
the form of knife-edge supports at two particles. These supports move with the prob-
lem and are oriented perpendicular to the rod at either particle. Hence, the velocity

of the center of the rod must be perpendicular to theory, resulting in the constraint

14



equation
T =—ytan€ or cosfdx + sinfdy = 0. (1.10)

1.2.3 Unilateral constraints

The constraints which can be written as a inequality of the form,

f@1, g2 s qn, t) <0, (1.11)

are called unilateral constraint.
Example: Suppose that a free particle is contained within a fixed hollow sphere of
radius r which is centered at the origin. Then, using (z,y, z) as the generalized co-

ordinates of the particle, the unilaterial constraint is given by
2+ 422 —r? <. (1.12)

Let us sum up

1. We have studied the constrained motion of the particle under subject to various
constraints
2. We have discussed following type of constraints namely Non-holonomic, Bilateral,

Unilateral, Sceleronomic and Rheonomic with illustrative examples.

Check your progress

9. Define Holonomic constraints with an example.
10. What is Non-holonomic constraints.

11. Define Unilateral constraints.

1.3 D’Alembert’s Principle of Virtual Work

Dear students, in this section we will discuss about virtual work and Principle of vir-
tual work and D’Alembert’s principle of virtual work. We also discuss the Langrage’s

modified D’Alembert’s principle which will be used to derive Langrages’s equation of

15



motion.

The concept of virtual work is fundamental in the study of analytical mechanics.

1.3.1 Virtual displacement

Let us suppose that the configuration of a system of N particles can be given by 3N
cartesian co-ordinates x, z», ..., £3n, Which are measured relative to an inertial frame
and subject to constraints. Further let dxq, dxs, ..., 023y denote the infinitesimal dis-
placement which are virtual or imaginary. That is they are assumed to occur with out
passage of time. This small change dx in the configuration of the system is called the
virtual displacement.

Problem 1: Show that "a virtual displacement is not in general, a possible real dis-
placement".

Solution: Cartesian co-ordinates: 1. Consider a system subjected to k& holonomic

constraints of the form,
gbj(ZEl,l’Q,...,l'gN,t) :0, (j: 1,2,...,]{7). (113)
The total differentiation of ¢, is given by

Z ‘%Jd i+ 8% Dt = 0. (1.14)

A virtual displacement takes the form,

3N

(* the time is held fixed, dt is omitted).

2. Consider a system subjected to ’m’ non-holonomic constraints of the form,

3N
Zajidxi+ajtdt20 (] = 1727"'7m)' (116)

=1

Now the virtual displacement takes the form,

3N
Z aji(Sxi = O7 (117)
i=1
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(1.14) and (1.15) imply that the holonomic constraint must also be sceleronomic.
e, )—L = =1,2,....k). 1.1
(26 7) at 07 (..7 7 ) 7k) ( 8)
Similarly (1.16) and (1.17) imply that
At = 0. (119)

Since (1.18) and (1.19) cannot happen for a real displacement it follows that virtual

displacement is not in general, a possible real displacement.

1.3.2 Virtual Velocity

In general, a virtual displacement is not a possible real displacement. It is sometimes
convenient to assume that a set of dx’s conforming to the instantaneous constraints
occurs during an interval 6t . The corresponding ratio of the form ‘;—f have the di-
mensions of velocity is called the virtual velocity. In general, virtual velocities are not
possible velocities for the actual system. Infact, a virtual velocity of a moving particle

is consistent with the constraints is also a possible velocity.

1.3.3 Virtual Work

Let us consider a system of N particles. Let 1, x5, ..., 235 be the cartesian co-ordinates.
Let F, Fy, ..., Fiy be the forces applied to the corresponding co-ordinates. Let 6y, do, ..., d3n
denotes the virtual displacements.

3N 3N

oW = ZFjéxj (or) OW = Z F; - or;,

j=1 i=1
here 7} is the position vector of the particle and F; is the applied on the i particle.
Virtual work of constraint force: Let the total force acting on the i*" particle be

separated into an applied force (F;) and a constraint force (R;). The virtual work due

to the constraint force is given by,



Workless constraint: A workless constraint is any bilateral constraint such that, the
virtual work of the corresponding constraint force is zero for any virtual displacement

which is consistent with the constraints. That is,
N
We=0 (or) > R;-6ri=0.
=1

Examples of workless constraints: 1. Rigid inter connections between particles.
2. Sliding motion on a frictionless surface.
3. Rolling contact without slipping.

Rigid inter conections between particles: Let us consider two particles of mass

my and my connected by a rigid mass less rod, R, = —R,. By Newtons 3rd law
o &
)
my Ry D L™
2 7
R, = —Ryé,, (1.20)

where ¢, is the unit vector directed along the rod. Since the rod is rigid, the displace-

ment component of the particles in the direction of the rod must be equal
€071 = €,073. (1.2D)
Now the virtual work is given by,

OWe =3 Ridi; = Ri0r + Rabrs = — ol 077 + Rab,07% = —Ra6, 0 + Raéy0r = 0.
i=1
Hence the rigid inter connection between particle is a work less constraints.
Sliding motion on a frictionless surface: Consider a body B, which slides without

friction on the surface. The constraint force (R) acts normal to the constant point

P. Any virtual displacement of P involves sliding in the tangent plane at that point.

18



Hence no work is done by the constraint force.
Rolling contact with out slipping: Consider a vertical circular disc which roles with
out slipping along a horizontal path. The total force acting on the disc can be separated
in to a normal component R,, and the functional component R, which acts tangential
to the surface. These force components pass through the instantaneous center ¢ (point
of contact). The center does not move as a result of a virtual displacement zero. The

virtual velocity of ¢ is 0. Hence the virtual work of the constraint force is zero.

1.3.4 Principle of virtual work

Dear students, in this subsection first let us state and prove the Principle of virtual
work.

Theorem: The necessary and sufficient condition for the static equilibrium of an ini-
tially motionless sceleronomic system which is subject to workless constraints is, that
zero virtual work be done by the applied forces in moving through an arbitrary virtual

displacement satisfying the constraints.

Proof: Consider a sceleronomic system of N
particles. If the system is in static equilibrium, then F; + R; = 0. Where F; is the ap-
plied force, R; is the constraint force acting on the i** particle. The virtual work done

by the forces in moving through an arbitrary virtual displacement is zero. 6W = 0

N N
> Foi+ Yy Rior; = 0. (1.22)
=1 =1

19



Since the co-system is subjected to work less constraints, the virtual work done by

these constraints is zero. W =0

Substitute (1.23) in (1.22), we get

1

i=1

(1.23)

The virtual work done by the applied force is zero. Conversely, suppose that the same

system of particles is initially motionless but not in equilibrium. Then one or more

of the particles must have a net force applied to it and in accordance with the New-

ton’s law of motion, the particles will move in the direction of force. Let us con-

sider a virtual displacement §r; in the direction of the actual motion of the particle.

1mg

m

Ry

i |/ Ty T"’:

AN
LTI rrrraririrrs

tn;

AL UL UURRTAN

Gy

Hence the virtual work is positive and is given by, 61/ > 0

N N
Zém + Zﬁiéﬁ- > 0.
=1 =1

Since the constraints are workless,

Substitute (1.25) in (1.24),we get

20
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The reversal of §r’s yields a negative virtual work of the system. Since the system is
not in equilibrium it is always possible to find a set of virtual displacement with the
constraints yielding non-zero virtual work.

Problem 1: Two frictionless blocks of equal mass m’ are connected by a mass less
rigid rod using z; and x, as co-ordinates, find Fs, if the system is in equilibrium.
Consider a sceleronomic system.

The constraints acting on the system are as follows,

1) External constraints forces due to the wall and floor called R, and R, respectively.
2) Internal constraint forces are the equal and opposite forces on the rod.

3) The applied forces are the gravitational forces acting on the blocks and external
force F5.

By principle of virtual work, the required condition for static equilibrium is work done

by the applied force = 0.
mgox, + Fr0xe =0 (1.26)
The displacement components along the rod must be equal at the two ends,
d0xysin@ — dxecosd = 0. (1.27)

(1.29) x sinf = Fysin0dxe + mgdx; =0
(1.30) x mg = —mgdxy cos + mgdzy sinf = 0.

(+) (=)

F58in06x9 + mgdxs cosd =0

Fysin0dxy = —mg cos 0o

cos

F,=—
2 mgsin@

Fy = —mgcot 6.

This is the force to keep the system initially motionless in static equilibrium.
Note: The forces R; associated with the geometrical constraints are always contact

forces. How ever the applied force F; may be of either the body or contact type or the
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combination of the forces.

Problem 2 : Using a suitable examples, show that the concept of virtual work can be
applied to system of virtual unilateral constraints.

Solution: Let us consider a system, consisting of a cube of mass m’ which is resting

in static equilibrium at a corner formed by two mutually perpendicular frictionless

planes.
The unilateral constraint equation are, x; > 0,2, > 0. At equilibrium position, z; =
x9 = 0. The applied force on the system are due to gravity.

The components of these forces in the directions of x; and x5 are given by,

Fy = —mgcos45° = _—\;%g
Fy = —mgcos45° = _TW;Q
The virtual work due to applied force is,
OW = Fiozy + Fydx,
= _Tﬂ;géxl + _—\;%g&vg
= —TTr;g(éxl + dz9)

<0.

Thus the virtual work 6W < 0, for any virtual displacement consistant with unilateral

constraints. Virtual work of the constraint force is
5WC = R15$1 + R25I2 Z O,
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where R; and R, are assumed to be constant due to the virtual displacement.
Calculation of constraint forces R, and R, using the principle of virtual work
By the principle of virtual work, the total work done by all the forces is equal to zero

oW —0.

R15$1 + F15$1 + Rgél’g + Fg(sl'g =0
(Rl + F1)5131 + (RQ + FQ)éxQ =0

(Rl — @)51’1 -+ (RQ — @

V2 V2

Here §z; and x5 are not constraint and therefore they are completely independent.

)(51’2 = 0.

mg mg

R — —==0, Ry——==0
RS NG
mg mg
R = —=, Ry = —=.
NG SN
mg mg mg
oW, = Ridx1 + Roydxy = —=0x1 + —=019 = —= (01 + 021) > 0.
1047 2042 \/§ 1 \/§ 2 \/5( 1 1)

Hence there can be non zero virtual work by the constraint forces in an allowable

virtual displacement.

1.3.5 D’ Alembert’s Principle

If the system is in motion, then Zf\i 1(F’i) — my7; = 0. (or) The sum of all forces, real
and inertial acting on each particle of a system is zero.
Proof: Let us consider a system of N particles. The equation of motion for each

particle is given by,

where F, is the applied force, R, is the constraint force, —m;7; is the inertial force, m;
is the mass and 7; is an acceleration relative to an inertial force.

If the system is in motion, then Zf\; 1(ﬁ¢ + R, — mzﬂ) = 0. (or) The sum of all forces,
real and inertial acting on each particle of a system is zero.

Lagrangian form of D’Alembert’s Principle
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Since the priciple of the virtual work applies to system in static equilibrium, let us use
principle on the force system including the inertial forces. The total work done by all

the forces in an arbtary virtual displacement is

—

I
.MZ

=1

N

=1 i=1 i=1

I
[ =

~

If we now assume that the R, are workless constraints then the virtual work done
oW, = 0, that is Zf\i 1 R; - 6r; = 0 and if we choose the &r; to be reversible virtual

displacement consistent with the constraints we have

This above equation is known as Langrange’s form of D’Alembert’s principle.
Example: Obtain the equation of motion of a spherical pendulum (or) a particle of
mass 'm’ is suspended by a mass less rod of length » = a + bcoswt (a > b > 0) to form
a spherical pendulum. Find the equation of motion.

Solution: Let us consider the spherical co-ordinates # and ¢, where 6 is measure from

the upward vertical.
The angle ¢ is measure between a vertical reference plane passing through the support

point o and the vertical plane containing the pendulum. The acceleration of a particle
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whose spherical co-ordinates (r, 8, ¢) is as follows,

= (f; —r0% — r¢*sin® 0)é;4(r + 270 — r¢* sin 0 cos 0)ép

+ (r¢sin @ + 270 sin 6 + 2rthetag cos )¢, (1.28)

where €;, €5 and € are unit vectors forming an orthogonal triad. The virtual displace-

ment is given by,
O = 1rdféy + rsinddgpey. (1.29)
The applied gravitational force is given by,
F = —mg cos 06, + mgsin 0. (1.30)

Consider the Lagrange’s form of D’Alembert’s principle,

(—myg cos 06, + mgsin 0¢,) — m[(r; — r6*sin® 0)é, + (rf + 270 — rf*sin 0 cos 0)éy

+ (r¢sin @ 4 270 + 2rf¢ cos 0)ég]}. (1006 + rsin #pe,) = 0
(mgsinf — mré — 2mid 4+ mr¢? sin  cos 0).166 + (—mrdsin 6 — 2mig cos 8)r sin f5¢ = 0
m(gsinf — rf — 270 + ré? sin 0 cos 0).r00 — m(rdsin 0 + 270 sin 0 4 2r¢ cos O)r sin 8¢ = 0
mr((gsin® — r0 — 270 + r¢® sin 0 cos 0).60 — (r¢sin 6 + 27psin 0 + 2rf¢ cos §) sin 5¢] = 0

[(gsind — 76 — 270 + r¢? sin 0 cos 0).60 — (résin @ + 2r¢ sin 6 + 210 + 2rf¢ cos 0) sin §5¢] = 0
gsin@—ré—2¢9+Tézsin9608920 (1.3D
résinf + 27dsin @ + 210 + 2rg cos 6 = 0. (1.32)
Given,

r =a-+ bcoswt
r = —bsinwt(w)

r = —bsin wwt. (1.33)
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Substitute equation (1.33) in (1.31),

gsin® — (a + bcoswt)d — 2(—bwsinwt)f + (a + bcos wt)¢? sin A cos § = 0.
—(a+ beoswt)f + 2bwh sinwt + (a + beoswt) sinf cos #p? + gsinf = 0.
(a + beoswt)f — 2bwh sin wt — (a + bcos wt) sin b cos ¢ — gsinf = 0.

Substitute equation (1.33) in (1.32),

(a + beoswt)psin O 4+ 2(—bw sin wt)d sin 6 + 2(a + bcoswt)fp cos § = 0.

1.3.6 Generalized force

Consider a system of N particles whose positions are specified by the cartesian co-
ordinates (z1,xs,....x3x5). Let (F1, Fy, ..., F3x) be the forces applied at the correspond-
ing co-ordinates. The virtual work done by the forces in an arbitrary virtual displace-
ment is given by
3N
SW =" Fjou;. (1.34)
j=1
Suppose that the cartesian co-ordinates 1y, xs, ..., x3y are related to the generalized

co-ordinates by equation of the form,

Ty = xj(QlJQ% 7Qn7t)

By setting dt = 0 we get,

Oz,
0q;, =1,2,...,3N). 1.35
E " i (J ) (1.35)
Here 2 a are functions of ¢’s and #’s. Substitute (1.35) in (1.34),

SW = ZF 28%5
- Oz,
—ZZFJ 54

j=1 j=1

oW = i Qi0q;,
j=1

26



where @); = Zjﬁl Fjg—z is the generalized force associated with the generalized co-

ordinate ¢;.

Example: The particle are connected by two rigid rods having joint between them

to form the given system. The vertical force of a moment M are applied as shown.

The configuration of the system is given by the ordinary co-ordinates (x1, x5, x3) or by

the generalized co-ordinates (¢, g2, g3). Where

g3
I1ZQ1+(]2+§-

T2 = (1 — QG2

q3
$3ZQ1—CI2+§-

Find the generalized force @1, 2, Q3 assuming small motions.

Solution:
q3
T1=¢q1+¢qg2+ 5 (1.36)
To=q1 — Q2 (1.37)
Ts=q— @+ % (1.38)
1 1 1
o 2
A1, 29,23) _ | 0 —1|=-3#0.
(@1, G2, G3) 1 -1 L
2

27



(1.36) + (1.37) + (1.38) =

q q
$1+$2+$3ZQ1+Q2+§3+Q1—QQ+Q1—C]2+§3
= 3q

1
Q1 = §($1 + 9 + x3). (1.39)

(1.36) — (1.38) =

€E1—$3ZQ1+QQ+@—Q1+Q2—@
2 2
= 2>
1
q2 = 5(551 — x3). (1.40)
Substitute (1.40) in (1.38), we get
T2 = (1 — (g3
1
= g(xl + x9 + x3) — q3
1
q3 = 5(371 + T9 4+ 23) — T2
. $1+!E2—|—{L’3—3$2
N 3
1
q3 = g(l’l — T —+ 1'3). (141)

Thus for any set of values of x, we get the corresponding unique set of ¢’s. The force
F can be replaced by, 3L at x1, £ at 2. The moment M can be replaced by equal and
opposite forces pf magnitude 4 in the direction of z3 and reversed direction of 5.

The forces acting at zq, 5, x5 are Fy = 35, = £ — M py = M

)
0x1 = 0q1 + 0qo + %

0y = 0q1 — 0g3.

o
5z = 8q1 — 62 + .
oW = Fléxl + Fgél’g + F3(5.733
3 ) 1 M M o
= (F)0q + g2+ 57) + (FF = )01 = 0as) + () (0ar — 02 + %)

4 2 4 l l 2
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3. 1. M M 3. M 3. 1. M M
5W:(—F+—F——+—)6q1+(—F——)5q2+(—F——F+ +—)5q3

4 Ty I 4 l 8 4 T 2
= Féq + (ZF — %) 0qs + (%F + %) 0q3. (1.42)
In general,
OW = Q10q1 + Q20q2 + Q30¢s. (1.43)
From (1.42) and (1.43)
Q1 =F.
Q= 37~ %‘
1= M
(@3 = 3 + 32_l

Let us sum up

1. We have introduced the concept of virtual displacement and virtual velocity.

2. We have derived equation for D’Alembert’s principle of virtual work.

3. Also we have discussed Lagrange’s modified D’Alembert’s principle.

4. We have introduced the generalized force (); associated with the generalized co-

ordinate ¢;.

Check your progress

12. Define Virtual displacement.
13. What is meant by Virtual work?
14. Workless constraint.

15. State Principle of Virutal work.

16. State D’Alembert Principle.

1.4 Energy, Linear Momentum and Angular Momen-
tum

Dear students, in this section let us discuss basic concept of potential energy, work

done, kinetic energy, conservation of energy and angular momentum.
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1.4.1 Potential energy

Potential energy is the energy gained by the particle by virtue of its position and
therefore potential energy V can be viewed as a analytic function in position vari-
ables (z.y.z).

Let us consider a single particle whose position is given by cartesian co-ordinates

(x,y, z). Suppose that the total force acting on the particle has components.

A% A% ov
Fx—_ga Fy__a_ya FZ—_E

Where V is a potential energy function V' (z, y, z) is a single valued function of position
only and not a function of velocity or time. A force F satisfying these conditions is
called a conservative force.

Problem : The work done on the particle depends up on initial and final positions,
but is independent of the specific path.

Proof: Let us consider the work dI¥ done by the conservative force F as it moves

through an infinitesimal displacement dr. Then

AW = F - dF

= Fydx + Fydy + F.dz = — a—vdx + a—vdy + (9_de
ox oy 0z

dW = —dV (1.44)

ov ov ov
dV = %dﬂf + a—ydy + Edz

Thus dIV is an exact differentiable. Now let us consider the work W done by the force

F as the particle movesfrom a point A to B.

B

W = / F-dr. (1.45)
A
Substituting (1.45) in (1.44) we get,
B B
W:/ (—dV):—/ dV =—(Vg —V4)=V4— Vg
A A

But potential energy V' is a function of position only and hence the workdone W is

independent of the specific path. Further if A and B coincide, then the work done in
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moving around and closed path is zero.

W:]{dW:]{ﬁ.dF:VA—VB:o.

1.4.2 Principle of work and kinetic energy

Dear student, in this section let us discuss the concept of principle of work and kinetic

energy.

Theorem: The increase in the kinetic energy of a particle as it moves from one arbi-

trary point to another is equal to the work done by the forces acting on the particle

during the given interval.

Proof: The kinetic energy (7') is given by,

T = —mv?,

where m is the mass, v is the velocity of the particle. The work done by the particle

due to the total force F as the particle moves from A to B is given by,

B B _ B B
W:/ dW:/ FdF:/ madfzm/ 7dr
A A A A

Multiply and divided by dt

B .
W = m/ F(ﬁ) dt
A dt
B e .
W = m/ (77)dt.
A

Now 4 (7F) = (iF) + (i7) = 2(r7)

Substitute (1.47) in (1.46) we get,

W = m/ thrf')dt —m/ dtrr

1 By 1 RV SIP Lo
W=-m [ d(r)"=-m d(v)* = —m(vg — vy) = —mug —
2" |, 2™ ], 2 2

Hence increase in kinetic energy is equal to work done.
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1.4.3 Conservation of energy

If the only forces acting on the given particle are conservative,

W =V, —Vpg. (1.48)

W =Tg —1T4y. (1.49)
From (1.51) and (1.52)

VA—VB:TB—TA.

Va+Tuy=Tp+Vp=FE.

Since the points A and B are arbitrary values, the total mechanical energy F remains
constant. During the motion of the particle, this is the principle of conservation of
energy.

Problem : Consider a system of N particles whose configuration is specified by the
cartesian co-ordinates x1, xs, ..., z3y. If the only forces which do work on the system

during motion are given by F;, = where the potential energy v of x1, xo, ..., 235

— _ v
B0
is a single valued function of position only then the total energy is conserved.
Solution: Let us consider the configuration of the system of N particles is specified by
3N Cartesian co-ordinates and generalized co-ordinates ¢, ¢s, ..., ¢, and the z’s and ¢’s

are related by z; = 7;(4, 4s,...q.)- The generalized force Q); is given by,
3N

813]'

Q=20 dg;’

7j=1

The work done by the particle is given by,

B
W:/ dw
A
B n
= / > Qidy;, (1.50)
A =1

where

ox; ov Ox;
@i = Z ]8qj Zax] qu

Qi=—7— (1.51)
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Substitute (1.57) in (1.56),

/ i@v:vA—UB.
i=1

Where A and B are the end points of the particle. Hence W is independent of the path

and hence the total energy is conserved.

1.4.4 Equilibrium and stability

Consider a system of V particles whose applied force are conservative and are obtained

from a potential energy function of the form v(xy, 2o, ..., z3y). Now from

3N
oW =" Fjou;.

Jj=1
ov
= ——
J 8953-’

we get

oW = Z axj(sxj —dv = —bv.

By the principle of virtual work the necessary and sufficient condition for the system

to be in static equilibrium is that,
W =0
v = 0.

If the potential energy is expressed in terms of the generalized co-ordinates, ¢, ¢z, ..., ¢,

then

=1
Now dv =0,= 52 =0, (i=1,2,.,n).

Let vy be a reference value then by Taylor’s series,

v v 0*v )
U_UO+(8_C]1)05q1+(a(]2>05q2+ = <a 2) 0qy

1 0%v 1 /0%
+ = 5q16gs + = | =—5 | 0¢2 + ...
2 (aqlaqz)o LTy (aq§)0 &

(1.52)
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Let us assume that,

ov
=0. 1.53
(a%‘)o ( )

Hence,

ov ov 1 /0%
ANv=v—vg=[—1] 0 +(—> 1 +...—|——<—) 5q>
’ ((M)O " \og ), " 2\og ), "
1 0% ) 1 (8221)
+ = §q10qs + = | =— | 02 + ...

where Av denotes the change in the potential energy,

1. If Av > 0, V possible virtual displacement having atleast one of the d¢’s are non-zero.
Therefore, v is the minimum potential energy corresponding to the stable equilibrium.
2. If Av < 0, then the equilibrium position is unstable.

3. If Av > 0, then the equilibrium is neutral stability.

Dear students, in the next subsection we state and prove Konig’s theorem for total

kinectic energy.

1.4.5 Konig’s theorem

Theorem: The total kinetic energy of a system is equal to the sum of,

1. The kinetic energy due to a particle having a mass equal to the total mass of the
system and moving with the velocity of the center of mass.

2. The kinetic energy due to the motion of the system relative to its center of mass
Proof: Consider a system of NV particles. The total kinetic energy of the system is equal

to the sum of individual kinetic energy of the particle,

| N
— =12
T = 5 ;:1 m;(7;)
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E

Ty =Tc+ pi

T’i:TC—FIOi.

Where 7; is the position vector of the i" particle relative to the fixed point. p, is the
position vector of the i particle relative to the center of mass, 77, is the position vector

of the center of mass relative to the fixed point o.

N 1 N

= EZmZ(TZ+P7)2 = §Zmi(7“;;2+27";é‘ﬁ;+p;;2)

1-i:21N - i:.l lew -2
ZEFC ;mi+rz';m1p§+§;miﬁi.

Since, p; is measured from the centre of mass, the linear momentum Zfi Lmip; =0

1.2 1 -2
T = 57”_; ;mi + 5;%@ )
Hence the proof.
2. Kinetic energy for a rotating rigid body in general motion. Let us consider a small
volume element dV" with density p. Each element of the body in general be translating

and rotating.
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L 3

The total kinetic energy is

1 - 1 .
T:§mr22+§/vp52d1/,

where ;' is the position of the volume element related to the mass center. (ie) The

kinetic energy is the sum of the translating kinetic energy and rotational kinetic energy.

Rotational Kinetic Energy:
1 .
Trot = §/pﬁ2dv

Let o’ be the center of mass and w be the angular velocity then 7= & x .
Consider

= p.p= P& x p) =&.(7x p) =&.(7 % (& %))

— G.(F x p)F — (FE)A

P05 — (F3)F = (22 + 12 4 22)(wad + wy] + w.k) — (2w, + yuwy + 2w (zi + y7 + k)

— —

= [(y2 + 22)(,% — TYw, — 22w, i + [(m2 + zQ)wy — TYw, — 2Yw,|j

+ (2% + 22w, — 22w, — 2yw, k.

T =5 [ #0175~ (7)o
Trot = % /Uﬁ(wx?+ wy] + W) {[()? + 22wy — yw, — 2zw, )i+
(22 + 2%)w, — zyw, — 2yw,]] + (2% + 22w, — z2w, — zyw,)k v
= %Imwfc + % yyws + % Zzwg + Lpywowy + Lpwew, + Ly wyw,.
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i

Where

[z:c = [xz - _/
L,=1,.= —/
In the matrix form,
wﬂ? Ia:ac
W= |wy|and I= |I,
wz sz
L 7
Trot = —w" Tw
2

1.4.6 Angular momemtum

Let us consider a system of N particles. The angular momentum about o is given by,

3
S

X

Il
=l

i

T
I
=
X
S
=l
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Where 7 is the position of the i** particle with respect to the reference point o.
N
= Z T3 X mﬂ”_;
=1
i =T+ pi

Ti = Te+ pi

—

(7o + p)malie + p7)

-

=1

N . N . N . N .
= Z TomTe + Z Tem;p; + Z i Py + Z Pim;Te (1.54)
i=1 i=1 i=1 i=1
N
l;l
> pimi = 0. (1.55)
i=1

Substitute (1.55) in (1.54),

N N
H =rere E mi+ ) pimip
i=1 i=1

H= mﬁ;r;c +H

Where Zf\; L pym;p is the angular momentum of the center of mass.

1.4.7 Angular momentum of the rigid body

Let us consider a rigid body in an arbitrary motion w.k.t that,
H = mrr. + H..
Where H, = S| pimip
H, = / p(7.p)dv
=7 (7 @ x o
= p/{[(y2 + 22w, — wyw, — zaw,i + [(2 + 22w, — ryw, — 2yw.]]
U + [(2% + 2*)w, — 2w, — zywy]lg}dv

H, = p/(y2 + 22\ wgidv + p/(x2 + y?)wyjdv + p/(:c2 + ) w, kdv — p/:cywyfdv

v v v v

— p/zmwjdv — p/xywxfdv — p/zywzjdv — p/zxwxgdv —p/zywygdv
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Where

I, = /(y2 + 2?)dwv.
I, = /(332 + 2%)dv.

I, = /(y2 + 2%)dv.

I,=1,, = —/Uﬁ(xy)dv.

lL,=1,.=— /ﬁ(zx)dv.

Lyzgf:ilﬂwﬂv

ﬁc = [Lppwy + Lywy, + Imwz]h— [Lyywy + Loyws + Izywz]j+ 1w, + [ w, + Iyzwy]z.

In the matrix form,

H.= 13
= | Lye Ly 1Ly| |wy
IZI [Zy [ZZ U')Z

1.4.8 Angular momentum with respect to an arbitrary reference

point
N
H = Zr_{ X M;T;
=1
i =Ty + pi
pi =Ti—Tp (1.56)
"¢ =Tp+ Pe
Tp = Te — Pe- (1.57)
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Substitute (1.56) in (1.57),

—

pi =" —="7Tc+ Pe

pi =7 — T+ [
N .

H), = ZP_; X m;p;
i=1
N . .

= (=7t ) x ma(ri = e ).

i=1

pi = H — 1o X myre + po X mipe.

1.4.9 Generalized momentum

Let us consider a system specified by n-generalized co-ordinate. Let the Lagrangian
function L(q, ¢,t) is defined as, L =T — V.
The generalized momentum p; assosicated with the generalized co-ordinates ¢; is de-

fined by the equation

_oT ov
- 94 9gi

The potential energy is velocity independent,

v

=0.
i

Hencep;, = 5, (i=1,2.,n).

Example:1 Consider a free particle of mass m whose position is given by the cartesian

coordinates (z, vy, z). The kinetic energy is

1 :
T = Smv” = —m(z? + y% + 2?),
we obtain,
oT .
r — = = X
b ox
oT .
Py = 5 =my.
Yy ay
oT
= AL, — Mz
b 0z



Example:2 Consider a free particle of mass m whose position of the partial is given by
the spherical co-ordinates (r, 6, ¢). The kinetic energy is
T= %m(i’z + 1262 + r2¢2sin?0),

we have

Dy = mr.

Do = mr20.

Py = mr’psin’6.
Where p, is the linear momentum component in the radial direction, py is the horizon-

tal momentum component of the angular momentum and p,; is the vertical momentum

component of the angular momentum.

Let us sum up

1. We have obtained relationship between potential energy and applied force.

2. We have discussed the principle of work and kinetic energy.

3. We have discussed the conservation of energy.

4. We have obtained the condition for equilibrium and stability.

5. We have proved the Konig’s theorem for the total kinetic energy for a rotational
body.

6. We have discussed the generalized momentum p; associated with generalized coor-

dinates ¢; is discussed with illustrated example.

Check your progress

17. State rinciple of virtual work and kinetic energy.

18. What is conservation of energy.

Summary

* Derived equations of motion of a mechanical system consisting of N particles.

* Introducing the concept of inertial frame.
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* Studied applied force, contact force, constraint force, body force.

* Introduced the concept of degrees of freedom.

* Define generalized co-ordinates.

* Discussed the configuration space.

* Studied the constrained motion of the particle under subject to various constraints
* Discussed following type of constraints namely non-holonomic, bilateral, unilateral,
sceleronomic and Rheonomic with illustrative examples.

* Introduced the concept of virtual displacement and virtual velocity.

* Derived equation for D’Alembert’s principle of virtual work.

* Discussed Lagrange’s modified D’Alembert’s principle.

* Introduced the generalized force ); associated with the generalized co-ordinate ¢;.
* Obtained relationship between potential energy and applied force.

* Discussed the principle of work and kinetic energy.

* Discussed the conservation of energy.

* Obtained the condition for equilibrium and stability.

* Proved the Konig’s theorem for the total kinetic energy for a rotational body.

* Discussed the generalized momentum p; associated with generalized co-ordinates ¢;

is discussed with illustrated example.

Glossary

* Holonomic System: A system whose constraints equation are all of the holonomic
constraints then the system is called holonomic system.
* Sceleronomic system: A mechanical system is sceleronomic, if 1. None of the

constraint equation contains time explicity. 2. The transformation equation must give
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the z’s as function of ¢’s only,

T = 931((]176127 --~>qn)

To = fL’z(Ql,C]% >qn)

T3N = 373N(‘]17 q2;, .- qn)-

e Virtual work: The concept of virtual work is fundamental in the study of analytical
mechanics.

» Workless constraint: A workless constraint is any bilateral constraint such that, the
virtual work of the corresponding constraint force is zero for any virtual displacement

which is consistent with the constraints. That is,

N
We=0 (or) > R;-6ri=0.
=1

Self-Assessment Questions

Short-Answer Questions:

1. State and prove D Alembert’s Principle.

2. A Particle of mass M is suspended by a massless wire of length » = a + bcoswt; a >
b > 0 to form a spherical pendulum. Find the equation of motion.

3. State and explain the Konig’s theorem for a rigid body and arbitrary points.

4. Define angular momentum of a system of particle.State and prove the principle of
conservation of angular momentum.

5. Prove that with usual notation 7,,; = %wT] w.

6. Explain Holonomic constrains and give example.

Long-Answer Questions:

1. State and prove the principle of virtual work.
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2. State and prove Konig’s theorem.
3. Define D’Alembert’s Principle and a Particle of mass M is suspended by a massless
wire of length r = a + bcoswt;a > b > 0 to form a spherical pendulum. Find the
equation of motion.

. Explain briefly Generalized Momentum.

. Define the degree of freedom and briefly explain generalized coordinates.

4
5
6. Discuss Equilibrium and Stability.
7. Briefly explain Constrains.

8. Prove that the Total Kinetic energy 1" = %mrg + 3 >N mzpl2 + rpmpe.
9. Explain briefly Virtual Work.

10. State and prove Principle of conservation theorem.

11. Briefly explain Energy and Momentum.

12. With the usual notations find an expressions for the rotational kinetic energy of a

rigid body.
Objectives

1. A body continuous in its state of rest or uniform motion, unless no external force is
applied to it

(a) law of inertia (b) law of force (c) law of action and reaction

(d) none of the above

2. The number of degrees of freedom is equal to

(a) no. of coordinates - no. of equations (b) no. of equations - no. of coordinates
(c) no. of equations (d) no. of coordinates

3. A constraint which is expressed in the form of inequality is called

(a) Bilateral (b) Unilateral

() holonomic (d) Scleronomic

4. Generalized coordinates

(a) dependent on each other (b) are independent of each other

(c) are spherical coordinates (d) none of the above
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5. Constraints that can be expressed as equations of coordinates and time, i.e., by an
expression of the form f(ry,ry,73.....t) = 0, are said to be:

(a) Holonomic. (b) Nonholonomic.

(¢) Scleronomous. (d) Rheonomic

6. If any of the constraint equations or the transformation equation contain time ex-

plicity
(a) Holonomic (b) Rheonomic
(¢) Nonholonomic. (d) Scleronomous

7. Scleronomous constraints have:

(a) explicit time dependence. (b) no explicit time dependence.

(c) both explicit time dependence and no explicit time dependence. (d) neither
explicit time dependence nor no explicit time dependence.

8. The small change 6x in the configuration of the system is

(a) Virtual work (b) Principle of virtual work

(c) Virtual displacement (d) Virtual time

9. The principle of kinetic energy is

@W=Vy-Vp D)W = Vg —Vy

W =T4—Tpg DW=Tg—Tx

10. A constraint which is workless then

(@ > Ridy (b)>_ R,

(©)> Fidyi (d) > Fibun

11.The second term of the equation is called T =1mr.> + 3 [ ppdv

(a) Translational kinetic energy (b) Translational potenytial energy
(c) Rotational kinetic energy (d) Rotational potential energy

12. Stable equilibrium is

(@) AV >0 (b) AV <0

() AV =0 (d AV =1

13. Sometimes ........ is consider as a form of instability.

(a) Stable equilibrium (b) Unstable
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(c) Neutral stability (d) Constant

14.The existence of an inertial reference frame is a fundamental postulate of ........

dynamics.
(a) Newtonian (b) Lagrangian
(¢) Hamiltonian (d) Routhian

15. Equations of constraints that does not contain time as explicit variable are referred

as
(a) Holonomic constraints (b) Rheonomic constraints
(¢) Non- holonomic constraints (d) Scleronomic constraints

16. Non - inertial frame is

(a) non - accelerated frame of reference (b)accelerated frame of reference

(c) both (a) and (b) (d) none of the above

17. If the particles are connected by rigid rods to form a triangular body with the
particles at its corners. The number of degree of freedom is ...

(@3 (b) 6

@9 (d) 12

18. Unilateral constraints are not classed as workless constraints because allowed vir-
tual displacement can be found in which the virtual work of constraint force is .....

(a) zero (b) one

(¢) not zero (d) not one

19. Find the name of the equation H = f} ri(mgr;) .

(a) Angular momentum (b) Generail:ilzed momentum

(c¢) Linear momentum (d) Non linear momentum

20. Any set of coordinates which can be express the configuration of the system is
called

(a) Cartesian coordinates (b) Generalized coordinates

(c) Polar coordinates (d) Spherical coordinates

21. Non holonomic contraints which can be expressed in the form of

(a) (1’1 - 5132)2 + (yl - 3/2)2 —-12=0 (b) 7Tk($1,5752> ---,ﬂUmt) =0
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(©) m(q1,q2, -, Gn,t) =0 (d) ajidg; + ajidg =0

22. The process of obtaining one set of number from the other is called

(a) Jacobian transformation (b) Coordinate transformation

(c) Holonomic system (d) Non - holonomic system

23. A virtual displacement conforms to the instantaneous constraints ......

(a) any moving constraints are assumed to be stopped during the virtual displacement.
(b) any moving constraints are assumed to be stopped during the virtual work.
(c) any constraints are assumed to be stopped during the virtual displacement.
(d) any constraints are assumed to be stopped during the virtual work

24. D’Alembert’s Principle is .....

(@ F, — Ry +myi; =0 (b) F; —m;i#; =0

(©F — Ry + myi'; # 0 (d F; + Ry — myiy = 0

25. Lagrangian form of D’Alembert’s Principle is .....

N
@ F—Ri+mi; =0 (b) > (F; — my#;)or; =0
i=1

() %(Fz — m;i;)or; # 0 (d)i(ﬂ + m;i;)or; = 0
26. Z;‘Ipalrticle is constrained to rri;\l/e along the inner surface of a fixed hemispherical
bowl. The number of degrees of freedom of the particle is

(@1 (b) 2 (©3 (d) 4

27. The increase in the kinetic energy of a particle as it moves from one arbitary point

to another is equal to the work done by the forces acting on the particle during the

given interval. This statement is called ......

(a) Principle of virtual work and kinetic energy (b) Principle of work and poten-
tial energy
(c) Principle of work and kinetic energy (d) Virtual work and kinetic energy

28. The total work by all the force in an arbitrary virtual displacement is .....

N N
=1 i=1
N N

(© dw = > (F, —my#;) =0 (d) ow = > (F, +m;i;) #0

i=1 i=1
29. In case of a rigid body having N particles, the number of degrees of freedom is
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(@ N (b) 3N (03 (d)

30. Find the equation of the principle of conservation of energy .....
@ VaTy =VTp =FE B Va+Ta=Vp+1Tp=FE
@QVa+Tp=Vpg+Ts=F (D) VuTp =VTy = E

Answers for Check Your Progress

1. A particle is an idealized material body having its mass concentrated at a point. We
shall assume that mass of each particle remains constant.

2. i. Every particle continues to move in a state of uniform motion in a straight line or
remains at rest, unless acted upon by an external force.

ii. The time rate of change of linear momentum of a particle is proportional to the
force acting on it and is in the direction of this force.

iii. The forces of action and reaction between two interacting bodies are equal in mag-
nitude and opposite in direction and are collinear.

3. Body or Field forces (Constraint force R) are associated with action at a distance
and are represented by gravitational electrical (or) other fields.

4. A frame of reference is a rigid body in which axes of coordinates are taken.

5. Contact forces (Applied force F) are transmitted to the body by an direct push or
pull.

6. The number of degrees of freedom is equal to the number of co-ordinates minus
the number of independent equation of constraints.

(ie.,) No. of degrees of freedom = No. of co-ordinates - No. of independent equation
of constraints.

The degrees of freedom gives the minimum number of independent generalised coor-
dinates required to describe the mechanical system completely.

7. The wide variety of possible coordinate transformations, any set of parameters
which gives an unambiguous representation of the configuration of the system be serve

as a system of co-ordinates in a more general sense. These parameters are known as
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generalized co-ordinates.

8. The configuration system of N particles is specified by giving the values of 3N
cartesian co-ordinates. If the system has /-independent equation of constraint, it is
possible to find n independent generalized co-ordinates ¢, ¢o, ..., ¢,, where n = 3N — .
Here a set of n numbers namely the values of ng’s are completely known, then we can
specify the configuration of the system. It is convenient to think of the n numbers as
the co-ordinates of a single point in an n-dimensional space is known as configuration
space.

9. Constraints of the form
¢j(q1>QZ>"'aQnat) :07 (J: 1727"'ak) (158)

called holonomic constraints. Where ¢, ¢, ..., g, are generalized co-ordinates that
there are &k independent equation of constrains, ¢ denotes the time.

Example: A particle constraints to move along any curve on a given surface is an ex-
ample of Holonomic constraints. Consider the motion of two particles x, y plane are

connected by a rigid rod of length [. The corresponding equation of constraint is,
(w2 —a1)* + (g2 —n)* = 12 = 0.

10. A system of m constraints which are written as non-integrable, differentiable

expression of the form,

Zajidqi+ajtdt:0, (j=1,2,....,m). (1.59)

=1
where « is a function of ¢’s and #’s constraints of this type is called non holonomic
constraints.

11. The constraints which can be written as a inequality of the form,

f(Q17q27"'aQnat) S 0 (160)

are called unilateral constraint.

Example: Suppose that a free particle is contained within a fixed hollow sphere of
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radius r which is centered at the origin. Then, using (z,y, z) as the generalized coor-

dinates of the particle, the unilaterial constraint is given by
Pyt + 2 —-r? <. (1.e1)

12. The configuration of a system of N particles can be given by 3N cartesian co-
ordinates x1,Z»,..., xz3y Which are measured relative to an inertial frame and sub-
ject to constraints. Further let §z,dxo, ..., dx3y denote the infinitesimal displacement
which are virtual or imaginary That is they are assumed to occur with out passage
of time.This small change dx in the configuration of the system is called the virtual
displacement.

13. The total force acting on the ‘" particle be separated into an applied force (F})
and a constraint force (R;). The virtual work due to the constraint force is given by,

N
oW, =Y R o7

i=1
14. A workless constraint is any bilateral constraint such that, the virtual work of the

corresponding constraint force is zero for any virtual displacement which is consistent

with the constraints. That is,

We=0 (or) > R;-6r=0.

i=1
15. The necessary and sufficient condition for the static equilibrium of an initially

motionless sceleronomic system which is subject to workless constraints is, that zero
virtual work be done by the applied forces in moving through an arbitrary virtual
displacement satisfying the constraints.

16. The sum of all forces, real and inertial acting on each particle of a system is zero.
17. The increase in the kinetic energy of a particle as it moves from one arbitrary point
to another is equal to the work done by the forces acting on the particle during the
given interval.

18. If the only forces acting on the given particle are conservative, W = V, — Vp,

W =T —T}4
Va—Vp=Tp—Ts, Va+Ty=Tp+Vp=1FL.
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Since the points A and B are arbitrary values, the total mechanical energy £ remains
constant. During the motion of the particle, this is the principle of conservation of

energy.

Suggested Readings

* Greenwood. T. Donald, 1979, New Delhi: Classical Dynamics, Prentice Hall of
Indian Private Limited.

* Goldstein, Herbert. 2011, New Delhi: Pearson Education India Classical Mechanics,
3rd Edition.

* Rao. Sankara. K. 2009. New Delhi: Classical Mechanics. PHI Learning Private
Limited.

e Upadhyaya. J.C. 2010. New Delhi: Classical Mechanics, 2nd Edition. Himalaya
Publishing House.

* Gupta. S. L. 1970. New Delhi: Classical Mechanics. Meenakshi Prakashan.
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Unit 2
LAGRANGE’S EQUATIONS

Objectives

When this units are successfully finished, the students are expected

* To derive the Lagrange’s equations of motion subject to holonomic and non-holonomic
system.

* To obtain the differential equations of motion for spherical and double pendulum by
Lagrange’s method.

* To discuss the Kepler’s problem by using Routhian function methods.

* To obtain the Jacobi integral or energy integral for conservative, natural and Liou-

ville’s system with illustrative examples.

2. Introduction

Dear students, in this unit we define the Lagranian for a holonomic systems with
applied forces derivable from ordinary (or) generalized potenital and workless con-
straints. In the Lagragian formulation we are eliminating the forces of constrins form
the equation of motion and acheiving this goal we have obtain many other benifits.
The derivative of Lagragian equation has started from a consideration of instantaneous
state of system and small virtual displacement about the instantaneous state leading
to a differential principle such as D’Alembert’s principle. We will study the differential
type of kinetic energy T, 11, Ty. Derivative of the Lagrange’s equation subject to holo-

nomic and non-holonomic system by using Lagrange’s multiply method. We derived
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the Lagrange’s equations of motion for a spherical pendulum length I’ also we have
discussed the equation of motion for a double pendulum. By using Lagrange’s method
we have discussed the forces of interaction between the two locks under the influence
of gravity, assuming that all surfaces are frictionless. We introduced the ignorable
coordinates we derive the equations of motion by using Routhian function. We also
discuss the application of Routhian procedure in Kepler’s problem. Jocobi integral are

obtain for conservative, natural and Liouville’s system.

2.1 Derivation of Lagrange’s Equations of Motion

Dear students, in this section first let us derive the standard forms of Lagrange’s equa-

tions for a holonomic system and Non-holonomic system.

2.1.1 Expression of kinetic energy interms of generalized co-ordinates

Let us consider a system of N particles whose positions relative to an inertial reference

frame are given by the cartisian co-ordinates x1, xs, ..., z35. The total kinetic is given

by,
T=2Y mil. (2.1)

Let q1, ¢o, ...; qn, t be the generalized co-ordinates.

Consider the transformation equation,

T = xk(Q7t) = Ik(qu q2; .- Qn7t)

— i+ —. 2.2
D, G+ 5, (2.2)

Ty =

1=
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Substitute (2.2) in (2.1),

1 O O\ (0w O
r_1 . .
Q;mk g o )\ a0 o
3N n
T'=5) my -Giq; ¢+ g+
2 kz_; ;]21 q; 8(] it — dgq; Ot g dg; ot 7 o2
1 el al’k aZL’k " ka al'k 82xk
T== iy + 2 2 g,
Q;mk ZUZI 94; 0 2 9g ot T o

3N

ZZqzqﬁZ i+ 5 Z a;’“,

zl]l

where
n n n 3N
1 . ) 1 D2y,
_QZZ%QJ’ lezai% TOI_Z ko2
i=1 j=1 i=1 k=1
S %m 8xk 8xk 0 = % m ﬁa:k 8xk
[/ r k aql aqj; i £ k aql ot

T5- quadratic function of ¢’s, T;- linear function of ¢’s
Ty- remaining terms as a function of ¢’s and ¢,
m;; and a;- function of ¢’s and ¢.

T =T, + T +Tp.
Special case:

1. In equation (2.1)

(a) If all my, > 0, then T is positive definite quadratic function of i’s.

(b) If all &’s are zero, then T is zero (c) If any #’s are non -zero, then 7 is positive.

2. If T' is expressed as a function of ¢’s, ¢’s and ¢

(a) T = 0, if the system is motionless.

(b) T > 0, for a moving system.

3. Now consider T’

T, is the total kinetic energy if all 8’“"’@ = 0. (ie.,) For a system in which any moving

constraints are held fixed.
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The positive definite nature of 75 restricts the positive values of the inertia coefficients

m;;. The necessary and sufficient condition for 75 to be positive is that, m; > 0,

miy mig....M1p
mao1 mgg....m2n
mi1 Mmi2
Mo Moo

mnl mn2...my,

3N oxy, 8&

This n x n matrix is called generalized inertia matrix. Where m;; = >, my TR
i 0qj

For sceleronomic system, 7" is a quadratic functions of ¢’s. In this case, 7} = Tj, = 0

and hence T' = T, + T, + Ty, therefore T' = T5.

2.1.2 Lagrange’s equation for the Holonomic system

Let us consider a system of N particles. By D’Alembert’s principle, we have

3N

k=1

If we consider the workless constraints, then

3N
> Rydzy, = 0. (2.4)
k=1
Substitute (2.4) in (2.3),
3N
k=1

Where F;, is the applied force. Now x; = xx(q1, q2, -+, G, t).

Then by = 377, Godq; + ot

Assume that §t =0

s = 5™ 250, (2.6)
= 94
Substitute (2.6) in (2.5)
3N n 3N n
= NG o) oxy ..

k=1 i=1 k=1 i=1
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Tp = T(q1, G2y oo Gnn t), T = 9, & + =

= . 2.8

Z aqz ZZ aqz 7 7” ( )
Now

di 9g; _Zaqj <8q,~> Gt 5y (an)
82xk 82xk
i 2.

2 (8q]8ql) 0tog; 2.9

Also

. ) "\ 0z . Oy
2r(q, ¢, t) = (—) gi + ——

aZL:k . - 0 &rk . 0 a’Ek
dq; _Zaqz‘ (3%‘) 4 0g; < ot )

82xk . 82xk
2.1
; (aqzaqz) (ataq) (210

From (2.9), (2.10),

%%Zf B %Zk ' (2.11)
The generalized momentum is,
i 35 - S 225
-1z ()
Consider,
%gg - gg = :Zimm (%Z’“) . (2.12)



The generalized force,

Qi = ZFkax'f. (2.13)

i=1,2,..,n. (2.14)
These n equations are known as Lagrange’s Equation.

2.1.3 Standard form of Lagrange’s equation

Assume that all the generalized force is obtained from the potential function V' (q,t)
such that,

Qi = _av. (2.15)
8%‘

Substitute (2.14) in (2.15),
doT 0T ov

%3% " 9q; B _a%
d oT ar  ov
- — — =0. 2.1
0t 94, (aqz- aqi) ’ (2:10)
Now consider the Lagrange’s function,
oL or oV oL 0T 0oV
L - T - - = — = —
v dq;  0q;  Oq;’ 04  0¢; 04
oL oT
= —. 2.1
¢ 0q; @17

Substitute (2.16) and (2.17) in (2.14)
d (9L 0L _ 0
dt \ 9g; oqi

Another form of Lagrange’s equation

If ); are not wholly obtained from the potential energy function then,

B oV
dq;

Qi = + Q-
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Then the equation becomes,

~+

d

d

d (0L

dt (3%) -
d

dt

a oL _8L__8V+Q,
dq; 0q; B 0q; ‘

or ov ,
<a% a 3%) B Qi

oL\ oL
dt (aqz') - 0q; B Qi.

Form of equation of motion

We know that,

T:T2+T1—|—TO

1 n n o
Th=352 2 migdd,
i=1 j=1

N &rk awk

m;; = m -, a;
iJ Z kaql aq] 7

k=1

Consider the Lagrange’s equation,

d(oLy
dt \ 0¢;

d (oL
dat \ 9g,

or 0T, 0Ty

Consider,

o4 i * 0q;

n 1 3N
Ty =Y ai, To=§z
i=1 k=1
pr k —_—
1 8([1' ot
oL
0¢; =0
or vy _,
dq; dq; o
Ty
"
o _ 0
0 Y dq
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Where p; is a generalized momentum

( &]) > mid +meq] + . (2.19)

j=1

m;; = mij<q17q27 . 7Qn7t)

Z 0m” amm (220)
an
a; = ai(q17 q2, -, qn, t)

- aai 8ai
i = G4 2.21
a -~ a4, q; + ot ( )

Substitute (2.20) and (2.21) in (2.19)

n omyy . om, da; . O
( ) ]Z:m”qj+z<z g g mj)q]JrZa&qj 94 (2.22)

=1

or 01, 0Ty 0T
_ 942 o4, Oho

dq; B 86]1’ 0q; dq;
8T2 o aml] aa/l .
0(]1 - e z; (:Zl ]7 Z aq] (:Z]

r S, o o
) j=1 I=1

Substitute (2.22) and (2.23) in (2.18)

om; om; 0
Zmu(b+ ZZ(;ZHJ m'l+ (,;rq:l])q]ql

3111 qﬂ

8mzl , da; Oa;\ .  Oa; 0Ty OT
- N —0. 2.2
* Z Zl (aq]- aqi) R

By introducing Christoffel symbol of first kind [jl,i] = am’“ + %’Z;l — ag;:l. Further

da; O
let, vij = —vi; = 32‘; 54> Where ;; is an element of a skew symmetric matrix then

equation (2.24) becomes,

mequ ZZ;Z quQHrZ o qﬁzv@]qj a" %ZJFZZZO (2.25)

7j=1 [=1

These n equations are called the equations of motion. The resulting equations of

motion is given by,

QZ+fz(an7t):07 i:1,2,...,n,



2.1.4 Lagrangian’s equation for non-holonomic system

Constraints equation for non-holonomic system is given by,

Za]quz + ajtdt = O’ j = 1, 2, ...,n. (2'26)

i=1

The §¢’s must satisfying the equation

Z ajiéql- + ajtét =0.

=1
Let § — 0.

n

=1
If the constraints are workless then

n

> cidg =0. (2.28)

=1

Multiply eqn(2.27) by \; known as Lagrangian multiplier, we get

/\jZaji5qi:0, ]: 1,2...,m.
1=1

Interchanging the order of summation,
i=1 j=1
(2.28)-(2.29)
Z Ci0q; — Z Z Ajajiog; =0

=1 =1 j=1
Zn: (Ci - Xm: )\jaﬂ) (qu = O, C;, = Zm: )\jaji.
=1 j=1

i=1

Then the coefficient of §q’s are zero. Equating the generalized force @),’s with ¢;.

d (0L oL PR
dt (8%) g @i = ;/\jaﬁ'

This is the standard form of Lagrange’s equations for non holonomic system.
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Problem 1 :

Find the differential equations of motion for a spherical pendulum of length ’/’.

Solution: The spherical co-ordinates are given by,
x = [sinf cos ¢, =[sinfsin¢, z=1lcosb.
Consider,

1 )
T = 5m(g‘;z + 9 + 22). (2.30)
i = —lsinfsindg + [ cospcosBf, 1§ =lsinfcospd+ Lsindcosbf, 2= —Isinbf

i% + 9 + 22 = (—Isin0sin ¢ + L cos ¢ cos 00)% + (I'sin  cos ¢ + I sin ¢ cos 00)? + (—I sin 06)?
= 12(6*sin® 0¢%). (2.31)
Potential energy:

V = mgh = —mgl cos(m — 0) = —mgl(— cos §)

= mgl cosf. (2.32)
L=T-V
1 . .
= §ml2(92 sin? 0¢*) — mgl cos 6. (2.33)
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Lagrange’s equation:

4 (OLY _oL o d (9L\ oL _,
dt \ 960 90 7 dt \ o dp
3_[5 = 177129'12 = mi?0

0 2

i (8_L) = mi%0
dt \ o6

g—g = mi?¢?sinfcost + mglsind
a(oLy oL _
dt \ 96 o9
mi2h — ml%2 sinf cost + mglsind =0 (2.349)
8—[./ = 1m2(9'l2 sin? 6(2¢)
dp 2
d aL . 2 . 92,7 29 - ]
7 (8_¢> = ml“sin“0¢ + 2ml~psin cos 0o
OL
— =0
¢
a(ory oL _
dt \os) 0¢
mi? sin® 0¢ + 2mi%¢sin 0 cos 0 = 0. (2.35)

Equations (2.34) and (2.35) are required differential equation of motion.

Problem 2

A double pendulum consists of two particles suspended by massless rods. Assuming
that all motion takes place in a vertical plane, find the differential equation of motion.
Linearize these equations assuming small motions.

Solution:kinetic energy:

2

1
T = SV = §m(vf + v3).

The total velocity of the lower particle=The total velocity of the upper particle+The

total velocity of the lower particle with respect to an upper particle.
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=10 =120

02 = 1202 4+ 12¢% + 2(10.1¢) = 120% + 12¢* + 2120l cos(p — 0).

1 . . ..
T = §m(l202 + 12¢? + 2020l ¢ cos(¢ — 0)).
Potential energy:

V=mgh=V+V,

= —mgl cos @ — mgl cos ) — mgl cos p = —mgl(2 cos § + cos ¢).

Consider the lagrangian function

-V

l\DI»—t 'ﬂ

L
L

ml?(62 + % + 206 cos(p — 0)) + mgl(2 cos O + cos ¢)
d (o) or_
dt \ 90 00
8—0 = 2ml%0 + ml%¢cos(p — ).

dt (8L) = 2mi*0 — mi*$*sin(¢ — 0) + mi*0psin(¢ — 0) + mi* cos(¢ — )

00
oL 1
50 = §ml X 29(;5 sin(¢ — 0) — 2mgl sin @

63



om0 — mi%¢? sin(¢ — 0) + mi*0¢ sin(p — 0) + mi® cos(¢ — 0)¢

— mi?0¢sin(¢ — 0) + 2mglsinf = 0

2mi?0 — mi?¢* sin(¢ — 0) + mi? cos(¢p — 0)d + 2mgl sin 6 = 0. (2.36)
g—g = mil?p + mi*0 cos(p — 0)
% (g—g) = ml% - ml%é sin(¢ — 0) + mi26? sin(¢ — 0) + mi?6 cos(¢p — 0)
g—; = —mi?$p0sin(¢ — 0) — mgl sin ¢

2mi?0 — mi?¢*sin(¢ — ) + mi? cos(¢p — 0)d + 2mgl sin 6 = 0. (2.37)
2oLy oL,

dt \op) 9o

mi¢ — mi%p0sin(¢ — ) + mi?6% sin(¢p — 0)

+ mi?6 cos(¢p — 0) + mi>pfsin(p — 0) + mglsing = 0

ml%p + mi26% sin(¢ — 6) + mi*0 cos(¢ — 6 + mgl sin ¢ = 0. (2.38)

Equations (2.37) and (2.38) are the required differential equation of motion Lineariz-

ing the differential equations,

cos(p —0) = 1.
sin(¢p —0) = 6.
sinf = 0.
cosf = 1.

Substitute these values in eqn’s(2.37) and (2.38) and neglecting the higher powers,

we get, from (2.37),

2mi20 — mi2¢? (¢ — 0) + mid + 2mgl = 0,
mi*[f — ¢*(¢ — 0) + ¢] + 2mglh = 0,

mi?26 + @] + 2mglh = 0. (2.39)
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From (2.38),

mip — mi*0*(¢ — 0) + mi%0 + mglp = 0,
mi?[p — 6%(¢ — 0) + 6] + mglp = 0,

mi?[¢ + 6 + mgle = 0. (2.40)

Problem 3

A block of mass m» can slide on another block of mass m; which in turn slides on a
horizontal surface. Using x; and x5 as co-ordinates, obtain the differential equation of
motion. Solve for the acceleration of the two blocks as they move under the influence
of gravity, assuming that all surfaces are frictionless. Find the force of interaction

between the block.

— X

\ \\

(b)

Solution: Let z; is the displacement of the block m, and x; is the displacement of the
block m, with respect to m;.
Let v; be the velocity of m; and v, be the velocity of m, with respect to m;.

Kinetic Energy:

]
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= 2,7 + 2y? + 2217 cos(90° + 45°)

= 212 + 2% + 22,75 (— sin 45°)
= 2,° 4 % — 2351952%

02 = 4,2 + 2,% — V20 1.
1

1 .
T = §m1f12 + §m2(f12 + 1:22 - \/§$1$2).

Potential energy:

o)
V. =mgh, v=myg——
g 29\/5
1 ) 1 ) ) . by
L=T-V = 57”11’12 + §m2(x12 + $22 — \/511715(?2> + mgg\/—%
Lagrange’s equation:
d (0L _ G_L _0
dt 81‘1 8901 N
oL oy . Maxo
— = M X + MeXy —
o1, 171 2T1 NG
i@_L_mf g Mol
dtaxl - 141 241 \/5
oL
= 0
0x1
d(oLy_on_
dt 8x1 81’1 -
. . MoTs
MLy + mody — =0 (2.41)
171 221 /3
oL S MaT
O 222 /3
d 8L . MQC(:’.l
i — ) 2.42
dt 81’2 Mats \/§ ( )
OL _ mag
85(:1 \/5
d (0L _ 8_L _0
dt 8@ 81'2 N
Moty — 2t 29 (2.43)

V2 V2



To find acceleration: From (2.41)

Moy

i'l(ml + mg) — \/§ =0
. Mol
= 72 (2.44)
! \/§(m1 -+ mg)
Substitute z; in (2.43)
" ma ( MaX2 ) mag 0
21 — —= — =
V2 \/§(m1 + my) V2
. m3y mag
Mo — =

2(my +msy) V2
i ( 2my + mo ) _ mayg
2(my + mg) V2
= \/Zq(ml + my)
(2my + mo)

Substitute 75 in (2.44)

To =

2 \/§(m1 + mg) (2m1 + 77’L2)
i = gmy

2 (2my +ms)’

Exercise problem

A particle mass m can slide without friction on the inside of a small tube which is bent
in the form of a circle of radius r. The tube rotates about a verticle diameter with a

constant angular velocity. Find the differential equations of motion.

Let us sum up

1. We have introduced the concepts of kinetic energy.

2. We have derived the derivation of standard form of Lagrange’s equations for a
holonomic and non-holonomic system.

3. We have introduced the integrals of the motion, and also solve the Kepler’s problem.
4. We have discussed the Routhian functions.

5. We have studied the conservative, natural, Liouville’s system with examples.

67



Check your progress

1. What are the Lagrange’s equations?
2. Write the formula for the Standard form of Lagrange’s equation for a holonomic

and nonholonomic system.

Dear students, in the next section we will discuss about the integrals of the motion,
Kepler’s problem, the Routhian function. Also derive the conservative, natural and

Liouville’s system with examples.

2.2 Solution of Differential Equation of Motion

Any general analytic solution of the differential equation of motion contains 2n con-
stants of integration which are usually evaluated from with the aid of 2n initial con-
ditions. The general solution of any differential equation of motion can be obtained

from the functions of the form,

file, 4.t =4, j=1,2,..,2n.

These 2n functions are called constants, a integrals of motion these 2n equations can

be used to solve ¢’s and 2¢’s as function of o’s and ¢.

2.2.1 Ignorable co-ordinates (or) Cyclic co-ordinates:

Consider a holonomic system described by the standard form of Lagrange’s equation

of the form,

d (0L oL .
E(aq_)—a%—o 1=1,2,..n

Suppose that, L|q, ¢,t] contains all ng ’s but some of ¢’s say ¢, g2, ..., g, are missing

from the lagrange’s equation these k co-ordinates are called ignorable co-ordinates.

Since, g—j = 0 for each ignorable co-ordinates, then % (g—qL) =0, i=12,.. k.

Integrating, [ 4 (gj) =B, =12 ..k p = (g_qL> =0, ¢=1,2, ..k, where
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[’s are constant. Hence the generalised momentum corresponding to each ignorable

co-ordinate constant.

2.2.2 Kepler’s problem

It is the problem of motion of a particle of unit mass which is attracted by an inverse

square gravitational force to a fixed point o.
A

Kinetic Energy: The transformation equation is,

x =rcosb, = rsinf, &= —rsinff + cosOr
22 292, -2 202 . A . .
7 = r°0sin“0 + cos“0r* — 2rrfsinf.cosl, vy = rcoshf + sindr
7 = r?cos*00% + sin07% + 2ri-fsinfcosd
:'EQZ'JQ — T292 + 7;2

1

1 ..
T = §mv2 = 5(1”292 + 72).

Potential energy: F is inversely proportional to r?

j——y W:/dW

r2
v:/—dv:—/ Fdr:—,u/ r2dr
V= _H
r
1 .. .
L:T-V:E(r2e2+r2)+ﬁ
,



I
=3:

A (OLY oL _ . d (0L
dt \ or or 7 dt \ or

oL u?
9 g
or " r
. M2
F—rf?——=0.
r

Since 0 does not occur explicitly in Lagrangian function, it is treated as an ignorable

co-ordinate. Then it’s equation of motion is given by,

4oLy oL
a0 00

aL_ér i(%)zr%, a—L:O
dt

00 00 00
d(9LY oL _

dt \ 90 90

26 =0

Integrating on both sides, 26 = 3. Where £ is a constant and is equal to the angular

momentum of the particle attracted towards the center o.

2.2.3 Routhian function

Suppose we consider a standard holonomic system whose configuration is given by, N
generalised co-ordinates of which first £ co-ordinates are ignorable.
The Lagrangian function L is defined by, L(qx+1, Gk+2; ---» Gn, G1, G2, ----Gn, t). The Routhian

funCtion R is given bY) R(Qk+17 qk+2; -5 n, qk.—&—h QR.—"-% sy q.na 517 627 sy Bk? t)

k

R = Z aR(S + Z 335 +Z B+ Lot (2.45)

i= k+1 % i= k—l—l

70



Define Routhian function as, R = L — 3.1, fig..

Where

OL
94’

k k
OR = 5(L - Zﬂi%) =0L — 52@‘%-

B =

SL = n 5qZ+Z 5qz

i:k—i—l
. OL OL
oL = (5 )
| ¢ +Z 5%"’ Z 706+ 50t
i= k—i—l 7k+1

k
d (Z 5%%) = Z 515% + Z 561% - 6% + Z 551%
=1

k
SR=6L—6Y_ Bidi
=1

" 9L "L oL k
=y Y G+ > " 6B;.ds. 2.
4 0q; + i, 0qg; + 5 ot + 2 00;.G; (2.46)

i=k+1 i=k+1
From (2.45) and(2.46)
OL —_OR v _ k41, ..,n

9q; 0q;

oL _ OR ; _

%6, = o4, 1=k+1,...n
oL __ OR

ot — ot

Gi = _aa; i=1,2,..,n (2.47)
Consider the Lagrange’s Equation,
d (0L oL
— — = 0. 2.

Substitute (2.47) in(2.48)

d (OR OR
= =0 i=k+1,..
o (aq') a4, 0 1=k+1,...n

Thus, the Routhian procedure has been successful in eliminating the ignorable co-

ordinates from the equation of motion.
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Application of Routhian procedure in Kepler’s problem

The Routhian function is given by,

k
R=L-Y B
1=1

Since 6 is an ignorable co-ordinate

R=1L— 0. (2.49)

= (2.50)

Substitute (2.50) in (2.49)

_1 22y L M _ g (L
R—Q(TQ—H“H)—F ﬂ(ﬂ)
1 1

( . (g)zzmg_ﬂ_?
:

d (OR d

—(a—) =

d
R _ 2__
P32

. B
T—T—3+ﬁ:0.

Let us sum up

1. We introduce the ignorable co-ordinates.
2. We derive the Kepler’s problem.
3. We have define Routhian function.

4. We have derive applications for Routhian function.

Check your progress

3. Define the cyclic co-ordinates.

4. State Kepler’s problem.
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2.3 Jacobi Integrals for Conservative system

A system is said to be conservative if it satisfies the following conditions,
1. The standard form of Lagrange’s equation (holonomic or non-holonomic) applies.
2. The Lagrangian function L is not explicitly function of time t.

3. Any constraint equation can be expressed in the differential form as,

Z aijdqi + Cljtdt =0

i=1

Zaijdqi = O, ] = 1, 2, .., m.

2.3.1 Evaluate energy integral (or) Jacobi integral

To show that the three given conditions are sufficient to ensure the existence of an
energy integral. Let us consider a system described by the standard form of non-
holonomic form of Lagrange’s equation,

d (0L e
— I=1.2 . 2.51

J=1

aL "
4 (%) o

J=1

Where L(g, ¢) is not an explicit function of time 't’. Now, L = L(q, §)

Z P i+ Z (2.53)

Substitute (2.52) in (2.53)

OL <~ d “
EZZ;( (8%) ZAG”)Qﬁza G

=1

ST S

=1 j=1

Consider the equations of constraints in the form,

Xn: aijdqi =0
i=1

> aiigi = 0. (2.55)
=1
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Substitute (2.55) in (2.54)

OL <~d [OL\ . ~=0L.

_EL#Q%)

Which when integrated gives,
L+h= Z (8L >

h = Xfm (2.56)

where h is a constant. Thus we have obtalned the constant of motion which is known

as Jacobi integral (or) Energy integral. We known that,

L=T-V
OL 9T oV
Od;  94i i

T = T2 —|— T1 + TO

or JI, 017 01y
- = -+ 5+ ==

dq; dq; dq; dq;

m

oT . .
8'- :Zm,-jqj—i—aj 221,2..,71
G S
oV
- =20
dGi
oL & ,

Substitute (2.57) in (2.56)

=> O mid; +a;)4i — L

i=1 j=1

=) miigi + aji; — (T = V)
i=1 j=1
=2 +Ty— (T + TV +To)+V
=T, —Ty+V
h=T +V'.
Where 7" =T, and V' =V — T,
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2.3.2 Natural system

Dear students, in this subsection we will study a natural system.
A natural system is a conservative system with some additional properties.
1. It is described by the standard holonomic form of Lagrange’s equation.
2. The kinetic energy is expressed as a homogeneous quadratic function of ¢’s.
T="15= Z Z Mi;q;qi =Ty = O)
=1 j=1

where m,;’s are function of ¢’s but not of time.
Jacobi integral for the natural system:

The jacobi integral for the natural system is equal to the total energy. The kinetic
equation is expressed as a homogeneous quadratic function of ¢’s, T} = 1,0
WKT, T, —Tp+V =h

T+V=nh

(ie.,) The total energy is conserved.
Equation of motion for natural system:

We know that,

om;;
7ot =0

Since T}, = T, = 0 and 75 is not a function of time and a; = 0

Then the equation,

me% + 3 ZZ {agzlw am;l - aam]l} 4;id —l—z 375

=/ Omy ﬁa]) Ja; ov
+ R )
jzl ( dg;  Og; % ot — aTO " 9g;
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Hence, we get

8mlj 377%1 omj | .. OV
; - i+ o = 0.
Zmy% T3 ZZ [ da og  og ) YT 5y

This is the required equation of motion for the natural system.

Remark:

A holonomic conservative system with 77 # 0 is called gyroscopic system.

Orthogonal system:(or) Show that the orthogonal system can be reduced to
quadratures

Let us consider a orthogonal system. (ie.,) Natural system in which T contains only ;>

and no cross product of ¢’s. Suppose that
=3y
2 i=1 Z
1 n
=7 Z Vid;-
f =1

Where f =", fi(q;) >0

Let us consider the Lagrange’s equation of motion,

i oT 8T 8V
04 061@ oq

We know that,
1 & .9 1 .92 .9 .9
oI D it = ol + @+ o+ )]
=1
d (0T d, ..
T (aq'i) = - (f@)

OT  10f; o= .
0q; - 58%‘ ZZ%Q

i=1 =1

-1 afl 1 (91)@
racoVoq; = — v;
FracoVon = 5. 2 it g,

—18fz 181)1
= %y, 2

7oa" ! T Foa,
_ —vdf; +lavi

f a% faCIi
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Hence we get,

d 10fi~ ., vOfi 10v;
8 = 550 20" 550t Fa, = O (2:58)

i=1

This is a natural system
T+V=nh

1.~ .
Z i =h
2]‘;q +V

Ig~., h-V
5 ;qi — —f ) (2.59)
Substitute (2.59) in (2.58),
—(fq;)) — —— - — v; + — =0
a /) [ 0q f?0q; Zl f Oa;
— (@) = 5 — S — v+ S =0
i " o Toa  Pogl T o
- N S =0. 2.60
dt(sz) o0 + 0 0 (2.60)
Multiply 2 fq;
2f¢1i%(f%') - Qf%?@_q,; + 2fqz?a—qi =0
d .. o 0fi . 0y
%(f%) - 2th an + 2(]1 an =0
d, .. o d d B
%(f%) - Qha(fi%) + 2@(%’%’) =0.

Integrating we get,

(fd@i)? = 2h( fiqi) + 2(vigi) = 2¢;

(fdi)? = 2c;i + 2h(fiq:) — 2(vigi)
(G)? = 2(c; + h(figs) — (vigi))

f2
dgi  /2(ci +h(fi) —v)
dt f
dg; B ﬂ
V20 + (i) —wv)  f
dq _ dgs L @ _dr
V2@ +h(f) —v) 2+ h(f)—w) '

Each differential expression is a function of a single ¢;. So the problem is reduced to

quadratures.
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2.3.3 Liouville’s system

A natural system having 7" and V' of the form
Tzlfi]\/[‘q'.2 V:liv'
2 - Y f - 7-
Where Y " v, =V f

[ = Zfi(%‘)uvi = vi(q;), M; = M;(q;)

d(or\ _or v _
dt

aqz‘ a a% a% B
ov 1
= = [M2g;
aa, 2f q
= fM;q;
i oT B df
at \og )~ at’
T 1~ ., [0f; 1OM;
8q2 a 2 i1 g 8 i ! (9qi

Oq; [ Oq
_lavi_za.fz
fOq [ Oq
d ol L0 I~ .,.0M;, 10v; Vof
—(fMig;) — P2 M — 7 oo — - =0.
dt(f @) 24" 0y Q;Q fa(h' +fa% [ 0q;
Since it is a natural system,
h=T+YV
h=V [ 2
—_— == M,
f 2; ZqZ
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substitute (2.62) in (2.61)

d . h—=Vof 1 aM 19v;  Vof;
—(fMigr) = —— 2= M; — = > 4;° St =

M) == M5 2 Foa T og,

d,, h %) fl OM; | 10v; _
dt (fMZQZ) Y Z f 8% f an =0

df ) dM dqZ h 0 f, 8M 1 ov;
—(Migi) + —=(fdi) + —-(Mif) - Zqz t g 0 (263)

Multiply (2.63) by 2f¢;

df

df o 2fiih O
o (2f M;g;?) + = M;—

o (2f7G:") + = (2M; f*4;) — 7o,

dt
2fGi N~ .0, OMi | 2fGiOv;
2 Z.Zlqua%‘ " fooa

df .9 sz 2.9 sz 2. . afz 2. - . 2(9M,, . 31}1-
Yo f Mig; 2£2G,2) + “L (oM, £24,) — 24:h 1M, — 24,5 g 2yt =
o (2PMiGi™) + — = (2f°67) + — - (2Mif i) qlhai i fqziEZqu I ™ 0
df .2 dMZ 2.2 dql _ afl (%Z- B

d oo df; ov;
Loeara?y — 9 9V _

Integrating on both sides,
d 2 - 2 / 8f i ov;
- M.a.2) — [ 2h 2 —
/ (f idi ) 825 ot 0

/ (f*M;d:?) /thz /2% = 2¢;
2(

-2 cz+hfz_vz

q; = 720,
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Where ¢;(q;) = 2cithfi=v)

M;
@ o ¢i(qi)
a  f
dg; _ ﬂ
oi(qi) f
dq _ dgo L dt _ar
\/¢1 CIl) Voole)

dt

Z \V/ ¢z % Z?:l fl

fidg;
= dt
Z * / 0i(a:)

Integrating on both sides

Thus the n-constants (/5’s) along with other n-independent constant ¢; and h gives an
2n independent constants of motion.

Problem 1: Suppose a mass spring system is attached to a frame which is translating
with a uniform velocity vy. Let [, be the unstressed spring length and use the elonga-
tion x as the generalized co-ordinates. Find the Jacobi integral.

Solution:Kinetic eneergy:

1
T = §m(u0 + )2
1
= §m(v§ + 2o + %)

—lmx'2+v2+mv ! 1 2
=3 0 0x+2mvo

=15+ 11 + Tp.
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Potential energy:

dV:—/F.dZL‘

<
I
——

= [ kxdx
R
2
The Jocobi integral:
h=T,—Ty+V
1 . 1 x?
= §m$2 — 57’711)8 + ]{35
= Constant.

(ie.,) The total energy is conserved.
Problem 2: For spherical pendulum, obtain the integrals of motion and reduce the
problem to quadratures.

Solution:

1 : :
T= §ml2(6’2 + sin? §¢?)

V = mgl cos 8
1, 02 .
T= §ml2 sin’® # (sin2 7 + gb2>
1 : .
= 5 f(Mo0? + Myg?),
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where f = mi?sin®6

1
M pr—
o7 sin26
My=1
f=lo+fs
1
V= —(Ve—l-V¢)
f
V = mgl cos 6
V=V,

Vy = mgl cos @ x ml?sin®
Vy = m2gl3sin?6 cos 0

Ve =0

fo = mi*sin®6

foe=0

Q(hfl —v; + Ci>

¢i(q) = M,
b0 = r5(hfy — vo + 2
0= 370 — Vot o
= 2sin” [hml*sin® § — m?gl*sin®0 cos O + c4]
2
Pp = I(Ce)

®o oy J
@ _d

b0

0 fd@ 0

— = d

/90 Py /90 '

[

00 VDo



From (2.64) and (2.65),

/00 fdo \/%

[ &

Thus the problem is reduced to quadratures.

Let us sum up

1. We introduce Jacobi integral.
2. We have derive Jacobi integral for natural system.

3. We have discussed Liouville’s system.

Check your progress

5. Explain Jacobi integral.
6. What is mean by natural system?

7. What is orthogonal system?

Summary

* Introduced the concepts of kinetic energy.

(2.65)

* Derived the derivation of standard form of Lagrange’s equations for a holonomic and

non-holonomic system.

* Introduced the integrals of the motion, and also solve the Kepler problem.
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* Discussed the Routhian functions.

* Studied the conservative, natural, Liouville’s system with examples.
* Introduce the ignorable co-ordinates.

* Derive the Kepler’s problem.

* Define Routhian function.

* Derive applications for Routhian function.

* Introduce Jacobi integral.

* Derive Jacobi integral for natural system.

* Discussed Liouville’s system.

Glossary

* Lagrange multiplier: Lagrange multiplier are the scalars to obtain constrains forces.
*Ignorable co-ordinates: L(q¢'q,t) contains all ng¢’s but some of the ¢’s say ¢, g, ..., gk
are missing form the Lagrangian. These k co-ordinates are called ignorable coordi-
nates.

*Quadratures : In terms of known elementry functions or indefinite integrals of such
functions is called quadratures.

*Routhian function: The Routhian function R is given by,

Rty Q25 s Qs Q15 Qis2s -y Gy B Bas ooy By t) is defined by R = L — S8 | Big;.
*Conservative system: If no other forces do work on the system, the total mechanical

energy is conserved, hence the system is called consevative sytem.

*Jacobi integral: The equation 2 = Y" 4 (g—éqi> , which can be integrated to
gives, h = Y"1, g—(?q'i — L, where h is a constant. Thus we have obtained the constant

of motion which is known as Jacobi integral.
*Gyroscopic system: In general a holonomic conservative system with 7; # 0 is called

gyroscopic system.
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Self-Assessment Questions

Short-Answer Questions:

1) Show that Jacobi integral has the unit of energy.

2) Discuss the integrals of motion.

3) Derive the Lagrangian form of D’Almbert’s principle in term of generalized co-
ordinates.

4) Discuss the Kepler’s problem using ignorable coordinates.

5) Find the differential equation of motion for a spherical pendulum of length T’.

6) Illustrate a Routhian method for Kepler’s problem.

Long-Answer Questions:

1) Derive the standard form of Lagrange’s equation for a non-holonomic system.

2) Explain the Liouville system.

3) Derive the standard form of Lagrange’s equation for a holonomic system.

4) Routhian function and prove that £ (g—f;) —gh—0.

5) Define the Lagrangian equation and derive the Lagrangian form of D’Almbert’s prin-
ciple in term of generalized co-ordinates.

6) Briefly explain conservative systems.

7) Derive the Lagrangian form of D’Almbert’s principle in term of generalized co-
ordinates

8) Define a Routhian function and explain the procedure for eliminating the ignorable
co-ordinates from the equations of motion using Routhian function.

9) Discuss briefly derivatives of Lagrange’s equations.

10) Solve the differential equation of motion for a spherical pendulum of length ’I’ for
the motion.

11) Differentiate holonomic and non-holonomic Systems.

12) Find the differential equation of motion for a double pendulum.
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Objective Questions:
1. ....... dynamics is based on a direct application of Newton’s law of motiom.

a) Analytical b) Vectorial c¢) Classical d) Newtonian

2. Find the name of equation £ <g—£> — SR =

a) Lagrange’s equation b) Hamiltonian equation

c) Routhian equation d) Jacobi equation

3. Find the name of the equation 4 (g—g) — X =0,

a) The standard form of Lagrange’s equation for a non-holonomic system.
b) The standard form of Lagrange’s equation for a holonomic system.

c) Lagrange’s equation d) Hamiltonian equation

4. A...... consists of two particles suspended by massless rods.

a) Spherical pendulum b) Double pendulum

c) Single pendulum d) Compound pendulum

5. Suppose that L(q,q,t) contains all ng’s but some of the ¢’s say, ¢, qo, ..., g are
missing from the Lagrangian. These & coordinates are called .......

a) Cartesian coordinates b) Generalized coordinates

c) Ignorable coordinates d) Spherical coordinates

6. Find the name of the equation R = L — Zle Bidi

a) Routhian function b) Lagrangian function

¢) Hamiltonian function d) Jacobi function

7. Jacobi integral is

a) constant of time  b) constant of energy

c) constant of displacement d) constant of motion

8) The....... is particularly simple for a natural system,; it is equal to the total energy.
a) Energy Db) Total energy c¢) Mass d) Total mass

9) In general, a holonomic conservative system with 77 # 0 is called ... ..
a) Natural system b) Conservative system

c) Rheonomic system d) Gyroscopic system

10) A natural system having T and V of the form is called ... ..
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a) Natural system b) Liouville system

¢) Rheonomic system d) Conservative system

11) The existence of the Jacobi integral implies that the total kinetic energy is. .. ..

a) Constant b) Zero c¢) One d) Two

12) The Lagrangian L is not an explicit function of time, even though the system is
rheonomic. Hence , the system is. ..

a) Natural system b) Liouville system

c) Rheonomic system d) Conservative system

Answers for Check Your Progress

1. The following set of s number of second order differential equations satisfied by the

Lagrangian system are called the Lagrange’s equations of motion.
d (oL oL _ _
E<@>_@_O /{3—1,2,..,8.

2. The Standard form of Lagrange’s Equation for a holonomic system is % <g—§> —
oL

5, = 0 and the Standard form of Lagrange’s Equation for a nonholonomic system is

d (oL AL _ —~m  y
dt (aqi> qu_zjzl)\Ja’ﬂ'

3. L(¢'q,t) contains all ng’s but some of the ¢’s say ¢, ¢o, ..., g, are missing form the

Lagrangian. These k coordinates are called icyclic coordinates.

4. It is the problem of motion of a particle of unit mass which is attracted by an inverse
square gravitational force to a fixed point o.

5. The equation 2 = > | 4 (g—iq'z) Which can be integrated to gives, h = Y, 5&q,—
L, where h is a constant. Thus we have obtained the constant of motion which is
known as Jacobi integral.

6. A natural systemis a conservative system with some additional properties.

i. It is described by the standard holonomic form of Lagrange’s equation.

ii. The kinetic energy is expressed as a homogeneous quadratic function of ¢’s.

7. Natural system in which T contains only ¢,> and no cross product of ¢’s. Suppose

that 7= 3f >0, ¢ V =320, vigs, where f =371, fi(q;) > 0.
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Unit 3
HAMILTON’S EQUATIONS

Objectives

After the successful completion of this unit; the students are expected

* To recall the basic concepts of the stationary values of the functions several variables.
* To gain the knowledge about the Lagranges multiplir method and Euler Lagrange
equation method with illustrated examples.

* To understand the concepts of Hamilton’s principle.

* To derive the Hamilton’s equation with holonomic and non-holonomic system.

* To discuss about the mass-spring system and Kepler’s problems by using Hamilton
procedure.

* To develope the concepts of the modified Hamilton’s principle.

* To analyse the method of principle of least action.

* To solve the problem related to Jacobi’s form of principle of least action.

3. Introduction

Dear students, in the last two units we have developed Lagrange’s formulation of me-
chanics. In this present chapter, we will resume the formal development of mechanics,
turning our attention to an alternative statement of the structure of the theory known
as the Hamiltonian formulation. In this formulation the variation principle is used
as the basics for the discribution of dynamic system. In this approach the motion is

consider as the hole and involues finiding the path in configurence space which yields
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stationary value for certain definite integral The variational principle of most impor-

tance in dynamics is Hamilton’s principle which was first announced in 1834.

3.1 Stationary value of a function of several variables

Dear students, in this section we will introduce the stationary value of a function of
several variables. Also we will discuss Lagrange multiplier method, stationary value of
a definite integral, Brachistochrone problem, Geodesic problem and Hamilton’s prin-

ciple.

3.1.1 The necessary and sufficient condition for stationary values

Consider a function f(q1, go, ..., g»). The first variation of f at the reference point ¢ is

given by,

n (0
o7 =% (55) o
i/ 0

i=1
where d¢’s are virtual displacement.

The necessary and sufficient condition that f have a stationary value at ¢q is that

d0f =0, for all 6¢’s . Now,

0q =q—qo
= q = qo + 0q.

For the case in which §¢’s are independent and reversible.

(gi)o =0,(i=12..n).

Consider the second variation of f ,

We have

Using the notation k;; = (

of order n x n .
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Conditions for maximum and minimum

1. The sufficient condition that ¢q is a local minimum is that k must be positive definite.
2. If k is negative definite, the point ¢ is a local maximum.

3. If k is indefinite, the point ¢, is a saddle point.

3.1.2 Lagrange multiplier method

Consider the free variations of an augmented function F(qi, g2, ..., Gn; A1, A2y ey Amn)
and F defined as ' = f + > \;¢; The necessary and sufficient conditions for 0 F' to be
j=1

stationary is

0F =0

" (OF = [ OF
0q; + (—) oN; =0. Then
i=1 (an)O Z a)\J 0 ’

j=1

OF OF
=0, (1=1,2,...n) and — ] =0, =1,2,....m
(3%‘)0 ( ) (a/\j)o J )

Examples:

Find the stationary values of the function f = z, subject to the constraints
=2+ +22—4=0 and ¢=ay—1=0.
Solution :

Let us consider the augmented function F

F=f+Y \o;
j=1
F=2z+4+M¢1+ Ao

=2+ M@ + 7+ 22 —4) + Na(ay — 1). (3.1

The necessary and sufficient condition for F' to be stationary is

<8F) =0, (i= 1,2,...,n),
aQ1 0
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we have

From equations (3.2)and(3.3) of L.H.S are equal. Then R.H.S, implies

20 2y
r==1y in

If v=1y=1 in (35),=1+1+22=4,=22=2=2=4V2

If v=—1l,y=—1 in (35),=1+1+22=4,=22=2=2=4V2.

oF

ox

F

—8 =2My + Aoz = 0.

dy

F

a—:1+2)\12:0.

Z
oF Ay
Or ) TAY 2Y, )\2 20
8F )\1 —T
— =0,= 2y\| = oz, > — = —.
8y 9 YA 2T, )\2 2y
oF -1
— =0 1=-2z\ A= —.
0z = 2L = A 2z
oF
— =0,= 2 2 24,
o, , r+y +z
oF
—=0,= =1.
s ) ry

,:>x2:y2,:>x:j:y.

(36),= 2> =1,=21==41,=y==+1.

(3.2)
(3.3)
3.4)
(3.5)

(3.6)

.. The stationary points are (1,1,v/2),(—1, —1, —v/2),(—~1,—1,v/2) and (1,1, —/2).

From (3.4)

At the point (1,1,/2)

1+2)\12:0
1+20vV2 =0
1
No=+— .
1 2\/§
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Substitute \; in (3.2)

2)\1$ + >\2y =0
1
———=+X=0
2v2 7
—1
Ao = +—.
2 \/5
.. The Lagrangian multiplier are
1 —1
M=t—1x, N==£t—.
TR TP TR

3.1.3 Stationary value of a definite integral

The necessary conditions for a stationary value of the definite integral

I = /xf (y(x),y,(:v)w) dx, (3.7)

. . , d .. . .
where [ is a functional and y (z) = d_y The limits z, and z; are fixed. Let us consider
x

the curve y to be a function of o and =

(ie).,y(a, ) = y*(x) + an(x). (3.8)

LY

Here « 7n(z) denotes the variation in y (« n(z) = dy) with n(x) is an arbitrary value
and « is a small parameter, which does not depend on x. Clearly, I is a function of «

only.
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The necessary condition for the stationary value of [ is that its variation must be

zero.(ie).,

Consider

dl (?f dy OF 9y 0Of ox
_/ Oy 8a+8y"8o¢ +6m E)a} du

B (’3f 8y OF Oy
_/ 9y Do + 8y"00z} dzx. 3.9)

From (3.8),

Substitute these values in (3.9)

% / [ijc n(x) + g—in/(x)} dx

zo

_ lof toF
—/ay.n(w)d$+/ay,.n (x)dx

/a d*/ay
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Let

x1

o

1

CTlof 4 [of
- [ 5~ ()] e
o d (of -
5 () | =o
L of i(ﬁ)_o
"8y_dx oy )

3.1.4 Brachistochrone problem

To find a curve y(x) between the origin O and the point (z;,y;), such that a particle
is starting from reset at O and sliding down the curve with out friction under the
influence of a uniform gravitational field, will reach the end of the curve in a minimum
time.

Let t be the time required by the particle to reach the point (zy, ;)

U—@
o dt
d
dat =
v
s1d
/dt: &
v
0
P (3.10)
v

0

The infinitesimal path element is given by

du\ 2
ds = 1+<—y) dz
dx

=1+ 9y?2dx. (3.1D

95



10,0

L'

By the principle of conservation of energy

Total kinetic energy = Total potential energy

Lo
—muv° = mgx
9 9

v = +/2gx.

Substitute (3.11) and (3.12) in (3.10)

X1 ,

1 2
t:/ Y dx
2gx

0

Comparing the above equation with
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Euler-Lagrange equation,

. -

Integrating on both sides,

of _d (9f\_,
7 a7) -

0
a—i 0
2 (2)
oy’ 291 <1+y2
2gx
_
 V2ge(1+y?)

’

=c¢ (constant)

2gx(1 +y2)

y = cy/292(1+y?)
yl2 = 29xc2 + 29zc2y/2

y,2 — 29:1002?;/2 = 29:1002

o _ 2gxc?
(1 —2gxc?)
- 2gxc?
v = (1 —2gxc?)
dy = 2gxc?
(1 —2gxc?)
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The transformation equation of a curve

x =a(l —cosh)
1

1
dr = —(sin0)df, where a=—
gc

4gc?

1
2g(1 — cosf)c? x 198 1

dy = (sind)do
1 2
(1 —2g(1 — cosf)c?) x 4gc

4gc?
(1 —cosf)
A / 0do
4902 (1 + cos @) sin

\/1—0059; 1_C089)sin0d9

4g02 1+cosf) (1—cosb)
/ (1 cos6)?
4902 YT sin 0d6

(1 —cosf)d
4g02

Integrating,

1
/dy = 19 (1 — cos)do

(0 —sinf) + k.

v= 4gc?

Using the initial conditions ,

r=0,y=0 and 06=0 in (3.13)

= k=0.

Substitute (3.14) in (3.13) we get,

1
y = a(f —sinb), where a=-—
gc

(3.13)

(3.14)

The equations z = a(1 — cos#) and y = a(f — sin#) are parametric equations of

a cycloid. The cycloid path leads to a stationary value of ¢. It is actually the path of a

minimum time.
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3.1.5 Geodesic problem

The problem of finding the shortest path between two points in the space.

Solution:

Let us consider the problem of finding the path of minimum length between two given
points on the 2-dimensional surface of a sphere of radius r. Let us use the spherical
co-ordinate (¢, ¢) as variable and r is a constant.

We know that
x=rsinfcos¢, y=rsinfsing, z=rcosé.
The differential element of length ds is given by,

ds® = r2df* + r? sin® do?

ds = i\/r2d92 + r2sin? §d¢?

Consider

ds = \/r2d92 + r2 sin? Od¢?

2
ds:r\/1+sin29 (%) df
01
s:r/\/1+¢'23in29d9.
o

Comparing the above equation with

Iz?f(y,y/,x> dx
0
1
f (y,y,J) = \/1+ ¢2sin?0 = (1 + ¢ sin’ 0)2.
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Euler-Lagrange’s equation,

of d [of
55____<3y)

0

of d (of\ _
70 35) -

of
09
of
¢/
of

3

o d ¢ sin“ 6
dO N\ \/1+ ¢2sin0)
Integrating on both sides,
¢ sin®0

V1 + ¢?2sin?0)

!/

o =c

¢* =

gle sin* 6 — 02gz5/2 sin?6 = 2 = ¢’2 -

/

=0
1

¢ sin? 6

V1 + ¢'2sin?0)

¢ (constant)

V14 ¢?sin®0)

sin? 6
A (1+ ¢?sin*6))

sin* @

02

2(1 + ¢ 2sin? )_71.2qb/ sin? @

¢ _
smH\/ sin (9

do =

Integrating,

sin 64/sin® @ —

b= / cdf
sin #+/sin’ @ — ¢2

C

do

_/ :
in20y/1 — —
S sin2 0

cdf

- / sin?0v/1 — 2 csc? 0

cdf

:i/gﬁe¢

1 —c2(1 + cot?0)
cdf

¢:/gﬁ0¢

V(1 —c2)?2 —c2cot? 0
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cos 6
Let y = ccotf = c—
sin

From (3.15),

= cos ! (\/%) —g—i-k:
= cos ! <\/1y—702) + @0
¢ = cos ™ ( Clc(fiz) + ¢o
6 on=cost (20

3COS(QS_QZSO): \/10—762

COS @ €OoS g + sin ¢ sin Py = 2(:0’59
—c
4 bo + sin $sin c " cos
COS ¢ COs sin ¢ sin ¢y — =
0 0 V1 — 2 sin 8
ccosf

sin @ cos ¢ cos ¢g + sin 6 sin ¢ sin ¢y — Vi =0
—c
The transformation equations are

x = rsinf cos ¢.

y = rsinf cos ¢.

z = 1rcosb.
T Y. c z
— COS Qg + = sin ¢y — x — = 0.
&

Z COoS Pp + Yy sin gy — mz =0
This is the equation of the plane passing through the origin. This plane intersects the

sphere in a great circle which is geodesic.
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3.1.6 Hamilton’s principle

The actual path in configuration space followed by a holonomic dynamical system
during the fixed interval ¢, and ¢; such that the integral,

t1
[ = [ Ldt

to

is stationary with respect to the path variations which vanishes at the end points.
a

Varied path

Actual
path

|

|

|
| 1
| 1
| 1
| |
| |
| |
| |
| |
| |
| |
| |
1 1
t !

1 : !

Let us consider a system of N particles whose position vectors are given by ry, 7,

oy TN
The Lagrangian form of D’Alembert’s principle is
N .,
> (F - mat) o =0
=1
N N )
S FoT =Y mier, (3.16)
i=1 =1

where ?Z is the applied force and 67; is the virtual displacement.
Now the kinetic energy is given by,

1 N

— e
T =3 ZZI m; T2
1 N . .
0T = 2_; mi27; 07
N . .
= miT 6T (3.17)
=1
g (X N N
S| A — o
Now £<;miri5n> —;miriéri—l—;mirién. (3.18)
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Substitude (3.16) and (3.17) in (3.18),

N
= (Z miﬁ5ﬁ> = o7 + o1
=1 ;

=1

—5(W+T).

Integrating the above equation with respect to the fixed points ¢, and ¢,
t1
/6(W+T) dt 0. (3.19)
to

Case (i):
Let us consider the transformation to generalized co-ordinates ¢, ¢s, ..., ¢, then the

virtual work is given by
oW =" Qidg:. (3.20)
i=1

Where Q); is the generalized force. Substitute (3.20) in (3.19),
t1
/ (6W + 6T dt =0

to
t1

/ (Z Qi0q; + 5T> dt =0.

to =1

Case (ii):

If the applied force are derived from a potential function then 6W = —§V
t1
/(5W+5T)dt:0

to
t1

/6(T—V)dt:0

to
t1

/5Ldt—0

to
ty

6/Ldt:0

to

oI = 0.
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Hence I is stationary.
Remark:
Hamilton’s principle and Lagrangian principle are equivalent. Since L(q, ¢, t)

corresponds to f(y,y , ).

Let us sum up

1. We have introduced basic concepts to obtained the stationary values of a function
by using Lagrangian multiplier method and Euler - Lagrange equation.

2. In Brachistochrome problem, we have find the path of the curve which particle
sliding down from rest under gravitational force from one point to another point in
minimum time.

3. In Geodesic problem, we have obtained the shortest path between two points in a
given space.

4. We have derived the Hamilton’s principle to find the possible paths of the dynamical

system.

Check your progress

1.Write the necessary and sufficient condition for stationary values by using Lagrangian
multiplier method.

2. State the principle of conservation energy.

3. Write Euler - Lagrange equation.

4. write the parametric equations of cycloid.

5. Define Hamilton’s principle.

3.2 HAMILTON’S CANONICAL EQUATIONS

Dear students, in this section we will derive the Hamilton’s equations. We will dis-
cuss the mass-spring system and also Kepler’s problem using the Hamilton canonical

equation of motion. Finialy, we introduce the Legendre transformation.
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3.2.1 Derivation of Hamilton’s equations

Let us consider a holonomic system described by the standard form of Lagrangian

equation as,

We know that

Then (3.21) can be written as,

O o i=12.n (3.21)
dq;
oL
_ oL 3.22
Di 90 ( )
oL
pPi = aqi-

Define the Hamiltonian function H(q, p,t) as follows,

H(q,p,t
Now H (g, p, 1)

0H =

sz% (¢, 4,1 (3.23)

H
5qz + Z 5pl 5t. (3.24)

Similarly giving the arbitrary variation for(3.23)

H(q,p,t Z oG — L(q, 4,1

0H = széqz + Z%(sz ( aL&h + Z 553, L it %?515)

OL 8L oL
= quz - Zqzapz 5000 = D g5a-0d = 50t

0H = Z%épz szfs% - _5t (325)

Equating the coefficient of d¢;, dp; and ¢t from eqn (3.24) and (3.25) we get,

OH

0g; B

OH
Opi
OH

o=

P, i=1,2,...n

= q;

oL
_Eét (3.26)
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The 2n first order equations given in equation (3.26) are known as Hamilton’s canon-
ical equations of motion.
Specialcase :

Let us consider a Lagrange’s equation of the form

4 (OL\ 9L _
dt \ 9g; dg; "

(Where the generalized force are not all derived from potential equation). For holo-

nomic sysem, the Lagrange’s equation is,

oL ,
pi: a +Ql,(Z:1,2,,n)

i

The Hamilton’s equation are,

oH
Q=g

OH
=+ Qu(i=12..n)

For non-holonomic system, The Lagrange’s equation are given by,

d (OL\ 0L & o
dt <3qz‘) Cdq ;Ajaﬁ +Q;, (i =1,2,..,n)

Then the Hamilton’s equation are,

. OH

“=3,

, OH .

hi=—g + ;Ajaﬁ +Q, (i=1,2,...n). (3.27)

Where the constraint equations are,

Zaﬂqz’ +a;=0,(j=12,..,m). (3.28)

=1

From (3.27) and (3.28) we can solve for ng’s, np’s and m\’s as function of time.
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3.2.2 Discussion of mass-spring system using the Hamilton proce-
dure

Given a mass-spring system consisting of a mass m and a linear spring of stiffness k.
Find the equations of motion using the Hamiltonian procedure.
Solution: Assume that the displacement z is measured from the unstressed position

of the spring. First let us find the kinetic and potential energies in the usual form.

1 1
We obtain T = 5m:i32 and V = §kx2 which results in

1 1
L:T—v%:ym?—im%

The linear momentum is

oL

= s =L
0% m

p

2
Hence we can write the kinetic energy in the form 7" = 2]'; , and the Hamiltonian
m

function is found to be

Py (L P L oo
H(z,p) =pi L—p(m) <2m(m) 2/%)
2
_p 1
=9 + Qkx (3.29)

Since this is a natural system, the Hamiltonian H is equal to the total energy 7'+ V'

and is constant.
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To obtain the equations of motion, by using

Gi = g—]—i,(i: 1,2,...,n).
. oH
=g

Here use ¢; = = and p; =p in above equations in (3.29), we get

s 0H _p
I om
p=mi = p=mi. (3.30)
PR A (3.31)
ox

Two first order equations (3.30) and (3.31) are equivalent to the single second order

equation
mZ + kx = 0. (3.32)

This equation can be obtained by using Newton’s laws of motion or Lagrange’s equa-

tion.

3.2.3 Discussion of Kepler’s problem using Hamilton procedure

A particle of mass m is attracted to a fixed point O by an inverse square force. Find

the equation of motion.

0

Solution : Given a particle of mass m is attracted to a fixed point O by an inverse

square force
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r

(ie.,)F. =

Where 4 is a gravitational constant

1m (r + r202>

T
2
iy
T
L=T—
1
=m (7“ +r292> pm
2 T

The Hamiltonian equation is given by,

1 .
H=T+V = m (7*2—1—7’202) _ pm
”
2 2
P pi pm
 2m + omr2 (3.33)
From (3.33)
. _OH p,
7= =—
op. m
. OH Po
0=—=——
dpg  1°m
_OH _ p;  pm
br or  mr3 12
. OH 0
Po 90
pe = (constant)
. D
r = —
m
.  DPr
==
m
s L[pg  pm
m |mr3  r?
_r
T om2d g2
LB
:>m'r’—m2r3 ﬁ:().

Next, another method of obtaining Hamilton’s equations from Lagrange’s equations is

by means of Legendre transformation.

109



3.2.4 The Legendre transformation

Consider a function F'(uy, us, ..., U,, Wy, Ws, ..., Wy, t), Where v’ s are active variables
) ) b nH ) b ) my b

and w ’s and ¢ are passive variables. Let us define a new set of active variables as,

OF
;= , =1,2, ... .
V; aui,(z ,2,...,n) (3.34)
Now,
82F 81@
Guiauj n E)uj 7&0

Define a new function F' (v, vy, ..., Up, W1, We, ..., Wy, t) aS

n
G = E U;V; —
i=1

" 0G
6G = Z a_ui&’i‘ (3.35)

i=1

Differentiate with respect to active variables,

i U;V; — F
1=1

1=1
— Z u;0v; + Z v;0U; — 255 Uu;

= w;0v; + v; — ou;. (3.36)
> 2( )

0G =9

From (3.35) and (3.36)

_(5111 Z w;00; + Z (vz 8u2> ou;.

Comparing the coefﬁc1ents of dv;

oG
oF
V; — auz =0
. _OF
‘ aul .
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To obtain Hamilton canonical form by using Legendre transformation : Consider

the Hamilton function

H(p7 q, t) = széh - L(Q7 q‘7 t)
Varying H w.r.t active variables
0H = 3.38
Z apz (3.38)
“ OL
0H =9¢ idi | — ) 750G
(;p Q) 2 B4; q

= ZPz’Mz‘ + Z Opigi — Z %5%
= Z Opidi + Z (pl

) qi- (3.39)

Z

From (3.38) and (3.39)

Z opigs + Z (pz ) 0

i=1

8H_,‘ wnd 8L_ ‘
Ip; - 94 - b
Varying H w.r.t passive variables
8H OH
0H = 3.40
Z 50 " (3.40)
~ 9L OL
0H = — — —0t. 3.41
’Zl 8qi ot ( 4 )
From(3.40) and (3.41)
SROH | OH L NROL oL,
. _OH
b= 9g;
Hence the equation of motion are,
. OH
qi = £
. oHd
pi E



Let us sum up

1. We have derived the Hamilton’s equations.
2. We have discussed the mass- spring system and Kepler’s problem by using Hamilton
equations.

3. We have obtained the Hamilton canonical form by using Legendre transformation.

Check your progress

6. Define Hamilonian function.
7. Write the Hamilton’s canonical equation for holonomic system.
8. Write the Hamilton’s canonical equation for non-holonomic system.

9. Write the equations for generalized momenta.

3.3 Some other Variational Principles

Dear students, in this section we will derive the modified Hamilton’s principles, Prin-

ciple of least action and also discuss of Kepler’S problem by using Jacobi form.

3.3.1 Modified Hamilton’s principle

Let us consider a holonomic system. The usual form of Hamilton’s principle is given

by,

t1

5/Ldt:0.

to

Using
H:ZPiQi—L; LZZ]%%—
i—1 i—1

The modified Hamilton’s principle is

(Z pidi — ) ~0. (3.42)

H oH
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Consider
t1 n t1 n d
/Zpi5Qidt: /sz%(é%) dt
o=l o=l
n t
== [ i
=1

Now (3.43) becomes

t1
/Z OpiGi — 0Gip; — 8—5% - 8—5])1- dt =0
Joi=1 g opi

t1
- H H
/Z Qi—a opi — pz"l'a 0g;| dt =0,
J i Op; 9q;

where
. OH
= api'
. _8H
pi = aqi-

(3.44)

Because d¢'s are independent in equation (3.44) which implies that the co-efficient

must be zero. The modified Hamilton’s principle states that the actual part is such that

the integral of equation (3.42) is stationary.

3.3.2 Principle of least action

The actual path of a conservative holonomic system such that the action is station-

ary with respect to varied paths having the same energy integral ~ and the same end

points in g-space.
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a3 (q+58q) (dr +d81) 1+ 5t +dr+dbt

o~V /

. Varied
8q +dbq path

Actual
path

[} ]

q
Consider the quadrilateral ABCD,
AB+ BC =CD+ DA
qdt + 0q + doq = dq + (¢ + 0q) (dt + dot)
déq = ¢dot + 5dt + S¢dst
doq = ¢ddt + dqdt

Sqdt = —qdst + doq

—qdot + do
5 = —4a0t +d0g (3.45)
dt
In terms of components,
5‘4——’4i6t—|—£5-(z‘—12 n) (3.46)
QZ - det dt QH - 9 Sy ey . .
Now consider
t1
I = /Ldt
to
d d
0l = — (0I) — I— (ot
dt( ) dt( )

5|5 (0] =G en- G5 e

5{% (/Ldt)] A (/Ldt) < g

to to

t1
d d
L=—1|6l—- | L—
5L = {5 / < (o1) dt]

to
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Integrating

5T = / {5L+L% (&)} dt. (3.47)
to
Now
oL oL oL
SL = 5q; — 5t
Z (aqz % 5 > o
B aL aL d(5 ) OL . d(6t oL
= ;( i e ) = St. (3.48)
Consider
oL " d oL " 0L d
p ( aqﬁ%) = 2 &g (6g:) + 2 5, dt (64:)
" 0L d d [~ 0L " d 0L
2 &L-E (0q;) = i <ZZ1 a—qi5qz'> - - Eﬁ_q, (0Gi) . (3.49)
" | oL d (<= 0L " d [(OL " IL ddt oL
L = S5 4 — | — - - g 4 2
’ ; [aqf% T (; aqiéq’) 2t (aqi) 2= 2 o T e
(3.50)

Substitute (3.49) in (3.48)

t1
" OL d [~ 0L " d [(OL " 9L  dit aL d
I = “—5aq; + — “ZSa; | — - g4 =
’ / [( og: % T ( aq@) 2 <aqz> 2= 2 96 T &) dt(ét)]d

to =1 =1 =1
t1

:/i%(g_ig )dt+/

to i=1 to

oL ~ OL d

oL oL
/Z[dt (8qi) aqj Sq;dt. (3.51)

Let us consider a holonomic system, By setting ¢ = 0 in second integral of (3.51)

vanishes. By assuming the standard form of Lagrange’s equation in (3.51) the second
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integral vanishes

t1
d (<= 0L
5= | = “5q; | dt
/dt <i:1 dd; q)

to

n t1
= a—l.;&]i
i—1 dq;

to
=01 =0.

Thus we obtain the Hamilton’s principle.
Now let us consider a conservative holonomic system. The path at the end points so

the first and third integral vanishes.
I " 9L d
I= [ |L=(5t) =S Z=g— .
to =

. oL .
Since Fri 0 for a conservative system

t1

51:—/ Y a—Lvd@t)—Li(at)] dt

TR dt
to Li=1
Y d
to L i=1
n oL
Now g—qqZ — L = his an energy integral.
=1 i
t1
6T = —/hi(&)dt
.. - dt
to
61 = —h[6t];} = —h (ot — tp) .

Define the action as an integral,

t1

t1

—~ 0L . oL
/;aqeq /;” (a5 =)
= i=

to
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Now

t1
5A:5/(L+h)dt

to
t1

=01 + / 5(hdt)

to

t1 t1
:5[+/5hdt+h/(5dt

to to

= A = Sh(t, — to).

Restricting the varied paths to those for which / has the same value as the actual path

then dh = 0. Therefore §A = 0.

3.3.3 Jacobi’s form of the principle of least action

Let us consider a natural system, > p;g; = 275 + 1. For, T} = 0 and the principle of
=1

least action becomes,

t1
0A = 6/2Tdt
to

t1
= 5/]71‘%6# =0

to
t1

§A = (5/2\/T(h —V)dt =0.

to
If ds is defined as,

d82 = Zn: zn:m”qzq]dtQ = 2T2

i=1 j=1

ds = V2T'dt

t1

§A = 5/2\/T(h —V)dt

to
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t1
§A = 5/ V22T (h = V)dt
to

t1
5A = 5/ V2(h = Vds = 0.
to

This is the Jacobi’s form of least action.

3.3.4 Discuss of Kepler problem by using Jacobi form of principle
of least action

Use the Jacobi form of the principle of least action. Obtaining orbit for the Kepler’s
problem.

Solution: Let a particalof mass m attracted to a fixed point 'O’ by an inverse square

force F, = 4", The K.E and PEis T = 1mov? = Lm(r2 + r262) and V = =27,

Consider the natural system having the total energy is

wm

1 .
h=T+V = §m(7'“2 + 726%) — (3.52)

r

Using the Jacobi form of the principle of least action
5A:5/\/2(h—V)ds:O (3.53)

From (3.52) 5/,/ h+@ ds = 0, where

ds* = m(dr* + r?df?) (3.54)

:>d3—6/\/ r2+r'2)d9—0 (Here rl:%).

Now let us choose 6 as the independent variable and r’' = % Then equation (3.53)

becomes

01
) / f(r,r)do =0 (3.55)

/ \/Qm (r2 +7'2)df = 0
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where f(r,r') = \/2m (h + @) (r2 +1'2).

By Euler-Lagrange equation
af\ _of
<8r ) o = 0. (3.56)

From, we know that,

of .
a—rr — f=C (constant).

fr,r) = \/Zm(r'2 +12) (h + @)

of 2m(h+%)2r/ B 2m(h+%)r’
or' 2 2 pm N 2 2 pm
2:1/2m(r +T)(h—|— 7,) 2m(r —I—r)(h+ T)
m (4 22)
(r'2 +1r?)
g—fr—f C

2m (h -+ %) )
— r*=0C (3.57)
r'2 4 r?)
Now
h=T+V
= %m <7"2 + r292) — @
m (7’“2 + r292> =2 (h + @) = m? <7"2 + T292) =2m (h + @)
dr  drdf

]
“w aa TV
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Values of 7 = ' and 6 = . in above equation.

m? (r’292 + r292) =2m (h + @>

m26? (7”2 + r2) =2m (h + @) (3.58)
T
Equation (3.58) in(3.57),
B mzéz (T/Q + TQ)TQ _c
(r’2 + r2) -
—Vm262r? = C,= mor? = C
. —C
0= —.
mr?
Angular momentum is constant
L (2
2
0" = m2rd

To find the equation of orbit,in (3.57) squaring and rearranging

m (h + @) rt=C? (r? +1r%) = C*” + C*?
r
2mC?r?
2m

C*r"”? =2m <h + @) rt — C%r* = 2mr® (hr® + pmr) —
r

_ 2mr? h? -
—oE Mgy

dr 2_2m2 hr? + mr—02
0) - 2 H om

ﬁ— 2mr2h2+ _0_2
a0\ o2 | T T o,

= db

dr

\/2252 [hrz—l—umr—c—z]
df =
Jo= ] y :

hrt + umr? — C?—
2m

| 2
ro 12 h+L_O_
2m

2
r pm” 1
-] (‘& 7)
4 um* n 2mh B m? 1
c4 C? c? r
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0 = sin~

= sin~

T
= sin(f + —) =
( ) wrmt 2mh
C4 C?
2,4 2
wm 2mh  um 1
= cosf o 0T = o
1 pm? pum? N 2mh
ro 2 c4 C?
2
Multiplying by —— we get
uwm
C 2h(C?
Ium—Q/r =1 1 + W COS 0

This is a conic with eccentricity

2hC? [
i.e., 1+—C (;214-60089)

12m3
To find h:
1 .
h=om (72 +r2?) - B2
2 T
Atr =1y = Tymin,0 = 0 =0
n [0 +r2902] —py B
2 To
Also
-C
erQO— —C=>90— —
mrg
m [, C? 1 C? pwm
= — —h+ == —
2 [ro m%’é} + o 2mrd 7o
C? wm




Let us sum up

1. We have derived modified Hamilon’s from Hamilton’s function.

2. We have obtained optimum path of a conservative holonomic system by using the
principle of least action.

3.Also we have find the actual path of a natural system by using Jacobi’s form of the
principle of least action.

4. We have obtain the optimum path for the Kepler’s problem by using Jacobi’s form

of the principle of least action.

Check your progress

10. State modified Hamilton’s principle.
11. Define principle of least action.
12. Write the equation of natural system.

13. Write the equation of Jacobi’s form of least action method.

Summary

* Introduced basic concepts to obtained the stationary values of a function by using
Lagrangian multiplier method and Euler- Lagrange equation.

* In Brachistochrome problem, we have find the path of the curve which particle
sliding down from rest under gravitational force from one point to another point in
minimum time.

* In Geodesic problem, we have obtained the shortest path between two points in a
given space.

* Derived the Hamilton’s principle to find the possible paths of the dynamical system.
* Derived the Hamilton’s equations.

* Discussed the mass- spring system and Kepler’s problem by using Hamilton equa-
tions.

* Obtained the Hamilton canonical form by using Legendre transformation.
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* Derived modified Hamilon’s from Hamilton’s function.

* Obtained optimum path of a conservative holonomic system by using the principle
of least action.

* Find the actual path of a natural system by using Jacobi’s form of the principle of
least action.

* Obtain the optimum path for the Kepler problem by using Jacobi’s form of the prin-

ciple of least action.

Glossary

*Hamiltonian: The Hamiltonian of a system is defined to be the sum of the kinetic
and potential energies expressed oF a function of positions and their conjugate mo-
menta.

*Legendre transformation: It refers to the mathematical method for changing the
basis of the dscription of a system from one set of independent variables to another
set of independent variables.

*Multiplier rule: A standard method for the analysis of these problems is the multi-

plier rule.

Self-Assessment Questions

Short-Answer Questions:
1) Derive the Euler-Lagrange equation.
2) Find the stationary values of the function f = z, subject to the constraints

o1 =22+ y?+ 22 —4 =0and ¢py= zy — 1 =0.

oOH OH oL __ OH

3) With usual derive ¢; = 5-, pi =5, 3 = % -

4) Discuss Geodesic problem.
5) Explain the Brachistochrone problem.

6) Explain Hamilton’s equation of motion.
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Long-Answer Questions:

1) Derive the Lagrange’s Equation of motion in the standard form for a holonomic
system.

2) Solve the differential equations of motion for a spherical pendulum of length ’I’ for
the integrals of the motion.

3) Derive the Euler-Lagrange Equation and Explain the Brachistochrone problem.

4) State and prove the principle of least action.

5) Derive the Hamilton’s equation of motion.

6) A particle of mass m attached to a fixed point O by an inverse square force i.e,
F, = —£3, where p is the gravitational coefficient. Using the polar co-ordinates (r, 0)
to describes the position of the particle and find the equation of motion.

7) Derive Hamilton’s canonical equation of motion.

8) Deduce the Jacobi’s form of the principle of least action.

9) Derive the Euler-Lagrange Equation and prove the Geodesic problem.

10) State and prove the Hamilton’s principle.

11) Deduce the Jacobi’s form of the principle of least action to obtain for the Kepler

problem. Show that Jacobi integral has the unit of energy.

Objective Questions:

1. In which principle it is viewed, the motion as a whole and involves a search for the
path in configuration space which yields a stationary value for a certain integra

a) Hamiltonian’s principle = b) Lagrange’s principle

c) Jacobi principle d) Principle of least square

2. The necessary and sufficient condition that a function f(¢i, g, .., ¢,) have a station-
ary value ¢ is

a)df=1 b)af=0 cof##1 d)of+#0

3. The notation k;; = ( 88:5 ) at the stationary point ¢, are the elements of the n x n
147 O

matrix k. Then k is .... matrix.

a) Skew b) Non symmetry c) Diagonal d) Symmetry
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4. The notation k;; = (%) ; then the sufficient condition that ¢y, be a local minim is
that the matrix k be......

a) Positive definite b) Negative definite c) Positive semi definite d) Indefinite
5. If k = (kij)nxn, where k;; = <%qu>o at the stationary point ¢y, and & is negative
definite then the point ¢, is called .......

a) Saddle point b) Local maximum c¢) Local minimum d) Absolute maximum
6. Which method is applied to the problems involving constrained minima or maxima

a) Lagrange multipler method b) Zero derivative principle

c) D’Alembertz principle  d) Principle of virtual work.

7. It k = (kij)nxn, Where k;; = ( ;Zgj)o at the stationary point ¢y, and k is indefinite
then the point ¢, is termed as ... ..

a) Local maximum b) Local minimum c¢) Focus d) Saddle point

8. If qp ia an interior point, f(qi,¢2, .., q,) takes on a minimum or a maximum value
onlyitisa......

a) Saddle point b) Stationary c¢) Point of inflexion d) Not a stationary

9. The solution of the Brachistochrone problem is.......

a) Circular path  b) Elliptic path  ¢) Gaodisc path  d) Cycloidal path

10. The problem of finding the shortest path between 2 given points in given space is
knownas......

a) Geodisc problem b) Hamilton’s problem c¢) Brachistochrone problem d) Min-
imal surface problem

11) Which principle is popularly known as an integrated form of the D’Alembert’s prin-
ciple

a) Hamiltonian’s principle b) Lagrange’s principle c¢) Jacobi principle d) Princi-
ple of least square

12) § ft’: Ldt = 0is known as......

a) Lagrange’s principle b) Hamiltonian’s principle

c) Jacobi principle d) Principle of least square

13) The Hamiltonian function of a scleronomic system is equal to .........
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a)H=T+V D H=T-V )H=TTy+V dAH=T—-T,+V

Answers for Check Your Progress

. . : . n (OF
1. The necessary and sufficient conditions for § F' to be stationaryis §F = 0, »_ < ) 0q;i+
0

i=1 a%‘
oF oF
— | dX; =0.Th =0 =12, ... d
(55;), % =0.Then (3) =0, (= 12cm)an

) =0, (j=12,....,m).
7/ 0

. Total kinetic energy = Total potential energy

of 4 (OFN _
"oy dx \Oy )

. The differential element of length ds is given by, ds = 4+/r2d62 + r2 sin? d¢>.

3

J

57
T

o))
>

a AW N —

. The actual path in configuration space followed by a holonomic dynamical system
31

during the fixed interval ¢, and ¢; is such that the integral, I = [ Ldt is stationary with

to

respect to the path variations which vanishes at the end points.

6. Define the Hamiltonian function H(q, p, t) as follows, H(q,p,t) = >_ piGi- L(q, 4, 1).
=1
L /
—+Q.,(t=1,2,...,n).
8. For non-holonomic system ,The lagrange’s equation are given by,

d (0L oL o /
— — = \ja; S(e=1,2,..

7. For holonomic sysem, the Lagrange’s equation is, p; =

9. The generalized momenta are given by, p, = g—f = mr,pg = Z—g = mr20.

10. The modified Hamilton’s principle states that the actual part is such that the inte-
gral of equation ¢ T (Zn: pi¢; — H > dt = 0 is stationary.

11. The actual pattl?l ogzlconservative holonomic system such that the action is station-
ary with respect to varied paths having the same energy integral h and the same end
points in g-space.

1=1

t1
13. 6A =6 [ \/2(h — V)ds = 0, which is the Jacobi’s form of least action.
to
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Unit 4
HAMILTON’s- JACOBI THEORY

Objectives

After the successful completion of this unit; the students are expected

* To understand the concepts of Hamilton’s principle function and Pfaffian differential
form.

* To gain the knowledge Hamilton-Jacobi equation.

* To develope the method of modified Hamilton-Jacobi equation with illustrated ex-
ample.

* To gain the knowledge of Lioville’s system.

¢ To understand the Stackel’s theorem.

4. Introduction

Dear students, Hamiltonian is conserved then a solution could be obtained by the
transforming to new canonical coordinates that are all cyclic, since the integration
of the new equations of motion becomes trivial. An alternative techique is to seek a
canonical transformation from the coordinates and momenta, (¢, p), at the time ¢, to
a new set of constant quantities, 2n initial values (go, pg) at t = 0. Now the important
question? how to find the transformation from the old coordintes to new coordinates.
This is the fundamental problem. In this present chapter we shall approach proposal
problem by studying the generality function which is associated with the required

canonical transformation. This generality technique is the solution of the partial dif-
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ferential equation known as Hamilton Jacobi equation. The Jacobi Hamilton equation
is named after William Rowthan Hamilton and Carl cursav Jacob Jacobi. The Hamil-
ton canonical equation is first order partial nonlinear differential equation applicable
in understudy the conserved quantities for mechanical systems. In this unit, we will

study the charateristic function and Hamiltonian Jacobi equation.

4.1 Hamilton’s Principle Function

Dear students, in this section we will discuss the canonical integral and also Pfaffian

differential form.

4.1.1 Canonical integral

Now consider the canonical integral of the form s(qo, g1, tn, 1) = tzl Ldt. The function
s is a twice differential in all its arguments and is known as Hamilton’s principle func-
tion.

For a holonomic system

hqd (<~ OL h oL d " 0L d
ol :/ — : 5qidt+/ — 0t + L—0t — —q;—o0tdt

i=1

g " 9L b far - d
— - . el VR E 0 — L) —
/to . ( 0qi> 5%dt+/to ( t(st (@ 1 Did; ) lt&) dt
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we know that H(p, q,t)

. " OH OH OH
H:E R ST -
, (8 ipl+ aqi%)‘i' ot

—~ .. .. OH
= (6P — Pidi) + -

. ot
o oL
ot ot
oL .
a1

tp, ™
51/ daL dt+/ —Hét — Zplqz
to

—5t)d

" d aL : . oL
6l = / dt — /tO(H(St—i-(ileiQi_ )atét)d

d aL b
oI = / Z #5a )qdt — / - (Hot)dt

to

g oL
ol :/ — —d0q; — Hét | dt.
to dt (il 8q, >

The principle function s is obtained from the canonical integral 7,

§s = [Z %5% — H5t]

i=1 1

t1

to
58_28 0gin — H10t; — Zf)

Writing in differential form,

dto

. oL
ds = Zpildqu — Hydty — o4 dg;o + Hodty.

i=1 0

Differentiating s(qo, ¢1, to, t1) We get,

Equating the corresponding coefficients,

. B 0s o 0s
DPio aqi07 Di1 = 8%1
0s 0s
H =—— Hy=———.
! ot,’ 7 Bt
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The equation Dio = — a?;o (1=1,2,...,n) gives p;o as function of (g0, g1, to, t1). Assuming

that # 0, we can solve for ¢;; and is given by ¢, = ¢:1(qo, ¢1, to, t1). It is the so-

8% qil

lution of lagrange’s problem substituting ¢;; in p;; = 8 , we get pi1 = pi1(qo, q1, to, t1).

Hence we get the complete solution of the Hamilton problem.

4.1.2 Pfaffian differential form

A pfaffian form is defined by 2 = )", X;(x)dx;, for arbitrary displacement and w =

Z;ﬁ:l Xj(x)dz;

(0Xida; + Xidda;) — Y (dX; + X;dox;)

ow — o) = in:

i=1 j=1

= Z(Z xjdxl Z Z de 07;))
=1 j=1 j=1 i=1
AN 90X,

— ; ;( o o LYo dx

= f: zm: cij0xjdx;
i=1 j=1

where gi(; - %f: = Cjj.

i=1 j=1
is called the bilinear covariant associated with (2.

Further if m is odd, we get m another aspect of pfaffian differential form.
(ie) we get m differential equations known as first pfaffian systems.

The equation taken the form

m

> cyda; =0, (j=1,2,....m).

=1
These are obtained by setting the coefficients of jz’s to zero in equation (4.3). Express-

ing ds as the different of two pfaffian form

ds = (Zpild%l — Hydty) — (Zpiod%o — Hodty).

i=1 i=1
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(ie.,) It is the form of > | pidg; — Hdt

Let Q=) Pdg;— Hdt

=1

w:ZPJ(SqJ—H&

J=1

02 =y (6F;dg; + P;dq;) — 6Hdt — Hodt
j=1

dw = Z(dpj(sqj + Pjdoq;) — dH6t — Hdét.

=1

0Q — dw = dpjdg; — 6Hdt — > dP;dq; + dHst

J=1 Jj=1

OH OH OH
_Zap dq; — <Z(a 8q; + oF —— 0P + Wdt) dt

OH OH OH
—deaqj (Z(a dg; + anP) > dt) St

OH " OH
d 5P + dP — —dt)dq; + —dg; +
Z:: QJ ap Z Qj ) q] ;<8q]~ qJ

Applying the idea of first pfaffian system we get,

(4.4) becomes

(4.5) becomes

OH
—dP;)ot.
55 (Pt

“4.4)

4.5)

(4.6)

4.7)



(4.6), (4.7) are Hamilton’s canonical equations,

Now

0H OH . 0OH
H= Z qj)‘f'ﬁ

_Z 0H —0H 8H8H)+8_H
dP; g, aqj OP; ot

on
ot~

H =

We find that ds is equal to the difference between two pfaffian differential forms at
initial and final positions.

Hence s is considered as a generating function for the canonical transformation

Case (i): Consider the transformation

qio = qz‘0<717727 ""7271) Dio = Pio(%awa «-~72n)

where the Jacobian of the transformation is given by, ‘ho—f;o)) £ 0.

Then

Z Piodqio = Z sz 5%0 d%

— Z T;(v)dv;, (4.8)

. 9o

where I:(v)= E 0

J('Y) 2 Pio S

Case (ii): 71,79, .-+, 72, can be replaced na’s and nf’s.

Let o; = 041‘(’71, Yo--Von), Bi = ﬁz’(%ﬁz---’hn)
such that " | fido; = 22" L';(y)dy;, where T';(y)=>", Bimt 8%
Therefore Y " | piodg; = >, fide;  from case (i).

Let us sum up

1. We introduce the canonical integral.

2. We have derive Pfaffian differential form.
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Check your progress

1. What is Hamilton’s principle function?

2. Write the Pfaffian differential form.

Dear students, in this section we will discuss about the Hamilton Jacobi’s equation,

modified Hamilton Jacobi’s equation.

4.2 Hamilton Jacobi’s equation

Consider a holonomic system giving 2n independent initial conditions at time t, as

qo 7 Po-

Now we have differential equation

Assume that

ds = Zpild%l - Zpiod%‘o — Hydity + Hodto,
i=1 i=1

(4.9)

where s is the Hamilton’s principle function. It is associated cononical transformation

relating the initial and final point of a path in a phase space.
Let the initial conditions are specified by
a; = @i(q10, 420-+-Gn0s P10, P105 -+-Pno) -

Bi = 51’((]10’ q20---4n0, P10, P10, "'p’rLO)a (2 = ]-7 27 sy TL),

which satisfied

Z Piodgio = Z Bidoy
i=1 i=1

dS = Zpﬂdqﬂ — Z ﬁ,daz — Hldtl + Hodto.
=1 =1

Now we consider s number can be associated as a function of
s = S(qi17 qi0, t17 to)

", s 0s 0s
ds = —dg; —do; + —dt —dty.
s - i ql+;8az a+8t1 1+8t0 0
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Hence ¢'s and o’s are independent equality variable.

Assume that | 8q¢12§a_ | #0
1100
0s

— «'s can be solved in terms of o

comparing (4.10) and (4.11) we get

0s 0s
Pi1 = 8%7 a_tl = H
O0s O0s
= —0; — = H,.

Equation (4.10) can be further simplified by setting the initial time ¢, = 0
(ie.,) dto =0

Equation (4.10) becomes,

ds = Zpildqil — Z Bidoy; — Hydt,
i—1 i—1

ds =Y pidg; — Y Bida; — Hat. (4.12)
i=1 =1
From (4.12), it is clear that the principle function is of the form s(q, «, t)
" Os "\ Os 0s
s i1 8% 4 +;8a1 &+ ot (4 )

Equating the coefficients in (4.12) and (4.13) we get,
0s

Di :8q»’ 1=1,2,...,n. (4.14)

—Bi :88;- 1=1,2,...,n. (4.15)
0

—H :a_j' (4.16)

From (4.15) we can get ¢’s as function («, 5, t) using the equation (4.14). We csn find
p as function of (¢, 5,t). Hence we have the solution for Hamilton’s Principle. H is
usuallt as a function of (g, p, t).

Using (4.14) and (4.16) we have

0
—$+H(q,p7t) =0

ot
0s 0s

The first order partial differential equation is known as Hamilton’s Jacobi equation.
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4.2.1 Jacobi’s theorem

If s(q, o, t) is any complete solution of the Hamilton Jacobi equation

0s 85
— 4+ H =
0s
A — Nl
Bi . (4.17)
_0Os
pl _aqz7

where /3’s are arbitrary constant are used to solve for ¢;(«, 5,t) and p;(«v, 5, t).

Then these expressions provide the general solution of the canonical equation associ-

ated with Hamiltonian H (g, p, ).

Proof:
0s 0s
EJrH( eve t) =0 (4.18)
0s
Di ~ o0 (4.19)

Which is a function of (¢, a, t). Differentiating W.r.to o;

0?s o? ds
Z 01 0y Z OH 8pj OH Ot

=0

(9oz (975 0q; 804Z ﬁp] 80@ Ot Aoy

0?%s OH Op;
— kit SR 20
daidt 2= Bp; Do (420

0?s " 0H, 0%s

— = 21
daidt 2= o (aqjaaj> 0 (4.21)
where p; is considered as a function of (¢, a,t) in (4.20), 57~ is a function of (¢, a, 1)

and o's and f's are constants. In (4.18), taking the total time derivative of this w.r.t. ¢

d  Os

(52) dt<€)al) (4.22)
"0 83 "0 83 . 0,6 0s
0= Z@qj (904Z Z@oz] (904Z at(aaﬂ
"L 9% 0?%s
0= ; Da;0qj G Do 0t (4.23)

136



(4.22) and (4.21) = Using (4.18), (4.19) and (4.20), we have

n 2
> (G - OH | 0% o 1.

6qj a; aaiﬁqj

=1

Since |52 \ # 0, We get

Oa

Differentiating (4.19) partially with respect to g¢;

0?s  OH <~ O0H Op;
-+ — + -
8t8qj (‘3qj i1 8pj 8(]]‘

=0.

Differentiating (4.20) partially with respect to ¢

d d  0Os
4 y) = E(a_qﬂ

Z 0 85 8 ds
0q; 8qj 875 8q]

0  Os .. 0 0Os

/ i1 8% aq]' ot 6%‘
Adding equations (4.24) and (4.25)

oH . " O0H . s
4P+ ) =
90, 0 2~ Vagag

using equation (4.19) we get

)
pJ_ aqj

Equation (4.20) and (4.23) are Hamilton’s canonical equation.

- = — =0

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

4.2.2 Conservative system and ignrable co-ordinates (or) modified

Hamilton Jacobi equation

(i) Let us consider a conservative system (holonomic) described by n independent

¢'s. The Hamiltonian function for this system is not a function of time. The principle

function of this system is given by

s =—aut + w(q, )

s(q, a,t) = — aut +w(q, a).
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The function w(qi, ..., ¢, a1, ..., ;) is called the characteristic function,

0s Ow

= =1.2....n—1 .32
8067; 80éi (2 y Ly ey T ) (43 )
0s 0s
o —t+ Do (4.33)
0s Ow

= , =1.2....n—1). .

From (4.27) and (4.32) we get

H =«

0s
H(g, 22 =an.
(q, aqi) o

(ie.,) H(q, g—;_) = «, is the modified - Hamilton Jacobi equation, we know that

0s
B = =1,2, ..
ﬁl aal (7/ b ) 7n)
‘_83
pz—aqi~

Comparing (4.30), (4.31) and (4.32) with these two equations, We get

_/61 :8042 ('L = 1a27 7n)
ow
Tha =t Oay,
ow
Bn +1 ~a.
_Ow
Di 8%

(i) Now let us consider a system having ignorable co-ordinates ¢, ¢o, ..., ;. Further
assume that the system is not conservative

Let us assume the principle function as

k

s(q,a,t) = Z%%’ + 8 ( Qg1 oy Gy ALy ooey OO
i=1
pi =, 7,21,2,,]{?

The Hamilton Jacobi’s equation is given by

0s’ - H( 0s’ 0s’ ;
A, qk 1""7q7747a17"'7ak7—7"'7_
- Oy Oy
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The solution is obtained from

(iii) Now let us consider a conservative system with ignorable co-ordinates ¢, qs, ..., ;.
The principle function is given by,

8(Q7 CY,t) = ZazQz - Oént + w,(Qk+17 vy Qn, Q15 .y, Oén)‘
i=1

The modified Hamilton Jacobi’s equation is given by

H(Qks1y ey Gn, Q1 ey Qi ;QTWJ;’ s %,t} =q,
The solution is obtained from,
0
_5" :3;
qH—g—Z;, (i=1,2,..k)
_ B :gi, (i=k+1.n—1)
ow'
=t Oa,
W
Bt =5,
p,:g;, (i=1,2,...k)
—q
pi:g;,, (it=k+1,..,n).

Kepler’s problem: Use Hamilton-Jacobi method to analyze the Kepler’s problem or

modified Jacobi method.
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0

Solution: Suppose a particle of unit mass attached by an inverse square gravitational

force at a fixed point ‘O’. The position of a given problem is given in terms of the polar

coordinates (r,#) in the plane of the orbits.

The K.E and P.E are " = im(? + r262), V= —£, where 4 is a gravitation coefficient.

L=T-V
1 )
L 25(7‘2 +72(6;)%) + g
oL
=% ="
oL
Po 89
y Do
9:—2 H =T+ YV = constant
r
1o, (pe)? oy 1
H :Q((PT) g ) — o=

Since # does not in H it is considered as an ignorable co-ordinate.

Therefore py = (constant)

The modified Hamilton-Jacobi equation is,

H(q, g_:) =Qy
~ Owy
b _aQi
_ Ow
Dr G
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Therefore (4.44) becomes

Low , 1,a0%
2 Talha) — =
1ow ., 2 af)?
2(87") =+ r o2
T 2 2
W' = \/2at—|——'u—a(92)d
T0 r
WKT -, =2
oo,
ow'
t— B, =
By o

™

ow' _/T 2dr
(90415 o 2\/2at + 2Tu o a(92)2

ow’ " dr
t — /Bn = ey
oL TR \/Qaﬁz?u_%ﬂ
set By =to
ow' " dr
t—tyg=—v = .
(90ét ro \/20% + ZTM . asg)2
ow' . .
W.K.T — B =q; + Do, igonarble co-ordinate
Qi
ow'
B, —f
Beo + Doig

dr

r2

ow' _/T —ab
8069 ro 2 \/2at + 2TN o(0)?
" —«

ow' / 0
= dr,
Ao ro T/ 20472 + 2ur — (ayp)?

choose

— By = 0y
ow'
0y =0 + Do
ow'’
0—0y=
0 80[9
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If ro = r,,:, then 6y = 0. Therefore

0 —/ —ab dr
ro T/ 20412 + 2ur — (ap)?

/7" —af p
= r
70 rr—ia—g\/Qatﬂ +2ur — (cp)?

2
ogdr

/To 702\/20404 ”%__3+ 2 _ 2
9 r r2 H H
azdr

/TO 2 ag 2
2\ (2ozaf + p?) — (52 — 1)
9

/ — 1)
ro r2\/ (2002 + u?) (OZ—g — p)?
0 =—sin~ 1(_(——,u) )4—Z
Vi 202" 2
g
:cos_l(—( 2 )
V12 A+ 20008
2
X _
V2 + 20003
2 2
1+cosfy|1+ at% —%.
\/ 2 r
This is of the form L =1+ ecosb,
where e = /1 + 20“%
To find r
1 ur
)
1+ cosfy/1+ 20“% X
042
oy
r= = cos f.
144 /1+ 2252

Let us sum up

1. We have discuss the Hamilton Jacobi’s equation.
2. We have derive the Jacobi’s theorem.

3. We have derive the modified Hamilton Jacobi’s equation.
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Check your progress

3. Define the Hamilton Jacobi’s equation.

4. Write the modified Hamilton Jacobi’s equation.

4.3 Separability

Dear students, in this section we will discuss about the Lioville’s system and Stackel’s
theorem. The term separability implies that a characteristic function for the system
has the form w = 3" | wi(q;)

(ie.,) It consists of the sum of n functions. Where each function w; contains only one

of the equations

4.3.1 Lioville’s system

It is an orthogonal system which has kinetic and potential energy of the form

1< P
r=3 2 fls)

and

=1

vi(q:)
— fi(a:)’
where f;, ¢; and v; are each function of ¢;. We assume that > | fi(¢;) > 0 andR;(g;) >

0. T is modified as follows, W.K.T

oL o0T
B= d4;  9d;
0T 24;
a% ZZ1 fz(qz) Ri(Qi)
b = fai G = pilti(gi)
" Riq)’ ' f
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Therefore
— PP R? (q:)
Zfﬁ P2 Ri(g:)
T 121 lpz ( )

2 Zl 1f2
piR1 + ..DiR,

2(f1+ ...+ fn)
v+ ...+,

(ie.,) T =

V:

To find that the system is separable: The modified Hamilton-Jacobi’s equation

for this system can be written as

Ow
1 Z? 1(aq )2R ai Zr‘il V;
— 1= =h.
2 ( Zizl Ji " Z:'L—l fi

Z(ERl(gw +yz> hZfz (4.36)

u ow 4
; (2R (8%) + v — hﬁ) =0.

Let ay, ay, ..., a;,, be the separation constants such that > «; = 0. Setting each term to

the corresponding «; we get

8%
u 1 awi 2 .

Let

¢i(q;) =2R;(hfi — vi + ;)

Ow; _ O (QZ)
0q; R?

:%\/ ¢z’(%)d%
W= Z / %\/ ®i(q:)dg; (4.38)
i=1 ¢

W here oi(q;) =2R;(hf; — vi + o). (4.39)
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This solution constants (n + 1) constants aq, s, ..., o, h but Y a; = 0, suggests that
one «; can be eliminated leaving m independent constants.
Hence equation (4.35) can be solved for the complete solution of the modified Hamil-

ton Jacobi equation.

To find the solution for the motion of the system

Op = — 01, —Q2, , —Qn
w =w;(a;) = wi(oq) + ... + wp(—o, —ag, ..., —a)
Now a_w 0w Ow, Doy,
da;  Oay Oy, Oy
8&)1' 8wn .
= — =1,2....n— 1. .
9o D, ) ,2,...,m (4.40)
From —f; = ;-
Oow - 0 1
ooy _Z::/@ai (RZ 2 (QZ)) da;
u 2R,
=Y / dg;
—'J Ri/oi(a)
Z dg@
YV Pi(q
Fromt — 3, = 8%
Ow - / dg; / dqy,
Ow _ _ _ _3, (4.41)
dov; ; Voi(q:) VO (qn)
W.K.T
Oow
—t —
Oan B
_ . Jidg;
h ;/ Voila:)
Hence

fdg;
=t—0,. 4.42
> =i (442
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Equation (4.38) and (4.39) represent the solution to the problem and it represent the

path . The path can also be found from the equation

. _8w
Di _8q,~

V 9i(q:)

R;

4.3.2 Stackel’s Theorem

The orthogonal system specified by

T= % Zmi(jiZ = %ZQP?
i=1 i=1

Where ¢;(q1, g2, ..., go) > 0 is a stacked are met, namely that a non-singular n x n matrix

[pi;(¢;)] and a column matrix 1 (g;) exist such that

c'® =(1,0,...0) (4.43)

and 'y =V, (4.44)

where v(q1, go, -, ¢, ) is the potential energy and c is a column matrix.

Proof: Let us that the orthogonal system is separable. Then we have w = >""" | w;(¢;).

W.K.T
H =
T + \%4 =
1 n
52 etV =m (4.45)
i—1
1 < ow 4
52_Ci +V =a. (4.46)
Now % is a function (¢;, a1, ..., ). Let us consider the general form,
qi
ow n
(aq) = —2ti(g;) + 2 Z ®;(gi)ey. (4.47)
’ i=1
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Substitute (4.44) in (4.43), we get

In matrix form,

conversely,

Assume that stackrel conditions are satisfied, define aa column matrix 'a’ by

1 n n
3 Y eil=20i(a) +2)  Pyla)ay) +V =
=1 i=1

— Z citbi(qi) + Z Z ci®ij(qi)oy; +V = ay.
i—1

i=1 j=1

—TYp + T da+V =y

—cT"p 4+ o+ V =(1,0, ...

—cTYp +V =0 and

'y =V and

a; = (

ow
dq;

)2, (i=1,2,..n).

From modified Hamilton’s Jacobi’s equation we know that

(ie.,)

(4.48)



which has a solution a = —21+¢®a. This results is idendified with (4.44) and indicates

that the system is separable.

Let us sum up

1. We have discuss the Lioville’s system.

2. We have derive the Stackel’s theorem.

Check your progress

5. Explain the Liouville’s system.

6. State the Stackel’s theorem.

Summary

* Introduce the canonical integral.

* Derive Pfaffian differential form.

* Discuss the Hamilton Jacobi’s equation.

* Derive the Jacobi’s equation.

* Derive the modified Hamilton Jacobi’s equation.
* Discuss the Lioville’s system.

¢ Derive the Stackel’s theorem.

Glossary

* Canonical integral: The canonical integral of the form s(qq, ¢1,t,,t1) = ftil Ldt.

* Ignorable coordinates: It is a generalized co-ordinates of a mechanical system that
does not appear in the systems of characteristic functions.

* Seperability: The index of seperability associated with the solution of P.D.E by a

solution to that is by expressing the solution interms of integrals each involving only

one variable.
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* Orthogonal system: Orthogonal system is conservative holonomic system whose

K.E function contains only squard forms.

Self-Assessment Questions

Short-Answer Questions:

1) Discuss the Pfaffian differential form.

2) Derive Modified Hamilton —Jacobi’s equation.

3) State and Prove Jacobi’s theorem.

4) Explain the separability of a system.

5) For Keppler’s problem using spherical polar co-ordinates, verify stackles condition
for separability.

6) Using Hamiltonian—-Jacobi’s method, solve the mass spring problem.

Long-Answer Questions:

1) Prove that any complete solution of the Hamilton-Jacobi’s equation leads to a solu-
tion of the Hamiltonian problem.

2) Define Liouville’s system and prove that the Liouville’s condition are sufficient for
separability of the given system.

3) Discuss Hamiltonian principle function.

4) Prove that necessary and sufficient condition of Stackel’s theorem.

5) Explain Pfaffian differential form and first Pfaffian’s system,

6) Analyse Keppler’s problem using Hamilton Jacobis method.

7) Prove that any complete solution of the Hamilton-Jacobi’s equation leads to a solu-
tion of the Hamiltonian problem.

8) Establish Stackel’s theorem.

9) Mlustrate the Hamilton-Jacobi’s method by an example.

10) Write a brief note on separability.
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Objective Questions

1) Which transformation preserve the Hamiltonian form of the form of the equations
of motion in the new variables?

a) Canonical transformation b) Noncanonical transformation

c) Legendre transformation d) Laplace transformation

2) In case of canonical transformation .......

a) The form of the Hamilton’s equation is need not preserved

b) Hamilton’s principle is satisfied in old as well as in new coordinates

c¢) The form of the Hamilton’s equation cannot be preserved

d) The form of the Hamilton’s equation may or may not be preserved

3) The complete solution of Hamilton’s canonical equations, commonly known as the
solution of the .......

a) Newton’s problem b) Euler’s problem

c) Hamilton’s problem d) Lagrange’s problem

4) The complete solution for a holonomic system having n degrees of freedom is ob-
tained by finding 2n independent function known as ........

a) Principle function b) Generating function

c) Charecteristic function d) Integrals of the motion

5) The function S(qo, g1, to,t1) = ftil Ldt is assumed to be twice differentiable in all its
arguments and is known as .......

a) Generating function b) Hamilton’s principle function

c) Charecteristic function d) D’Alembert’s Principle

6) In which space, the solution of the Lagrange problem ¢;1 = ¢;1(qo, po,to,t1) (i =
1,2,3,....n)gives the motion as a function of time?

a) Configuration space b) Phase space

c) Eigen space  d) Euclidean space

7) Name of the space the solution of the Hamilton problem p;; = p;1(qo, po, to, t1)
(i=1,2,3,....n) gives the motion as a function of time?

a) Configuration space b) Phase space
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c) Eigen space  d) Euclidean space

8) The pfaffian differential form () in m variables x4, xo, ..., z,, is given by

Q= Xy (z)dxy + .. X, (2)dx,, is an exact differential if C;; = gTX; — %—fj then all the (s
are .....

a) Zero b) Non zero c) Greater than zero d) Less than zero

9) %+ H(q,%,t)=0isknownas......

a) Hamilton — Jacobi equation b) Euler — Lagrange equation

c) Modified Jacobi equation d) D’Alembert’s equation

10) Hamilton Jacobi equation is

a) 1st order ODE b) 2nd order ODE

c) 1st order PDE d) 2nd order PDE

11) Which of the following is known as the modified Hamilton — Jacobi equation
a)Z+H=0 b) H(q,g—g) £ ay,

c) H(q,%—”“q”):an d) %—H:()

12) The Hamiltonian function of the mass spring systemis ......

AH =2 —1px? bBYH =2 1+ 1kX?

O H=2L X2 dH=E kX’

13) Find the generalized momentam in the kepler problem?

ap.=r, pp=r0 Db)p, =0, py=1%

Apr=7r, pp=r%0 dp.=r, pp=0

14) In which system, whose kinetic energy function contains only squared terms in the
q’s

a) Rheonomic system b) Non holonomic system

c) Holonomic system d) Orthogonal system

15) In what type of system, the kinetic energy function contains no inertial coupling
terms?

a) Rheonomic system b) Orthogonal system

¢) Non holonomic system d) Holonomic system

16) The Liouville conditions are necessary for a separability of an orthogonality system
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for the special case in which ... ..
ayn=2 b)n=0 c¢n=1 dn=3
17) Which conditions are sufficient for a reparability of an orthogonal system?

a) Jacobi b) Hamilton c¢) Euler d) Liouville

Rl(pl) +..+ Ry pl)
2(fi+..+fn)

18) In the Liouville system, represents this expression form of Liou-
ville system
a) Kinetic energy b) Potential energy

c) Generalizing energy d) Total energy

v1(q1)=4-4vn(gn)

19) In the Liouville system represents the expression Y Ty Y ey

a) Kinetic energy b) Potential energy

c) Generalizing energy d) Total energy

20) The conservative holonomic system whose kinetic energy functin contains only
squard terms in the g’s and p’s and no product terms is called

a) Lioville’s system b) Separable system

c) Orthogonal system d) Modified system

Answers for Check Your Progress

1. The canonical integral of the form s(qq, q1, t,,t1) = t';l Ldt. The function s is a twice
differential in all its arguments and is known as Hamilton’s principle function.

2. A pfaffian form is defined by Q = >~ | X;(z)dx;.

3. If s(q, a, t) is any complete solution of the Hamilton Jacobi equation

%jLH(q, 5ot) =0, —fi = 572’ pi = Where (s are arbitrary constant are used to
solve for ¢;(«, 5,t) and p;(«v, B, t). Then these expressions provide the general solution
of the canonical equation associated with Hamiltonian H (g, p, t).

4. H(q, 5>) = ay, is the modified - Hamilton Jacobi equation.

5. Itis an orthogonal systern which has kinetic and potential energy of the form

sy fila) (X2, e ) and V=57, f where fi»¢; and v; are each function
of ¢;. We assume that >, f;(¢;) > 0 andR;(g;) > 0.
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6. The orthogonal system specified by 7 = £ 31" | m;g;° = 3 3.1 cip?, where ¢;(q1, g2, ..., qn) >
0 is a stacked are met, namely that a non-singular n x n matrix [p;;(¢;)] and a column
matrix 1(g;) exist such that ¢’'n = (1,0,...0) and ¢’y = V, where v(q1, ¢o, ..., ¢,) is the

potential energy and c is a column matrix.

Suggested Readings

* Greenwood. T. Donald, Classical Dynamics, 1979, New Delhi: Prentice Hall of
Indian Private Limited.

* Goldstein. Herbert. 2011. New Delhi: Classical Mechanics, 3rd Edition. Pearson
Education India.

* Rao. Sankara. K. 2009. New Delhi: Classical Mechanics. PHI Learning Private
Limited.

e Upadhyaya. J. C. 2010. New Delhi: Classical Mechanics, 2nd Edition. Himalaya
Publishing House.

* Gupta. S. L. 1970. New Delhi: Classical Mechanics. Meenakshi Prakashan.
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Unit 5
CANONICAL TRANSFORMATIONS

Objectives

After the successful completion of this unit; the students are expected

* To gain the knowledge of differential form and generating functions.

* To discuss the canonimal transformations with illustrate examples.

* To understand the concepts of the Hamilton-Jacobi’s method.

* To analyse the special transformations like identity, orthogonal, translation transfor-
mation.

* To understand the homogeneous canonical, point and momentum transformation.

* To develope the concepts of Lagrange and Poisson brackets.

¢ To derive the Bilinear covarient.

5. Introduction

Dear students, in this last chapter we have discussed primarily with the use of Hamil-
ton Jacobi’s method in obtaing the principal function S(q, a, t) and for the conservative
system, the characteristic function W (q, «). In both two cases we found the solution of
Hamilton problem (ie) the solution of Hamilton canonical equation of motion. The so-
lution represents a canonical transformation between 2 points in phase space namely
a moving point (¢, p) and a fixed point («./3). The principle function is the generating

function for this transformation.
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5.1 Differential Forms and Generating Functions

Dear students, in this section we will discuss about the canonical transformations,
principle forms of generating functions and also futher comments on the Hamilton-

Jacobi’s method.

5.1.1 Canonical transformations

Consider a holonomic system described by the generalized coordinates ¢, o, ..., ¢,.

W.K.T
t1
5/L(q,q’,t)dt 0 (5.1)
to
Let us consider a new set of coordinates Q, s, ...... , Q,, related by a point transforma-
tion
g = q:(Q, 1), (1=1,2,......m). (5.2)
The lagrangian is given by
LNQ.Q.t) = L(g,4,1) =T — V. (5.3)

L and L*are same in the value. Applying Hamilton’s principle to L*, we get

t1

5/L*(Q,Q,t)dt =0. (5.4)

to

Now let us consider a new lagrangian function

L(Q. Q1) = Lla.d.1) ~ (6(0,Q.1), 5.5

where ¢(q, @, t) is twice differentiable. Now
t ty
5 [ Q) =5 [ Liad.t) ~ dlota. Q.01 (5.6)
to to
Since d¢’s and §(Q)’'s are zero the term vanishes. Using eqn (5.1) and (5.5) becomes

t1
6/L*(Q,Q,t)dt = 0. (5.7)
to
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Hence L*(Q, Q,t) describes the given system as effectively as L(q, g, t)
Now let us consider two Hamiltonian description of the given holonomic system. The

Hamiltonian functions are given by

q pa sza qi — q Cja t) (58)

K(Q,p,1) sz,@l (Q, Q). (5.9)

Where the generalised momenta are given by,

oL
94
oL*
0Q;

Since, the Hamilton’s principle apply to L(q, ¢, t) and L*(Q, Q, t), we have the canonical

Pi =

(5.10)

i =

equations as follows

. OH
pi:_(?q'z'
(ji—gZ(z—123 n). (5.11)
B=-3.
Qi = gf,f (i=1,2,3,...n). (5.12)

A transformation form (¢, p) to (@), P) which preserves the canonical form of the equa-
tion of motion is known as canonical transformation
Next let us consider a system which has a Hamiltonian function H(q, p,t). The trans-

formation equations are of the form

Qi = QZ<Q7P7 t)a Pz = pz(Q;P, t)a 1= 1727 """ n, (513)
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where each function is twice differentiable. Substituting the values of L. and L* from

eqns (5.8) and (5.9) in eqn (5.5), we get

n n d

d

aﬁb(fb@t) = ;pi%’ — H(q,p,t) — ;piQi + K(Q, P,t)

d n n

i=1
dp = " pidg; — Hdt = pdQ; + Kat. (5.14)
=1 =1

The exact differential d¢ is equal to the difference two pfaffian differential forms
canonical transformation form the variables (¢,p) and the associated Hamiltonian
function H(q, p,t) to the new variables (), P) and the Hamiltonian K (Q, P, t) is called
the generating functions for the transformation.

Now let us consider a function (g, p, t) which is equal in the value to the generating

function ¢

¥(g,p,t) = 9(q, Q1) (5.15)

Then eqn (5.14) becomes

pidgi — Hdt = pdQi + Kdt = di). (5.16)

i=1

Here the function (¢, p, t) is not a generating function because it contains none of the
new variables.

Next let us consider a generating function ¢(q, p, t) which is arbitrary. Now

— 99 — ¢ 9¢
— . 24O, + ZZdt. 1
do 2 3y, dq; + ;:1 5 Qisz + 5t dt (5.17)
Comparing eqn (5.14) and eqn (5.17)
O .
;= =1,2,3,..... . 1
p'L 8ql J (Z ? ? 37 9 n) (5 8)
o9 ,
-Pi —T@, (Z— 1,2,3, ..... ,TL). (519)
9¢
K=H+ a (5.20)
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Eqn (5.20) and (5.19) can be used to solve ¢;(Q, P,t) and p;(Q, P, t) or conversely for

Qi(g,p,t) and P,(q, p,t). The new Hamiltonian function K (Q, P, t) is found by using the

transformation equations and eqn (5.20). Hence, if an arbitrary generating ¢(q, @, t)

is given, eqn (5.18) and (5.19) gives the transformation equations. Further the time ¢

is unchanged in eqn (5.14) (in the transformation) and hence it may be regraded as

a independent parameter. Now dt¢ can be set to zero.The eqn (5.14) and eqn (5.16)

reduces to
> pidgi =Y PoQ; = 6.
=1 =1
Zpi5Qi - Z P;oQ; = 7.
=1 =1
Now, consider ¢(q, p,t) and Q(q, p,t)
N
0 = 8_
- 0 0
> PisQ; = ZP Z QJ(S +Z chs
j=1
Now from (5.21) and (5.25)

0 = 0¢ = széqz ZZ aQ]éql ZZ aQﬂé}%

7j=1 =1 ]121

a] 8]
DI W R B I

7j=1 =1

Compare eqn (5.23) and eqn (5.26). Hence

o 0Q;
= p; — P
0g; ; ! 0q;
oY " 0Q);
and — P;
Op; ; ! Op;
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Consider the total differentials of w(p, q, t) and Q(q P, t)

dip =

(5.29)

Z and + Z aQﬂd  + aQ] 1t (5.30)

ﬁ:deQ] ZP ZaQ]dH—Z Q]d +8Q]dt)
j=1

1=

From eqn (5.16)

dp =dp = pdg; — Hdt =Y PdQ; + Kt

i=1 j=1

=S pda— Hat -3 PdQydg — 373 PdQydP - Z P+ Kt

i=1 i=1 j=1 =1 i=1

8@ - 0Q; 90,
Z Z =<4 _;;p ]dpl Hdt+Kdt_j21}jja_7f]'
(5.31)

From eqn (5.29) and eqn (5.30), equating the coefficients of dt, we get

0Q; oY
H+ K- Z Jaag_ﬁ

Now eqn (5.14) indicates the canonical transformat1on from the old variables (g, p)
to (@, P). Now the symmetry of the eqn (5.14) and eqn (5.18), eqn (5.19) and eqn
(5.20) shows that the inverse of a given canonical transformation is itself canonical
and is generated by the negative of ¢(q,p,t). Also sum of two exact differentials is
exact. Hence the two canonical transformations performed in sequence are equivalent
to a single canonical transformation. Further the identity transformation is canonical.
Hence the canonical transformations forms the group.

Example 1: Consider the transformation @ = 3 (¢* + p*) and P= —tan™* (%) To
show that the transformation is canonical. The old transformation function is H =
3 (@ +p%).

Solution :

1
0Q = 36 (¢° +p*) = q0q + pdp.
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Now pdq — PSQ = pdg+ tan~* <%> (qogq + pop)

= [péq—ktan‘l (Q)] §q + tan™? <Q> op. (5.32)
p p
Consider
0 1 — 2
a—<p+qtan_1 <g>) =1+4g¢q 5 (—g) = 2p 5 (5.33)
p p RN P*+q
P2
1 1 2
Qe ()ste e
q p L e\ P
2

Since eqn (5.32) = eqn (5.33). Therefore eqn (5.31) is exact. Hence the transforma-

tion is canonical. Now

dip =p+ qtan™! (%) + + ptan~! (%) dp.

Consider,

/qtan_1 (%) dqg = /pdq+ /qtan_1 (z%) dq = pq + /qtcm_1 (%) dq. (5.35)

: —-1(4q
Consider, [ ¢tan (5) dq

u=tan"! (%) /dv —/qdq
2
P q
du — d T
TrEre™ T
2 2 2 2 2 2
1 (4 q 1 (4 g p q 1 (4 p [p+q¢ —p
/qmn (1_9) dg =5 tan (5)_/3p2+q2 1=yt (13>_5/ P2+ ¢ 4
2 3
¢ (Q) pqg P / dq
=2 tan ' (=) -2+ =
2 2 2 ) p*+q¢?
q ¢ ¢\ pq P q
/qtanl (—) dg =—tan ! (—) — =+ tan! (—) ) (5.36)
P 2 P 2 2 P

.. Substitute (5.36) in (5.35)

2 2 2, 2
/p tatan (L) dg=pg+ Ltan (L) B4 Lyt (1) =24 (2 T (4
p 2 P 2 2 P 2 2 D

pg (PPHE 1 (q
Y(q,p) =5 7t (T) tan (5)

0(a. Q1) =Qsin”" (%) +vV20-7(3).
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where ¢ is a generating function and ¢ = .

¢
WKTK=H+ —
"o
0¢
But — =0
I
1
K:Hzé(q2+p2) :Q
Hence K =Q.
Canonical equation
. 0K .
P=30
K =() constant
. 0K
©=5p ="

Example 2: Canonical for Rhenomic transformation

Show that the transformation is canonical for rhenomic transformation given by,

Q = +/2qe' cosp and P = /2ge ! sinp.

Solution:

pdq — P6Q =pdq — (\/2qe " sin p)d(~/2qe’ cosp)
2¢t
§(1/2qe’ cosp) = ¢ COSpéq — \/2qe " sin pdp

Vel
2
- pdq — PSQ =pdq — (\/2qe 'sinp) %\/%péq — \/2qe tsinpdp
=(p —sinpcosp)dq + 2gsin® pép. — — — — — — — — — — — — — (A)

0 2
—(p —sinpcosp) =2sin” p. (5.37)
dp

%(Zq sin’ p) =2 sin” . (5.38)

eqn (5.37) = eqn (5.38) = A is exact.

/(p — sinpcosp)dqg =pq — gsinpcosp

LY =0.
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The generating function ¢ is given by

_ [ Qe Q Q?
st (35) +(s%5) ()

e (2) - O
- NG 2 '

5.1.2 Principle forms of generating functions

To determine the various types of generating functions.
Let us designate ®(q, @, 1) as the first type Fi(q,Q,t) = ¢(q, @, t). The other types of

generating functions are Fy(q, P,t), F3(p,Q,t) and Fy(p, P,1).
To find the relationship between Fi(q, @, t) and Fy(q, P, t).
Now

dFy =Y pidg; — Hdt =Y P,dQ; + K. (5.39)
=1 =1
Replace (' s by P’s after considering

)= QP+ PdQ. (5.40)
i=1 =1 i=1
Y PdQi=d(d> QiP) = QP (5.41)
=1 =1 =1

Substitute eqn (5.40) in eqn (5.41)

dF, = i pidg; — Hdt — d(i Q.P) + i Q:dP; + Kdt
=1 =1

i=1

=1 =1 =1

d(Fy+)_ QiP) = pidg — Hdt + ) QidP, + Kt
i=1

i=1 i=1

dFy =Y " pidg; — Hdt + Y QidP; + Kat. (5.42)
=1 =1
Where F, = Fy + Y _ Q:P; (5.43)
i=1

Fy(q, Pit) = Fi(q,Q,t) + Y _ QiP:.
=1
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Taking the total differential of Fy(q, P,t) we get

" OF, " OF, OF,
dF, = —Zdg; —=dP,
i i=1 9qi “r i=1 oF; ot

Form (5.42) and (5.44)

0B
pz—aqi-
OF,
Qi—api-
OF,
_H4 K =22
+ ot
K=y

ot

dP; + —~dt.

(5.44)

(5.45)

(5.46)

(5.47)

Thus we have obtained a generating function F;(q, P,t) with differential form given

by eqn (5.42) and the canonical transformation equations form eqn(5.46) and the

Hamiltonian function is given by eqn (5.47). Consider F} — > p;q;
i=1

d(Fy = pigi) = dFy = > dpigi — Y pidy;
i=1 =1 =1

= ipid(b‘ — Hdt - i PdQ; + Kdt — i dpiq; — ipid%
i=1 i=1 =1 1=1

i=1 =1

dFs(p,Q.1) Z dpiq; — Hdt — Z PdQ; + Kdt

=1 =1

Consider the total differential of F5(p, Q,t)

8F3 aFS aF?)

=2 Z 50, 4@+ ¢
Comparing (5.48) and (5.49)
OF3
opi = 4
ggi =—pi (1=1,2,3,....,n).
F
K=H+ %
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Thus we have obtained a generating function F3(P, Q,t) = F1— > p;q; with differential
=1

form given by (5.48) and the canonical transformation equations given by (5.50) and

the Hamiltonian function given by (5.51). Consider F;, — > ¢;p;

d(Fy — z”: qipi) = dFy — z”: dgip; — Zn: q:dp;
=1 =1 i=1

= Xn: pidg; — Hdt — En: QidP; + Kdt — Xn: daip; — zn: gidp:
i=1 i=1 i=1 i=1

= Xn:QidPi — Xn:dpiqi — Hdt + Kdt
i =1

dF,(p, P,t) Z dpig; — Hdt — Z Q:dP; + Kdt. (5.52)
=1 =1
Consider the total differential of Fy(p, P, t)

F F F.
dF, = 0 4dpl + Z 0 4dP + th. (5.53)

Comparing (5.52) and (5.53)

OF,
A, =4
Zg = Qi (i=1,2,3,.n). (5.54)
% ——H+K
K=H+ % (5.55)

Thus we have obtained a generating function F, = F» — > ¢;p; with differential form
i=1

given by (5.52) and the canonical transformation equations given by (5.54) and the

Hamiltonian function given by (5.55).

Example 3: Consider the transformation
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Obtain the four types of generating functions.

e~ @

-\

Solution :

To show that the transformation is canonical

sin p

pdq — PoQ =pdq — (q cot p)d(log(

)

Sinp>> 1 [qcosp dp — sin pdq

~sin P q>

d(log( } = cot pdp — %&]

q

pdq — PdQ) =pdq — (g cot p) (cotpép — ééq) = (p + cot p)éq — qcot? 5p.

To show the exactness

0
8_p(p + cot p) =1 — cosec’p.

0
8_q(_q cot’p) = — cot” p =1 — cosec’p.

(5.56)

(5.57)

(5.58)

Since eqn (5.57) and eqn (5.58) are equal. The given equation is exact. To find v

VY= /(p + cot p)og = pq + (cot p)q

sin
e? = P
q

From(I) = p = sin"!(ge¥).

Now

sinp :qu = cosp = /1 —sin® p.Then
p=cos /1 — qe2@.
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Now

V1 — q2e2@ \/e*Q(Q—q2

qe@ q

d(q, Q) =qcos (/1 — ¢2e2@) + Ve —¢iq

q
(ie.,)Fi(g, Q) =g cos™ (V1 — ¢2e2Q) + /e72Q — ¢2.

cotp =

Now

Fy(q,Q) =Fi + QP = pq + cotp.q + QP

pq = g[tan™" <%>]
QP = P[-log/p*+ ¢?].

Fy(q,Q) =qtan™ (
(

_ P Pq 1 (q
—t 1( )+ 1 =t 1(—)
o P2+q) Pi+g 0 \p

s =53 1 —log+/ P?
ap D2 P2)+ og +¢? +p< )
1+—2
q
o log /PTr—

P2+2

=logv P2+ ¢ = Q.

VP Jrq2

Now

F3(p7Q) :Fl -

=pq + cotp.q — pq = cotp.q
-Q

=e~ “cosp
8F?) -Q ..

— =e “sinp = —q
dp

0rl; 0

cosp = —P.
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Now

Fy(p, P) =F> —qp

=pq + cotp.q + QP — pq = cotp.q + QP = P+ QP

=P + log <&;p> P

oF, P (—sinp

Op cosp( P > anp 1

OF, cos p P?cosp —1 cos p
i (5 + I () -0
oP tog P + cosp P? 7P @

5.1.3 Further comments on Hamilton-Jacobi’s method

We know that the Hamilton Jacobi partial differential equation is given by

9 4 H(q,2,t) =0.

78(17
Where
0F;
= —t =1,2,3, ...,

90 ( n)
oOF,
d — B = —.
an I} o

Considering F»(q, «, t) as the generating function. The Hamiltonian-Jacobi equation is

given by
% + H(q7 Qd_??t) = 07
where
OF:
pi = qu (1=1,2,3,...... M)
0F,
d ;= .
an 15} o

Similarly the Hamiltonian-Jacobi equation in terns of F3 and F} are given by

O0F; 0F;

— + H(——— =0.
or, or,

— 4+ H(——,p,t) = 0.
5 T ( 9P )=0
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Here the generating function are of the form Fs(p, a, t) and F3(p, o, t).

Next let us consider the characteristic function W (¢, ) as generating function then the
Hamiltonian Jacobi equation is H(q, %—’(‘;) = Q.

Let P, = P;(«), where P’s are the function of /s or conversely a; = a;(p).

Then the generating function W (q, «) takes the form W (q, P) resembling F5.

The transformation equation are,

ow
P=_—
9q;
ow
Qs o
The Hamiltonian takes the form K (p) = a,,(p)
. 0K ,
Qi=gp=v  (=123..n).
. K
Pi:_gpi =0, (i=1,2,3,...n).

Now
Qi =V
Qi = vi(t) + Bi,

where v; are functions of P’s. The characteristic function has resulted in a new set of

coordinates which in general vary with time.

Let us sum up

1. We have introduce the cononical transformations with few examples.
2. We have discuss the principle forms of generating functions.

3. Also we discuss the comments on Hamilton-Jacobi’s method.

Check your progress

1. Write the Hamilton-Jacobi’s equation in terms of F; and F}.
2. What is mean by canonical transformation.

3. State principle forms of generating functions.
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5.2 Some Special Transformations

Dear students, in this section we will discuss some simple canonical transformations.
Also we will discuss the identity, orthogonal, translation, point and momentum trans-

formations.

5.2.1 Simple canonical transformations

1. Let us consider the identity transformation.

Consider Fy, = Y ¢; P;.
=1

Now
or,
P = = DPi
dq; P
OFs
Qi = ) P, qi-
Thus

P; = p;

Qi = ¢, (i=1,2,3,.....,n).

Confirming the identity transformation. Consider

F3=— ZPz‘Qm
i=1
0F3

where P, = ~20, ~ —(=pi) = pi
and q; = —882 = _(_Qz> = Qi7 (Z = 172,3, 77’L)

The functions of the form F}(q, Q,t) or Fy(p, P,t) cannot be used to generate identity

transformation for the variables in the generating function are directly related
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2. Let us consider a transformation that results in translation. Let

n

Fy = Z(qipi + ¢ — diqi).

i=1

OF:
Now pi = 2 = Pz — dz
dq;
P =pi+d;
0F,
an Q’L 8PL q’L +CZ’
Qi=¢ +a.

Here P, = p; + d; and Q; = ¢; + ¢; gives the required translation
3.The transformation that interchanges the roles of co-ordinates and momenta. Con-

sider

Fy = Z q;Qi.
i=1

¥a
Now pi = 0 . = Qia
dq;
OF
and P = —8Qli = —q, (i=1,2,3,..,n).

The presence of minus sign shows that the canonical equations are not symmetrical
w.r.t the interchange of co-ordinates and momenta, where «’s are constants meeting

the orthogonality condition,

aal =ala=1

n
E Qijaik, = Oj.
i=1

OF:
W.K.T p; = 2= Z a;; P;
04 45
oF, <
Qi=5p =Dl

i=1

n

Hence the transformation are given by

p' n n
P="1—= Zaijpj + Qi = Zaijq]'-
Z Q;j J=1 j=1

i=1

Cases

1. If |a| = 1, then the equations, represent the rotations.
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2. If a;; = 4, then it represents an identity transformation with zero rotation.

5.2.2 Homogeneous canonical transformation (or) Mathieu trans-
formation (or) contact transformation

Consider the differential form
0P = pibgi— Y PioQi, (5.59)
=1 =1

here §1 is an exact differential and the transformation from (¢, p) to (@, P) is called
the canonical transformation. Consider the case, where ¢ and v are identically zero.

Then

Zn:pi&li - Xn: P;oQ); = 0, (5.60)
i=1 i=1

and the corresponding transformation is called a homogeneous canonical transforma-
tion.

Important features of homogeneous canonical transformation:

L*(Q, Q. 1) = L(g,4,t). (5.61)
_ N~ 0Qi
W.K.T K_H+E+;PZ o
=0 K:H+ZH%, (5.62)
=1
and P, ZP]- (9qj —0

7=1
> Pjan = 0. (5.63)
=1 0y

Where P’s are not all identically equal to zero
From eqn (5.63) |a,dip:| =0

p's cannot be solved as functions of (¢, ), t). Consider,

(g, Q1) = 0 (5.64)
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Differentiate

Z 35z+z 50 = 0

9Q;

By Lagrange’s multipliers,

Fi(\q,Q,t) = Z)\Q (¢,Q,1), (5.65)
arbitrary variations w.r.t ()’s and ¢’s

aF* ZaléQl_Z)\ ]5 +Z ]5Q

*

OF; OF
But p; = dp=—L.
" p a% an an

Therefore we have

széqﬁz P)0Q; = Z[Z/\ 5qz+z—5cg

2Ny (5.66)
00

P, ZAjaTgi. (5.67)
j=1

Eqns (5.64),(5.66) and (5.67) can be used to solve \'s,P’s and )'s as functions of
(¢,p,1).

Arbitrary giving variations of equation(5.65) w.r.t ’t’

6F1* 5 Z A\ aQJ
W.K.T K—-—H= 8;;1*
K=H+ Z by a(;z
5.2.3 Point transformation
Consider
(g, Q1) =0. (5.68)
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" 00
> 5o

Z 3659 =0
If

K zo and |22 20
dq;

9Q;

Then @)’s can be represent a point transformation. They represent a mapping of points

in configuration space. Now from

_ 9Qi
pi = J,Z P dg;
We get
n o1, ‘
Di = ija_g;a (221,2,3,...,TL),

Jj=1

where p’s are linear function of P’s and vise versa. Now define €'s of the form

QISZQj_fj(q’tL (321,2,3,,71)

W.K.T

WK.T

K = H+i/\ 8f]

—H+ZP af]

K and H are equal only for scleronomic system.
Point transformation neednot imply homogeneous canonical transformation

Consider
Fl*()‘? q, Qa t) = Fl(Qa Q? t) + Z )‘ij(q> Qa t)
j=1
aFl* oF; - 08);
;= = )\ J .
b dq; 0q; Z ! 0g;

OFy ORI~ 0
50, = 30, 2= 30,

j=1

bi = —
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The Hamiltonian functions are given by

ot

OFf _ . OF
K=H+ - 1+ZA]- e

Consider a non-homogeneous point transformation (g, p, t)

= pidg — > Q.
=1 =1

5 =

=1 a
Qj:fj(q7 )
Q= > b4

i=1
n

ZR@—ZZ g
i=1 j=1 !
Substitute(5.72) in (5.69)
Z pzé% Z Z af] 5%

=1 j=1

From (5.70) and (5.73) we get

oy —~ _0f;
an ’ ; ! aQi
o - af;
i = + > B
b 0g; ; ! 0q;
and g;i =0

= 1) is not a function of p’s.

5.2.4 Momentum transformation

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

Consider the momentum transformation equation is given by p; = h;(p, t) This repre-

sents a point transformation in momentum space and it is called a momentum trans-

formation. Define the function

w;(Pp,t) =0, (1=1,2,3,...,n).
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OF . 09,
W.K.T ;= + Ai—2.
b dq; ; ! dq;
8F4 8&)
Then ¢ = Z/\] 8pj : (5.75)
0F; 08
W.K.T P =- — \i—2.
0Q, Z: 700,
Then Q, = Z s (5.76)
e aP ANr ‘
8F1
W.K.T K=H4+ — ;
+ + Z A] at
8F1 (9&)
Th K=H+ — b} <n). .
en + =+ Z i 5 (m < n) (5.77)
Consider w; = p; — h;j(p,t), (j =1,2,3,...,n). From (5.75)
0F, <
Op; i opi
8F4 " 0w~
i = Nj—2
@ oF; * le 7 Op;
ij i 8F4
o Q; = P, + N (5.78)
Hence we have ); = )\;. Then
q; = 8F4 + Z Qj
W.K.T from (5.72)
OF; <~ . Oh;
K=H+22— 7
+ ot Jz: Aigr ot
OF, Oh;
K= H"‘E_;Q]at Aj = Q]
(5.73) becomes,
0F,
OF,
P, =0.
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Let us sum up

1. We have introduce the some special transformations.
2. We have classified the canonical transformation namely identity, orthogonal, trans-

lation, homogenous, point and momentum transformation.

Check your progress

4. What is the another name of homogenous canonical transformation.
5. Write the equation of identity transformation.

6. Define momentum transformation.

5.3 Lagrange and Poisson Brackets

Dear students, in this section we will discuss the Lagrange and Poisson brackets. Also
we will discuss the properties of Poisson brackets and poisson theorem. Finially, we

will discuss the bilinear covarient.

5.3.1 Lagrange Bracket

Suppose we are given the transformation equation of the form Q; = Q;(q,p,t) and
P, = P(q,p,t). If v and v are functions of (1, ...,Q, and P, P, ..., P, then the

lagrangian brackets [u, v| is defined by

0] = S (L 08 00O, (5.79)

ou v Ov Ou

1=

_ Zn:(a% Op; _ 9g; api)
" 0u v Ovdu’”
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Consider

oY :ij5Qj - Z P;oQ);

]:1
=", — Z R%éqj -y Za%ém. (5.80)
j=1 i=1 qi — Dj

Ope =" "0p;’
> ) 2 oy =25 ") 2
Z(g; gﬁl - g}i.gﬁ;) —0. (5.81)
B. 3pk ZPZZ’ —a%(pk—izll%gii)

dP; 9Q; PQi mOPOQi -, Qi
_ — 7 _ p—=
Z gy, 8% ; 3%3% Zl 5%‘ oy ; anan
Z OP, 0Q; 0P, 0Qi,
an 3% an'.a%

0 - 0Q; 0 a 0Q;
C. =Y P ) = (=Y P
Opr, (p Z apj ) 3%’ ( ; Opy, )

=1

OF; 0Q; Qi 0P, 8621 0*Q;
Zﬁpk 0q; Z ' 9q;0qs, Z 8pk (‘9% 0q]8Pk)

Z 0P, 0Q); 0P, 0Q;
3]% dg;  dq; Opk

81%

) = k. (5.83)
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Using the differential of Lagrange Bracket equation (5.82), (5.83) and (5.84) can be

modified as

P 0Q; 0P, 0Q;

(5.82) = . _ -0
Z 8qk dq;  Oqg; aqk)

= [pj, px] =0
~,0Q; 9P, 9P, 9Q;

5.83) = : — .
( ) ;<3%‘ g Oq; Oqy

) =0

an 0P, 0P, 0Q;
(5.84) :>Z dq; Opr  Oq; Opy

) =0
= (g, pr] =0.

Alternating the Lagrangian brackets can be defined using Jacobi determinants (ie.,)

Qi 0Qi
n i) _
[U, U] = Zz—l dc(gu v)) é%g é%g

Properties of Lagrange’s bracket

1. [u,v] = 0.
2. [v,u] = 0.
3. [u,v] = =[v, ul.

5.3.2 Poisson Brackets

suppose we have two functions namely, u(q, p,t) and v(q, p,t). The Poisson of (u,v) is

defined as

_ n ou v ou v
(u,v) = Zizl(a—%'a—m . a—m‘a—qi)-
Properties of Poisson bracket

1. (u,v) =0, 2. (v,u) =0, 3. (u,v) = —(v,u).
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Necessary and sufficient for the transformation to be canonical

To prove (Pj,pr) =0, (Q;,Qk) =0, (Q;, Py) = ;5. Consider the transformation

Qi = Qi(q,p,t), Pi = Qi(q,p, 1), pj = pj(Q, P,t), ¢; = ¢;(Q, P, t).

Jq; 0%
8@2 5Q7,

0 op;
op; = Z( 5Q: + p6P>.

9Q;
“~ 0Q; 0Q;
W here 0Q; = Z( aii dqr + a}?k Opk)-

Z 5, (Z 2% B ‘W) *2.p (Z(aqk‘;

Z dq; 0Q); n Jq; 0P\ A
—~\0Q: dq ' 0P 0g) "
i 8%‘ 0Q; n d0q; OF; —0
“~\0Q; Opx ~ OF; Opy, o

- — (9p; 9Qi  Op; OB\ _
similarly ZZ: (aQi.apk + b, g ) O

i apj aQi+apj OF; —0
i—1 Qi Oq.  OP; Oqi '

Assume that the Lagrangian brackets satisfies

(4) [Qja Pk = Ok

z": 0Q; OP  0Q; 0P\ _ o
45 7e] = i1 dq; Opr Ipx g5 ) "

Compare (5.91) and (5.93)

0Q; - Op; oP; _ Opj
dq;  OP dg;  9Qs

(@) gk, pjl = djx
=1

Oqi Op; apj 0qy;
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(5.87)

)
(5.88)
(5.89)

(5.90)

(5.91)
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(5.93)



Compare (5.94) and (5.88)

P, 0q; _0Qi _ g
Op;  0Q;’ oP; 0P
Consider,
- [0Q; 0P 0Q; 81%)
(95, qx] = ZZ:; < Jdq; Oqr  Oqir Og,
_Z”: _(‘3Pj 0P, 0P, OP;
B — Opi 0Q;  Op; 0Q;)
Since [g;, qx] =0 — (pj,pk) =0
Consider,
N 9Q; 0P,  OF; 6]3]-)
[pj, Di] —; ( Opr 00; | Op; 00,
:i _Oqp Oq;  Og; Oy
~\ 0P 0Q; 0P, 0Q;
=(q5, qr)-
Since [p;,pr] =0 = (%, qx) =0
Consider,
ol (_@Qi OP _ 90, 81%)
% Pr “~ \ Op; Opx  Opx Op;
_i 0P g Oqx OP;
— Op; Opr  OP, 0Q;
:(Qkapj)
Since [g;, pr] = 61, = (qx: pj) = Oji

Hence the poisson brackets confirms that the transformation is canonical.
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Special properties of Poisson brackets

1. Writing hamilton’s canonical equation using Poisson brackets. Consider (¢;, H)

L O0H
B dq;
=p;

¢ =(¢;, H)

2. Consider a dynamical system specified by the function f(q, p,t)

Now

ot Z((?qz f )Jr@_{

0
(.1 + .

If f is not an explicit function of time ¢
of _ of _
Bt = 0 then Fri (f,t)

If f is a constant of motion, then (f, H) =0

Poisson Theorem:

If u(q,p) and v(q, p) are integrals of a Hamiltonian system, then the Poisson bracket
(u,v) is an integral. (ie..,) (u,v) is a constant of the motion
Proof: Now u(p, q)

du _ o
=0 (.. uis constant)
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(ie.,) (u, H) + 2¢ = 0. Also,
0 0
&(UJ U) = ((’LL, U)7 H) + E(z’% U)'
5.3.3 Bilinear covariant
Consider the pfaffian differential form
Q=) X(x)dz; (5.94)

Bilinear covariant system is given by

0Q —dw =Y cij0u;da;. (5.95)
i=1 j=1
Consider the canonical transformation from (g, p) to (Q, P)

dy = pdg; =Y PdQ:. (5.96)

i=1 =1
S(dv) = (pida; + opida; — Spidg; — PiddQ;). (5.97)

=1

Now  0¢=> pidgi— Y PiQ:. (5.98)

=1 =1
d(ov) =Y (dpidq; + piddq; — dPi6Q; — P.dsQs). (5.99)

i=1

(5.98)-(5.100)

Z(épid(b' - dpié%') = Z(5P¢sz’ - F)id(SQi>-

i=1 =1

n
> (dpidg; — dp;dq;) is a bilinear covariant.
i=1

Hence the bilinear covariant is invariant w.r.t the canonical transformation.
Relationship between Lagrange and poisson brackets
Prove that Lagrange and poisson brackets are reciprocal quantities(or)

Prove that LP = I (or) prove that L = P~1]
2n

. dq, Op, 8pr qu 8u] Ouy, 8uj ouy,
;[u“uk] U, ) ; TZ Ou; Ouy,  Ou; Ouy, ; 0qs Ops  Ops Ops )

—ZZZ%%%%_%%%%_%%%% dp, g, Ou; Ouy
- k=1 r=1j auz auk aqs aps aulaukapsaps 8UzaUkaQSapj aUzaUkapsaps

(5.100)
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We have

substitute (5.102) in (5.101)

2n

k=1 r=1 j=1

8T8
_ZZZ(‘)ZZ 37;]

r=1 r=1 j=1

_ 9y
 Ouy
=0 =1
2n
Z[uz,uk](uj,uk) =1
k=1

Consider L = [u;, ug]
Py = (uj, ur)
LP=1

L:p’1

Jacobi identity
(u, (v,w)) + (v, (w,u)) + (w, (u,v)) = 0.

Consider

ov Ow ow Ov
(s (0, 0) = (0 () = (0.3 50~

- <u,§<§—;.§—;‘;>> - <u,;<§—;”k.§—;>><v, ¥
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Z[ui;uk Uuj, ug) ZZ (91(1 (;CZ

Opr %]
aui aps

8pr an
aui apr

(5.101)

(5.102)



By the property, (u, (v,w)) = (u,v)w + (u, w)v (5.101) becomes

Z apk Z an Z (9% Z 3% Z apk Z apk
Z an Z 3]% 8]% Z an Z apk Z 3% Z 3]%

Z %y 4 (du J—a—“’[(% o) + (u, 2O+
3pk apk Oqi, Oqr " Opy” Opx:

Z @ ow ov ow ou ow ou ow

Ogr " Opr’  Opr " 0qy’ " O Oa’  Ogx Opr
W.K.T
0 ou ov
8 (uav)_(aav)—'—(uaa )
ow 0 ow 0
= —_ —_— ,v)+0
zk:[ g, Opy, ) Opr. Ogy, (u U) ]
_ _Z[a_w 9 9 (u, v 8_w]
. 3%'3]?1@ 0q ’ 3pk
= —(w, (u,v))

Let us sum up

1. We have discuss the Lagrange and Poisson bracket.
2. We have derive the Poisson theorem.

3. We have discuss the Bilinear covariant.

Check your progress

7. Define Lagrangian brackets.

8. Explain skew symmetry.

Summary

* Introduce the cononical transformations with few examples.

* Discuss the principle forms of generating functions.
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* Discuss the comments on Hamilton-Jacobi’s method.
* Introduce the some special transformations.

¢ Classified the canonical transformation namely identity, orthogonal, translation,

homogenous, point and momentum transformation.
* Discuss the Lagrange and Poisson bracket.
* Derive the Poisson theorem.

e Discuss the bilinear covariant.

Glossary

* Homogenous canonical transformation: Consider the function ¢ and ¢ are
identically zero. Then ) ,(P,d¢; — P;0Q;) = 0 and the corresponding transfor-
mation is called a homogenous canonical transformation. This transformation is

also known as Mathieu transformation or constant transformation.

* Lagrangian brackets: Expression of two variable (u,v) by using the notation

_ n 0Q; OP; OP; 0Q; .
[u,v] =30 (G5 — %254, where v and v are any two variables g1, g2, .., ¢n, P1,D2; -, Pn-

* Poisson brackets: The function of the dynamical variable and time namely u =

u(q, p,t) and v = v(q, p, t). The Poission bracket expression for function is (u,v) =

Z” Ou v _ Ou v
i=1 \ O¢; Op; Op; 0q; | *

* Poisson theorm: If u(q,p) and v(q,p) are integrals of a Hamiltonian system,
then the Poisson bracket (u, v) is also an integral, that is (u,v) is constant of the

motion.

Self-Assessment Questions

Short-Answer Questions

1. Consider the transformation ) = /e=2¢ — p2, P = cos™*(pe?). Use poisson bracket
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to show that it is canonical.

2. Show that Q = /2¢e cos p, P = v/2qe™" sin p is canonical.

3. Let the transformation @ = $(¢*> + p*), P = —tan™* (%) Show that this transfor-
mation is canonical.

4. Prove that canonical transformation is invariant under canonical transformation.
5. Derive the equation 62 —dff = 3" | 7| ¢;jdr;0z; under bilinear co-variant.

6. Explain the differential forms of Pfaffian differential equation.

Long-Answer Questions:
1. Explain Poisson brackets.
2. Derive the principle of generating functions.

3. State and prove Poisson’s theorem.

sinp

4. Consider the transformation ) = log .

, P = ¢ - p. Obtain the four major types of
generating function associated with the transformation.

5. Explain the types of transformation.

6. Write bilinear co-variant with the differential form of pfaffian function (2.

7. Show that the value of a Lagrangian bracket is invariant under canonical transfor-
mation.

8. Prove that poisson brackets is Jacobi’s identity.

Objective Questions

1) Hamiltonian’s canonical equations in terms of Poisson brackets are

a) ¢; = (¢, H), P, = (pi H) D) ¢ = (¢;,H), P = (P, H)

A ¢ = (g, H),pi = (P, H) d) (g5, qx) = 0, (P, Px) = 0,(q;,pr) = dj

2) In a canonical transformation the first generating function is a function of
a) (p,q,1) b) (¢.Q.1) © (p, Q1) d) (¢, P, 1)

3) If the poisson bracket of a function with the Hamiltonian vanishes

a) The function depends upon time b) The function is a constant of motion

¢) The function is not the constant of motion d) The function is canonical function
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4) The Poisson bracket expression for the function u(q, p,t) and v(q, p,t) is (u,v) =
ou 0 ou O Ou dg; _ Ou d

YL (G~ G fe) DT (e - Sea)
02 0? 52 02

C)Z?:l(alhgpi o 3;02'(};%) d)z?zl(aqz';m o 8]’ng7;)

5) Poisson bracket is

a) Invariant under canonical transformation b) Variant under canonical transforma-
tion.

¢) Both (a) and (b) d) Canonical transformation

6) In a Canonical transformation the third type generating function is a function of
a) (¢,p,t)  D)(Pt) (1) D1

7) A transformation from (q,p) to (Q,P) which preserves the canonical form of the
equation of motion is known as

a) Canonical transformation b) Point transformation

¢) Momentum transformation d) Identity transformation

8) Given transformation equations () = ¢ cosnp and P = ¢™ sin np.

a) for m = = and p = 2 the transformation equation become canonical

1
2

b) for m = - and p = 2. It is not canonical.

N[ =

c) for m = 2, p = 3. It is canonical.

d) for m = 2, P = 2.1t is canonical.

9) In a Canonical transformation the fourth type generating function is a function of
a) (p,Pt)  b)(¢.Qt) DPQL  d)(¢P1)

10) Contact transformation is also known as

a) Momentum transformation b) Identity transformation

c¢) Orthogonal transformation d) Homogeneous Canonical transformation.

11) Homogeneous Canonical transformation is also known as

a) Mathieu transformation b) Point transformation

¢) Momentum transformation d) Orthogonal transformation.

12) The Momentum transformation is a in a momentum space.

a) Legendre transformation b) Point transformation

¢) Canonical transformation d) Co-ordinate transformation.
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13) The term (u, (v, w)) + (v, (w,u)) + (w, (u,v)) = Ois called

a) Jacobi’s identify b) Poisson bracket c)Lagrange bracket d) Jacobi’s identify
14) Lagrange’s bracket is a) Canonical invariant b) Canonical variant c) Non-
Invariant d) Invariant under Canonical transformation

15) The relation between matrix form of Lagrange and Poisson brackets are

a) LP=1 b) L=P-1 c) Both a) and b) d) L=P

16) How many different forms of generating functions are there

a) 2 b) 3 c) 4 d) 5

17) In a canonical transformation the second generating function is a function of
a) (¢,Q,1) b) (¢, P, t) o (p, Pt) d) (p,Q,1)

18) The principal forms of generating functions of F; is

A Fi(q, Q)+, Qb b)Fi(q, Q,t) — >, ¢iF;

AF(q,Q,t) =Y P dF(q,Q,t) — >, QiP.

Answers for Check Your Progress

1. 95 4 [ (—%i;,p,t) —0and 2 + H (—%,p,t) —0.

2. The Hamilton canonical function Q; = g—g, P, = %, i =1,2,..,n A transformation
from (¢, p) to (@, P) which preserves the canonical form of the equation of motion is
known as canonical transformation.

3. The various types of generating functions namely Fi(q, Q,t), Fx(q, P,t), F3(p,Q,1t)
and Fy(p, P,t). the relationship of the generating function F}, F;, F5 and F) are called
the principle of generating function.

4. Homogenous canonical transformation is also known as Mathieu transformation or
Contact transformation.

5.F3=> ", PQ.

6. The momentum transformation of the form w; = Q; — f;(¢,t), j=1,2,..n.

7. Lagrangian brackets expression of two variables (u, v) by using the notation [u, v] =
S (%oh 9P 004) wwhere u and v are any two variables g1, ga, -, G, D1, P2, s D

=1\ du Ov Ou Ov
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8. A consequence of a two skew symmetry of the Lagrangian bracket is [u, v] = —[v, u]

and [u, u] = [v,v] = 0.

Suggested Readings

* Greenwood. T. Donald, Classical Dynamics, 1979, New Delhi: Prentice Hall of
Indian Private Limited.

e Goldstein. Herbert. 2011. New Delhi: Classical Mechanics, 3rd Edition. Pearson
Education India.

* Rao. Sankara. K. 2009. New Delhi: Classical Mechanics. PHI Learning Private
Limited.

* Upadhyaya, J .C. 2010. New Delhi: Classical Mechanics, 2nd Edition. Himalaya
Publishing House.

* Gupta. S. L. 1970. New Delhi: Classical Mechanics. Meenakshi Prakashan.

189



	INTRODUCTORY CONCEPTS
	The Mechanical System
	Equations of motion
	Degrees of freedom
	Generalized co-ordinates
	Configuration Space

	Constraint Force and Constrained Motion
	Holonomic constraints
	Non-holonomic constraints
	Unilateral constraints

	D'Alembert's Principle of Virtual Work
	Virtual displacement
	Virtual Velocity
	Virtual Work
	Principle of virtual work
	D' Alembert's Principle
	Generalized force

	Energy, Linear Momentum and Angular Momentum
	Potential energy
	Principle of work and kinetic energy
	Conservation of energy
	Equilibrium and stability
	Konig’s theorem
	Angular momemtum
	Angular momentum of the rigid body
	Angular momentum with respect to an arbitrary reference point
	Generalized momentum


	LAGRANGE'S EQUATIONS
	Derivation of Lagrange's Equations of Motion
	Expression of kinetic energy interms of generalized co-ordinates
	Lagrange’s equation for the Holonomic system
	Standard form of Lagrange’s equation
	Lagrangian’s equation for non-holonomic system

	Solution of Differential Equation of Motion
	Ignorable co-ordinates (or) Cyclic co-ordinates:
	Kepler’s problem
	Routhian function

	Jacobi Integrals for Conservative system
	Evaluate energy integral (or) Jacobi integral
	Natural system
	Liouville’s system


	HAMILTON'S EQUATIONS
	Stationary value of a function of several variables
	The necessary and sufficient condition for stationary values
	Lagrange multiplier method
	Stationary value of a definite integral
	Brachistochrone problem
	Geodesic problem
	Hamilton's principle

	HAMILTON'S CANONICAL EQUATIONS
	Derivation of Hamilton's equations
	Discussion of mass-spring system using the Hamilton procedure
	Discussion of Kepler's problem using Hamilton procedure 
	The Legendre transformation

	Some other Variational Principles
	Modified Hamilton's principle
	Principle of least action
	Jacobi's form of the principle of least action
	Discuss of Kepler problem by using Jacobi form of principle of least action


	HAMILTON's- JACOBI THEORY
	Hamilton's Principle Function
	Canonical integral
	Pfaffian differential form 

	Hamilton Jacobi's equation
	Jacobi's theorem
	Conservative system and ignrable co-ordinates (or) modified Hamilton Jacobi equation

	Separability
	Lioville's system
	Stackel's Theorem


	CANONICAL TRANSFORMATIONS
	Differential Forms and Generating Functions
	Canonical transformations
	Principle forms of generating functions
	Further comments on Hamilton-Jacobi's method

	Some Special Transformations
	Simple canonical transformations
	Homogeneous canonical transformation (or) Mathieu transformation (or) contact transformation 
	Point transformation
	Momentum transformation

	Lagrange and Poisson Brackets
	Lagrange Bracket
	Poisson Brackets
	 Bilinear covariant



